
Peter Koroteev

Talk at HEP seminar
Arizona State University, Tempe AZ, September19th 2018

1D Statistical Mechanics
&

Resurgence

[1410.0388] [1303.6386]

6

parameterized by u. For u 6= ⌥1 it can be checked that
(@F/@z, @F/@p) does not vanish on Eu, so each Eu is non-
singular. Then F(p, z) implicitly defines a locally holo-
morphic map p = p(z). The exceptions to this occur at
z = 0,1, z±, where

z± = �u± i

p
1� u2 (15)

are the roots of p2 = 0 (i.e. classical turning points). In
a vicinity of these four branching points p(z) behaves as

p ⇠ z
�1/2

, (z ⇠ 0) (16)

p ⇠ z
1/2

, (z ⇠ 1) (17)

p ⇠ (z � z±)
1/2

, (z ⇠ z±) (18)

respectively, i.e. p(z) is locally double-valued. (Note that
we have added a point at z = 1 to the complex plane,
thereby rendering it compact and topologically equiva-
lent to a Riemann sphere, Fig. 4). To make sense of this
double-valuedness, we first introduce two cuts between
the four branching points. For convenience we have cho-
sen to do so between 0,1 and the turning points z±.
Upon this cut domain, p(z) is locally holomorphic.

FIG. 4: (a) Complex z-plane with two cuts. (b) It
compactifies to Riemann sphere with two cuts.

We then introduce a second sheet of the z-plane and
the corresponding Riemann sphere, cut in the same way
as the first. We then analytically continue p(z) on the
first sheet across the cuts onto the second sheet. If p(z)
is analytically continued across the branch cut again, we
arrive back on the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
whose domain is a doubly-branched cover of the Riemann
sphere. Furthermore, suppose we open up the branch
cuts, keeping track where on the other branch p(z) will
be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.

FIG. 5: Construction of Riemann surface of genus 1. Two
Riemann spheres with two cuts each are deformed into
tubes to make the gluing in the final step more clear.

FIG. 6: Riemann surface of genus-1 with two basic cycles �0
and �1 on it. In the limit u ! ⌥1 the torus degenerates
into a singular surface. This coincides with the loop �0
(but not �1) becoming contractible to a point.

A. Integration and topology on torus

The action integrals can be understood as S =
H
�
�

over classical trajectories, where

�(u) = p(✓) d✓ = p(z)
dz

iz
=

(z2 + 2uz + 1)1/2

iz3/2
dz (19)

is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by
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Transport in one dimensional Coulomb gases: From ion channels to nanopores
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We consider a class of systems where, due to the large mismatch of dielectric constants, the
Coulomb interaction is approximately one–dimensional. Examples include ion channels in lipid
membranes and water filled nanopores in silicon films. Charge transport across such systems pos-
sesses the activation behavior associated with the large electrostatic self–energy of a charge placed
inside the channel. We show here that the activation barrier exhibits non–trivial dependence on the
salt concentration in the surrounding water solution and on the length and radius of the channel.

I. INTRODUCTION

In a number of quasi–one–dimensional systems the in-
teractions between charged carriers follow (for a certain
range of distances) the one dimensional Coulomb law:
Φ(x) ∼ |x|, well known for parallel charged planes. Ex-
amples include: ion channels in biological lipid mem-
branes1,2, water–filled nanopores in membranes for de-
salination devices3, water filled nanopores in silicon oxide
films4,5,6, free–standing silicon nanowires7,8 and others.
Their common feature is the presence of a quasi 1d chan-
nel with the dielectric constant greatly exceeding that
of the surrounding 3d media. As a result, the electric
field is forced to stay inside the channel, leading to the
1d interaction potential, mentioned above. The purpose
of this paper is to study the charge transport through
such systems as a function of the carrier concentration,
length, temperature, etc. We show that these systems
posses very peculiar transport properties, qualitatively
different from those found in the examples with shorter
range interactions.

To be specific, we focus on the water filled channels.
One example is ion channels in lipid membranes. Such a
membrane consists of a L = 5nm thick hydrocarbon layer
with the dielectric constant κ2 ≃ 2, surrounded by water
with the dielectric constant κ1 ≃ 80. Due to the large
ratio κ1/κ2 ≃ 40 ≫ 1 the electrostatic self–energy of a
charged ion inside the hydrocarbon layer is huge, mak-
ing the pure membrane impermeable for ions from water.
The only way for ions to cross the membrane is through
the water–filled channels formed by proteins embedded
into the membrane1,2. Radiuses of such cylindrical chan-
nels, a, vary from 0.3 to 0.8 nm (we are concerned only
with the passive channels without motors).

Another example is a water–filled nanopore made in
a silicon film 4,5. Such nanopore may have the radius
a ≃ 1 nm and the length L ≃ 20 nm. Silicon oxidizes
around the channel, giving κ2 ≃ 4. Thus, also in this case
κ1/κ2 = 20 ≫ 1. Yet another example is provided by
water–filled nanopores, say, with L ≃ 40 nm and a ≃ 1.5
nm in cellulose acetate films used for the inverse osmosis
desalination. In this example κ2 ≃ 2 and again κ1/κ2 =
40 ≫ 1.

Keeping in mind one of these examples, let us con-

sider a single water filled channel in a macroscopic mem-
brane or a film separating two reservoirs with salty water
(Fig. 1a). We assume that walls of the channel do not
carry fixed charges. A static voltage V , applied between
the two reservoirs, drops almost entirely in the channel
due to the high conductivity of the bulk solution. One
can measure the ohmic resistance, R, of the channel as a
function of the temperature, T , concentration of mono-
valent salt, c (for example KCl) and parameters of the
channel L, a, κ1,κ2. The main goal of this paper is to
evaluate R(T, c, L, a,κ1,κ2) for the very nontrivial case:
κ1 ≫ κ2. This is a completely classical (h̄ = 0) problem.

(a) +
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| |
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L/2

+

ξ
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FIG. 1: Electric field of a charge in a short (a) and a long
(b) cylindrical channel with the large dielectric constant κ1,
in the membrane with the dielectric constant κ2 << κ1. L is
the channel length, a is its radius. The self–energy barrier is
shown as a function of coordinate x for the case of the short
channel. UL is its maximum height. For a long channel ξ is
the electric field escape length from the channel.

For a low concentration of salt c the charge transport
is due to the rare events, when there is a single (e.g. pos-
itive) ion inside the channel. We assume that the radius
of the ion, b, is smaller than that of the channel a, so that
the ion is totally surrounded by water. It is easy to see
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neutrality, allowing the edge regions to screen charge im-
balance of the reservoirs. Therefore, irrespective of the
relative fugacities of cations and anions in the reservoirs,
the thermodynamics of the long channel are equivalent
to the one in contact with neutral reservoirs with an
appropriate salt concentration ↵. Hereafter we restrict
ourselves to the neutral Hamiltonian (8) with the single
parameter ↵.

III. NUMERICAL ANALYSIS

In this section we discuss numerical simulation of the
spectrum of the Hamiltonian (8). We focus on unequal
charges n1 6= n2, since the case of n1 = n2 reduces
to the well-known Hermitian cosine potential29,30. For
unequal charges the Hamiltonian is non-Hermitian but
PT -symmetric, allowing for complex eigenvalues which
appear in conjugated pairs27,28.

Since the Hamiltonian Ĥ acts in the Hilbert space of
periodic functions, one may choose the complete basis
in the form {e

im✓
}m2Z. In this basis the Hamiltonian is

represented by an infinite size real matrix2

Ĥm,m0 =(m�q)2�m,m0�↵

✓
1

n1
�m+n1,m

0 +
1

n2
�m�n2,m

0

◆
.

(10)
The boundary charge q plays the role of quasi-momentum
residing in the Brillouin zone q 2 [� 1

2 ,
1
2 ]. To numer-

ically calculate the energy spectrum ✏m(q) we truncate
the matrix at a large cuto↵, after checking that a further
increase in the matrix size does not change the low-energy
spectrum. We left the boundary conditions “open”, i.e.
did not change the matrix elements near the cuto↵, after
verifying that di↵erent boundary conditions don’t a↵ect
the result. It is easy to see that the matrix size should be
�

p
↵ to accurately represent the low-energy spectrum.

As an illustration we show the Hamiltonian cut to a 5⇥5
matrix for divalent (2, 1) gas:

0

BBB@

(�2� q)2 0 �
↵

2 0 0
�↵ (�1� q)2 0 �

↵

2 0
0 �↵ (0� q)2 0 �

↵

2
0 0 �↵ (1� q)2 0
0 0 0 �↵ (2� q)2

1

CCCA

For reasons which will become apparent below, it is
convenient to present the spectrum ✏ on the complex
plane of the normalized energy u defined as

u =
n1n2

n1 + n2

✏

↵
. (11)

For the divalent (2, 1) gas u = 2✏/3↵ and the correspond-
ing spectra are shown in Fig. 1. The spectrum consists
of a sequence of complex Bloch bands. The number of
narrow bands within the unit circle |u| = 1 scales as

p
↵.

They form three branches which terminate at u = �1 and
u = e

±i⇡/3 and approximately line up along the lines con-
necting the termination points with the point u = 1. We
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FIG. 1: (Color online) Complex plane of normalized energy
u = 2✏m(q)/3↵ for (2, 1) gas. The color corresponds to
di↵erent values of quasimomentum q; blue stands for q = 0
and red for q = ±1/2. The dotted circle is |u| = 1, the
dashed lines connect between u = 1 and u = e±i⇡/3,
indicating positions of the narrow complex bands in the
limit of large ↵.

shall discuss the corresponding bandwidths below. Out-
side the unit circle the bands are wide and centered near
the positive real axis of energy.

Figure 2 shows the band structure in the first Brillouin
zone |q| < 1/2 for ↵ = 1. Notice that the lowest Bloch
band is purely real (this is always the case for ↵ > 0),
ensuring positive partition function (4) and real pressure
(5). The next two bands are complex. For |q| < qc ⇡ 0.36
they exhibit opposite imaginary parts (not shown), but
turn real at |q| > qc. The next two bands are real, cf.
Fig. 1b. The higher bands form an alternating sequence
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Nobel Prize in Chemistry 2003
to Peter Agre "for the discovery of water channels" and 
Roderick MacKinnon "for structural and mechanistic 
studies of ion channels."
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Statistical mechanics of 1D multivalent Coulomb gas may be mapped onto non-Hermitian quan-
tum mechanics. We use this example to develop instanton calculus on Riemann surfaces. Borrowing
from the formalism developed in the context of Seiberg-Witten duality, we treat momentum and
coordinate as complex variables. Constant energy manifolds are given by Riemann surfaces of genus
g � 1. The actions along principal cycles on these surfaces obey ODE in the moduli space of the
Riemann surface known as Picard-Fuchs equation. We derive and solve Picard-Fuchs equations for
Coulomb gases of various charge content. Analysis of monodromies of these solutions around their
singular points yields semiclassical spectra as well as instanton e↵ects such as Bloch bandwidth.
Both are shown to be in perfect agreement with numerical simulations.

I. INTRODUCTION

One of the very last works of Anatoliy Larkin1 was
devoted to transport through ion channels of biologi-
cal membranes. An ion channel may be roughly viewed
as a cylindrical water-filled tube surrounded by a lipid
membrane. Its typical radius a ⇡ 6Å is much smaller
than its length L ⇡ 120Å. The important observa-
tion with far reaching consequences, made in Ref. [1],
is that the dielectric constant of water ✏water ⇡ 80 is
significantly larger than that of the surrounding lipid
membrane ✏lipid ⇡ 2. This defines a new length scale
⇠ ⇡ a

p
✏water/✏lipid ln(✏water/✏lipid) ⇡ 140Å over which

the electric field stays inside the channel and does not
escape into the surrounding media. Since ⇠ & L, the
ions inside the channel interact essentially through the
1D Coulomb potential U(x1 � x2) ⇡ eE0|x1 � x2|, where
E0 = 2e/a2✏water is a discontinuity of the electric field
created by a unit charge. This fact dictates a significant
energy barrier U(L/4) ⇡ 4kBTroom for moving a single
ion through the channel. If indeed present, such a bar-
rier would essentially impede ion transport, preventing
the channel from performing its biological functions.

Nature removes such Coulomb blocking by screening.
A moving ion is screened either by mobile ions of disso-
ciated salt1, or by immobilized charged radicals attached
to the walls of the channel2–9. Nevertheless, due to the
peculiar nature of the long-range 1D Coulomb potential,
the transport barrier proportional to the channel length
L is always present. Its magnitude, though, is typically
suppressed1 down to about kBTroom, allowing for a rela-
tively unimpeded transport of ions. These considerations
call for development of a transport theory of 1D Coulomb
gases. Following the celebrated mapping of 1D statisti-
cal mechanics onto an e↵ective quantum mechanics, pio-
neered by Edwards and Lenard10 and Vaks, Larkin and
Pikin11, reference [1] mapped the problem onto quantum
mechanics of a cosine potential (we briefly review this
mapping in Sec. II). The ground state energy of such

quantum mechanics is exactly the equilibrium pressure in
the Coulomb plasma. Moreover the width of the lowest
Bloch band is a specific energy barrier for ion transport
through the channel.
It is instructive to notice that 2↵ cos ✓ = ↵(ei✓ + e

�i✓)
potential describes a mixture of positive, ei✓, and nega-
tive, e�i✓, monovalent ions with concentration ↵. One
may also consider a situation when the channel is filled
with a solution of dissociatedmultivalent salt, such as e.g.
divalent CaCl2 or trivalent AlCl3. In these cases the cor-
responding 1D statistical mechanics is mapped onto the
quantum problem with a non-Hermitian potential such
as ↵( 12e

2i✓ + e
�i✓) or ↵( 13e

3i✓ + e
�i✓)2,10. The present

paper is devoted to e�cient mathematical methods of
treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
procedure.
In this paper we borrow from the algebraic topology

methods developed in the past decades in the context
of the Seiberg-Witten solution12,13 and its applications
to integrable systems14–16 (and many follow-up contri-

ar
X

iv
:1

30
3.

63
86

v2
  [

co
nd

-m
at

.st
at

-m
ec

h]
  2

4 
Ju

l 2
01

4
channels of radii

Statistical mechanics of Coulomb gases as quantum theory on Riemann surfaces
Dedicated to the memory of Professor Anatoliy Larkin

Tobias Gulden1, Michael Janas1, Peter Koroteev1,2, and Alex Kamenev1,3
1Department of Physics, University of Minnesota, Minneapolis, MN 55455, USA

2Perimeter Institute for Theoretical Physics, ON N2L2Y5, Canada and
3William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA

(Dated: September 10, 2018)

Statistical mechanics of 1D multivalent Coulomb gas may be mapped onto non-Hermitian quan-
tum mechanics. We use this example to develop instanton calculus on Riemann surfaces. Borrowing
from the formalism developed in the context of Seiberg-Witten duality, we treat momentum and
coordinate as complex variables. Constant energy manifolds are given by Riemann surfaces of genus
g � 1. The actions along principal cycles on these surfaces obey ODE in the moduli space of the
Riemann surface known as Picard-Fuchs equation. We derive and solve Picard-Fuchs equations for
Coulomb gases of various charge content. Analysis of monodromies of these solutions around their
singular points yields semiclassical spectra as well as instanton e↵ects such as Bloch bandwidth.
Both are shown to be in perfect agreement with numerical simulations.

I. INTRODUCTION

One of the very last works of Anatoliy Larkin1 was
devoted to transport through ion channels of biologi-
cal membranes. An ion channel may be roughly viewed
as a cylindrical water-filled tube surrounded by a lipid
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than its length L ⇡ 120Å. The important observa-
tion with far reaching consequences, made in Ref. [1],
is that the dielectric constant of water ✏water ⇡ 80 is
significantly larger than that of the surrounding lipid
membrane ✏lipid ⇡ 2. This defines a new length scale
⇠ ⇡ a
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the electric field stays inside the channel and does not
escape into the surrounding media. Since ⇠ & L, the
ions inside the channel interact essentially through the
1D Coulomb potential U(x1 � x2) ⇡ eE0|x1 � x2|, where
E0 = 2e/a2✏water is a discontinuity of the electric field
created by a unit charge. This fact dictates a significant
energy barrier U(L/4) ⇡ 4kBTroom for moving a single
ion through the channel. If indeed present, such a bar-
rier would essentially impede ion transport, preventing
the channel from performing its biological functions.

Nature removes such Coulomb blocking by screening.
A moving ion is screened either by mobile ions of disso-
ciated salt1, or by immobilized charged radicals attached
to the walls of the channel2–9. Nevertheless, due to the
peculiar nature of the long-range 1D Coulomb potential,
the transport barrier proportional to the channel length
L is always present. Its magnitude, though, is typically
suppressed1 down to about kBTroom, allowing for a rela-
tively unimpeded transport of ions. These considerations
call for development of a transport theory of 1D Coulomb
gases. Following the celebrated mapping of 1D statisti-
cal mechanics onto an e↵ective quantum mechanics, pio-
neered by Edwards and Lenard10 and Vaks, Larkin and
Pikin11, reference [1] mapped the problem onto quantum
mechanics of a cosine potential (we briefly review this
mapping in Sec. II). The ground state energy of such
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Bloch band is a specific energy barrier for ion transport
through the channel.
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potential describes a mixture of positive, ei✓, and nega-
tive, e�i✓, monovalent ions with concentration ↵. One
may also consider a situation when the channel is filled
with a solution of dissociatedmultivalent salt, such as e.g.
divalent CaCl2 or trivalent AlCl3. In these cases the cor-
responding 1D statistical mechanics is mapped onto the
quantum problem with a non-Hermitian potential such
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paper is devoted to e�cient mathematical methods of
treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
procedure.
In this paper we borrow from the algebraic topology

methods developed in the past decades in the context
of the Seiberg-Witten solution12,13 and its applications
to integrable systems14–16 (and many follow-up contri-
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trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
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significantly larger than that of the surrounding lipid
membrane ✏lipid ⇡ 2. This defines a new length scale
⇠ ⇡ a

p
✏water/✏lipid ln(✏water/✏lipid) ⇡ 140Å over which

the electric field stays inside the channel and does not
escape into the surrounding media. Since ⇠ & L, the
ions inside the channel interact essentially through the
1D Coulomb potential U(x1 � x2) ⇡ eE0|x1 � x2|, where
E0 = 2e/a2✏water is a discontinuity of the electric field
created by a unit charge. This fact dictates a significant
energy barrier U(L/4) ⇡ 4kBTroom for moving a single
ion through the channel. If indeed present, such a bar-
rier would essentially impede ion transport, preventing
the channel from performing its biological functions.

Nature removes such Coulomb blocking by screening.
A moving ion is screened either by mobile ions of disso-
ciated salt1, or by immobilized charged radicals attached
to the walls of the channel2–9. Nevertheless, due to the
peculiar nature of the long-range 1D Coulomb potential,
the transport barrier proportional to the channel length
L is always present. Its magnitude, though, is typically
suppressed1 down to about kBTroom, allowing for a rela-
tively unimpeded transport of ions. These considerations
call for development of a transport theory of 1D Coulomb
gases. Following the celebrated mapping of 1D statisti-
cal mechanics onto an e↵ective quantum mechanics, pio-
neered by Edwards and Lenard10 and Vaks, Larkin and
Pikin11, reference [1] mapped the problem onto quantum
mechanics of a cosine potential (we briefly review this
mapping in Sec. II). The ground state energy of such

quantum mechanics is exactly the equilibrium pressure in
the Coulomb plasma. Moreover the width of the lowest
Bloch band is a specific energy barrier for ion transport
through the channel.
It is instructive to notice that 2↵ cos ✓ = ↵(ei✓ + e

�i✓)
potential describes a mixture of positive, ei✓, and nega-
tive, e�i✓, monovalent ions with concentration ↵. One
may also consider a situation when the channel is filled
with a solution of dissociatedmultivalent salt, such as e.g.
divalent CaCl2 or trivalent AlCl3. In these cases the cor-
responding 1D statistical mechanics is mapped onto the
quantum problem with a non-Hermitian potential such
as ↵( 12e

2i✓ + e
�i✓) or ↵( 13e

3i✓ + e
�i✓)2,10. The present

paper is devoted to e�cient mathematical methods of
treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
procedure.
In this paper we borrow from the algebraic topology

methods developed in the past decades in the context
of the Seiberg-Witten solution12,13 and its applications
to integrable systems14–16 (and many follow-up contri-
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ion through the channel. If indeed present, such a bar-
rier would essentially impede ion transport, preventing
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A moving ion is screened either by mobile ions of disso-
ciated salt1, or by immobilized charged radicals attached
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peculiar nature of the long-range 1D Coulomb potential,
the transport barrier proportional to the channel length
L is always present. Its magnitude, though, is typically
suppressed1 down to about kBTroom, allowing for a rela-
tively unimpeded transport of ions. These considerations
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may also consider a situation when the channel is filled
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responding 1D statistical mechanics is mapped onto the
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treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
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membrane ✏lipid ⇡ 2. This defines a new length scale
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the electric field stays inside the channel and does not
escape into the surrounding media. Since ⇠ & L, the
ions inside the channel interact essentially through the
1D Coulomb potential U(x1 � x2) ⇡ eE0|x1 � x2|, where
E0 = 2e/a2✏water is a discontinuity of the electric field
created by a unit charge. This fact dictates a significant
energy barrier U(L/4) ⇡ 4kBTroom for moving a single
ion through the channel. If indeed present, such a bar-
rier would essentially impede ion transport, preventing
the channel from performing its biological functions.

Nature removes such Coulomb blocking by screening.
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ciated salt1, or by immobilized charged radicals attached
to the walls of the channel2–9. Nevertheless, due to the
peculiar nature of the long-range 1D Coulomb potential,
the transport barrier proportional to the channel length
L is always present. Its magnitude, though, is typically
suppressed1 down to about kBTroom, allowing for a rela-
tively unimpeded transport of ions. These considerations
call for development of a transport theory of 1D Coulomb
gases. Following the celebrated mapping of 1D statisti-
cal mechanics onto an e↵ective quantum mechanics, pio-
neered by Edwards and Lenard10 and Vaks, Larkin and
Pikin11, reference [1] mapped the problem onto quantum
mechanics of a cosine potential (we briefly review this
mapping in Sec. II). The ground state energy of such

quantum mechanics is exactly the equilibrium pressure in
the Coulomb plasma. Moreover the width of the lowest
Bloch band is a specific energy barrier for ion transport
through the channel.
It is instructive to notice that 2↵ cos ✓ = ↵(ei✓ + e
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potential describes a mixture of positive, ei✓, and nega-
tive, e�i✓, monovalent ions with concentration ↵. One
may also consider a situation when the channel is filled
with a solution of dissociatedmultivalent salt, such as e.g.
divalent CaCl2 or trivalent AlCl3. In these cases the cor-
responding 1D statistical mechanics is mapped onto the
quantum problem with a non-Hermitian potential such
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paper is devoted to e�cient mathematical methods of
treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
procedure.
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Transport in one dimensional Coulomb gases: From ion channels to nanopores

A. Kamenev1, J. Zhang1, A. I. Larkin1,2, B. I. Shklovskii1,2
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We consider a class of systems where, due to the large mismatch of dielectric constants, the
Coulomb interaction is approximately one–dimensional. Examples include ion channels in lipid
membranes and water filled nanopores in silicon films. Charge transport across such systems pos-
sesses the activation behavior associated with the large electrostatic self–energy of a charge placed
inside the channel. We show here that the activation barrier exhibits non–trivial dependence on the
salt concentration in the surrounding water solution and on the length and radius of the channel.

I. INTRODUCTION

In a number of quasi–one–dimensional systems the in-
teractions between charged carriers follow (for a certain
range of distances) the one dimensional Coulomb law:
Φ(x) ∼ |x|, well known for parallel charged planes. Ex-
amples include: ion channels in biological lipid mem-
branes1,2, water–filled nanopores in membranes for de-
salination devices3, water filled nanopores in silicon oxide
films4,5,6, free–standing silicon nanowires7,8 and others.
Their common feature is the presence of a quasi 1d chan-
nel with the dielectric constant greatly exceeding that
of the surrounding 3d media. As a result, the electric
field is forced to stay inside the channel, leading to the
1d interaction potential, mentioned above. The purpose
of this paper is to study the charge transport through
such systems as a function of the carrier concentration,
length, temperature, etc. We show that these systems
posses very peculiar transport properties, qualitatively
different from those found in the examples with shorter
range interactions.

To be specific, we focus on the water filled channels.
One example is ion channels in lipid membranes. Such a
membrane consists of a L = 5nm thick hydrocarbon layer
with the dielectric constant κ2 ≃ 2, surrounded by water
with the dielectric constant κ1 ≃ 80. Due to the large
ratio κ1/κ2 ≃ 40 ≫ 1 the electrostatic self–energy of a
charged ion inside the hydrocarbon layer is huge, mak-
ing the pure membrane impermeable for ions from water.
The only way for ions to cross the membrane is through
the water–filled channels formed by proteins embedded
into the membrane1,2. Radiuses of such cylindrical chan-
nels, a, vary from 0.3 to 0.8 nm (we are concerned only
with the passive channels without motors).

Another example is a water–filled nanopore made in
a silicon film 4,5. Such nanopore may have the radius
a ≃ 1 nm and the length L ≃ 20 nm. Silicon oxidizes
around the channel, giving κ2 ≃ 4. Thus, also in this case
κ1/κ2 = 20 ≫ 1. Yet another example is provided by
water–filled nanopores, say, with L ≃ 40 nm and a ≃ 1.5
nm in cellulose acetate films used for the inverse osmosis
desalination. In this example κ2 ≃ 2 and again κ1/κ2 =
40 ≫ 1.

Keeping in mind one of these examples, let us con-

sider a single water filled channel in a macroscopic mem-
brane or a film separating two reservoirs with salty water
(Fig. 1a). We assume that walls of the channel do not
carry fixed charges. A static voltage V , applied between
the two reservoirs, drops almost entirely in the channel
due to the high conductivity of the bulk solution. One
can measure the ohmic resistance, R, of the channel as a
function of the temperature, T , concentration of mono-
valent salt, c (for example KCl) and parameters of the
channel L, a, κ1,κ2. The main goal of this paper is to
evaluate R(T, c, L, a,κ1,κ2) for the very nontrivial case:
κ1 ≫ κ2. This is a completely classical (h̄ = 0) problem.

(a) +

2a

0

U(x)

-L/2

| |

UL

L/2

+

ξ

x

(b)

FIG. 1: Electric field of a charge in a short (a) and a long
(b) cylindrical channel with the large dielectric constant κ1,
in the membrane with the dielectric constant κ2 << κ1. L is
the channel length, a is its radius. The self–energy barrier is
shown as a function of coordinate x for the case of the short
channel. UL is its maximum height. For a long channel ξ is
the electric field escape length from the channel.

For a low concentration of salt c the charge transport
is due to the rare events, when there is a single (e.g. pos-
itive) ion inside the channel. We assume that the radius
of the ion, b, is smaller than that of the channel a, so that
the ion is totally surrounded by water. It is easy to see
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One of the very last works of Anatoliy Larkin1 was
devoted to transport through ion channels of biologi-
cal membranes. An ion channel may be roughly viewed
as a cylindrical water-filled tube surrounded by a lipid
membrane. Its typical radius a ⇡ 6Å is much smaller
than its length L ⇡ 120Å. The important observa-
tion with far reaching consequences, made in Ref. [1],
is that the dielectric constant of water ✏water ⇡ 80 is
significantly larger than that of the surrounding lipid
membrane ✏lipid ⇡ 2. This defines a new length scale
⇠ ⇡ a

p
✏water/✏lipid ln(✏water/✏lipid) ⇡ 140Å over which

the electric field stays inside the channel and does not
escape into the surrounding media. Since ⇠ & L, the
ions inside the channel interact essentially through the
1D Coulomb potential U(x1 � x2) ⇡ eE0|x1 � x2|, where
E0 = 2e/a2✏water is a discontinuity of the electric field
created by a unit charge. This fact dictates a significant
energy barrier U(L/4) ⇡ 4kBTroom for moving a single
ion through the channel. If indeed present, such a bar-
rier would essentially impede ion transport, preventing
the channel from performing its biological functions.

Nature removes such Coulomb blocking by screening.
A moving ion is screened either by mobile ions of disso-
ciated salt1, or by immobilized charged radicals attached
to the walls of the channel2–9. Nevertheless, due to the
peculiar nature of the long-range 1D Coulomb potential,
the transport barrier proportional to the channel length
L is always present. Its magnitude, though, is typically
suppressed1 down to about kBTroom, allowing for a rela-
tively unimpeded transport of ions. These considerations
call for development of a transport theory of 1D Coulomb
gases. Following the celebrated mapping of 1D statisti-
cal mechanics onto an e↵ective quantum mechanics, pio-
neered by Edwards and Lenard10 and Vaks, Larkin and
Pikin11, reference [1] mapped the problem onto quantum
mechanics of a cosine potential (we briefly review this
mapping in Sec. II). The ground state energy of such

quantum mechanics is exactly the equilibrium pressure in
the Coulomb plasma. Moreover the width of the lowest
Bloch band is a specific energy barrier for ion transport
through the channel.
It is instructive to notice that 2↵ cos ✓ = ↵(ei✓ + e

�i✓)
potential describes a mixture of positive, ei✓, and nega-
tive, e�i✓, monovalent ions with concentration ↵. One
may also consider a situation when the channel is filled
with a solution of dissociatedmultivalent salt, such as e.g.
divalent CaCl2 or trivalent AlCl3. In these cases the cor-
responding 1D statistical mechanics is mapped onto the
quantum problem with a non-Hermitian potential such
as ↵( 12e

2i✓ + e
�i✓) or ↵( 13e

3i✓ + e
�i✓)2,10. The present

paper is devoted to e�cient mathematical methods of
treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
procedure.
In this paper we borrow from the algebraic topology

methods developed in the past decades in the context
of the Seiberg-Witten solution12,13 and its applications
to integrable systems14–16 (and many follow-up contri-
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ions inside the channel interact essentially through the
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ion through the channel. If indeed present, such a bar-
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the transport barrier proportional to the channel length
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2i✓ + e
�i✓) or ↵( 13e

3i✓ + e
�i✓)2,10. The present

paper is devoted to e�cient mathematical methods of
treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
procedure.
In this paper we borrow from the algebraic topology

methods developed in the past decades in the context
of the Seiberg-Witten solution12,13 and its applications
to integrable systems14–16 (and many follow-up contri-
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Statistical mechanics of 1D multivalent Coulomb gas may be mapped onto non-Hermitian quan-
tum mechanics. We use this example to develop instanton calculus on Riemann surfaces. Borrowing
from the formalism developed in the context of Seiberg-Witten duality, we treat momentum and
coordinate as complex variables. Constant energy manifolds are given by Riemann surfaces of genus
g � 1. The actions along principal cycles on these surfaces obey ODE in the moduli space of the
Riemann surface known as Picard-Fuchs equation. We derive and solve Picard-Fuchs equations for
Coulomb gases of various charge content. Analysis of monodromies of these solutions around their
singular points yields semiclassical spectra as well as instanton e↵ects such as Bloch bandwidth.
Both are shown to be in perfect agreement with numerical simulations.

I. INTRODUCTION

One of the very last works of Anatoliy Larkin1 was
devoted to transport through ion channels of biologi-
cal membranes. An ion channel may be roughly viewed
as a cylindrical water-filled tube surrounded by a lipid
membrane. Its typical radius a ⇡ 6Å is much smaller
than its length L ⇡ 120Å. The important observa-
tion with far reaching consequences, made in Ref. [1],
is that the dielectric constant of water ✏water ⇡ 80 is
significantly larger than that of the surrounding lipid
membrane ✏lipid ⇡ 2. This defines a new length scale
⇠ ⇡ a

p
✏water/✏lipid ln(✏water/✏lipid) ⇡ 140Å over which

the electric field stays inside the channel and does not
escape into the surrounding media. Since ⇠ & L, the
ions inside the channel interact essentially through the
1D Coulomb potential U(x1 � x2) ⇡ eE0|x1 � x2|, where
E0 = 2e/a2✏water is a discontinuity of the electric field
created by a unit charge. This fact dictates a significant
energy barrier U(L/4) ⇡ 4kBTroom for moving a single
ion through the channel. If indeed present, such a bar-
rier would essentially impede ion transport, preventing
the channel from performing its biological functions.

Nature removes such Coulomb blocking by screening.
A moving ion is screened either by mobile ions of disso-
ciated salt1, or by immobilized charged radicals attached
to the walls of the channel2–9. Nevertheless, due to the
peculiar nature of the long-range 1D Coulomb potential,
the transport barrier proportional to the channel length
L is always present. Its magnitude, though, is typically
suppressed1 down to about kBTroom, allowing for a rela-
tively unimpeded transport of ions. These considerations
call for development of a transport theory of 1D Coulomb
gases. Following the celebrated mapping of 1D statisti-
cal mechanics onto an e↵ective quantum mechanics, pio-
neered by Edwards and Lenard10 and Vaks, Larkin and
Pikin11, reference [1] mapped the problem onto quantum
mechanics of a cosine potential (we briefly review this
mapping in Sec. II). The ground state energy of such

quantum mechanics is exactly the equilibrium pressure in
the Coulomb plasma. Moreover the width of the lowest
Bloch band is a specific energy barrier for ion transport
through the channel.
It is instructive to notice that 2↵ cos ✓ = ↵(ei✓ + e

�i✓)
potential describes a mixture of positive, ei✓, and nega-
tive, e�i✓, monovalent ions with concentration ↵. One
may also consider a situation when the channel is filled
with a solution of dissociatedmultivalent salt, such as e.g.
divalent CaCl2 or trivalent AlCl3. In these cases the cor-
responding 1D statistical mechanics is mapped onto the
quantum problem with a non-Hermitian potential such
as ↵( 12e

2i✓ + e
�i✓) or ↵( 13e

3i✓ + e
�i✓)2,10. The present

paper is devoted to e�cient mathematical methods of
treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
procedure.
In this paper we borrow from the algebraic topology

methods developed in the past decades in the context
of the Seiberg-Witten solution12,13 and its applications
to integrable systems14–16 (and many follow-up contri-
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Statistical mechanics of 1D multivalent Coulomb gas may be mapped onto non-Hermitian quan-
tum mechanics. We use this example to develop instanton calculus on Riemann surfaces. Borrowing
from the formalism developed in the context of Seiberg-Witten duality, we treat momentum and
coordinate as complex variables. Constant energy manifolds are given by Riemann surfaces of genus
g � 1. The actions along principal cycles on these surfaces obey ODE in the moduli space of the
Riemann surface known as Picard-Fuchs equation. We derive and solve Picard-Fuchs equations for
Coulomb gases of various charge content. Analysis of monodromies of these solutions around their
singular points yields semiclassical spectra as well as instanton e↵ects such as Bloch bandwidth.
Both are shown to be in perfect agreement with numerical simulations.

I. INTRODUCTION

One of the very last works of Anatoliy Larkin1 was
devoted to transport through ion channels of biologi-
cal membranes. An ion channel may be roughly viewed
as a cylindrical water-filled tube surrounded by a lipid
membrane. Its typical radius a ⇡ 6Å is much smaller
than its length L ⇡ 120Å. The important observa-
tion with far reaching consequences, made in Ref. [1],
is that the dielectric constant of water ✏water ⇡ 80 is
significantly larger than that of the surrounding lipid
membrane ✏lipid ⇡ 2. This defines a new length scale
⇠ ⇡ a

p
✏water/✏lipid ln(✏water/✏lipid) ⇡ 140Å over which

the electric field stays inside the channel and does not
escape into the surrounding media. Since ⇠ & L, the
ions inside the channel interact essentially through the
1D Coulomb potential U(x1 � x2) ⇡ eE0|x1 � x2|, where
E0 = 2e/a2✏water is a discontinuity of the electric field
created by a unit charge. This fact dictates a significant
energy barrier U(L/4) ⇡ 4kBTroom for moving a single
ion through the channel. If indeed present, such a bar-
rier would essentially impede ion transport, preventing
the channel from performing its biological functions.

Nature removes such Coulomb blocking by screening.
A moving ion is screened either by mobile ions of disso-
ciated salt1, or by immobilized charged radicals attached
to the walls of the channel2–9. Nevertheless, due to the
peculiar nature of the long-range 1D Coulomb potential,
the transport barrier proportional to the channel length
L is always present. Its magnitude, though, is typically
suppressed1 down to about kBTroom, allowing for a rela-
tively unimpeded transport of ions. These considerations
call for development of a transport theory of 1D Coulomb
gases. Following the celebrated mapping of 1D statisti-
cal mechanics onto an e↵ective quantum mechanics, pio-
neered by Edwards and Lenard10 and Vaks, Larkin and
Pikin11, reference [1] mapped the problem onto quantum
mechanics of a cosine potential (we briefly review this
mapping in Sec. II). The ground state energy of such

quantum mechanics is exactly the equilibrium pressure in
the Coulomb plasma. Moreover the width of the lowest
Bloch band is a specific energy barrier for ion transport
through the channel.
It is instructive to notice that 2↵ cos ✓ = ↵(ei✓ + e

�i✓)
potential describes a mixture of positive, ei✓, and nega-
tive, e�i✓, monovalent ions with concentration ↵. One
may also consider a situation when the channel is filled
with a solution of dissociatedmultivalent salt, such as e.g.
divalent CaCl2 or trivalent AlCl3. In these cases the cor-
responding 1D statistical mechanics is mapped onto the
quantum problem with a non-Hermitian potential such
as ↵( 12e

2i✓ + e
�i✓) or ↵( 13e

3i✓ + e
�i✓)2,10. The present

paper is devoted to e�cient mathematical methods of
treating non-Hermitian quantum mechanics of this sort.
Our particular focus here is on a semiclassical treat-

ment, applicable in the regime of su�ciently large salt
concentration ↵. In its framework the energy spec-
trum (thus the pressure) is determined by the Bohr-
Sommerfeld quantization condition for the action of clas-
sical periodic orbits. On the other hand, the bandwidth
(and thus the transport barrier) is given by the expo-
nentiated action accumulated on the instanton trajec-
tory, running through the classically forbidden part of
the phase space. The traditional techniques of Hermi-
tian quantum mechanics call for finding classical and in-
stanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route can’t be straightforwardly applied
to non-Hermitian quantum problems arising in the con-
text of multi-valent Coulomb gases. Even leaving aside
the technical di�culties of solving complex equations of
motion, there are conceptual di�culties with identifying
periodic orbits as well as the meaning of classically al-
lowed vs. forbidden regions and with the imaginary time
procedure.
In this paper we borrow from the algebraic topology

methods developed in the past decades in the context
of the Seiberg-Witten solution12,13 and its applications
to integrable systems14–16 (and many follow-up contri-
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which is enough to pass an ion5

Half of its electric field exits to the right and half to the
left. One may say that there are image boundary charges
q = 1/2 and q′ = 1/2 on the left and right boundaries of
the channel correspondingly (hereafter all image charges
are measured in units of e). One can imagine that these
charges are provided by the well conducting bulk plasma
in the reservoirs.
The concept of the boundary charges, which are not

supposed to be integer is central for the present work. Let
us demonstrate the usefulness of the boundary charges
by a simple example of the ion’s energy as function of
its coordinate x. If the boundary charge at x = −L/2
is 0 < q < 1, then the boundary charge at x = L/2 is
q′ = 1 − q. Electric fields to the left and right of the
test charge is 2qE0 and 2(1 − q)E0, so that the energy
of electric field U(x; q) = (κ1/2)E2

0a
2[q2(x+L/2)+ (1−

q)2(L/2− x)]. Optimizing this energy with respect to q,
we find q = 1/2 − x/L and for the energy as a function
x we arrive at

U(x)=
κ1E2

0a
2

2

(

L

4
−

x2

L

)

=

(

1−
(

2x

L

)2
)

UL(0) .

(19)
This gives the parabolic barrier with the maximum value
UL(0) in the middle of the channel (see Fig. 1a). The
maximal barrier corresponds to q = q′ = 1/2.
In a similar manner one may consider a pair of a neg-

ative ion with the coordinate x1 and a positive ion with
the coordinate x2 inside the channel. They induce two
boundary charges q and q′ = −q. Writing the interaction
energy of these four charges, one finds that it reaches
its optimal value, given by U(x1, x2) = 4(|x12|/L −
x2
12/L

2)UL(0), at q = x12/L, where x12 ≡ x1 − x2. At
small separation, |x12| ≪ L the ions attract each other
with the string potential eE0|x1−x2| so that typical dis-
tance between them is xT . Such a pair can contribute to
the charge transport only if the positive and negative ions
separate and move to the opposite ends of the channel.
Remarkably, the energy barrier they have to overcome is
given by UL(0). It is exactly the same as for the single
ion. The maximum is reached when |x12| = L/2, while
q = −q′ = 1/2.
One can repeat this calculation for an arbitrary num-

ber of pairs inside the channel. One can see that the
maximum energy state, the system goes through to con-
tribute to the charge transport, is always reached when
q = ±1/2 and always has energy UL(0). We shall refer
to such a state with the half-integer boundary charge as
the collective saddle point configuration. Fig. 5 illustrates
how the channel with three originally compact pairs ori-
ented along the external electric field transfers a unit
charge. It starts from the state with q = −q′ ≈ 0, goes
to the top of the barrier with q = −q′ = 1/2 and ends
up again in the state of compact pairs with q = −q′ ≈ 1.
The net result of such a process is a transfer of the unit
charge across the channel.
From the fact that the energy needed to transfer the

charge is completely independent of the ion concentration

(a) 0 0++− −+−

+−−+ +−e/2 −e/2(b)

(c) e ++− −e+− −

FIG. 5: Three consecutive states of the channel with three
pairs. (a) Compact pairs with q = −q′ ≈ 0, (b) the saddle
point state with q = −q′ = 1/2, (c) Compact pairs with
q = −q′ ≈ 1. Other saddle points may be obtained e.g. by
moving the two same sign ions away from each other.

one may tend to conclude that the same is true regard-
ing the activation barrier. Such a conclusion is prema-
ture, however. Indeed, the activation barrier is given by
the maximum of the free energy and thus includes the
(negative) entropy contribution. As we explain below,
the collective saddle point configuration possesses a huge
degeneracy and thus has a rather large entropy. This
entropy reduces the activation barrier down to Eq. (12).
For a more quantitative consideration one needs to dis-

cuss the exchange of ions between the bulk reservoirs
and the channel. Although the concentration of single
ions in the channel is strongly depleted, compact neutral
pairs enter the channel freely. Thus, typically there are
many interacting pairs of ions inside the channel. We
have to discuss separately their equilibrium (minimum
energy) state and their collective saddle point (barrier)
state when they contribute to the transport. It is con-
venient to distinguish the range of relatively low concen-
trations c, when α ≪ 1, and the range of high concen-
trations, α > 1. The concept of the boundary charges,
introduced above, is helpful in both cases.

B. Short channel at low concentration of salt

In this section we consider the case of low concentra-
tion of ions in the bulk salt solution, such that α ≪ 1. A
typical concentration of pairs inside the channel is even
lower: np = 2nα ≪ n. To transfer the charge across the
channel the plasma must go trough the collective saddle
point state. Such saddle point is characterized by the
half–integer boundary charge, say q = 1/2; q′ = −1/2.
Half–integer boundary charges apply the external elec-
tric field E0 across the channel. All dipoles of compact
pairs turn in the direction of the field, so that positive
and negative ions alternate. One can see now that in-
side each pair the electric field changes its sign and turns
to −E0 (recall the analogy with the uniformly charged

boundary charge 
(order parameter)

q



1D Coulomb Gas
Potential Energy

2

butions). The central idea is to consider both coordi-
nate ✓ and corresponding canonical momentum p as com-

plex variables. This leads to four-dimensional (4D) phase
space. Then (complex) energy conservation restricts the
trajectories to live on 2D Riemann surfaces embedded
into 4D phase space. The dynamics of the system are es-
sentially determined by the topology, i.e. genus g, of such
Riemann surfaces. We show that e.g. mono- and divalent
gases are described by tori, while trivalent and 4-valent
lead to genus-2 surfaces, etc. The Cauchy theorem and
the resulting freedom to deform the integration contour
in the complex space allows to avoid finding specific so-
lutions of the equations of motion. Instead one identifies
the homology cycles on the Riemann surface and finds
the corresponding action integrals, which depend only on
the topology of the cycles and not on their specific shape.
For example, the cosine potential of monovalent gas leads
to a torus, which obviously has two topologically distinct
cycles, Fig. 6. The two turn out to be related to clas-
sical and instanton actions correspondingly. The genus
g � 1 Riemann surfaces admit 2g topologically distinct
cycles. Below we identify and explain the meaning of the
corresponding action integrals.

The shape of the specific Riemann surface depends on
the parameters of the problem, e.g. salt concentration
↵ in our case. Such parameters are called moduli of the
Riemann surface. It turns out that the action integrals,
being functions of the moduli, satisfy closed ordinary dif-
ferential equation (ODE) of the order 2g, known as the
Picard-Fuchs equation. The actions may be found as
solutions of this ODE in the moduli space, rather than
performing integrations over cycles on the surface. Be-
low we derive and solve Picard-Fuchs equations for sev-
eral (positive, negative) ionic charge combinations, such
as genus g = 1 cases (1, 1), (2, 1) and genus g = 2 cases
(3, 1), (3, 2), (4, 1). We then discuss how to connect the
principal classical actions with the spectra of the corre-
sponding quantum problem. The key observation is that
in the moduli space the actions exhibit a few isolated
branching points. Going around such a branching point
transforms the actions into their linear combinations –
the Sp(2g,Z) monodromy transformation. The invari-
ance of quantum observables under monodromy transfor-
mations dictates Bohr-Sommerfeld quantization for one
of the principal classical actions. The remaining actions
may be identified with the instanton processes, related
to e.g. Bloch bandwidth.

Statistical mechanics of 1D Coulomb gases may seem
to be an isolated problem, not worthy of developing an
extensive mathematical apparatus. Our goal here is to
use it as a test-drive example, grounded into a well-
posed physics problem, to develop a machinery applica-
ble in other setups. Recently the so-called PT symmet-
ric non-Hermitian quantum mechanics attracted a lot of
attention for its application in active optics19 and open
quantum systems20, as well as in the description of an-
tiferromagnetic lattices21 and calculating energy states
in larger molecules22. Our examples also belong to the

class of PT symmetric problems. It seems likely that the
methods developed here may be applied to advance ana-
lytical understanding of a broader class of PT symmet-
ric quantum mechanics. Another context, where com-
plexified quantum mechanics was proven to be extremely
useful, is dynamics of large molecular spins23,24. Indeed
functional integral representation of the spin dynamics
leads naturally to the Hamiltonian formulation, where
the projective coordinates (z, z̄) on the sphere play the
role of the canonical pair25. It was realized23,24 that to
find instanton trajectories one has to consider z and z̄

as independent complex variables, thus expanding the
dynamics into 4D phase space. The Riemann geometry
methods seem to be well-suited to advance this subject
as well.
This paper is organized as follows: in section II we out-

line the relation between 1D multivalent Coulomb gases
and non-Hermitian quantum mechanics and discuss gen-
eral symmetries of the latter. In section III we summarize
major numerical observations regarding complex spectra
and band-structure for the family of Hamiltonians con-
sidered here. In section IV we illustrate the machinery
of algebraic geometry on Riemann surfaces for the famil-
iar Hermitian cosine potential quantum mechanics, which
corresponds to the monovalent (1, 1) gas. Here we intro-
duce complexified phase space and Riemann torii of con-
stant energy; we then derive, solve and analyze solutions
of the Picard-Fuchs equations. In section V we apply the
developed methods for the divalent (2, 1) Coulomb gas,
which is also described by a genus-1 torus. In section VI
we extend the method for genus-2 example of trivalent
(3, 1) gas, which exhibits some qualitatively new features.
The (3, 2) and (4, 1) gases are briefly tackled in section
VII. In section VIII we outline connections to Seiberg-
Witten theory. We conclude with a brief discussion of
the results in section IX.

II. MAPPING OF COULOMB GASES ONTO
QUANTUM MECHANICS

Consider a 1D gas of cations with charge n1e and an-
ions with charge �n2e, where (n1, n2) are positive in-
tegers. By Gauss’s theorem, the electric field at a dis-
tance x larger than the radius of the channel a from
a unit charge is E0 = 2e/a2✏water. At the location of
a charge n1,2 the electric field exhibits a discontinuity
±2E0n1,2. Since all charges are integers the field is con-
served modulo 2E0 along the channel. This allows us
to define the order parameter1,3 q = E(x)( mod 2E0),
which acts like an e↵ective boundary charge ±q at the
two ends of the channel. The Poisson equation in 1D
reads r

2
� = �2E0�(x), leading to 1D Coulomb poten-

tial �(x) = �E0|x|. The potential energy of the gas is
thus

U = �
eE0

2

X

i,j

�i�j |xi � xj | , (1) n1e �n2eions

Grand canonical 
partition function

3

where �j is the charge n1 or �n2 of an ion at the position
xj and we omit the ±q boundary charges for brevity. Our
goal is to evaluate the grand canonical partition function
of the gas in the channel of length L

ZL =
1X

N1,N2=0

f
N1
1 f

N2
2

N1!N2!

N1Y

i=1

Z
L

0
dxi

N2Y

j=1

Z
L

0
dxj e

�U/kBT
,

(2)
where f1,2 are fugacities of the two charge species.
One can now introduce the charge density employ-
ing a delta-function �[⇢(x) �

P
j
�j�(x � xj)]. The

delta-function is elevated in the exponent with the
help of the auxiliary field ✓(x). This procedure de-
couples all xj integrals1, bringing them to the formP

N
[f

R
dx e

i�✓(x)]N/N ! = exp{f
R
dx e

i�✓(x)
}. The in-

teraction potential (1), being inverse of the 1D Laplace
operator, leads to exp{(T/eE0)

R
dx ✓@

2
x
✓}. As a result

the partition function (2) is identically written as the
Feynman path integral, in an “imaginary time” x, for
the quantum mechanics with the Hamiltonian

Ĥ = (i@✓ � q)2 �
�
↵1e

in1✓ + ↵2e
�in2✓

�
, (3)

where ↵1,2 = f1,2kBT/eE0 are dimensionless ion concen-
trations. Such Feynman integral is the expectation value
of the evolution operator during “time” L, leading to

ZL =
D
q

���X e
� eE0

kBT

R L
0 dx Ĥ

���q
E
=

X

m

|hq|mi|
2
e
� eE0L

kBT ✏m(q)
,

(4)
where X stands for x-ordered exponent. Here ✏m(q) are
eigenvalues of the e↵ective Hamiltonian Ĥ and |mi =
 m(✓) are its eigenvectors in the Hilbert space of periodic
functions  m(✓) =  m(✓ + 2⇡), and finally the matrix

elements are hq|mi =
R 2⇡
0 d✓e

�iq✓
 m(✓). The boundary

charge q plays the role of the Bloch quasi-momentum
and the spectrum is obviously periodic in q with the unit
period (reflecting the fact that the integer part of the
boundary charge may be screened by mobile ions and
thus inconsequential).

The pressure of the Coulomb gas is its free energy per
unit length

P = kBT
@ lnZL

@L

L!1
�! �eE0✏0(q) , (5)

where ✏0(q) is the eigenvalue with the smallest real part.
In equilibrium the system minimizes its free energy by
choosing an appropriate boundary charge q. In all cases
considered below the minimum appears to be a non-
polarized state of the channel, i.e. q = 0 (see how-
ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
the boundary charge q sweeping through its full period.
As a result, the (free) energy barrier for ion transport is

U0 = eE0L�0 , (6)

where �0 is the width of the lowest Bloch band. There-
fore the ground state energy and the width of the lowest

Bloch band of the Hamiltonian (3) determine thermody-
namic and transport properties of the (n1, n2) Coulomb
gas. The rest of this paper is devoted to a semiclassical
theory of the spectral properties of such Hamiltonians.
We start by discussing some general symmetries of the
non-Hermitian Hamiltonian (3).

A. PT Symmetry

Although the Hamiltonian (3) is non-Hermitian for
n1 6= n2, it obeys PT -symmetry26,27. Here the parity
operator P acts as ✓ ! �✓, while the time-reversal op-
erator T works as complex conjugation i ! �i. Clearly
the two operations combined leave the Hamiltonian (3)
unchanged. One may prove27,28 that all eigenvalues of
PT -symmetric Hamiltonians are either real, or appear
in complex conjugated pairs. As shown below for posi-
tive values of concentrations ↵1,2 > 0 the lowest energy
band ✏0(q) is entirely real, ensuring the positivity of the
partition function. The higher bands ✏m(q) are in gen-
eral complex. It is interesting to note that, for unphysical
negative concentrations ↵1,2 < 0, already the lowest band
✏0(q) is complex, making the free energy ill-defined.

B. Isospectrality

The spectrum of the Hamiltonian (3) is invariant under
shift of the coordinate ✓ ! ✓+✓0, where ✓0 is an arbitrary
complex number. Upon such transformation (preserv-
ing the periodic boundary conditions) the dimensionless
concentrations ↵1,2 renormalize as ↵1 ! ↵1e

in1✓0 and
↵2 ! ↵2e

�in2✓0 . Notice that the combination ↵n2
1 ↵

n1
2 re-
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the isospectrality condition (7), one may always choose
a proper ↵ such that the spectrum of Hamiltonian (8) is
identical with that of a Hamiltonian with arbitrary ↵1,2.
The physical reason for this symmetry is that the inte-
rior region of the long channel always preserves charge
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where f1,2 are fugacities of the two charge species.
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charge q plays the role of the Bloch quasi-momentum
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the boundary charge q sweeping through its full period.
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Ĥ = ↵


p̂
2
�

✓
1

n1
e
in1✓ +

1

n2
e
�in2✓

◆�
, (8)

where we have defined the momentum operator as

p̂ = ↵
�1/2(�i@✓ + q) ; [✓, p̂] = i↵

�1/2
. (9)

The commutation relation shows that ↵�1/2 plays the
role of the e↵ective Planck constant. With the help of
the isospectrality condition (7), one may always choose
a proper ↵ such that the spectrum of Hamiltonian (8) is
identical with that of a Hamiltonian with arbitrary ↵1,2.
The physical reason for this symmetry is that the inte-
rior region of the long channel always preserves charge

3

where �j is the charge n1 or �n2 of an ion at the position
xj and we omit the ±q boundary charges for brevity. Our
goal is to evaluate the grand canonical partition function
of the gas in the channel of length L

ZL =
1X

N1,N2=0

f
N1
1 f

N2
2

N1!N2!

N1Y

i=1

Z
L

0
dxi

N2Y

j=1

Z
L

0
dxj e

�U/kBT
,

(2)
where f1,2 are fugacities of the two charge species.
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where X stands for x-ordered exponent. Here ✏m(q) are
eigenvalues of the e↵ective Hamiltonian Ĥ and |mi =
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charge q plays the role of the Bloch quasi-momentum
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where ✏0(q) is the eigenvalue with the smallest real part.
In equilibrium the system minimizes its free energy by
choosing an appropriate boundary charge q. In all cases
considered below the minimum appears to be a non-
polarized state of the channel, i.e. q = 0 (see how-
ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
the boundary charge q sweeping through its full period.
As a result, the (free) energy barrier for ion transport is

U0 = eE0L�0 , (6)

where �0 is the width of the lowest Bloch band. There-
fore the ground state energy and the width of the lowest

Bloch band of the Hamiltonian (3) determine thermody-
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gas. The rest of this paper is devoted to a semiclassical
theory of the spectral properties of such Hamiltonians.
We start by discussing some general symmetries of the
non-Hermitian Hamiltonian (3).
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Although the Hamiltonian (3) is non-Hermitian for
n1 6= n2, it obeys PT -symmetry26,27. Here the parity
operator P acts as ✓ ! �✓, while the time-reversal op-
erator T works as complex conjugation i ! �i. Clearly
the two operations combined leave the Hamiltonian (3)
unchanged. One may prove27,28 that all eigenvalues of
PT -symmetric Hamiltonians are either real, or appear
in complex conjugated pairs. As shown below for posi-
tive values of concentrations ↵1,2 > 0 the lowest energy
band ✏0(q) is entirely real, ensuring the positivity of the
partition function. The higher bands ✏m(q) are in gen-
eral complex. It is interesting to note that, for unphysical
negative concentrations ↵1,2 < 0, already the lowest band
✏0(q) is complex, making the free energy ill-defined.

B. Isospectrality
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role of the e↵ective Planck constant. With the help of
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identical with that of a Hamiltonian with arbitrary ↵1,2.
The physical reason for this symmetry is that the inte-
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 m(✓) are its eigenvectors in the Hilbert space of periodic
functions  m(✓) =  m(✓ + 2⇡), and finally the matrix

elements are hq|mi =
R 2⇡
0 d✓e

�iq✓
 m(✓). The boundary

charge q plays the role of the Bloch quasi-momentum
and the spectrum is obviously periodic in q with the unit
period (reflecting the fact that the integer part of the
boundary charge may be screened by mobile ions and
thus inconsequential).

The pressure of the Coulomb gas is its free energy per
unit length

P = kBT
@ lnZL

@L

L!1
�! �eE0✏0(q) , (5)

where ✏0(q) is the eigenvalue with the smallest real part.
In equilibrium the system minimizes its free energy by
choosing an appropriate boundary charge q. In all cases
considered below the minimum appears to be a non-
polarized state of the channel, i.e. q = 0 (see how-
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✏0(q) is complex, making the free energy ill-defined.
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���q
E
=

X

m

|hq|mi|
2
e
� eE0L

kBT ✏m(q)
,

(4)
where X stands for x-ordered exponent. Here ✏m(q) are
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charge q plays the role of the Bloch quasi-momentum
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period (reflecting the fact that the integer part of the
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where ✏0(q) is the eigenvalue with the smallest real part.
In equilibrium the system minimizes its free energy by
choosing an appropriate boundary charge q. In all cases
considered below the minimum appears to be a non-
polarized state of the channel, i.e. q = 0 (see how-
ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
the boundary charge q sweeping through its full period.
As a result, the (free) energy barrier for ion transport is

U0 = eE0L�0 , (6)

where �0 is the width of the lowest Bloch band. There-
fore the ground state energy and the width of the lowest

Bloch band of the Hamiltonian (3) determine thermody-
namic and transport properties of the (n1, n2) Coulomb
gas. The rest of this paper is devoted to a semiclassical
theory of the spectral properties of such Hamiltonians.
We start by discussing some general symmetries of the
non-Hermitian Hamiltonian (3).

A. PT Symmetry

Although the Hamiltonian (3) is non-Hermitian for
n1 6= n2, it obeys PT -symmetry26,27. Here the parity
operator P acts as ✓ ! �✓, while the time-reversal op-
erator T works as complex conjugation i ! �i. Clearly
the two operations combined leave the Hamiltonian (3)
unchanged. One may prove27,28 that all eigenvalues of
PT -symmetric Hamiltonians are either real, or appear
in complex conjugated pairs. As shown below for posi-
tive values of concentrations ↵1,2 > 0 the lowest energy
band ✏0(q) is entirely real, ensuring the positivity of the
partition function. The higher bands ✏m(q) are in gen-
eral complex. It is interesting to note that, for unphysical
negative concentrations ↵1,2 < 0, already the lowest band
✏0(q) is complex, making the free energy ill-defined.

B. Isospectrality

The spectrum of the Hamiltonian (3) is invariant under
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where X stands for x-ordered exponent. Here ✏m(q) are
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considered below the minimum appears to be a non-
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ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
the boundary charge q sweeping through its full period.
As a result, the (free) energy barrier for ion transport is
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Ĥ = ↵


p̂
2
�

✓
1

n1
e
in1✓ +

1

n2
e
�in2✓

◆�
, (8)

where we have defined the momentum operator as

p̂ = ↵
�1/2(�i@✓ + q) ; [✓, p̂] = i↵

�1/2
. (9)

The commutation relation shows that ↵�1/2 plays the
role of the e↵ective Planck constant. With the help of
the isospectrality condition (7), one may always choose
a proper ↵ such that the spectrum of Hamiltonian (8) is
identical with that of a Hamiltonian with arbitrary ↵1,2.
The physical reason for this symmetry is that the inte-
rior region of the long channel always preserves charge

concentration of ions

H acts on Hilbert space of periodic functions

3

where �j is the charge n1 or �n2 of an ion at the position
xj and we omit the ±q boundary charges for brevity. Our
goal is to evaluate the grand canonical partition function
of the gas in the channel of length L

ZL =
1X

N1,N2=0

f
N1
1 f

N2
2

N1!N2!

N1Y

i=1

Z
L

0
dxi

N2Y

j=1

Z
L

0
dxj e

�U/kBT
,

(2)
where f1,2 are fugacities of the two charge species.
One can now introduce the charge density employ-
ing a delta-function �[⇢(x) �

P
j
�j�(x � xj)]. The

delta-function is elevated in the exponent with the
help of the auxiliary field ✓(x). This procedure de-
couples all xj integrals1, bringing them to the formP

N
[f

R
dx e

i�✓(x)]N/N ! = exp{f
R
dx e

i�✓(x)
}. The in-

teraction potential (1), being inverse of the 1D Laplace
operator, leads to exp{(T/eE0)

R
dx ✓@

2
x
✓}. As a result

the partition function (2) is identically written as the
Feynman path integral, in an “imaginary time” x, for
the quantum mechanics with the Hamiltonian

Ĥ = (i@✓ � q)2 �
�
↵1e

in1✓ + ↵2e
�in2✓

�
, (3)

where ↵1,2 = f1,2kBT/eE0 are dimensionless ion concen-
trations. Such Feynman integral is the expectation value
of the evolution operator during “time” L, leading to

ZL =
D
q

���X e
� eE0

kBT

R L
0 dx Ĥ
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where X stands for x-ordered exponent. Here ✏m(q) are
eigenvalues of the e↵ective Hamiltonian Ĥ and |mi =
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charge transfer through the channel is associated with
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As a result, the (free) energy barrier for ion transport is
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are isospectral
10. Thus without loss of generality, one

may pick one representative from each isospectral fam-
ily. It is convenient to choose such a representative to
manifestly enforce charge neutrality in the bulk reser-
voirs. To this end one takes ↵1n1 = ↵2n2 = ↵, which
brings the Hamiltonian (3) to the form
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The commutation relation shows that ↵�1/2 plays the
role of the e↵ective Planck constant. With the help of
the isospectrality condition (7), one may always choose
a proper ↵ such that the spectrum of Hamiltonian (8) is
identical with that of a Hamiltonian with arbitrary ↵1,2.
The physical reason for this symmetry is that the inte-
rior region of the long channel always preserves charge
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where �j is the charge n1 or �n2 of an ion at the position
xj and we omit the ±q boundary charges for brevity. Our
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where f1,2 are fugacities of the two charge species.
One can now introduce the charge density employ-
ing a delta-function �[⇢(x) �
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where X stands for x-ordered exponent. Here ✏m(q) are
eigenvalues of the e↵ective Hamiltonian Ĥ and |mi =
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elements are hq|mi =
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charge q plays the role of the Bloch quasi-momentum
and the spectrum is obviously periodic in q with the unit
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where ✏0(q) is the eigenvalue with the smallest real part.
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considered below the minimum appears to be a non-
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ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
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non-Hermitian Hamiltonian (3).
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The spectrum of the Hamiltonian (3) is invariant under
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The commutation relation shows that ↵�1/2 plays the
role of the e↵ective Planck constant. With the help of
the isospectrality condition (7), one may always choose
a proper ↵ such that the spectrum of Hamiltonian (8) is
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where f1,2 are fugacities of the two charge species.
One can now introduce the charge density employ-
ing a delta-function �[⇢(x) �
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where X stands for x-ordered exponent. Here ✏m(q) are
eigenvalues of the e↵ective Hamiltonian Ĥ and |mi =
 m(✓) are its eigenvectors in the Hilbert space of periodic
functions  m(✓) =  m(✓ + 2⇡), and finally the matrix

elements are hq|mi =
R 2⇡
0 d✓e

�iq✓
 m(✓). The boundary

charge q plays the role of the Bloch quasi-momentum
and the spectrum is obviously periodic in q with the unit
period (reflecting the fact that the integer part of the
boundary charge may be screened by mobile ions and
thus inconsequential).

The pressure of the Coulomb gas is its free energy per
unit length

P = kBT
@ lnZL
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where ✏0(q) is the eigenvalue with the smallest real part.
In equilibrium the system minimizes its free energy by
choosing an appropriate boundary charge q. In all cases
considered below the minimum appears to be a non-
polarized state of the channel, i.e. q = 0 (see how-
ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
the boundary charge q sweeping through its full period.
As a result, the (free) energy barrier for ion transport is

U0 = eE0L�0 , (6)

where �0 is the width of the lowest Bloch band. There-
fore the ground state energy and the width of the lowest
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gas. The rest of this paper is devoted to a semiclassical
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We start by discussing some general symmetries of the
non-Hermitian Hamiltonian (3).
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Although the Hamiltonian (3) is non-Hermitian for
n1 6= n2, it obeys PT -symmetry26,27. Here the parity
operator P acts as ✓ ! �✓, while the time-reversal op-
erator T works as complex conjugation i ! �i. Clearly
the two operations combined leave the Hamiltonian (3)
unchanged. One may prove27,28 that all eigenvalues of
PT -symmetric Hamiltonians are either real, or appear
in complex conjugated pairs. As shown below for posi-
tive values of concentrations ↵1,2 > 0 the lowest energy
band ✏0(q) is entirely real, ensuring the positivity of the
partition function. The higher bands ✏m(q) are in gen-
eral complex. It is interesting to note that, for unphysical
negative concentrations ↵1,2 < 0, already the lowest band
✏0(q) is complex, making the free energy ill-defined.

B. Isospectrality

The spectrum of the Hamiltonian (3) is invariant under
shift of the coordinate ✓ ! ✓+✓0, where ✓0 is an arbitrary
complex number. Upon such transformation (preserv-
ing the periodic boundary conditions) the dimensionless
concentrations ↵1,2 renormalize as ↵1 ! ↵1e
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may pick one representative from each isospectral fam-
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manifestly enforce charge neutrality in the bulk reser-
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The commutation relation shows that ↵�1/2 plays the
role of the e↵ective Planck constant. With the help of
the isospectrality condition (7), one may always choose
a proper ↵ such that the spectrum of Hamiltonian (8) is
identical with that of a Hamiltonian with arbitrary ↵1,2.
The physical reason for this symmetry is that the inte-
rior region of the long channel always preserves charge
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where �j is the charge n1 or �n2 of an ion at the position
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where f1,2 are fugacities of the two charge species.
One can now introduce the charge density employ-
ing a delta-function �[⇢(x) �

P
j
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delta-function is elevated in the exponent with the
help of the auxiliary field ✓(x). This procedure de-
couples all xj integrals1, bringing them to the formP
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Feynman path integral, in an “imaginary time” x, for
the quantum mechanics with the Hamiltonian
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where ↵1,2 = f1,2kBT/eE0 are dimensionless ion concen-
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of the evolution operator during “time” L, leading to
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where X stands for x-ordered exponent. Here ✏m(q) are
eigenvalues of the e↵ective Hamiltonian Ĥ and |mi =
 m(✓) are its eigenvectors in the Hilbert space of periodic
functions  m(✓) =  m(✓ + 2⇡), and finally the matrix

elements are hq|mi =
R 2⇡
0 d✓e

�iq✓
 m(✓). The boundary

charge q plays the role of the Bloch quasi-momentum
and the spectrum is obviously periodic in q with the unit
period (reflecting the fact that the integer part of the
boundary charge may be screened by mobile ions and
thus inconsequential).

The pressure of the Coulomb gas is its free energy per
unit length

P = kBT
@ lnZL
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where ✏0(q) is the eigenvalue with the smallest real part.
In equilibrium the system minimizes its free energy by
choosing an appropriate boundary charge q. In all cases
considered below the minimum appears to be a non-
polarized state of the channel, i.e. q = 0 (see how-
ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
the boundary charge q sweeping through its full period.
As a result, the (free) energy barrier for ion transport is

U0 = eE0L�0 , (6)

where �0 is the width of the lowest Bloch band. There-
fore the ground state energy and the width of the lowest

Bloch band of the Hamiltonian (3) determine thermody-
namic and transport properties of the (n1, n2) Coulomb
gas. The rest of this paper is devoted to a semiclassical
theory of the spectral properties of such Hamiltonians.
We start by discussing some general symmetries of the
non-Hermitian Hamiltonian (3).

A. PT Symmetry

Although the Hamiltonian (3) is non-Hermitian for
n1 6= n2, it obeys PT -symmetry26,27. Here the parity
operator P acts as ✓ ! �✓, while the time-reversal op-
erator T works as complex conjugation i ! �i. Clearly
the two operations combined leave the Hamiltonian (3)
unchanged. One may prove27,28 that all eigenvalues of
PT -symmetric Hamiltonians are either real, or appear
in complex conjugated pairs. As shown below for posi-
tive values of concentrations ↵1,2 > 0 the lowest energy
band ✏0(q) is entirely real, ensuring the positivity of the
partition function. The higher bands ✏m(q) are in gen-
eral complex. It is interesting to note that, for unphysical
negative concentrations ↵1,2 < 0, already the lowest band
✏0(q) is complex, making the free energy ill-defined.

B. Isospectrality

The spectrum of the Hamiltonian (3) is invariant under
shift of the coordinate ✓ ! ✓+✓0, where ✓0 is an arbitrary
complex number. Upon such transformation (preserv-
ing the periodic boundary conditions) the dimensionless
concentrations ↵1,2 renormalize as ↵1 ! ↵1e

in1✓0 and
↵2 ! ↵2e

�in2✓0 . Notice that the combination ↵n2
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mains invariant. From here one concludes that the family
of Hamiltonians (3) with
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are isospectral
10. Thus without loss of generality, one

may pick one representative from each isospectral fam-
ily. It is convenient to choose such a representative to
manifestly enforce charge neutrality in the bulk reser-
voirs. To this end one takes ↵1n1 = ↵2n2 = ↵, which
brings the Hamiltonian (3) to the form
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where we have defined the momentum operator as
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The commutation relation shows that ↵�1/2 plays the
role of the e↵ective Planck constant. With the help of
the isospectrality condition (7), one may always choose
a proper ↵ such that the spectrum of Hamiltonian (8) is
identical with that of a Hamiltonian with arbitrary ↵1,2.
The physical reason for this symmetry is that the inte-
rior region of the long channel always preserves charge

✏0,�0, n1, n2Thus transfer properties are defined in term of
We shall find those using semiclassical methods
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xj and we omit the ±q boundary charges for brevity. Our
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where f1,2 are fugacities of the two charge species.
One can now introduce the charge density employ-
ing a delta-function �[⇢(x) �
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where X stands for x-ordered exponent. Here ✏m(q) are
eigenvalues of the e↵ective Hamiltonian Ĥ and |mi =
 m(✓) are its eigenvectors in the Hilbert space of periodic
functions  m(✓) =  m(✓ + 2⇡), and finally the matrix

elements are hq|mi =
R 2⇡
0 d✓e
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 m(✓). The boundary

charge q plays the role of the Bloch quasi-momentum
and the spectrum is obviously periodic in q with the unit
period (reflecting the fact that the integer part of the
boundary charge may be screened by mobile ions and
thus inconsequential).

The pressure of the Coulomb gas is its free energy per
unit length
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where ✏0(q) is the eigenvalue with the smallest real part.
In equilibrium the system minimizes its free energy by
choosing an appropriate boundary charge q. In all cases
considered below the minimum appears to be a non-
polarized state of the channel, i.e. q = 0 (see how-
ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
the boundary charge q sweeping through its full period.
As a result, the (free) energy barrier for ion transport is

U0 = eE0L�0 , (6)

where �0 is the width of the lowest Bloch band. There-
fore the ground state energy and the width of the lowest

Bloch band of the Hamiltonian (3) determine thermody-
namic and transport properties of the (n1, n2) Coulomb
gas. The rest of this paper is devoted to a semiclassical
theory of the spectral properties of such Hamiltonians.
We start by discussing some general symmetries of the
non-Hermitian Hamiltonian (3).

A. PT Symmetry

Although the Hamiltonian (3) is non-Hermitian for
n1 6= n2, it obeys PT -symmetry26,27. Here the parity
operator P acts as ✓ ! �✓, while the time-reversal op-
erator T works as complex conjugation i ! �i. Clearly
the two operations combined leave the Hamiltonian (3)
unchanged. One may prove27,28 that all eigenvalues of
PT -symmetric Hamiltonians are either real, or appear
in complex conjugated pairs. As shown below for posi-
tive values of concentrations ↵1,2 > 0 the lowest energy
band ✏0(q) is entirely real, ensuring the positivity of the
partition function. The higher bands ✏m(q) are in gen-
eral complex. It is interesting to note that, for unphysical
negative concentrations ↵1,2 < 0, already the lowest band
✏0(q) is complex, making the free energy ill-defined.
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where f1,2 are fugacities of the two charge species.
One can now introduce the charge density employ-
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where X stands for x-ordered exponent. Here ✏m(q) are
eigenvalues of the e↵ective Hamiltonian Ĥ and |mi =
 m(✓) are its eigenvectors in the Hilbert space of periodic
functions  m(✓) =  m(✓ + 2⇡), and finally the matrix

elements are hq|mi =
R 2⇡
0 d✓e

�iq✓
 m(✓). The boundary

charge q plays the role of the Bloch quasi-momentum
and the spectrum is obviously periodic in q with the unit
period (reflecting the fact that the integer part of the
boundary charge may be screened by mobile ions and
thus inconsequential).

The pressure of the Coulomb gas is its free energy per
unit length

P = kBT
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where ✏0(q) is the eigenvalue with the smallest real part.
In equilibrium the system minimizes its free energy by
choosing an appropriate boundary charge q. In all cases
considered below the minimum appears to be a non-
polarized state of the channel, i.e. q = 0 (see how-
ever Refs. [2] for exceptions to this rule). Adiabatic
charge transfer through the channel is associated with
the boundary charge q sweeping through its full period.
As a result, the (free) energy barrier for ion transport is

U0 = eE0L�0 , (6)

where �0 is the width of the lowest Bloch band. There-
fore the ground state energy and the width of the lowest

Bloch band of the Hamiltonian (3) determine thermody-
namic and transport properties of the (n1, n2) Coulomb
gas. The rest of this paper is devoted to a semiclassical
theory of the spectral properties of such Hamiltonians.
We start by discussing some general symmetries of the
non-Hermitian Hamiltonian (3).

A. PT Symmetry

Although the Hamiltonian (3) is non-Hermitian for
n1 6= n2, it obeys PT -symmetry26,27. Here the parity
operator P acts as ✓ ! �✓, while the time-reversal op-
erator T works as complex conjugation i ! �i. Clearly
the two operations combined leave the Hamiltonian (3)
unchanged. One may prove27,28 that all eigenvalues of
PT -symmetric Hamiltonians are either real, or appear
in complex conjugated pairs. As shown below for posi-
tive values of concentrations ↵1,2 > 0 the lowest energy
band ✏0(q) is entirely real, ensuring the positivity of the
partition function. The higher bands ✏m(q) are in gen-
eral complex. It is interesting to note that, for unphysical
negative concentrations ↵1,2 < 0, already the lowest band
✏0(q) is complex, making the free energy ill-defined.

B. Isospectrality

The spectrum of the Hamiltonian (3) is invariant under
shift of the coordinate ✓ ! ✓+✓0, where ✓0 is an arbitrary
complex number. Upon such transformation (preserv-
ing the periodic boundary conditions) the dimensionless
concentrations ↵1,2 renormalize as ↵1 ! ↵1e
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mains invariant. From here one concludes that the family
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are isospectral
10. Thus without loss of generality, one

may pick one representative from each isospectral fam-
ily. It is convenient to choose such a representative to
manifestly enforce charge neutrality in the bulk reser-
voirs. To this end one takes ↵1n1 = ↵2n2 = ↵, which
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Ĥ = ↵


p̂
2
�

✓
1

n1
e
in1✓ +

1

n2
e
�in2✓

◆�
, (8)

where we have defined the momentum operator as

p̂ = ↵
�1/2(�i@✓ + q) ; [✓, p̂] = i↵

�1/2
. (9)

The commutation relation shows that ↵�1/2 plays the
role of the e↵ective Planck constant. With the help of
the isospectrality condition (7), one may always choose
a proper ↵ such that the spectrum of Hamiltonian (8) is
identical with that of a Hamiltonian with arbitrary ↵1,2.
The physical reason for this symmetry is that the inte-
rior region of the long channel always preserves charge
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band ✏0(q) is entirely real, ensuring the positivity of the
partition function. The higher bands ✏m(q) are in gen-
eral complex. It is interesting to note that, for unphysical
negative concentrations ↵1,2 < 0, already the lowest band
✏0(q) is complex, making the free energy ill-defined.

B. Isospectrality

The spectrum of the Hamiltonian (3) is invariant under
shift of the coordinate ✓ ! ✓+✓0, where ✓0 is an arbitrary
complex number. Upon such transformation (preserv-
ing the periodic boundary conditions) the dimensionless
concentrations ↵1,2 renormalize as ↵1 ! ↵1e

in1✓0 and
↵2 ! ↵2e

�in2✓0 . Notice that the combination ↵n2
1 ↵

n1
2 re-

mains invariant. From here one concludes that the family
of Hamiltonians (3) with

↵
n2
1 ↵

n1
2 = const (7)

are isospectral
10. Thus without loss of generality, one

may pick one representative from each isospectral fam-
ily. It is convenient to choose such a representative to
manifestly enforce charge neutrality in the bulk reser-
voirs. To this end one takes ↵1n1 = ↵2n2 = ↵, which
brings the Hamiltonian (3) to the form
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neutrality, allowing the edge regions to screen charge im-
balance of the reservoirs. Therefore, irrespective of the
relative fugacities of cations and anions in the reservoirs,
the thermodynamics of the long channel are equivalent
to the one in contact with neutral reservoirs with an
appropriate salt concentration ↵. Hereafter we restrict
ourselves to the neutral Hamiltonian (8) with the single
parameter ↵.

III. NUMERICAL ANALYSIS

In this section we discuss numerical simulation of the
spectrum of the Hamiltonian (8). We focus on unequal
charges n1 6= n2, since the case of n1 = n2 reduces
to the well-known Hermitian cosine potential29,30. For
unequal charges the Hamiltonian is non-Hermitian but
PT -symmetric, allowing for complex eigenvalues which
appear in conjugated pairs27,28.

Since the Hamiltonian Ĥ acts in the Hilbert space of
periodic functions, one may choose the complete basis
in the form {e

im✓
}m2Z. In this basis the Hamiltonian is

represented by an infinite size real matrix2

Ĥm,m0 =(m�q)2�m,m0�↵

✓
1

n1
�m+n1,m

0 +
1

n2
�m�n2,m

0

◆
.

(10)
The boundary charge q plays the role of quasi-momentum
residing in the Brillouin zone q 2 [� 1

2 ,
1
2 ]. To numer-

ically calculate the energy spectrum ✏m(q) we truncate
the matrix at a large cuto↵, after checking that a further
increase in the matrix size does not change the low-energy
spectrum. We left the boundary conditions “open”, i.e.
did not change the matrix elements near the cuto↵, after
verifying that di↵erent boundary conditions don’t a↵ect
the result. It is easy to see that the matrix size should be
�

p
↵ to accurately represent the low-energy spectrum.

As an illustration we show the Hamiltonian cut to a 5⇥5
matrix for divalent (2, 1) gas:

0
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(�2� q)2 0 �
↵

2 0 0
�↵ (�1� q)2 0 �
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0 0 �↵ (1� q)2 0
0 0 0 �↵ (2� q)2
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CCCA

For reasons which will become apparent below, it is
convenient to present the spectrum ✏ on the complex
plane of the normalized energy u defined as

u =
n1n2

n1 + n2

✏

↵
. (11)

For the divalent (2, 1) gas u = 2✏/3↵ and the correspond-
ing spectra are shown in Fig. 1. The spectrum consists
of a sequence of complex Bloch bands. The number of
narrow bands within the unit circle |u| = 1 scales as

p
↵.

They form three branches which terminate at u = �1 and
u = e

±i⇡/3 and approximately line up along the lines con-
necting the termination points with the point u = 1. We
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FIG. 1: (Color online) Complex plane of normalized energy
u = 2✏m(q)/3↵ for (2, 1) gas. The color corresponds to
di↵erent values of quasimomentum q; blue stands for q = 0
and red for q = ±1/2. The dotted circle is |u| = 1, the
dashed lines connect between u = 1 and u = e±i⇡/3,
indicating positions of the narrow complex bands in the
limit of large ↵.

shall discuss the corresponding bandwidths below. Out-
side the unit circle the bands are wide and centered near
the positive real axis of energy.

Figure 2 shows the band structure in the first Brillouin
zone |q| < 1/2 for ↵ = 1. Notice that the lowest Bloch
band is purely real (this is always the case for ↵ > 0),
ensuring positive partition function (4) and real pressure
(5). The next two bands are complex. For |q| < qc ⇡ 0.36
they exhibit opposite imaginary parts (not shown), but
turn real at |q| > qc. The next two bands are real, cf.
Fig. 1b. The higher bands form an alternating sequence
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Ĥm,m0 =(m�q)2�m,m0�↵

✓
1

n1
�m+n1,m

0 +
1

n2
�m�n2,m

0

◆
.

(10)
The boundary charge q plays the role of quasi-momentum
residing in the Brillouin zone q 2 [� 1

2 ,
1
2 ]. To numer-

ically calculate the energy spectrum ✏m(q) we truncate
the matrix at a large cuto↵, after checking that a further
increase in the matrix size does not change the low-energy
spectrum. We left the boundary conditions “open”, i.e.
did not change the matrix elements near the cuto↵, after
verifying that di↵erent boundary conditions don’t a↵ect
the result. It is easy to see that the matrix size should be
�

p
↵ to accurately represent the low-energy spectrum.

As an illustration we show the Hamiltonian cut to a 5⇥5
matrix for divalent (2, 1) gas:

0

BBB@

(�2� q)2 0 �
↵

2 0 0
�↵ (�1� q)2 0 �

↵

2 0
0 �↵ (0� q)2 0 �

↵

2
0 0 �↵ (1� q)2 0
0 0 0 �↵ (2� q)2

1

CCCA

For reasons which will become apparent below, it is
convenient to present the spectrum ✏ on the complex
plane of the normalized energy u defined as

u =
n1n2

n1 + n2

✏

↵
. (11)

For the divalent (2, 1) gas u = 2✏/3↵ and the correspond-
ing spectra are shown in Fig. 1. The spectrum consists
of a sequence of complex Bloch bands. The number of
narrow bands within the unit circle |u| = 1 scales as

p
↵.

They form three branches which terminate at u = �1 and
u = e

±i⇡/3 and approximately line up along the lines con-
necting the termination points with the point u = 1. We

-1 1 2 3

-1.0

-0.5

0.5

1.0

(a) ↵ = 0.5

-1 1 2 3

-1.0

-0.5

0.5

1.0

(b) ↵ = 1

-1 1 2 3

-1.0

-0.5

0.5

1.0

(c) ↵ = 2

-1 1 2 3

-1.0

-0.5

0.5

1.0

(d) ↵ = 200

FIG. 1: (Color online) Complex plane of normalized energy
u = 2✏m(q)/3↵ for (2, 1) gas. The color corresponds to
di↵erent values of quasimomentum q; blue stands for q = 0
and red for q = ±1/2. The dotted circle is |u| = 1, the
dashed lines connect between u = 1 and u = e±i⇡/3,
indicating positions of the narrow complex bands in the
limit of large ↵.

shall discuss the corresponding bandwidths below. Out-
side the unit circle the bands are wide and centered near
the positive real axis of energy.

Figure 2 shows the band structure in the first Brillouin
zone |q| < 1/2 for ↵ = 1. Notice that the lowest Bloch
band is purely real (this is always the case for ↵ > 0),
ensuring positive partition function (4) and real pressure
(5). The next two bands are complex. For |q| < qc ⇡ 0.36
they exhibit opposite imaginary parts (not shown), but
turn real at |q| > qc. The next two bands are real, cf.
Fig. 1b. The higher bands form an alternating sequence

quasimomentum

4

neutrality, allowing the edge regions to screen charge im-
balance of the reservoirs. Therefore, irrespective of the
relative fugacities of cations and anions in the reservoirs,
the thermodynamics of the long channel are equivalent
to the one in contact with neutral reservoirs with an
appropriate salt concentration ↵. Hereafter we restrict
ourselves to the neutral Hamiltonian (8) with the single
parameter ↵.

III. NUMERICAL ANALYSIS

In this section we discuss numerical simulation of the
spectrum of the Hamiltonian (8). We focus on unequal
charges n1 6= n2, since the case of n1 = n2 reduces
to the well-known Hermitian cosine potential29,30. For
unequal charges the Hamiltonian is non-Hermitian but
PT -symmetric, allowing for complex eigenvalues which
appear in conjugated pairs27,28.
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shall discuss the corresponding bandwidths below. Out-
side the unit circle the bands are wide and centered near
the positive real axis of energy.

Figure 2 shows the band structure in the first Brillouin
zone |q| < 1/2 for ↵ = 1. Notice that the lowest Bloch
band is purely real (this is always the case for ↵ > 0),
ensuring positive partition function (4) and real pressure
(5). The next two bands are complex. For |q| < qc ⇡ 0.36
they exhibit opposite imaginary parts (not shown), but
turn real at |q| > qc. The next two bands are real, cf.
Fig. 1b. The higher bands form an alternating sequence
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balance of the reservoirs. Therefore, irrespective of the
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the thermodynamics of the long channel are equivalent
to the one in contact with neutral reservoirs with an
appropriate salt concentration ↵. Hereafter we restrict
ourselves to the neutral Hamiltonian (8) with the single
parameter ↵.
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In this section we discuss numerical simulation of the
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band is purely real (this is always the case for ↵ > 0),
ensuring positive partition function (4) and real pressure
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they exhibit opposite imaginary parts (not shown), but
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FIG. 2: (Color online) Band structure for (2, 1) gas with
↵ = 1, cf. Fig. 1b, vs. boundary charge (quasi-
momentum) q. For the complex bands the real part of
✏m(q) is shown in dashed blue.

of two real and two complex bands. For larger values of
↵ there is a sequence of entirely complex narrow bands,
cf. Fig. 1d.

Figure 3 shows normalized spectra for several di↵erent
combinations of charges on the complex energy plane of
u, Eq. (11), at large concentration ↵ = 200. One may
notice odd number n1 + n2 or n1 + n2 � 1 of spectral
sequences, consisting of order

p
↵ exponentially narrow

bands, seen as points. The central sequence goes along
the real axis terminating at the bottom of the spectrum
near u = �1. The other appear in conjugated pairs
terminating near the roots of unity u = �(1)1/(n1+n2).
Close to the termination points the band sequences align
along the lines pointing towards u = 1. Further away
from the termination points they deviate from these lines
and may coalesce.

Although thermodynamics and transport properties of
the Coulomb gases are merely determined by the lowest
band ✏0(q), below we address the wider spectral prop-
erties of Hamiltonians (8), presented in Figs. 1 – 3. To
this end we develop a semiclassical theory which is best
suited for the description of exponentially narrow bands
present at large concentration ↵ & 1.

IV. MONOVALENT (1,1) GAS

To introduce the methods, we first develop a semiclas-
sical spectral theory for the Hermitian Hamiltonian (8),
(9) with n1 = n2 = 1. To this end we look for wavefunc-

tions in the form  = e
i↵

1/2
S , where S is an action for

the classical problem with the normalized Hamiltonian
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2
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termination points u = �(1)1/(n1+n2) and u = 1,
indicating positions of narrow complex bands.

where u = ✏/(2↵), so u = ⌥1 correspond to the bottom
(top) of the cosine potential. The semiclassical calcu-
lations require knowledge of the action integrals. Our
approach to such integrals is based on complex algebraic
geometry. First, let z = e

i✓ and consider (z, p) as com-
plex variables. Since p(z) resides on the constant energy
hypersurface
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we have a family of complex algebraic curves

Eu : F(p, z) = p
2
z � (z2 + 2uz + 1) = 0 (14)
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Since the Hamiltonian Ĥ acts in the Hilbert space of
periodic functions, one may choose the complete basis
in the form {e

im✓
}m2Z. In this basis the Hamiltonian is

represented by an infinite size real matrix2
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shall discuss the corresponding bandwidths below. Out-
side the unit circle the bands are wide and centered near
the positive real axis of energy.

Figure 2 shows the band structure in the first Brillouin
zone |q| < 1/2 for ↵ = 1. Notice that the lowest Bloch
band is purely real (this is always the case for ↵ > 0),
ensuring positive partition function (4) and real pressure
(5). The next two bands are complex. For |q| < qc ⇡ 0.36
they exhibit opposite imaginary parts (not shown), but
turn real at |q| > qc. The next two bands are real, cf.
Fig. 1b. The higher bands form an alternating sequence
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FIG. 2: (Color online) Band structure for (2, 1) gas with
↵ = 1, cf. Fig. 1b, vs. boundary charge (quasi-
momentum) q. For the complex bands the real part of
✏m(q) is shown in dashed blue.

of two real and two complex bands. For larger values of
↵ there is a sequence of entirely complex narrow bands,
cf. Fig. 1d.

Figure 3 shows normalized spectra for several di↵erent
combinations of charges on the complex energy plane of
u, Eq. (11), at large concentration ↵ = 200. One may
notice odd number n1 + n2 or n1 + n2 � 1 of spectral
sequences, consisting of order

p
↵ exponentially narrow

bands, seen as points. The central sequence goes along
the real axis terminating at the bottom of the spectrum
near u = �1. The other appear in conjugated pairs
terminating near the roots of unity u = �(1)1/(n1+n2).
Close to the termination points the band sequences align
along the lines pointing towards u = 1. Further away
from the termination points they deviate from these lines
and may coalesce.

Although thermodynamics and transport properties of
the Coulomb gases are merely determined by the lowest
band ✏0(q), below we address the wider spectral prop-
erties of Hamiltonians (8), presented in Figs. 1 – 3. To
this end we develop a semiclassical theory which is best
suited for the description of exponentially narrow bands
present at large concentration ↵ & 1.
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and may coalesce.
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parameterized by u. For u 6= ⌥1 it can be checked that
(@F/@z, @F/@p) does not vanish on Eu, so each Eu is non-
singular. Then F(p, z) implicitly defines a locally holo-
morphic map p = p(z). The exceptions to this occur at
z = 0,1, z±, where

z± = �u± i

p
1� u2 (15)

are the roots of p2 = 0 (i.e. classical turning points). In
a vicinity of these four branching points p(z) behaves as

p ⇠ z
�1/2

, (z ⇠ 0) (16)

p ⇠ z
1/2

, (z ⇠ 1) (17)

p ⇠ (z � z±)
1/2

, (z ⇠ z±) (18)

respectively, i.e. p(z) is locally double-valued. (Note that
we have added a point at z = 1 to the complex plane,
thereby rendering it compact and topologically equiva-
lent to a Riemann sphere, Fig. 4). To make sense of this
double-valuedness, we first introduce two cuts between
the four branching points. For convenience we have cho-
sen to do so between 0,1 and the turning points z±.
Upon this cut domain, p(z) is locally holomorphic.

FIG. 4: (a) Complex z-plane with two cuts. (b) It
compactifies to Riemann sphere with two cuts.

We then introduce a second sheet of the z-plane and
the corresponding Riemann sphere, cut in the same way
as the first. We then analytically continue p(z) on the
first sheet across the cuts onto the second sheet. If p(z)
is analytically continued across the branch cut again, we
arrive back on the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
whose domain is a doubly-branched cover of the Riemann
sphere. Furthermore, suppose we open up the branch
cuts, keeping track where on the other branch p(z) will
be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.

FIG. 5: Construction of Riemann surface of genus 1. Two
Riemann spheres with two cuts each are deformed into
tubes to make the gluing in the final step more clear.

FIG. 6: Riemann surface of genus-1 with two basic cycles �0
and �1 on it. In the limit u ! ⌥1 the torus degenerates
into a singular surface. This coincides with the loop �0
(but not �1) becoming contractible to a point.

A. Integration and topology on torus

The action integrals can be understood as S =
H
�
�

over classical trajectories, where

�(u) = p(✓) d✓ = p(z)
dz

iz
=

(z2 + 2uz + 1)1/2

iz3/2
dz (19)

is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by
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whose domain is a doubly-branched cover of the Riemann
sphere. Furthermore, suppose we open up the branch
cuts, keeping track where on the other branch p(z) will
be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.

FIG. 5: Construction of Riemann surface of genus 1. Two
Riemann spheres with two cuts each are deformed into
tubes to make the gluing in the final step more clear.

FIG. 6: Riemann surface of genus-1 with two basic cycles �0
and �1 on it. In the limit u ! ⌥1 the torus degenerates
into a singular surface. This coincides with the loop �0
(but not �1) becoming contractible to a point.

A. Integration and topology on torus

The action integrals can be understood as S =
H
�
�

over classical trajectories, where

�(u) = p(✓) d✓ = p(z)
dz

iz
=

(z2 + 2uz + 1)1/2

iz3/2
dz (19)

is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by
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Cauchy theorem). The two deformed cycles, shown in
Fig. 7, are hereafter called �0 and �1.

FIG. 7: The classically allowed (forbidden) region at energy
2u are shown by the solid (dashed) gray line. A classical
(instanton) periodic orbit, in the complex ✓-plane, leads to
�0(�1) cycles.

Translating these two cycles to the complex z-plane
yields the contours of Fig. 8. Notice that these are in-
deed cycles (i.e. closed contours) owing to the crossing of
branch cuts. On the Riemann surface both wind around
the torus. For this reason, the integrals Sj(u) =

H
�j

�

are known as periods of Eu with respect to �(u). One
can see that the residue of the action form (19) at infin-
ity is zero. Indeed, at large z we have � ⇠ dp. Therefore
we can safely deform the contour around infinity in the
z-plane. Let us consider cycles �0, �1 as defined in Fig. 6.
Any closed cycle on the torus (after appropriate defor-
mation) can be decomposed into a superposition of an
integer number of these two basic cycles. For example,

FIG. 8: (Color online) Cycles �0 and �1 on the complex
z-plane for u = �0.9. Notice that cycle �1 crosses twice
the two cuts from first branch (solid blue line) to second
branch (dashed red line) and back.

the cycles �0 and �1 are

�0 = �0, �1 = 2�1 � �0 . (20)

This is evident if one examines the manner in which these
cycles encircle around the torus. Formally, the basic cy-
cles generate the first homology group of the torus (since
cycles which are alike in this manner are homologous).
One can also consider the first cohomology group of the

torus, generated by two independent 1-forms on the Rie-
mann surface modulo exact 1-forms (the latter integrate
to zero for all cycles on the torus by Stokes’ theorem).
In this work we consider meromorphic 1-forms with zero
residues. Modulo exact forms they are dual to 1-cycles
on the torus by the de Rham theorem31. The duality im-
plies that there are exactly as many independent 1-forms
to integrate upon the surface as independent 1-cycles to
integrate along the surface. For the torus the cohomol-
ogy, like the homology, is two-dimensional, i.e. any three
(or more) 1-forms on the torus are linearly dependent up
to an exact form.

B. Picard-Fuchs equation

As a result, there must exist a linear combination of
1-forms {�00(u),�0(u),�(u)} which is an exact form, here
primes denote derivatives w.r.t. u. This combination
may be found by allowing for (u-dependent) coe�cients
in front of the three 1-forms and looking for an exact
form dz[P2(z)z�1/2(z2 + 2uz + 1)�1/2], where P2(z) is a
second degree polynomial with u-dependent coe�cients.
Matching coe�cients for powers of z leads to 5 equations
for 6 unknown parameters, determining the sought com-
bination up to an overall multiplicative factor. This way
one finds that the operator L = (u2

� 1)@2
u
+1/4 acts on

�(u) as

L�(u) =
d

dz


i

2

1� z
2

z1/2(z2 + 2uz + 1)1/2

�
. (21)

It follows from Stokes’ theorem and the exactness of
L�(u) that LSj(u) = 0 since �j is a cycle on the torus.
Thus Sj(u) satisfies the linear second order ODE16

(u2
� 1)S00

j
(u) +

1

4
Sj(u) = 0 . (22)

This is an example of the Picard-Fuchs equation32,33 (see
Ref. [34] for a review). Exactly this equation appears
extensively in the context of Seiberg-Witten theory.
Inspecting the coe�cient in front of the highest deriva-

tive, one notices that equation (22) has regular singular
points at u = 1 and u = ⌥1, where the torus degener-
ates into a sphere, Fig. 6. Changing variable to u

2, this
equation may be brought to the standard hypergeometric
form35. In the domain | arg(1 � u

2)| < ⇡ it admits two
linearly independent solutions of the form F0(u2) and
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FIG. 2: (Color online) Band structure for (2, 1) gas with
↵ = 1, cf. Fig. 1b, vs. boundary charge (quasi-
momentum) q. For the complex bands the real part of
✏m(q) is shown in dashed blue.

of two real and two complex bands. For larger values of
↵ there is a sequence of entirely complex narrow bands,
cf. Fig. 1d.

Figure 3 shows normalized spectra for several di↵erent
combinations of charges on the complex energy plane of
u, Eq. (11), at large concentration ↵ = 200. One may
notice odd number n1 + n2 or n1 + n2 � 1 of spectral
sequences, consisting of order

p
↵ exponentially narrow

bands, seen as points. The central sequence goes along
the real axis terminating at the bottom of the spectrum
near u = �1. The other appear in conjugated pairs
terminating near the roots of unity u = �(1)1/(n1+n2).
Close to the termination points the band sequences align
along the lines pointing towards u = 1. Further away
from the termination points they deviate from these lines
and may coalesce.

Although thermodynamics and transport properties of
the Coulomb gases are merely determined by the lowest
band ✏0(q), below we address the wider spectral prop-
erties of Hamiltonians (8), presented in Figs. 1 – 3. To
this end we develop a semiclassical theory which is best
suited for the description of exponentially narrow bands
present at large concentration ↵ & 1.

IV. MONOVALENT (1,1) GAS

To introduce the methods, we first develop a semiclas-
sical spectral theory for the Hermitian Hamiltonian (8),
(9) with n1 = n2 = 1. To this end we look for wavefunc-

tions in the form  = e
i↵

1/2
S , where S is an action for

the classical problem with the normalized Hamiltonian

2u = p
2
� 2 cos ✓ , (12)
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FIG. 3: (Color online) Complex plane of normalized energy
u, Eq. (11), for ↵ = 200 and various valences (n1, n2). The
dotted circle is |u| = 1, the dashed lines connect spectrum
termination points u = �(1)1/(n1+n2) and u = 1,
indicating positions of narrow complex bands.

where u = ✏/(2↵), so u = ⌥1 correspond to the bottom
(top) of the cosine potential. The semiclassical calcu-
lations require knowledge of the action integrals. Our
approach to such integrals is based on complex algebraic
geometry. First, let z = e

i✓ and consider (z, p) as com-
plex variables. Since p(z) resides on the constant energy
hypersurface

2u = p
2
�

✓
z +

1

z

◆
, (13)

we have a family of complex algebraic curves

Eu : F(p, z) = p
2
z � (z2 + 2uz + 1) = 0 (14)

0 cycle 

vanishes
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parameterized by u. For u 6= ⌥1 it can be checked that
(@F/@z, @F/@p) does not vanish on Eu, so each Eu is non-
singular. Then F(p, z) implicitly defines a locally holo-
morphic map p = p(z). The exceptions to this occur at
z = 0,1, z±, where

z± = �u± i

p
1� u2 (15)

are the roots of p2 = 0 (i.e. classical turning points). In
a vicinity of these four branching points p(z) behaves as

p ⇠ z
�1/2

, (z ⇠ 0) (16)

p ⇠ z
1/2

, (z ⇠ 1) (17)

p ⇠ (z � z±)
1/2

, (z ⇠ z±) (18)

respectively, i.e. p(z) is locally double-valued. (Note that
we have added a point at z = 1 to the complex plane,
thereby rendering it compact and topologically equiva-
lent to a Riemann sphere, Fig. 4). To make sense of this
double-valuedness, we first introduce two cuts between
the four branching points. For convenience we have cho-
sen to do so between 0,1 and the turning points z±.
Upon this cut domain, p(z) is locally holomorphic.

FIG. 4: (a) Complex z-plane with two cuts. (b) It
compactifies to Riemann sphere with two cuts.

We then introduce a second sheet of the z-plane and
the corresponding Riemann sphere, cut in the same way
as the first. We then analytically continue p(z) on the
first sheet across the cuts onto the second sheet. If p(z)
is analytically continued across the branch cut again, we
arrive back on the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
whose domain is a doubly-branched cover of the Riemann
sphere. Furthermore, suppose we open up the branch
cuts, keeping track where on the other branch p(z) will
be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.

FIG. 5: Construction of Riemann surface of genus 1. Two
Riemann spheres with two cuts each are deformed into
tubes to make the gluing in the final step more clear.

FIG. 6: Riemann surface of genus-1 with two basic cycles �0
and �1 on it. In the limit u ! ⌥1 the torus degenerates
into a singular surface. This coincides with the loop �0
(but not �1) becoming contractible to a point.

A. Integration and topology on torus

The action integrals can be understood as S =
H
�
�

over classical trajectories, where

�(u) = p(✓) d✓ = p(z)
dz

iz
=

(z2 + 2uz + 1)1/2

iz3/2
dz (19)

is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by
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the corresponding Riemann sphere, cut in the same way
as the first. We then analytically continue p(z) on the
first sheet across the cuts onto the second sheet. If p(z)
is analytically continued across the branch cut again, we
arrive back on the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
whose domain is a doubly-branched cover of the Riemann
sphere. Furthermore, suppose we open up the branch
cuts, keeping track where on the other branch p(z) will
be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.

FIG. 5: Construction of Riemann surface of genus 1. Two
Riemann spheres with two cuts each are deformed into
tubes to make the gluing in the final step more clear.

FIG. 6: Riemann surface of genus-1 with two basic cycles �0
and �1 on it. In the limit u ! ⌥1 the torus degenerates
into a singular surface. This coincides with the loop �0
(but not �1) becoming contractible to a point.

A. Integration and topology on torus

The action integrals can be understood as S =
H
�
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over classical trajectories, where

�(u) = p(✓) d✓ = p(z)
dz

iz
=

(z2 + 2uz + 1)1/2
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is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by
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parameterized by u. For u 6= ⌥1 it can be checked that
(@F/@z, @F/@p) does not vanish on Eu, so each Eu is non-
singular. Then F(p, z) implicitly defines a locally holo-
morphic map p = p(z). The exceptions to this occur at
z = 0,1, z±, where
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p
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are the roots of p2 = 0 (i.e. classical turning points). In
a vicinity of these four branching points p(z) behaves as
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respectively, i.e. p(z) is locally double-valued. (Note that
we have added a point at z = 1 to the complex plane,
thereby rendering it compact and topologically equiva-
lent to a Riemann sphere, Fig. 4). To make sense of this
double-valuedness, we first introduce two cuts between
the four branching points. For convenience we have cho-
sen to do so between 0,1 and the turning points z±.
Upon this cut domain, p(z) is locally holomorphic.
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compactifies to Riemann sphere with two cuts.

We then introduce a second sheet of the z-plane and
the corresponding Riemann sphere, cut in the same way
as the first. We then analytically continue p(z) on the
first sheet across the cuts onto the second sheet. If p(z)
is analytically continued across the branch cut again, we
arrive back on the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
whose domain is a doubly-branched cover of the Riemann
sphere. Furthermore, suppose we open up the branch
cuts, keeping track where on the other branch p(z) will
be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.

FIG. 5: Construction of Riemann surface of genus 1. Two
Riemann spheres with two cuts each are deformed into
tubes to make the gluing in the final step more clear.

FIG. 6: Riemann surface of genus-1 with two basic cycles �0
and �1 on it. In the limit u ! ⌥1 the torus degenerates
into a singular surface. This coincides with the loop �0
(but not �1) becoming contractible to a point.

A. Integration and topology on torus

The action integrals can be understood as S =
H
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over classical trajectories, where

�(u) = p(✓) d✓ = p(z)
dz
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=

(z2 + 2uz + 1)1/2
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is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by

u = 1
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Cauchy theorem). The two deformed cycles, shown in
Fig. 7, are hereafter called �0 and �1.

FIG. 7: The classically allowed (forbidden) region at energy
2u are shown by the solid (dashed) gray line. A classical
(instanton) periodic orbit, in the complex ✓-plane, leads to
�0(�1) cycles.

Translating these two cycles to the complex z-plane
yields the contours of Fig. 8. Notice that these are in-
deed cycles (i.e. closed contours) owing to the crossing of
branch cuts. On the Riemann surface both wind around
the torus. For this reason, the integrals Sj(u) =

H
�j

�

are known as periods of Eu with respect to �(u). One
can see that the residue of the action form (19) at infin-
ity is zero. Indeed, at large z we have � ⇠ dp. Therefore
we can safely deform the contour around infinity in the
z-plane. Let us consider cycles �0, �1 as defined in Fig. 6.
Any closed cycle on the torus (after appropriate defor-
mation) can be decomposed into a superposition of an
integer number of these two basic cycles. For example,

FIG. 8: (Color online) Cycles �0 and �1 on the complex
z-plane for u = �0.9. Notice that cycle �1 crosses twice
the two cuts from first branch (solid blue line) to second
branch (dashed red line) and back.

the cycles �0 and �1 are

�0 = �0, �1 = 2�1 � �0 . (20)

This is evident if one examines the manner in which these
cycles encircle around the torus. Formally, the basic cy-
cles generate the first homology group of the torus (since
cycles which are alike in this manner are homologous).
One can also consider the first cohomology group of the

torus, generated by two independent 1-forms on the Rie-
mann surface modulo exact 1-forms (the latter integrate
to zero for all cycles on the torus by Stokes’ theorem).
In this work we consider meromorphic 1-forms with zero
residues. Modulo exact forms they are dual to 1-cycles
on the torus by the de Rham theorem31. The duality im-
plies that there are exactly as many independent 1-forms
to integrate upon the surface as independent 1-cycles to
integrate along the surface. For the torus the cohomol-
ogy, like the homology, is two-dimensional, i.e. any three
(or more) 1-forms on the torus are linearly dependent up
to an exact form.

B. Picard-Fuchs equation

As a result, there must exist a linear combination of
1-forms {�00(u),�0(u),�(u)} which is an exact form, here
primes denote derivatives w.r.t. u. This combination
may be found by allowing for (u-dependent) coe�cients
in front of the three 1-forms and looking for an exact
form dz[P2(z)z�1/2(z2 + 2uz + 1)�1/2], where P2(z) is a
second degree polynomial with u-dependent coe�cients.
Matching coe�cients for powers of z leads to 5 equations
for 6 unknown parameters, determining the sought com-
bination up to an overall multiplicative factor. This way
one finds that the operator L = (u2

� 1)@2
u
+1/4 acts on

�(u) as

L�(u) =
d

dz


i

2

1� z
2

z1/2(z2 + 2uz + 1)1/2

�
. (21)

It follows from Stokes’ theorem and the exactness of
L�(u) that LSj(u) = 0 since �j is a cycle on the torus.
Thus Sj(u) satisfies the linear second order ODE16

(u2
� 1)S00

j
(u) +

1

4
Sj(u) = 0 . (22)

This is an example of the Picard-Fuchs equation32,33 (see
Ref. [34] for a review). Exactly this equation appears
extensively in the context of Seiberg-Witten theory.
Inspecting the coe�cient in front of the highest deriva-

tive, one notices that equation (22) has regular singular
points at u = 1 and u = ⌥1, where the torus degener-
ates into a sphere, Fig. 6. Changing variable to u

2, this
equation may be brought to the standard hypergeometric
form35. In the domain | arg(1 � u

2)| < ⇡ it admits two
linearly independent solutions of the form F0(u2) and
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respectively, i.e. p(z) is locally double-valued. (Note that
we have added a point at z = 1 to the complex plane,
thereby rendering it compact and topologically equiva-
lent to a Riemann sphere, Fig. 4). To make sense of this
double-valuedness, we first introduce two cuts between
the four branching points. For convenience we have cho-
sen to do so between 0,1 and the turning points z±.
Upon this cut domain, p(z) is locally holomorphic.
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compactifies to Riemann sphere with two cuts.
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the corresponding Riemann sphere, cut in the same way
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first sheet across the cuts onto the second sheet. If p(z)
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arrive back on the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
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be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.
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into a singular surface. This coincides with the loop �0
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is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by

Cohomology

{�0, �1} {�,�0}

Second derivative must be linearly dependent on �,�0

This results in Picard-Fuchs equation on period integrals
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Cauchy theorem). The two deformed cycles, shown in
Fig. 7, are hereafter called �0 and �1.

FIG. 7: The classically allowed (forbidden) region at energy
2u are shown by the solid (dashed) gray line. A classical
(instanton) periodic orbit, in the complex ✓-plane, leads to
�0(�1) cycles.

Translating these two cycles to the complex z-plane
yields the contours of Fig. 8. Notice that these are in-
deed cycles (i.e. closed contours) owing to the crossing of
branch cuts. On the Riemann surface both wind around
the torus. For this reason, the integrals Sj(u) =

H
�j

�

are known as periods of Eu with respect to �(u). One
can see that the residue of the action form (19) at infin-
ity is zero. Indeed, at large z we have � ⇠ dp. Therefore
we can safely deform the contour around infinity in the
z-plane. Let us consider cycles �0, �1 as defined in Fig. 6.
Any closed cycle on the torus (after appropriate defor-
mation) can be decomposed into a superposition of an
integer number of these two basic cycles. For example,

FIG. 8: (Color online) Cycles �0 and �1 on the complex
z-plane for u = �0.9. Notice that cycle �1 crosses twice
the two cuts from first branch (solid blue line) to second
branch (dashed red line) and back.

the cycles �0 and �1 are

�0 = �0, �1 = 2�1 � �0 . (20)

This is evident if one examines the manner in which these
cycles encircle around the torus. Formally, the basic cy-
cles generate the first homology group of the torus (since
cycles which are alike in this manner are homologous).
One can also consider the first cohomology group of the

torus, generated by two independent 1-forms on the Rie-
mann surface modulo exact 1-forms (the latter integrate
to zero for all cycles on the torus by Stokes’ theorem).
In this work we consider meromorphic 1-forms with zero
residues. Modulo exact forms they are dual to 1-cycles
on the torus by the de Rham theorem31. The duality im-
plies that there are exactly as many independent 1-forms
to integrate upon the surface as independent 1-cycles to
integrate along the surface. For the torus the cohomol-
ogy, like the homology, is two-dimensional, i.e. any three
(or more) 1-forms on the torus are linearly dependent up
to an exact form.

B. Picard-Fuchs equation

As a result, there must exist a linear combination of
1-forms {�00(u),�0(u),�(u)} which is an exact form, here
primes denote derivatives w.r.t. u. This combination
may be found by allowing for (u-dependent) coe�cients
in front of the three 1-forms and looking for an exact
form dz[P2(z)z�1/2(z2 + 2uz + 1)�1/2], where P2(z) is a
second degree polynomial with u-dependent coe�cients.
Matching coe�cients for powers of z leads to 5 equations
for 6 unknown parameters, determining the sought com-
bination up to an overall multiplicative factor. This way
one finds that the operator L = (u2

� 1)@2
u
+1/4 acts on

�(u) as

L�(u) =
d

dz


i

2

1� z
2

z1/2(z2 + 2uz + 1)1/2

�
. (21)

It follows from Stokes’ theorem and the exactness of
L�(u) that LSj(u) = 0 since �j is a cycle on the torus.
Thus Sj(u) satisfies the linear second order ODE16

(u2
� 1)S00

j
(u) +

1

4
Sj(u) = 0 . (22)

This is an example of the Picard-Fuchs equation32,33 (see
Ref. [34] for a review). Exactly this equation appears
extensively in the context of Seiberg-Witten theory.
Inspecting the coe�cient in front of the highest deriva-

tive, one notices that equation (22) has regular singular
points at u = 1 and u = ⌥1, where the torus degener-
ates into a sphere, Fig. 6. Changing variable to u

2, this
equation may be brought to the standard hypergeometric
form35. In the domain | arg(1 � u

2)| < ⇡ it admits two
linearly independent solutions of the form F0(u2) and

3 regular singularities: u = 1,±1

Two solutions
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uF1(u2), where

F0(u
2) = 2F1

✓
�
1

4
,�

1

4
;
1

2
; u2

◆
, (23)

F1(u
2) = 2F1

✓
+
1

4
,+

1

4
;
3

2
; u2

◆
. (24)

These solutions form a basis out of which Sj(u) (and
indeed any period of (14)) must be composed

S0(u) = C00F0(u
2) + C01uF1(u

2), (25)

S1(u) = C10F0(u
2) + C11uF1(u

2). (26)

To find coe�cients Cjk, j, k = 0, 1 appropriate for the
action cycles �j one needs to evaluate the periods at
one specific value of u. Employing the fact that the hy-
pergeometric functions (23–24) are normalized and an-
alytic at u = 0, i.e. Fk = 1 + O(u2), one notices that
Sj(u) = Cj0+uCj1+O(u2). Thus to identify Cjk we ex-
pand Sj(u) to first order in u and evaluate the integrals
at u = 0. The corresponding cycles in the z-plane are
shown in Fig. 9 and explicit calculation yields

C00 = e
�i⇡/2

C10 = 8⇡�1/2�(3/4)2, (27)

C01 = e
+i⇡/2

C11 = ⇡
�1/2�(1/4)2. (28)

The relations between C0k and C1k are not accidental.
They originate from the fact that for u = 0 the turning
points are ±i and so the cycle �1 transforms into �0 by
substitution z

0 = e
�i⇡

z, Fig. 9. Together with Eqs. (25),
(26) these relations imply global symmetry between the
two periods

S0(u) = e
�i⇡/2

S1(e
i⇡
u) . (29)

Equations (23)–(28) fully determine the two actions
S0,1(u) through the hypergeometric functions36. One
should now relate them to physical observables.

FIG. 9: The two cycles �0,1 for u = 0. Here �1 may be
mapped to �0 by rotating 180�.

C. Structure of Sj(u) near u = �1

To this end we consider the structure of Sj(u) in the
neighborhood of u = �1. As noted earlier, the cycle �0 =
�0 contracts to a point as u ! �1 and therefore S0(�1) =
0 by Cauchy’s theorem. By contrast, S1(�1) remains
finite. Moreover, while S0 is analytic near u = �1, it
turns out that S1 is not. To see this, choose some u & �1
and allow u to wind around �1 (i.e. (u + 1) ! (u +
1)e2⇡i). Since u ⇡ �1 the roots z± in (15) are of the form
z± = �1 ± i

p
2(u+ 1) we see that this transformation

exchanges these branch points via a counter-clockwise
half-turn; the branch cut in e↵ect rotates by 180�. For
the cycle �0, which encloses the turning cut, this has no
e↵ect: the cut turns within it. Not so for �1: as the
cut rotates, one must allow �1 to continuously deform if
�1 is never to intersect the branch points. The overall
e↵ect is shown in Fig. 10. The e↵ect of this monodromy

transformation is to produce a new cycle �01. Thus, while
we have returned to the initial value of u, the period
S1(u) (unlike S0(u)) does not return to its original value
and so S1(u) cannot be analytic near u = �1.
These facts are consistent, of course, with the origin

of the integrals as the classical and instanton actions.
At u ! �1, the classically allowed region collapses and
p(✓) ! 0, so the classical action at the bottom of the co-
sine potential approaches that of the harmonic oscillator
S0(u) / (1 + u) (indeed the classical period T / @uS0 is
a constant). For the instanton trajectory �1 the action
S1 does not vanish. Moreover as u ! �1 the period on
the instanton trajectory is logarithmically divergent since
the trajectory goes to the extrema of the cosine potential,
Fig. 7. This implies that S1(u) / const+(1+u) ln(1+u).

FIG. 10: (Color online). Monodromy transformation
(u+ 1) ! (u+ 1)e2⇡i rotates the branch cut between
[z�, z+] by 180� counter-clockwise. This changes the cycle
�1 ! �01 = �1 � �0 along with it.

In fact, more can be said. Under monodromy trans-
formation basis cycle �

0
1 relates to the original basis as

�
0
1 = �1 � �0 (as may be seen by counting intersec-
tions of cycles or by moving onto the torus). Thus
(�0, �1) ! (�0, �1� �0). From the decomposition of �0, �1
noted in (20) it follows that the Sj(u) must transform as

✓
S0(u)
S1(u)

◆
!

✓
1 0
�2 1

◆✓
S0(u)
S1(u)

◆
= M�1

✓
S0(u)
S1(u)

◆
, (30)

S(u) = AF0(u
2) +B uF1(u

2)



Period Integrals
Identify period integrals from boundary conditions

8

uF1(u2), where

F0(u
2) = 2F1

✓
�
1

4
,�

1

4
;
1

2
; u2

◆
, (23)

F1(u
2) = 2F1

✓
+
1

4
,+

1

4
;
3

2
; u2

◆
. (24)

These solutions form a basis out of which Sj(u) (and
indeed any period of (14)) must be composed

S0(u) = C00F0(u
2) + C01uF1(u

2), (25)

S1(u) = C10F0(u
2) + C11uF1(u

2). (26)

To find coe�cients Cjk, j, k = 0, 1 appropriate for the
action cycles �j one needs to evaluate the periods at
one specific value of u. Employing the fact that the hy-
pergeometric functions (23–24) are normalized and an-
alytic at u = 0, i.e. Fk = 1 + O(u2), one notices that
Sj(u) = Cj0+uCj1+O(u2). Thus to identify Cjk we ex-
pand Sj(u) to first order in u and evaluate the integrals
at u = 0. The corresponding cycles in the z-plane are
shown in Fig. 9 and explicit calculation yields

C00 = e
�i⇡/2

C10 = 8⇡�1/2�(3/4)2, (27)

C01 = e
+i⇡/2

C11 = ⇡
�1/2�(1/4)2. (28)

The relations between C0k and C1k are not accidental.
They originate from the fact that for u = 0 the turning
points are ±i and so the cycle �1 transforms into �0 by
substitution z

0 = e
�i⇡

z, Fig. 9. Together with Eqs. (25),
(26) these relations imply global symmetry between the
two periods

S0(u) = e
�i⇡/2

S1(e
i⇡
u) . (29)

Equations (23)–(28) fully determine the two actions
S0,1(u) through the hypergeometric functions36. One
should now relate them to physical observables.

FIG. 9: The two cycles �0,1 for u = 0. Here �1 may be
mapped to �0 by rotating 180�.

C. Structure of Sj(u) near u = �1

To this end we consider the structure of Sj(u) in the
neighborhood of u = �1. As noted earlier, the cycle �0 =
�0 contracts to a point as u ! �1 and therefore S0(�1) =
0 by Cauchy’s theorem. By contrast, S1(�1) remains
finite. Moreover, while S0 is analytic near u = �1, it
turns out that S1 is not. To see this, choose some u & �1
and allow u to wind around �1 (i.e. (u + 1) ! (u +
1)e2⇡i). Since u ⇡ �1 the roots z± in (15) are of the form
z± = �1 ± i

p
2(u+ 1) we see that this transformation

exchanges these branch points via a counter-clockwise
half-turn; the branch cut in e↵ect rotates by 180�. For
the cycle �0, which encloses the turning cut, this has no
e↵ect: the cut turns within it. Not so for �1: as the
cut rotates, one must allow �1 to continuously deform if
�1 is never to intersect the branch points. The overall
e↵ect is shown in Fig. 10. The e↵ect of this monodromy

transformation is to produce a new cycle �01. Thus, while
we have returned to the initial value of u, the period
S1(u) (unlike S0(u)) does not return to its original value
and so S1(u) cannot be analytic near u = �1.
These facts are consistent, of course, with the origin

of the integrals as the classical and instanton actions.
At u ! �1, the classically allowed region collapses and
p(✓) ! 0, so the classical action at the bottom of the co-
sine potential approaches that of the harmonic oscillator
S0(u) / (1 + u) (indeed the classical period T / @uS0 is
a constant). For the instanton trajectory �1 the action
S1 does not vanish. Moreover as u ! �1 the period on
the instanton trajectory is logarithmically divergent since
the trajectory goes to the extrema of the cosine potential,
Fig. 7. This implies that S1(u) / const+(1+u) ln(1+u).

FIG. 10: (Color online). Monodromy transformation
(u+ 1) ! (u+ 1)e2⇡i rotates the branch cut between
[z�, z+] by 180� counter-clockwise. This changes the cycle
�1 ! �01 = �1 � �0 along with it.

In fact, more can be said. Under monodromy trans-
formation basis cycle �

0
1 relates to the original basis as

�
0
1 = �1 � �0 (as may be seen by counting intersec-
tions of cycles or by moving onto the torus). Thus
(�0, �1) ! (�0, �1� �0). From the decomposition of �0, �1
noted in (20) it follows that the Sj(u) must transform as

✓
S0(u)
S1(u)

◆
!

✓
1 0
�2 1

◆✓
S0(u)
S1(u)

◆
= M�1

✓
S0(u)
S1(u)

◆
, (30)
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uF1(u2), where

F0(u
2) = 2F1

✓
�
1

4
,�

1

4
;
1

2
; u2

◆
, (23)

F1(u
2) = 2F1

✓
+
1

4
,+

1

4
;
3

2
; u2

◆
. (24)

These solutions form a basis out of which Sj(u) (and
indeed any period of (14)) must be composed

S0(u) = C00F0(u
2) + C01uF1(u

2), (25)

S1(u) = C10F0(u
2) + C11uF1(u

2). (26)

To find coe�cients Cjk, j, k = 0, 1 appropriate for the
action cycles �j one needs to evaluate the periods at
one specific value of u. Employing the fact that the hy-
pergeometric functions (23–24) are normalized and an-
alytic at u = 0, i.e. Fk = 1 + O(u2), one notices that
Sj(u) = Cj0+uCj1+O(u2). Thus to identify Cjk we ex-
pand Sj(u) to first order in u and evaluate the integrals
at u = 0. The corresponding cycles in the z-plane are
shown in Fig. 9 and explicit calculation yields

C00 = e
�i⇡/2

C10 = 8⇡�1/2�(3/4)2, (27)

C01 = e
+i⇡/2

C11 = ⇡
�1/2�(1/4)2. (28)

The relations between C0k and C1k are not accidental.
They originate from the fact that for u = 0 the turning
points are ±i and so the cycle �1 transforms into �0 by
substitution z

0 = e
�i⇡

z, Fig. 9. Together with Eqs. (25),
(26) these relations imply global symmetry between the
two periods

S0(u) = e
�i⇡/2

S1(e
i⇡
u) . (29)

Equations (23)–(28) fully determine the two actions
S0,1(u) through the hypergeometric functions36. One
should now relate them to physical observables.

FIG. 9: The two cycles �0,1 for u = 0. Here �1 may be
mapped to �0 by rotating 180�.

C. Structure of Sj(u) near u = �1

To this end we consider the structure of Sj(u) in the
neighborhood of u = �1. As noted earlier, the cycle �0 =
�0 contracts to a point as u ! �1 and therefore S0(�1) =
0 by Cauchy’s theorem. By contrast, S1(�1) remains
finite. Moreover, while S0 is analytic near u = �1, it
turns out that S1 is not. To see this, choose some u & �1
and allow u to wind around �1 (i.e. (u + 1) ! (u +
1)e2⇡i). Since u ⇡ �1 the roots z± in (15) are of the form
z± = �1 ± i

p
2(u+ 1) we see that this transformation

exchanges these branch points via a counter-clockwise
half-turn; the branch cut in e↵ect rotates by 180�. For
the cycle �0, which encloses the turning cut, this has no
e↵ect: the cut turns within it. Not so for �1: as the
cut rotates, one must allow �1 to continuously deform if
�1 is never to intersect the branch points. The overall
e↵ect is shown in Fig. 10. The e↵ect of this monodromy

transformation is to produce a new cycle �01. Thus, while
we have returned to the initial value of u, the period
S1(u) (unlike S0(u)) does not return to its original value
and so S1(u) cannot be analytic near u = �1.
These facts are consistent, of course, with the origin

of the integrals as the classical and instanton actions.
At u ! �1, the classically allowed region collapses and
p(✓) ! 0, so the classical action at the bottom of the co-
sine potential approaches that of the harmonic oscillator
S0(u) / (1 + u) (indeed the classical period T / @uS0 is
a constant). For the instanton trajectory �1 the action
S1 does not vanish. Moreover as u ! �1 the period on
the instanton trajectory is logarithmically divergent since
the trajectory goes to the extrema of the cosine potential,
Fig. 7. This implies that S1(u) / const+(1+u) ln(1+u).

FIG. 10: (Color online). Monodromy transformation
(u+ 1) ! (u+ 1)e2⇡i rotates the branch cut between
[z�, z+] by 180� counter-clockwise. This changes the cycle
�1 ! �01 = �1 � �0 along with it.

In fact, more can be said. Under monodromy trans-
formation basis cycle �

0
1 relates to the original basis as

�
0
1 = �1 � �0 (as may be seen by counting intersec-
tions of cycles or by moving onto the torus). Thus
(�0, �1) ! (�0, �1� �0). From the decomposition of �0, �1
noted in (20) it follows that the Sj(u) must transform as
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◆
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◆
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◆
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2
; u2

◆
. (24)

These solutions form a basis out of which Sj(u) (and
indeed any period of (14)) must be composed

S0(u) = C00F0(u
2) + C01uF1(u

2), (25)

S1(u) = C10F0(u
2) + C11uF1(u

2). (26)

To find coe�cients Cjk, j, k = 0, 1 appropriate for the
action cycles �j one needs to evaluate the periods at
one specific value of u. Employing the fact that the hy-
pergeometric functions (23–24) are normalized and an-
alytic at u = 0, i.e. Fk = 1 + O(u2), one notices that
Sj(u) = Cj0+uCj1+O(u2). Thus to identify Cjk we ex-
pand Sj(u) to first order in u and evaluate the integrals
at u = 0. The corresponding cycles in the z-plane are
shown in Fig. 9 and explicit calculation yields

C00 = e
�i⇡/2

C10 = 8⇡�1/2�(3/4)2, (27)

C01 = e
+i⇡/2

C11 = ⇡
�1/2�(1/4)2. (28)

The relations between C0k and C1k are not accidental.
They originate from the fact that for u = 0 the turning
points are ±i and so the cycle �1 transforms into �0 by
substitution z

0 = e
�i⇡

z, Fig. 9. Together with Eqs. (25),
(26) these relations imply global symmetry between the
two periods

S0(u) = e
�i⇡/2

S1(e
i⇡
u) . (29)

Equations (23)–(28) fully determine the two actions
S0,1(u) through the hypergeometric functions36. One
should now relate them to physical observables.

FIG. 9: The two cycles �0,1 for u = 0. Here �1 may be
mapped to �0 by rotating 180�.

C. Structure of Sj(u) near u = �1

To this end we consider the structure of Sj(u) in the
neighborhood of u = �1. As noted earlier, the cycle �0 =
�0 contracts to a point as u ! �1 and therefore S0(�1) =
0 by Cauchy’s theorem. By contrast, S1(�1) remains
finite. Moreover, while S0 is analytic near u = �1, it
turns out that S1 is not. To see this, choose some u & �1
and allow u to wind around �1 (i.e. (u + 1) ! (u +
1)e2⇡i). Since u ⇡ �1 the roots z± in (15) are of the form
z± = �1 ± i

p
2(u+ 1) we see that this transformation

exchanges these branch points via a counter-clockwise
half-turn; the branch cut in e↵ect rotates by 180�. For
the cycle �0, which encloses the turning cut, this has no
e↵ect: the cut turns within it. Not so for �1: as the
cut rotates, one must allow �1 to continuously deform if
�1 is never to intersect the branch points. The overall
e↵ect is shown in Fig. 10. The e↵ect of this monodromy

transformation is to produce a new cycle �01. Thus, while
we have returned to the initial value of u, the period
S1(u) (unlike S0(u)) does not return to its original value
and so S1(u) cannot be analytic near u = �1.
These facts are consistent, of course, with the origin

of the integrals as the classical and instanton actions.
At u ! �1, the classically allowed region collapses and
p(✓) ! 0, so the classical action at the bottom of the co-
sine potential approaches that of the harmonic oscillator
S0(u) / (1 + u) (indeed the classical period T / @uS0 is
a constant). For the instanton trajectory �1 the action
S1 does not vanish. Moreover as u ! �1 the period on
the instanton trajectory is logarithmically divergent since
the trajectory goes to the extrema of the cosine potential,
Fig. 7. This implies that S1(u) / const+(1+u) ln(1+u).

FIG. 10: (Color online). Monodromy transformation
(u+ 1) ! (u+ 1)e2⇡i rotates the branch cut between
[z�, z+] by 180� counter-clockwise. This changes the cycle
�1 ! �01 = �1 � �0 along with it.

In fact, more can be said. Under monodromy trans-
formation basis cycle �

0
1 relates to the original basis as

�
0
1 = �1 � �0 (as may be seen by counting intersec-
tions of cycles or by moving onto the torus). Thus
(�0, �1) ! (�0, �1� �0). From the decomposition of �0, �1
noted in (20) it follows that the Sj(u) must transform as
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These solutions form a basis out of which Sj(u) (and
indeed any period of (14)) must be composed

S0(u) = C00F0(u
2) + C01uF1(u

2), (25)

S1(u) = C10F0(u
2) + C11uF1(u

2). (26)

To find coe�cients Cjk, j, k = 0, 1 appropriate for the
action cycles �j one needs to evaluate the periods at
one specific value of u. Employing the fact that the hy-
pergeometric functions (23–24) are normalized and an-
alytic at u = 0, i.e. Fk = 1 + O(u2), one notices that
Sj(u) = Cj0+uCj1+O(u2). Thus to identify Cjk we ex-
pand Sj(u) to first order in u and evaluate the integrals
at u = 0. The corresponding cycles in the z-plane are
shown in Fig. 9 and explicit calculation yields

C00 = e
�i⇡/2

C10 = 8⇡�1/2�(3/4)2, (27)

C01 = e
+i⇡/2

C11 = ⇡
�1/2�(1/4)2. (28)

The relations between C0k and C1k are not accidental.
They originate from the fact that for u = 0 the turning
points are ±i and so the cycle �1 transforms into �0 by
substitution z

0 = e
�i⇡

z, Fig. 9. Together with Eqs. (25),
(26) these relations imply global symmetry between the
two periods

S0(u) = e
�i⇡/2

S1(e
i⇡
u) . (29)

Equations (23)–(28) fully determine the two actions
S0,1(u) through the hypergeometric functions36. One
should now relate them to physical observables.

FIG. 9: The two cycles �0,1 for u = 0. Here �1 may be
mapped to �0 by rotating 180�.

C. Structure of Sj(u) near u = �1

To this end we consider the structure of Sj(u) in the
neighborhood of u = �1. As noted earlier, the cycle �0 =
�0 contracts to a point as u ! �1 and therefore S0(�1) =
0 by Cauchy’s theorem. By contrast, S1(�1) remains
finite. Moreover, while S0 is analytic near u = �1, it
turns out that S1 is not. To see this, choose some u & �1
and allow u to wind around �1 (i.e. (u + 1) ! (u +
1)e2⇡i). Since u ⇡ �1 the roots z± in (15) are of the form
z± = �1 ± i

p
2(u+ 1) we see that this transformation

exchanges these branch points via a counter-clockwise
half-turn; the branch cut in e↵ect rotates by 180�. For
the cycle �0, which encloses the turning cut, this has no
e↵ect: the cut turns within it. Not so for �1: as the
cut rotates, one must allow �1 to continuously deform if
�1 is never to intersect the branch points. The overall
e↵ect is shown in Fig. 10. The e↵ect of this monodromy

transformation is to produce a new cycle �01. Thus, while
we have returned to the initial value of u, the period
S1(u) (unlike S0(u)) does not return to its original value
and so S1(u) cannot be analytic near u = �1.
These facts are consistent, of course, with the origin

of the integrals as the classical and instanton actions.
At u ! �1, the classically allowed region collapses and
p(✓) ! 0, so the classical action at the bottom of the co-
sine potential approaches that of the harmonic oscillator
S0(u) / (1 + u) (indeed the classical period T / @uS0 is
a constant). For the instanton trajectory �1 the action
S1 does not vanish. Moreover as u ! �1 the period on
the instanton trajectory is logarithmically divergent since
the trajectory goes to the extrema of the cosine potential,
Fig. 7. This implies that S1(u) / const+(1+u) ln(1+u).

FIG. 10: (Color online). Monodromy transformation
(u+ 1) ! (u+ 1)e2⇡i rotates the branch cut between
[z�, z+] by 180� counter-clockwise. This changes the cycle
�1 ! �01 = �1 � �0 along with it.

In fact, more can be said. Under monodromy trans-
formation basis cycle �

0
1 relates to the original basis as

�
0
1 = �1 � �0 (as may be seen by counting intersec-
tions of cycles or by moving onto the torus). Thus
(�0, �1) ! (�0, �1� �0). From the decomposition of �0, �1
noted in (20) it follows that the Sj(u) must transform as
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S1(u)

◆
= M�1

✓
S0(u)
S1(u)

◆
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These solutions form a basis out of which Sj(u) (and
indeed any period of (14)) must be composed

S0(u) = C00F0(u
2) + C01uF1(u

2), (25)

S1(u) = C10F0(u
2) + C11uF1(u

2). (26)

To find coe�cients Cjk, j, k = 0, 1 appropriate for the
action cycles �j one needs to evaluate the periods at
one specific value of u. Employing the fact that the hy-
pergeometric functions (23–24) are normalized and an-
alytic at u = 0, i.e. Fk = 1 + O(u2), one notices that
Sj(u) = Cj0+uCj1+O(u2). Thus to identify Cjk we ex-
pand Sj(u) to first order in u and evaluate the integrals
at u = 0. The corresponding cycles in the z-plane are
shown in Fig. 9 and explicit calculation yields

C00 = e
�i⇡/2

C10 = 8⇡�1/2�(3/4)2, (27)

C01 = e
+i⇡/2

C11 = ⇡
�1/2�(1/4)2. (28)

The relations between C0k and C1k are not accidental.
They originate from the fact that for u = 0 the turning
points are ±i and so the cycle �1 transforms into �0 by
substitution z

0 = e
�i⇡

z, Fig. 9. Together with Eqs. (25),
(26) these relations imply global symmetry between the
two periods

S0(u) = e
�i⇡/2

S1(e
i⇡
u) . (29)

Equations (23)–(28) fully determine the two actions
S0,1(u) through the hypergeometric functions36. One
should now relate them to physical observables.

FIG. 9: The two cycles �0,1 for u = 0. Here �1 may be
mapped to �0 by rotating 180�.

C. Structure of Sj(u) near u = �1

To this end we consider the structure of Sj(u) in the
neighborhood of u = �1. As noted earlier, the cycle �0 =
�0 contracts to a point as u ! �1 and therefore S0(�1) =
0 by Cauchy’s theorem. By contrast, S1(�1) remains
finite. Moreover, while S0 is analytic near u = �1, it
turns out that S1 is not. To see this, choose some u & �1
and allow u to wind around �1 (i.e. (u + 1) ! (u +
1)e2⇡i). Since u ⇡ �1 the roots z± in (15) are of the form
z± = �1 ± i

p
2(u+ 1) we see that this transformation

exchanges these branch points via a counter-clockwise
half-turn; the branch cut in e↵ect rotates by 180�. For
the cycle �0, which encloses the turning cut, this has no
e↵ect: the cut turns within it. Not so for �1: as the
cut rotates, one must allow �1 to continuously deform if
�1 is never to intersect the branch points. The overall
e↵ect is shown in Fig. 10. The e↵ect of this monodromy

transformation is to produce a new cycle �01. Thus, while
we have returned to the initial value of u, the period
S1(u) (unlike S0(u)) does not return to its original value
and so S1(u) cannot be analytic near u = �1.
These facts are consistent, of course, with the origin

of the integrals as the classical and instanton actions.
At u ! �1, the classically allowed region collapses and
p(✓) ! 0, so the classical action at the bottom of the co-
sine potential approaches that of the harmonic oscillator
S0(u) / (1 + u) (indeed the classical period T / @uS0 is
a constant). For the instanton trajectory �1 the action
S1 does not vanish. Moreover as u ! �1 the period on
the instanton trajectory is logarithmically divergent since
the trajectory goes to the extrema of the cosine potential,
Fig. 7. This implies that S1(u) / const+(1+u) ln(1+u).

FIG. 10: (Color online). Monodromy transformation
(u+ 1) ! (u+ 1)e2⇡i rotates the branch cut between
[z�, z+] by 180� counter-clockwise. This changes the cycle
�1 ! �01 = �1 � �0 along with it.

In fact, more can be said. Under monodromy trans-
formation basis cycle �

0
1 relates to the original basis as

�
0
1 = �1 � �0 (as may be seen by counting intersec-
tions of cycles or by moving onto the torus). Thus
(�0, �1) ! (�0, �1� �0). From the decomposition of �0, �1
noted in (20) it follows that the Sj(u) must transform as
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2). (26)

To find coe�cients Cjk, j, k = 0, 1 appropriate for the
action cycles �j one needs to evaluate the periods at
one specific value of u. Employing the fact that the hy-
pergeometric functions (23–24) are normalized and an-
alytic at u = 0, i.e. Fk = 1 + O(u2), one notices that
Sj(u) = Cj0+uCj1+O(u2). Thus to identify Cjk we ex-
pand Sj(u) to first order in u and evaluate the integrals
at u = 0. The corresponding cycles in the z-plane are
shown in Fig. 9 and explicit calculation yields

C00 = e
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C10 = 8⇡�1/2�(3/4)2, (27)

C01 = e
+i⇡/2

C11 = ⇡
�1/2�(1/4)2. (28)

The relations between C0k and C1k are not accidental.
They originate from the fact that for u = 0 the turning
points are ±i and so the cycle �1 transforms into �0 by
substitution z

0 = e
�i⇡

z, Fig. 9. Together with Eqs. (25),
(26) these relations imply global symmetry between the
two periods

S0(u) = e
�i⇡/2

S1(e
i⇡
u) . (29)

Equations (23)–(28) fully determine the two actions
S0,1(u) through the hypergeometric functions36. One
should now relate them to physical observables.

FIG. 9: The two cycles �0,1 for u = 0. Here �1 may be
mapped to �0 by rotating 180�.

C. Structure of Sj(u) near u = �1

To this end we consider the structure of Sj(u) in the
neighborhood of u = �1. As noted earlier, the cycle �0 =
�0 contracts to a point as u ! �1 and therefore S0(�1) =
0 by Cauchy’s theorem. By contrast, S1(�1) remains
finite. Moreover, while S0 is analytic near u = �1, it
turns out that S1 is not. To see this, choose some u & �1
and allow u to wind around �1 (i.e. (u + 1) ! (u +
1)e2⇡i). Since u ⇡ �1 the roots z± in (15) are of the form
z± = �1 ± i

p
2(u+ 1) we see that this transformation

exchanges these branch points via a counter-clockwise
half-turn; the branch cut in e↵ect rotates by 180�. For
the cycle �0, which encloses the turning cut, this has no
e↵ect: the cut turns within it. Not so for �1: as the
cut rotates, one must allow �1 to continuously deform if
�1 is never to intersect the branch points. The overall
e↵ect is shown in Fig. 10. The e↵ect of this monodromy

transformation is to produce a new cycle �01. Thus, while
we have returned to the initial value of u, the period
S1(u) (unlike S0(u)) does not return to its original value
and so S1(u) cannot be analytic near u = �1.
These facts are consistent, of course, with the origin

of the integrals as the classical and instanton actions.
At u ! �1, the classically allowed region collapses and
p(✓) ! 0, so the classical action at the bottom of the co-
sine potential approaches that of the harmonic oscillator
S0(u) / (1 + u) (indeed the classical period T / @uS0 is
a constant). For the instanton trajectory �1 the action
S1 does not vanish. Moreover as u ! �1 the period on
the instanton trajectory is logarithmically divergent since
the trajectory goes to the extrema of the cosine potential,
Fig. 7. This implies that S1(u) / const+(1+u) ln(1+u).

FIG. 10: (Color online). Monodromy transformation
(u+ 1) ! (u+ 1)e2⇡i rotates the branch cut between
[z�, z+] by 180� counter-clockwise. This changes the cycle
�1 ! �01 = �1 � �0 along with it.

In fact, more can be said. Under monodromy trans-
formation basis cycle �

0
1 relates to the original basis as

�
0
1 = �1 � �0 (as may be seen by counting intersec-
tions of cycles or by moving onto the torus). Thus
(�0, �1) ! (�0, �1� �0). From the decomposition of �0, �1
noted in (20) it follows that the Sj(u) must transform as
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where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =

✓
1 2
0 1

◆
. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37

resurgence
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where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =
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. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
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p
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e
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S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is
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This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u
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0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form
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1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-
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of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is
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While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands
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, (34)

where ! = 2 is the classical frequency for the
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e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37
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V0(u) = i⇡W1(u)⌥ V1(u), (41)

W0(u) = ⌥W1(u), (42)

V1(u) = 4i
p
2
⇥
ln

�
e
2
/8

�
+ 2/u

⇤
, (43)

W1(u) = �4i
p
2
⇥
1� (4u)�2

⇤
, (44)

to leading corrections in 1/u. Since S0(u) ± S1(u) =
i⇡W1(u)u1/2, from here one may readily show that under
the monodromy u ! ue

2⇡i the two actions transform
with the following monodromy matrices

M1�i0 =

✓
�3 2
�2 1

◆
, M1+i0 =

✓
1 2
�2 �3

◆
. (45)

One may check that the three monodromy matrices sat-
isfy

M1�i0 = M1 ·M�1, M1+i0 = M�1 ·M1, (46)

as expected35: winding around 0 in large counter-
clockwise circle is the same as winding -1 and 1 sequen-
tially counterclockwise.

From Eqs. (40)–(44) one finds the unique non-singular
period at u ! 1 ± i0 to be given by S0(u) ± S1(u) =
�i⇡W1(u)u1/2. As discussed above, it must be identified
with the classical action and subject to Bohr-Sommerfeld
quantization (S0(um) ± S1(um))/2 = 2⇡↵�1/2

m. This
leads to um ⇡ m

2
/2↵ and thus ✏m = 2↵um = m

2, as
expected for the high energy spectrum.

V. DIVALENT (2,1) GAS

The divalent (2,1) gas is the simplest case where the
Hamiltonian (8) is non-Hermitian. Employing complex
variable z = e

i✓ and normalized energy u = 2✏/3↵, it
takes the form

3

2
u = p

2
�

✓
z
2

2
+

1

z

◆
. (47)

Similarly to Eq. (13) this defines a family of complex
algebraic curves

Eu : F(p, z) = 2p2z �
�
z
3 + 3uz + 2

�
= 0. (48)

The map p = p(z) is locally holomorphic away from
the zeros z0, z± (see Fig. 11). At these three branch-
ing points as well as at the singularity at z = 0 the
function p(z) is locally double-valued and behaves as
p ⇠ (z � zj)1/2, j = 0,± and p ⇠ z

�1/2, respectively.
In contrast to the monovalent (1, 1) case, Sec. IV, the
function p(z) is single-valued at z ⇠ 1 where it goes as
p ⇠ z, so no branch cut extends to z = 1. Nevertheless
there are again four branching points. To construct the
Riemann sphere we draw two branch cuts: one between
[0, z0] and the other between [z+, z�]. The resulting Rie-
mann surface is again g = 1 torus, analogous to Fig. 5.

Its moduli space u contains four singular points u =
�1, e±i⇡/3 and u = 1, where the torus degenerates into
the sphere. (There were only three such points in the
(1,1) case.) For u = �1 the branching points z± coalesce,
while for u = e

±i⇡/3 the branching point z0 collides with
z±, correspondingly. As u ! +1, the branching point
z0 approaches z = 0, while z± ! ±i1.

FIG. 11: (Color online) Complex z-plane with two branch
cuts, shown in gray. (a) Three integration cycles �0, �1, �2
are displayed for u = 0. (b) The instanton cycle
� = ��1 + �2. The solid blue (dashed red) lines denote
parts of the cycles going over the first (second) branch.

The action integrals are again defined as Sj =
H
�j

�,

where the 1-form �(u) = p(z)dz/iz is meromorphic on
the torus. In general the counterparts of the turning
points in the complex ✓-plane are not real. This makes it
more convenient to discuss the action cycles �j in the z-
plane. With three turning points z0, z±, it is convenient
to take three paths of integration �0, �1, �2, depicted in
Fig. 11. In terms of the two basic cycles on the torus
�0, �1, Fig. 6, the three paths are given by

�0 = �0 , �1 = ��1 + �0 , �2 = �1 . (49)

One may notice that �0 � �1 � �2 = 0, and thus S0 =
S1 + S2. This equality holds because on a Riemann sur-
face of genus 1 there are only two independent closed
cycles. From de Rham’s theorem31 one infers that there
are exactly two independent 1-forms. Therefore the three
forms {�

00(u),�0(u),�(u)} are linearly dependent up to
an exact form. Following the root outlined in Sec. IVB
(where P2(z) is replaced with P3(z) – polynomial of de-
gree 3), one obtains the Picard-Fuchs equation

(u3 + 1)S00
j
(u) +

u

4
Sj(u) = 0 . (50)

In agreement with the above discussion, there are regu-
lar singular points at the third roots of negative unity,
i.e. u = �1, e±i⇡/3 where the coe�cient in front of the
highest derivative goes to zero, and at u = 1. Two lin-
early independent solutions F0(u3) and uF1(u3) of this
second-order ODE are given in terms of the hypergeo-

with little work

M1 =

✓
1 2
�2 �3

◆

(classical regime) 

M1 = M�1M1

Full monodromy is trivial

Near u = �1 M�1 =

✓
1 0
�2 1

◆

9

where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =

✓
1 2
0 1

◆
. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37
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where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =

✓
1 2
0 1

◆
. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37
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where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =

✓
1 2
0 1

◆
. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37
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where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =

✓
1 2
0 1

◆
. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37

9

where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =

✓
1 2
0 1

◆
. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37
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where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =

✓
1 2
0 1

◆
. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37
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where we have introduced the monodromy matrix M�1

of the actions near u = �1. Since this variation of S1

occurs for every such monodromy near u = �1, S1 must
have a component which depends logarithmically on 1+u.
Indeed, ln (1 + u) increases by 2⇡i under the monodromy
and since S1 changes by �2S0 it must have the following
functional form

S1(u) = Q1(u) +
i

⇡
S0(u) ln(1 + u) , (31)

where Q1(u) and S0(u) are analytic functions of (1 + u).
As an immediate corollary, one can use the relation

(29) between S0 and S1 to find the structure of the so-
lution near u = +1. Then the functional form of S0(u)
near u = +1 is S0(u) = Q0(u)�iS1(u) ln(1�u)/⇡, where
Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) are analytic
functions of (1�u). The corresponding monodromy ma-
trix is

M1 =

✓
1 2
0 1

◆
. (32)

While the structure of the periods near u = ±1 has
been shown through geometric reasoning, it may be also
found directly by looking for solutions of the Picard-
Fuchs equation (22) as power series in (1±u). Such a pro-
cedure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 ± u) ln(1 ± u) terms along with the iterative
sequence for finding the coe�cients of the polynomials.
This allows for direct verification of Eq. (31).

D. Semiclassical results

We now seek semiclassical results for the sequence of
low-energy bands terminated at u = �1. We shall inter-
pret the period S0(u) which is analytic around u = �1
as a classical action. The latter should be quantized ac-
cording to the Bohr-Sommerfeld rule to determine the
normalized energies um of the bands

S0(um) = 2⇡↵�1/2(m+ 1/2) , m = 0, 1, . . . (33)

(we shall not discuss the origin of the Maslov index 1/2
here). The second non-analytic period S1(u) is identified
as the instanton action, which determines the bandwidth
(�u)m according to Gamow’s formula

(�u)m =
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

, (34)

where ! = 2 is the classical frequency for the
Hamiltonian (12). The monodromy of u around �1,
Eq. (30), carries over to the bandwidth as a factor of

e
(i/2)↵1/2(�2S0(um)). Then the Bohr-Sommerfeld quanti-
zation (33) is also a condition for the bandwidth to be
invariant with respect to monodromies.

To illustrate these results we expand the periods
Eqs. (25)–(28) near u = �1 to find the physical energy

levels ✏m = 2↵um. To first order one finds for S0(u) and
Q1(u)

S0(u) = 2⇡(u+ 1) , (35)

Q1(u) = 16i� 2i(u+ 1) ln (32e) , (36)

implying ✏m = �2↵ + 2↵1/2 (m+ 1/2). As a result the
pressure (5) of a monovalent gas is

P = �eE0✏0 = 2kBTf �

p
kBTeE0f. (37)

The two terms here are the pressure of the ideal gas with
the fugacity f and the mean-field Debye-Hueckel inter-
action correction respectively2.
The instanton action, Eq. (31), at quantized um is

S1(um) = 16i+
2i

↵1/2

✓
m+

1

2

◆
ln

✓
m+ 1/2

32e↵1/2

◆
, (38)

where the linear term in Q1(u) has been absorbed into
the logarithm. The Gamow formula (34) leads to

(�✏)m = 2↵(�u)m = 2↵
!

⇡
p
↵
e
i↵

1/2
S1(um)/2

=
4

⇡

✓
32e

m+ 1/2

◆m+1/2

e
�8↵1/2+(m/2+3/4) ln↵

, (39)

This coincides with the known asymptotic results for the
Mathieu equation29,30,37.

E. Neighborhood of u = 1

For completeness we also consider the behavior of the
actions at high energy. In the limit u ! 1 the Picard-
Fuchs equation (22) is of the form u

2
S
00(u) + S(u)/4 =

0. Seeking a solution in the form S = u
r, one finds

r(r � 1) + 1/4 = (r � 1/2)2 = 0 and thus there must be
two independent solutions with the leading behavior u1/2

and u
1/2 ln(u). So the two periods should be of the form

Si(u) = u
1/2 [Vi(u) +Wi(u) lnu] , (40)

where Wi, Vi are analytic functions of 1/u. To find these
functions one needs to notice that while the continuation
to infinity for S1 is unambiguous, the result obtained
for S0 depends on whether the path to infinity passes
above or below u = 1. This is due to the fact that S0

exhibits nontrivial monodromy around u = 1, Eq. (32).
In other words, whether u goes to infinity below or above
the real axis determines which of the two turning points
z± goes to zero or infinity. Since these are also branching
points for the torus, the path of analytic continuation
determines how the cycles on the torus are carried along
in the process.
Thus looking for the asymptotic behavior of the peri-

ods (25)–(28) at u ! 1± i0, one finds37
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V0(u) = i⇡W1(u)⌥ V1(u), (41)

W0(u) = ⌥W1(u), (42)

V1(u) = 4i
p
2
⇥
ln

�
e
2
/8

�
+ 2/u

⇤
, (43)

W1(u) = �4i
p
2
⇥
1� (4u)�2

⇤
, (44)

to leading corrections in 1/u. Since S0(u) ± S1(u) =
i⇡W1(u)u1/2, from here one may readily show that under
the monodromy u ! ue

2⇡i the two actions transform
with the following monodromy matrices

M1�i0 =

✓
�3 2
�2 1

◆
, M1+i0 =

✓
1 2
�2 �3

◆
. (45)

One may check that the three monodromy matrices sat-
isfy

M1�i0 = M1 ·M�1, M1+i0 = M�1 ·M1, (46)

as expected35: winding around 0 in large counter-
clockwise circle is the same as winding -1 and 1 sequen-
tially counterclockwise.

From Eqs. (40)–(44) one finds the unique non-singular
period at u ! 1 ± i0 to be given by S0(u) ± S1(u) =
�i⇡W1(u)u1/2. As discussed above, it must be identified
with the classical action and subject to Bohr-Sommerfeld
quantization (S0(um) ± S1(um))/2 = 2⇡↵�1/2

m. This
leads to um ⇡ m

2
/2↵ and thus ✏m = 2↵um = m

2, as
expected for the high energy spectrum.

V. DIVALENT (2,1) GAS

The divalent (2,1) gas is the simplest case where the
Hamiltonian (8) is non-Hermitian. Employing complex
variable z = e

i✓ and normalized energy u = 2✏/3↵, it
takes the form

3

2
u = p

2
�

✓
z
2

2
+

1

z

◆
. (47)

Similarly to Eq. (13) this defines a family of complex
algebraic curves

Eu : F(p, z) = 2p2z �
�
z
3 + 3uz + 2

�
= 0. (48)

The map p = p(z) is locally holomorphic away from
the zeros z0, z± (see Fig. 11). At these three branch-
ing points as well as at the singularity at z = 0 the
function p(z) is locally double-valued and behaves as
p ⇠ (z � zj)1/2, j = 0,± and p ⇠ z

�1/2, respectively.
In contrast to the monovalent (1, 1) case, Sec. IV, the
function p(z) is single-valued at z ⇠ 1 where it goes as
p ⇠ z, so no branch cut extends to z = 1. Nevertheless
there are again four branching points. To construct the
Riemann sphere we draw two branch cuts: one between
[0, z0] and the other between [z+, z�]. The resulting Rie-
mann surface is again g = 1 torus, analogous to Fig. 5.

Its moduli space u contains four singular points u =
�1, e±i⇡/3 and u = 1, where the torus degenerates into
the sphere. (There were only three such points in the
(1,1) case.) For u = �1 the branching points z± coalesce,
while for u = e

±i⇡/3 the branching point z0 collides with
z±, correspondingly. As u ! +1, the branching point
z0 approaches z = 0, while z± ! ±i1.

FIG. 11: (Color online) Complex z-plane with two branch
cuts, shown in gray. (a) Three integration cycles �0, �1, �2
are displayed for u = 0. (b) The instanton cycle
� = ��1 + �2. The solid blue (dashed red) lines denote
parts of the cycles going over the first (second) branch.

The action integrals are again defined as Sj =
H
�j

�,

where the 1-form �(u) = p(z)dz/iz is meromorphic on
the torus. In general the counterparts of the turning
points in the complex ✓-plane are not real. This makes it
more convenient to discuss the action cycles �j in the z-
plane. With three turning points z0, z±, it is convenient
to take three paths of integration �0, �1, �2, depicted in
Fig. 11. In terms of the two basic cycles on the torus
�0, �1, Fig. 6, the three paths are given by

�0 = �0 , �1 = ��1 + �0 , �2 = �1 . (49)

One may notice that �0 � �1 � �2 = 0, and thus S0 =
S1 + S2. This equality holds because on a Riemann sur-
face of genus 1 there are only two independent closed
cycles. From de Rham’s theorem31 one infers that there
are exactly two independent 1-forms. Therefore the three
forms {�

00(u),�0(u),�(u)} are linearly dependent up to
an exact form. Following the root outlined in Sec. IVB
(where P2(z) is replaced with P3(z) – polynomial of de-
gree 3), one obtains the Picard-Fuchs equation

(u3 + 1)S00
j
(u) +

u

4
Sj(u) = 0 . (50)

In agreement with the above discussion, there are regu-
lar singular points at the third roots of negative unity,
i.e. u = �1, e±i⇡/3 where the coe�cient in front of the
highest derivative goes to zero, and at u = 1. Two lin-
early independent solutions F0(u3) and uF1(u3) of this
second-order ODE are given in terms of the hypergeo-

also yields a torus

Picard-Fuchs equation
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V0(u) = i⇡W1(u)⌥ V1(u), (41)

W0(u) = ⌥W1(u), (42)

V1(u) = 4i
p
2
⇥
ln

�
e
2
/8

�
+ 2/u

⇤
, (43)

W1(u) = �4i
p
2
⇥
1� (4u)�2

⇤
, (44)

to leading corrections in 1/u. Since S0(u) ± S1(u) =
i⇡W1(u)u1/2, from here one may readily show that under
the monodromy u ! ue

2⇡i the two actions transform
with the following monodromy matrices

M1�i0 =

✓
�3 2
�2 1

◆
, M1+i0 =

✓
1 2
�2 �3

◆
. (45)

One may check that the three monodromy matrices sat-
isfy

M1�i0 = M1 ·M�1, M1+i0 = M�1 ·M1, (46)

as expected35: winding around 0 in large counter-
clockwise circle is the same as winding -1 and 1 sequen-
tially counterclockwise.

From Eqs. (40)–(44) one finds the unique non-singular
period at u ! 1 ± i0 to be given by S0(u) ± S1(u) =
�i⇡W1(u)u1/2. As discussed above, it must be identified
with the classical action and subject to Bohr-Sommerfeld
quantization (S0(um) ± S1(um))/2 = 2⇡↵�1/2

m. This
leads to um ⇡ m

2
/2↵ and thus ✏m = 2↵um = m

2, as
expected for the high energy spectrum.

V. DIVALENT (2,1) GAS

The divalent (2,1) gas is the simplest case where the
Hamiltonian (8) is non-Hermitian. Employing complex
variable z = e

i✓ and normalized energy u = 2✏/3↵, it
takes the form

3

2
u = p

2
�

✓
z
2

2
+

1

z

◆
. (47)

Similarly to Eq. (13) this defines a family of complex
algebraic curves

Eu : F(p, z) = 2p2z �
�
z
3 + 3uz + 2

�
= 0. (48)

The map p = p(z) is locally holomorphic away from
the zeros z0, z± (see Fig. 11). At these three branch-
ing points as well as at the singularity at z = 0 the
function p(z) is locally double-valued and behaves as
p ⇠ (z � zj)1/2, j = 0,± and p ⇠ z

�1/2, respectively.
In contrast to the monovalent (1, 1) case, Sec. IV, the
function p(z) is single-valued at z ⇠ 1 where it goes as
p ⇠ z, so no branch cut extends to z = 1. Nevertheless
there are again four branching points. To construct the
Riemann sphere we draw two branch cuts: one between
[0, z0] and the other between [z+, z�]. The resulting Rie-
mann surface is again g = 1 torus, analogous to Fig. 5.

Its moduli space u contains four singular points u =
�1, e±i⇡/3 and u = 1, where the torus degenerates into
the sphere. (There were only three such points in the
(1,1) case.) For u = �1 the branching points z± coalesce,
while for u = e

±i⇡/3 the branching point z0 collides with
z±, correspondingly. As u ! +1, the branching point
z0 approaches z = 0, while z± ! ±i1.

FIG. 11: (Color online) Complex z-plane with two branch
cuts, shown in gray. (a) Three integration cycles �0, �1, �2
are displayed for u = 0. (b) The instanton cycle
� = ��1 + �2. The solid blue (dashed red) lines denote
parts of the cycles going over the first (second) branch.

The action integrals are again defined as Sj =
H
�j

�,

where the 1-form �(u) = p(z)dz/iz is meromorphic on
the torus. In general the counterparts of the turning
points in the complex ✓-plane are not real. This makes it
more convenient to discuss the action cycles �j in the z-
plane. With three turning points z0, z±, it is convenient
to take three paths of integration �0, �1, �2, depicted in
Fig. 11. In terms of the two basic cycles on the torus
�0, �1, Fig. 6, the three paths are given by

�0 = �0 , �1 = ��1 + �0 , �2 = �1 . (49)

One may notice that �0 � �1 � �2 = 0, and thus S0 =
S1 + S2. This equality holds because on a Riemann sur-
face of genus 1 there are only two independent closed
cycles. From de Rham’s theorem31 one infers that there
are exactly two independent 1-forms. Therefore the three
forms {�

00(u),�0(u),�(u)} are linearly dependent up to
an exact form. Following the root outlined in Sec. IVB
(where P2(z) is replaced with P3(z) – polynomial of de-
gree 3), one obtains the Picard-Fuchs equation

(u3 + 1)S00
j
(u) +

u

4
Sj(u) = 0 . (50)

In agreement with the above discussion, there are regu-
lar singular points at the third roots of negative unity,
i.e. u = �1, e±i⇡/3 where the coe�cient in front of the
highest derivative goes to zero, and at u = 1. Two lin-
early independent solutions F0(u3) and uF1(u3) of this
second-order ODE are given in terms of the hypergeo-

11

metric functions

F0(u
3) = 2F1

✓
�
1

6
,�

1

6
;
2

3
;�u

3

◆
, (51)

F1(u
3) = 2F1

✓
+
1

6
,+

1

6
;
4

3
;�u

3

◆
. (52)

In this basis the three periods Sj(u), where j = 0, 1, 2,
are given by

Sj(u) = Cj0F0(u
3) + Cj1uF1(u

3) . (53)

Since the hypergeometric functions Fj(u3
! 0) = 1 +

O(u3), one notices that Sj(u) = Cj0 + uCj1 + O(u3),
as u ! 0. One can thus find constants Cjk by explicit
evaluation of the actions at u = 0, i.e. Cj0 = Sj(0) and
Cj1 = S

0
j
(0). The corresponding integration paths are

shown in Fig. 11 and straightforward integration yields:

C00 = C10e
⇡i/3 = C20e

�⇡i/3 =
211/63⇡3/2

�( 16 )�(
1
3 )

, (54)

C01 = C11e
�⇡i/3 = C21e

⇡i/3 =
31/2�( 16 )�(

1
3 )

211/6⇡1/2
. (55)

These relations along with Eq. (53) imply the three-fold
symmetry between the actions, cf. Eq. (29),

S0(u) = e
i⇡/3

S1

⇣
e
�2i⇡/3

u

⌘
= e

�i⇡/3
S2

⇣
e
2i⇡/3

u

⌘
.

(56)
Now one needs to connect the periods (53) with the

quantum spectrum. We start by discussing the real
branch of the spectrum terminating at the singular point
u = �1, Fig. 1. As u ! �1, the two branching points
z± coalesce. As a result �0 cycle degenerates to a point,
leading to S0(u ! �1) ! 0, while S1,2 remain finite
and actually turn out to be non-analytic. This can be
seen by considering the monodromy for a winding of u
around �1, i.e. (u + 1) ! (u + 1)e2⇡i (cf. Sec. IVC).
Such a transformation exchanges branching points z± by
a counter-clockwise 180�-rotation. This leaves the cycle
�0 = �0, which encloses these two points, unchanged. On
the other hand, the cycle �1 picks up a contribution of
��0: �01 = �1 � �0. Thus �1,2, Eq. (49), pick up a contri-
bution of ±�0. As a result, for every monodromy cycle,
S1,2 pick up a contribution of ±S0, so locally they are of
the form

S1,2(u) = Q1,2(u)⌥
i

2⇡
S0(u) ln(1 + u) , (57)

where Q1,2(u) and S0(u) are analytic functions of (1+u)
(moreover Q1+Q2 = S0, cf. Eq. (49)). This allows us to
identify the period S0(u) = (

p
6⇡/2)(1+u)+O((1+u)2)

as the classical action, while the instanton action is a
combination of the two non-analytic periods S1,2(u).

The corresponding monodromy matrixM�1 in e.g. ba-
sis (S0, S1) (since S2 = S0 � S1 is linearly dependent) is

✓
S0(u)
S1(u)

◆
!

✓
1 0
1 1

◆✓
S0(u)
S1(u)

◆
= M�1

✓
S0(u)
S1(u)

◆
. (58)

Employing Eqs. (49), (56), one finds that at the singu-
lar point ei⇡/3 (e�i⇡/3) the period S1(u) (S2(u)) is non-
singular and goes to zero. It should be thus identified
with the classical actions for the branch of the spectrum
terminating at the respective singular point, Fig. 1. A
combination of the remaining two actions S0 and S2 (S1)
form the corresponding instanton. The respective mon-
odromy matrices (again in the basis (S0, S1)) are found
as

Mei⇡/3 =

✓
1 �1
0 1

◆
, Me�i⇡/3 =

✓
2 �1
1 0

◆
. (59)

FIG. 12: (Color online) Narrow energy bands (red dots) in
the upper half-plane of complex energy u for ↵ = 200, cf.
Fig. 3a. ImS0(u) = 0 along the real axis, where the small
lines mark ReS0(u) = 2⇡↵�1/2(m+ 1/2). The line
ImS1(u) = 0 emerges from u = ei⇡/3 and intersects the
real axis at u ⇡ 0.96. To the right of this point we observe
bands with narrow gaps and use the same coloring
convention as in FIGs. 1, 3. The small perpendicular lines
mark ReS1(u) = 2⇡↵�1/2(m+ 1/2).

To find positions of the bands along the three branches
of the spectrum, terminating at the three singular points
u = �1, e±i⇡/3, one employs Bohr-Sommerfeld quantiza-
tion for the proper classical action Sj(u) with j = 0, 1, 2,
correspondingly:

Sj(u
(j)
m

) = 2⇡↵�1/2(m+ 1/2), m = 0, 1, ... . (60)

Figure 12 shows the lines ImS0(u) = 0 and ImS1(u) = 0
intersected with the set of lines ReSj(u) = 2⇡↵�1/2(m+
1/2). The numerically computed spectrum sits right at

the semiclassical complex energies u
(j)
m . The excellent

agreement holds all the way up to the point u ⇡ 0.96,
where all three periods Sj happen to be purely real. Be-
yond this point the semiclassical approximation seems to
break down, which manifests in e.g. appearance of wide
Bloch bands. Expanding S0(u) near u = �1, one finds

for the energy levels ✏m = 3u(0)
m ↵/2 in the semiclassi-

cal approximation ✏m ⇡ �3↵/2 +
p
6↵(m + 1/2). The

corresponding pressure (5) P = �eE0✏0 consists of the
two contributions: the ideal (2, 1) gas and the mean-field
Debye-Hueckel interaction correction.
Taking into account that there is no physical dif-

ference between S1 and S2 and that the monodromy

Solutions
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metric functions

F0(u
3) = 2F1

✓
�
1

6
,�

1

6
;
2

3
;�u

3

◆
, (51)

F1(u
3) = 2F1

✓
+
1

6
,+

1

6
;
4

3
;�u

3

◆
. (52)

In this basis the three periods Sj(u), where j = 0, 1, 2,
are given by

Sj(u) = Cj0F0(u
3) + Cj1uF1(u

3) . (53)

Since the hypergeometric functions Fj(u3
! 0) = 1 +

O(u3), one notices that Sj(u) = Cj0 + uCj1 + O(u3),
as u ! 0. One can thus find constants Cjk by explicit
evaluation of the actions at u = 0, i.e. Cj0 = Sj(0) and
Cj1 = S

0
j
(0). The corresponding integration paths are

shown in Fig. 11 and straightforward integration yields:

C00 = C10e
⇡i/3 = C20e

�⇡i/3 =
211/63⇡3/2

�( 16 )�(
1
3 )

, (54)

C01 = C11e
�⇡i/3 = C21e

⇡i/3 =
31/2�( 16 )�(

1
3 )

211/6⇡1/2
. (55)

These relations along with Eq. (53) imply the three-fold
symmetry between the actions, cf. Eq. (29),

S0(u) = e
i⇡/3

S1

⇣
e
�2i⇡/3

u

⌘
= e

�i⇡/3
S2

⇣
e
2i⇡/3

u

⌘
.

(56)
Now one needs to connect the periods (53) with the

quantum spectrum. We start by discussing the real
branch of the spectrum terminating at the singular point
u = �1, Fig. 1. As u ! �1, the two branching points
z± coalesce. As a result �0 cycle degenerates to a point,
leading to S0(u ! �1) ! 0, while S1,2 remain finite
and actually turn out to be non-analytic. This can be
seen by considering the monodromy for a winding of u
around �1, i.e. (u + 1) ! (u + 1)e2⇡i (cf. Sec. IVC).
Such a transformation exchanges branching points z± by
a counter-clockwise 180�-rotation. This leaves the cycle
�0 = �0, which encloses these two points, unchanged. On
the other hand, the cycle �1 picks up a contribution of
��0: �01 = �1 � �0. Thus �1,2, Eq. (49), pick up a contri-
bution of ±�0. As a result, for every monodromy cycle,
S1,2 pick up a contribution of ±S0, so locally they are of
the form

S1,2(u) = Q1,2(u)⌥
i

2⇡
S0(u) ln(1 + u) , (57)

where Q1,2(u) and S0(u) are analytic functions of (1+u)
(moreover Q1+Q2 = S0, cf. Eq. (49)). This allows us to
identify the period S0(u) = (

p
6⇡/2)(1+u)+O((1+u)2)

as the classical action, while the instanton action is a
combination of the two non-analytic periods S1,2(u).

The corresponding monodromy matrixM�1 in e.g. ba-
sis (S0, S1) (since S2 = S0 � S1 is linearly dependent) is

✓
S0(u)
S1(u)

◆
!

✓
1 0
1 1

◆✓
S0(u)
S1(u)

◆
= M�1

✓
S0(u)
S1(u)

◆
. (58)

Employing Eqs. (49), (56), one finds that at the singu-
lar point ei⇡/3 (e�i⇡/3) the period S1(u) (S2(u)) is non-
singular and goes to zero. It should be thus identified
with the classical actions for the branch of the spectrum
terminating at the respective singular point, Fig. 1. A
combination of the remaining two actions S0 and S2 (S1)
form the corresponding instanton. The respective mon-
odromy matrices (again in the basis (S0, S1)) are found
as

Mei⇡/3 =

✓
1 �1
0 1

◆
, Me�i⇡/3 =

✓
2 �1
1 0

◆
. (59)

FIG. 12: (Color online) Narrow energy bands (red dots) in
the upper half-plane of complex energy u for ↵ = 200, cf.
Fig. 3a. ImS0(u) = 0 along the real axis, where the small
lines mark ReS0(u) = 2⇡↵�1/2(m+ 1/2). The line
ImS1(u) = 0 emerges from u = ei⇡/3 and intersects the
real axis at u ⇡ 0.96. To the right of this point we observe
bands with narrow gaps and use the same coloring
convention as in FIGs. 1, 3. The small perpendicular lines
mark ReS1(u) = 2⇡↵�1/2(m+ 1/2).

To find positions of the bands along the three branches
of the spectrum, terminating at the three singular points
u = �1, e±i⇡/3, one employs Bohr-Sommerfeld quantiza-
tion for the proper classical action Sj(u) with j = 0, 1, 2,
correspondingly:

Sj(u
(j)
m

) = 2⇡↵�1/2(m+ 1/2), m = 0, 1, ... . (60)

Figure 12 shows the lines ImS0(u) = 0 and ImS1(u) = 0
intersected with the set of lines ReSj(u) = 2⇡↵�1/2(m+
1/2). The numerically computed spectrum sits right at

the semiclassical complex energies u
(j)
m . The excellent

agreement holds all the way up to the point u ⇡ 0.96,
where all three periods Sj happen to be purely real. Be-
yond this point the semiclassical approximation seems to
break down, which manifests in e.g. appearance of wide
Bloch bands. Expanding S0(u) near u = �1, one finds

for the energy levels ✏m = 3u(0)
m ↵/2 in the semiclassi-

cal approximation ✏m ⇡ �3↵/2 +
p
6↵(m + 1/2). The

corresponding pressure (5) P = �eE0✏0 consists of the
two contributions: the ideal (2, 1) gas and the mean-field
Debye-Hueckel interaction correction.
Taking into account that there is no physical dif-

ference between S1 and S2 and that the monodromy
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In this basis the three periods Sj(u), where j = 0, 1, 2,
are given by

Sj(u) = Cj0F0(u
3) + Cj1uF1(u

3) . (53)

Since the hypergeometric functions Fj(u3
! 0) = 1 +

O(u3), one notices that Sj(u) = Cj0 + uCj1 + O(u3),
as u ! 0. One can thus find constants Cjk by explicit
evaluation of the actions at u = 0, i.e. Cj0 = Sj(0) and
Cj1 = S

0
j
(0). The corresponding integration paths are

shown in Fig. 11 and straightforward integration yields:

C00 = C10e
⇡i/3 = C20e

�⇡i/3 =
211/63⇡3/2

�( 16 )�(
1
3 )

, (54)

C01 = C11e
�⇡i/3 = C21e

⇡i/3 =
31/2�( 16 )�(

1
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211/6⇡1/2
. (55)

These relations along with Eq. (53) imply the three-fold
symmetry between the actions, cf. Eq. (29),

S0(u) = e
i⇡/3

S1

⇣
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�2i⇡/3

u

⌘
= e

�i⇡/3
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⇣
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2i⇡/3
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⌘
.

(56)
Now one needs to connect the periods (53) with the

quantum spectrum. We start by discussing the real
branch of the spectrum terminating at the singular point
u = �1, Fig. 1. As u ! �1, the two branching points
z± coalesce. As a result �0 cycle degenerates to a point,
leading to S0(u ! �1) ! 0, while S1,2 remain finite
and actually turn out to be non-analytic. This can be
seen by considering the monodromy for a winding of u
around �1, i.e. (u + 1) ! (u + 1)e2⇡i (cf. Sec. IVC).
Such a transformation exchanges branching points z± by
a counter-clockwise 180�-rotation. This leaves the cycle
�0 = �0, which encloses these two points, unchanged. On
the other hand, the cycle �1 picks up a contribution of
��0: �01 = �1 � �0. Thus �1,2, Eq. (49), pick up a contri-
bution of ±�0. As a result, for every monodromy cycle,
S1,2 pick up a contribution of ±S0, so locally they are of
the form

S1,2(u) = Q1,2(u)⌥
i

2⇡
S0(u) ln(1 + u) , (57)

where Q1,2(u) and S0(u) are analytic functions of (1+u)
(moreover Q1+Q2 = S0, cf. Eq. (49)). This allows us to
identify the period S0(u) = (

p
6⇡/2)(1+u)+O((1+u)2)

as the classical action, while the instanton action is a
combination of the two non-analytic periods S1,2(u).

The corresponding monodromy matrixM�1 in e.g. ba-
sis (S0, S1) (since S2 = S0 � S1 is linearly dependent) is

✓
S0(u)
S1(u)

◆
!

✓
1 0
1 1

◆✓
S0(u)
S1(u)

◆
= M�1

✓
S0(u)
S1(u)

◆
. (58)

Employing Eqs. (49), (56), one finds that at the singu-
lar point ei⇡/3 (e�i⇡/3) the period S1(u) (S2(u)) is non-
singular and goes to zero. It should be thus identified
with the classical actions for the branch of the spectrum
terminating at the respective singular point, Fig. 1. A
combination of the remaining two actions S0 and S2 (S1)
form the corresponding instanton. The respective mon-
odromy matrices (again in the basis (S0, S1)) are found
as

Mei⇡/3 =

✓
1 �1
0 1

◆
, Me�i⇡/3 =

✓
2 �1
1 0

◆
. (59)

FIG. 12: (Color online) Narrow energy bands (red dots) in
the upper half-plane of complex energy u for ↵ = 200, cf.
Fig. 3a. ImS0(u) = 0 along the real axis, where the small
lines mark ReS0(u) = 2⇡↵�1/2(m+ 1/2). The line
ImS1(u) = 0 emerges from u = ei⇡/3 and intersects the
real axis at u ⇡ 0.96. To the right of this point we observe
bands with narrow gaps and use the same coloring
convention as in FIGs. 1, 3. The small perpendicular lines
mark ReS1(u) = 2⇡↵�1/2(m+ 1/2).

To find positions of the bands along the three branches
of the spectrum, terminating at the three singular points
u = �1, e±i⇡/3, one employs Bohr-Sommerfeld quantiza-
tion for the proper classical action Sj(u) with j = 0, 1, 2,
correspondingly:

Sj(u
(j)
m

) = 2⇡↵�1/2(m+ 1/2), m = 0, 1, ... . (60)

Figure 12 shows the lines ImS0(u) = 0 and ImS1(u) = 0
intersected with the set of lines ReSj(u) = 2⇡↵�1/2(m+
1/2). The numerically computed spectrum sits right at

the semiclassical complex energies u
(j)
m . The excellent

agreement holds all the way up to the point u ⇡ 0.96,
where all three periods Sj happen to be purely real. Be-
yond this point the semiclassical approximation seems to
break down, which manifests in e.g. appearance of wide
Bloch bands. Expanding S0(u) near u = �1, one finds

for the energy levels ✏m = 3u(0)
m ↵/2 in the semiclassi-

cal approximation ✏m ⇡ �3↵/2 +
p
6↵(m + 1/2). The

corresponding pressure (5) P = �eE0✏0 consists of the
two contributions: the ideal (2, 1) gas and the mean-field
Debye-Hueckel interaction correction.
Taking into account that there is no physical dif-

ference between S1 and S2 and that the monodromy

4 singularities in u-plane
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FIG. 13: (Color online) Analytic (numerical) results for the
logarithm of the bandwidth of the lowest band, ln(�✏)0,
versus square-root of the charge concentration,

p
↵, with

(1, 1) as dotted (circles), (2, 1) dashed (diamonds) and
(3, 1) as solid line (stars).

around u = �1 in Eq. (57) should leave the band-
width in Gamow’s formula (34) invariant (i.e. it adds

a factor of exp{(i/2)↵1/2(�2S0(u
(0)
m ))}), one identifies

the instanton cycle with � = ��1 + �2, Fig. 11, i.e.
Sinst(u) = �S1(u) + S2(u). This can be also found by
inspecting the cycles in figure 11: one sees that the com-
bined � = ��1 + �2 cycle connects z± turning points
through the “classically forbidden region”, similarly to
�1 instanton cycle in (1, 1) case, cf. Fig. 8. Note, how-
ever, that we do not have a rigorous proof of this fact.
Rather our choice of the integration cycle should be con-
sidered as an educated guess, which is verified by the
numerics.

Expanding S1,2(u) actions near u = �1 and substi-

tuting u
(0)
m from the Bohr-Sommerfeld quantization (60)

with j = 0, one finds for the Bloch bandwidths of the
central spectral branch, cf. Eq. (34) with ! =

p
6,38

(�✏)m =
3

2
↵(�u)m (61)

=
2
p
6

⇡

 
36

p
6e

m+ 1/2

!m+1/2

e
�3

p
6↵+(m/2+3/4) ln↵

.

Of special interest is the bandwidth of the lowest energy
band, due to its direct relation to the transport barrier
of the ion channel, Sec. II. Setting m = 0 yields

(�✏)0 ⇡ 34.14↵3/4
e
�7.35

p
↵
. (62)

This is in very good agreement with the numerical sim-
ulations, Fig. 13.

Finally we focus on the behavior at u = 1. The
Picard-Fuchs equation is of the form u

3
S
00 + uS/4 = 0.

Searching for a solution of the form S(u) = u
r leads

to (r � 1/2)2 = 0, signifying two independent solutions
with the leading asymptotic u

1/2 and u
1/2 ln(u). Upon

the monodromy transformation u ! ue
2⇡i the first of

these solutions changes sign, while the second along with
the sign change picks up a contribution from the first
one. Considering asymptotics of S1,2(u), Eq. (53), at
u ! +1, one finds the following SL(2, Z) monodromy
matrix

M1 =
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One can check that
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as it should be: winding once around 0 in a large coun-
terclockwise rotation is identical to winding counterclock-
wise in sequence around the other three singular points.
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over complex (z, p). They are nonsingular if u4
6= 1, and

so F(p, z) implicitly defines a locally holomorphic map
p = p(z) almost everywhere on (p, z). In this case there
are six square-root branching points at z = 0,1 and at
the four turning points, i.e. four roots of p2(z) = 0.
Hence, while Eu is a doubly-branched cover of the Rie-

mann sphere, three cuts (instead of two as in the genus-1
case) are required per branch. After opening up cuts and
identifying edges under analytic continuation, this leads
to a double torus, i.e. a sphere with two handles, Fig. 14a.
Unlike the mono- or di-valent cases, the trivalent channel
gives a family of genus-2 Riemann surfaces. The excep-
tional u4 = 1 cases make Eu singular at (p, z) = (0,�u),
due to collision of two turning points, Fig. 14b. So the
double torus degenerates into a simple torus with two
points identified (a singular surface of genus 1).
As in the genus-1 cases, the actions can be understood

as integrals Sj =
H
�j

� of the meromorphic action 1-form

�(u) = p(z)(dz/iz) upon these Riemann surfaces. Owing
to the four turning points, there will be four such cycles
�j with j = 0, 1, 2, 3. These are chosen as in the divalent
case, with the inner arcs of each being taken to start
on the principal branch. They are shown for u = 0 in
Fig. 15a. The u-dependence of these periods is governed
by the Picard-Fuchs equation.

As the double torus is genus-2, there are four in-
dependent cycles (as opposed to two for genus-1).
So the homology—and so too, as argued before, the
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FIG. 13: (Color online) Analytic (numerical) results for the
logarithm of the bandwidth of the lowest band, ln(�✏)0,
versus square-root of the charge concentration,
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(0)
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Sinst(u) = �S1(u) + S2(u). This can be also found by
inspecting the cycles in figure 11: one sees that the com-
bined � = ��1 + �2 cycle connects z± turning points
through the “classically forbidden region”, similarly to
�1 instanton cycle in (1, 1) case, cf. Fig. 8. Note, how-
ever, that we do not have a rigorous proof of this fact.
Rather our choice of the integration cycle should be con-
sidered as an educated guess, which is verified by the
numerics.

Expanding S1,2(u) actions near u = �1 and substi-

tuting u
(0)
m from the Bohr-Sommerfeld quantization (60)

with j = 0, one finds for the Bloch bandwidths of the
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↵
. (62)

This is in very good agreement with the numerical sim-
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case) are required per branch. After opening up cuts and
identifying edges under analytic continuation, this leads
to a double torus, i.e. a sphere with two handles, Fig. 14a.
Unlike the mono- or di-valent cases, the trivalent channel
gives a family of genus-2 Riemann surfaces. The excep-
tional u4 = 1 cases make Eu singular at (p, z) = (0,�u),
due to collision of two turning points, Fig. 14b. So the
double torus degenerates into a simple torus with two
points identified (a singular surface of genus 1).
As in the genus-1 cases, the actions can be understood
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�(u) = p(z)(dz/iz) upon these Riemann surfaces. Owing
to the four turning points, there will be four such cycles
�j with j = 0, 1, 2, 3. These are chosen as in the divalent
case, with the inner arcs of each being taken to start
on the principal branch. They are shown for u = 0 in
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p = p(z) almost everywhere on (p, z). In this case there
are six square-root branching points at z = 0,1 and at
the four turning points, i.e. four roots of p2(z) = 0.
Hence, while Eu is a doubly-branched cover of the Rie-

mann sphere, three cuts (instead of two as in the genus-1
case) are required per branch. After opening up cuts and
identifying edges under analytic continuation, this leads
to a double torus, i.e. a sphere with two handles, Fig. 14a.
Unlike the mono- or di-valent cases, the trivalent channel
gives a family of genus-2 Riemann surfaces. The excep-
tional u4 = 1 cases make Eu singular at (p, z) = (0,�u),
due to collision of two turning points, Fig. 14b. So the
double torus degenerates into a simple torus with two
points identified (a singular surface of genus 1).
As in the genus-1 cases, the actions can be understood
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� of the meromorphic action 1-form

�(u) = p(z)(dz/iz) upon these Riemann surfaces. Owing
to the four turning points, there will be four such cycles
�j with j = 0, 1, 2, 3. These are chosen as in the divalent
case, with the inner arcs of each being taken to start
on the principal branch. They are shown for u = 0 in
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FIG. 14: (Color online) (a) Double torus curve Eu for u4 6= 1,
having four basic cycles. (b) When u4 = 1 the g = 2 torus
degenerates into a singular g = 1 surface. This makes one
of the basic cycles to pass through the singularity, and
renders another cycle contractible to a point.

FIG. 15: (Color online) The Riemann surface is doubly
branched with a total of three cuts, shown in gray. The
four cycles �j with j = 0, 1, 2, 3, along with the instanton
cycle � (defined for later reference) are displayed for
u = 0. The solid blue (dashed red) lines denote parts of
the cycles going over the first (second) branch.

cohomology—is not two- but four-dimensional: any five

meromorphic 1-forms on the double torus are linearly de-
pendent up to an exact form. Thus �(u) and its first four
derivatives can be used to produce an exact form; this is
done by finding coe�cients in a polynomial entering the
exact form, as discussed in Sec. IVB. Stokes’ theorem
implies that S(u) =

H
�
�(u) must satisfy a 4th-order lin-

ear ODE in u, i.e. Picard-Fuchs equation which in the
present case takes the form

(u4
� 1)S(4) + 8u3

S
(3) +

217

18
u
2
S
00 + uS

0 +
65

144
S = 0.

(67)

It has regular singular points at fourth roots of 1, i.e.
u 2 {±1,±i} and at u = 1. By changing variable to
u
4, one can cast the Picard-Fuchs equation as a gen-

eralized hypergeometric equation. In the cut domain
| arg(1 � u

4)| < ⇡ it has four linearly independent so-

lutions of the form u
k
Fk(u4), where k = 0, 1, 2, 3 and

F0(u
4) = 4F3
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are generalized hypergeometric series. Note that the pa-
rameters of each 4F3({ai}; {bj};u4) satisfy

P
bi�

P
ai =

1; such hypergeometric series are known as one-balanced
or Saalschützian39.
Writing the actions in this basis as

Sj(u) =
3X

k=0

Cjku
k
Fk(u

4), (72)

we note that Sj(u) =
P3

k=0 Cjku
k+O(u4) (as generalized

hypergeometric functions are unity at zero and analytic
nearby). We expand each Sj(u) up to u

3 around u = 0
and evaluate the resulting integrals, Fig. 15a, to obtain
the {Cjk}

40. For e.g. S0 this brings

C00 = +27/2 · 3�9/8
⇡
�1/2�(5/8)�(7/8) (73)

C01 = +2�1/2
· 3�7/8

⇡
�1/2�(1/8)�(3/8) (74)

C02 = �2�5/2
· 3�13/8

⇡
�1/2�(1/8)�(3/8) (75)

C03 = �7 · 2�1/2
· 3�27/8

⇡
�1/2�(5/8)�(7/8) (76)

When u = 0 the turning points satisfy z
4 + 3 = 0 and so

they lie on a certain circle in the complex plane. Hence
�j and �j+1 are only di↵erent by ⇡/2 rotation, Fig. 15a.
As a result, we find the four-fold symmetry relations

S0(u) = e
⇡i
4 S1(e

�⇡i
2 u) = e

⇡i
2 S2(e

�⇡i
u) = e

�⇡i
4 S3(e

⇡i
2 u)
(77)

for u in the cut domain | arg(1� u
4)| < ⇡.

We now consider the periods in the neighborhood of
u = �1. As before, the cycle �0 becomes contractible
to a point as u ! �1 and therefore S0(�1) = 0 by
Cauchy’s theorem. The other three actions remain fi-
nite, but S1 and S3 are non-analytic. This can be seen
by considering the monodromy around u = �1. As in
the genus-1 cases, the shrinking branch cut near z = 1
makes a half-turn. Examining the action cycles, it is
only �1 and �3 that intersect the cut rotating under the
monodromy within the �0 cycle. Hence it is these two
cycles that change under monodromy and thus have log-
arithmic non-analyticity near u = �1. More precisely,
(S1, S3) ! (S1 +S0, S3 �S0) under the monodromy and
so these actions are of the form

S1,3(u) = Q1,3(u)⌥
i

2⇡
S0(u) ln(1 + u) , (78)

Solutions of Picard Fuchs
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FIG. 14: (Color online) (a) Double torus curve Eu for u4 6= 1,
having four basic cycles. (b) When u4 = 1 the g = 2 torus
degenerates into a singular g = 1 surface. This makes one
of the basic cycles to pass through the singularity, and
renders another cycle contractible to a point.

FIG. 15: (Color online) The Riemann surface is doubly
branched with a total of three cuts, shown in gray. The
four cycles �j with j = 0, 1, 2, 3, along with the instanton
cycle � (defined for later reference) are displayed for
u = 0. The solid blue (dashed red) lines denote parts of
the cycles going over the first (second) branch.
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We now consider the periods in the neighborhood of
u = �1. As before, the cycle �0 becomes contractible
to a point as u ! �1 and therefore S0(�1) = 0 by
Cauchy’s theorem. The other three actions remain fi-
nite, but S1 and S3 are non-analytic. This can be seen
by considering the monodromy around u = �1. As in
the genus-1 cases, the shrinking branch cut near z = 1
makes a half-turn. Examining the action cycles, it is
only �1 and �3 that intersect the cut rotating under the
monodromy within the �0 cycle. Hence it is these two
cycles that change under monodromy and thus have log-
arithmic non-analyticity near u = �1. More precisely,
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so these actions are of the form

S1,3(u) = Q1,3(u)⌥
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give four independent cycles
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where Q1,3(u) as well as S0(u) and S2(u) are analytic
near u = �1. Since S1(u) + S3(u) is seen to be invariant
under the monodromy, there are a total of three inde-
pendent periods which have trivial monodromy around
u = �1. This is again supported by considering series
solutions of the Picard-Fuchs equation (67) near u = �1.
This way one finds three regular solutions with leading
behavior (1 + u)0, (1 + u)1, (1 + u)2 along with an irreg-
ular solution with the leading behavior (1 + u) ln(1 + u).
For reasons of space we omit the corresponding 4 ⇥ 4
monodromy matrix.

Although analytical facts about 4F3 series are sparse
(see35,39 for relevant discussion), there are simple consis-
tency checks which our solutions (72) must pass. First
the vanishing of the classical action S0(u) at u = �1
implies the identity

3X

k=0

C0k(�1)kFk(1) = 0 (79)

for the hypergeometric functions given above. In addi-
tion, from inspection of the Hamiltonian (65), one notices
that the classical frequency near u = �1 is ! =

p
8. This

implies S0
0(�1) = 4

3 (2⇡/!) and thus

3X

k=0

C0k
d

du

⇣
u
k
Fk(u

4)
⌘

u=�1
=

p
8⇡

3
. (80)

Being checked numerically, both hold up to 10�16.
Now we turn to the analysis of the spectrum of the

Hamiltonian (65) at large ↵. There are three spectral
branches terminating at the singular points u = �1,±i,
Fig. 3b (notice that the fourth point u = 1 lies in the mid-
dle of the spectrum and does not have an obvious semi-
classical interpretation). To determine positions of the
bands we quantize the corresponding actions j = 0, 1, 3
(but not j = 2, the latter is responsible for the period
vanishing at u = 1) according to the Bohr-Sommerfeld
rule:

Sj(u
(j)
m

) = 2⇡↵�1/2(m+ 1/2), m = 0, 1, ...; j = 0, 1, 3.
(81)

Figure 16 shows the semiclassical energies u(j)
m along with

numerically found energy bands. One notices the perfect
agreement between these two for Reu . 1.09. At the
point u ⇡ 1.09 all three actions S0,1,3 are purely real
and the corresponding instanton action (see below) goes
through zero. Beyond this point energy bands are not ex-
ponentially narrow and semiclassical approximation may
not be applicable. Notice that this point is unmistakably
di↵erent from the singular point u = 1. Focusing on the
real energies at the bottom of the spectrum and expand-
ing near u = �1, one finds with the help of identities (79),
(80) S0(u) = (

p
8⇡/3)(1 + u) + O(1 + u). The Bohr-

Sommerfeld rule (81) leads to ✏m = 4u(0)
m ↵/3 = �4↵/3+

2
p
2↵1/2(m + 1/2). Employing Eq. (5), this yields the

pressure of the trivalent Coulomb gas as P = 4
3↵�

p
2↵.

The two terms here are the ideal gas pressure and the
mean-field Debye-Hueckel correction respectively.

FIG. 16: (Color online) Narrow energy bands in the upper
half-plane of complex energy u for ↵ = 200, cf. Fig. 3b.
ImS0(u) = 0 along the real axis, where the small lines
mark ReS0(u) = 2⇡↵�1/2(m+ 1/2). The line
ImS1(u) = 0 emerges from u = i and intersects the real
axis at u ⇡ 1.09. To the right of this point we observe
bands with narrow gaps and use the same coloring
convention as in FIGs. 1, 3. The small perpendicular lines
mark ReS1(u) = 2⇡↵�1/2(m+ 1/2); red dots, numerically
computed narrow bands.

Let us now focus on the width of the Bloch bands near
u = �1. This requires to identify a cycle corresponding
to the instanton action. Guided by the cosine potential
example, cf. Fig. 7, we take the corresponding cycle as
connecting the turning points of the classical action S0

through the “classically forbidden region”. This suggests
cycle � shown in Fig. 15b, which is essentially of the
same form as �1 instanton cycle in (1, 1) case. One can
see that � = �3 � �2 � �1 by considering intersections
of these cycles. Upon the monodromy transformation
around u = �1 the instanton action thus acquires a con-
tribution �2S0(u), Eq. (78), which leaves the bandwidth
invariant thanks to Bohr-Sommerfeld quantization (81).
The resulting instanton action is

Sinst(u) = Qinst(u) +
i

⇡
S0(u) ln(1 + u) , (82)

where Qinst = Q3 � S2 � Q1 is the regular part of
Sinst(u), cf. Eq. (78). To first order in (1 + u) this is
Qinst(um) ⇡ 14.12i� 6.71i · (1 + u), where e.g. the lead-
ing term originates from
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near u = �1. Since S1(u) + S3(u) is seen to be invariant
under the monodromy, there are a total of three inde-
pendent periods which have trivial monodromy around
u = �1. This is again supported by considering series
solutions of the Picard-Fuchs equation (67) near u = �1.
This way one finds three regular solutions with leading
behavior (1 + u)0, (1 + u)1, (1 + u)2 along with an irreg-
ular solution with the leading behavior (1 + u) ln(1 + u).
For reasons of space we omit the corresponding 4 ⇥ 4
monodromy matrix.

Although analytical facts about 4F3 series are sparse
(see35,39 for relevant discussion), there are simple consis-
tency checks which our solutions (72) must pass. First
the vanishing of the classical action S0(u) at u = �1
implies the identity
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C0k(�1)kFk(1) = 0 (79)

for the hypergeometric functions given above. In addi-
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Being checked numerically, both hold up to 10�16.
Now we turn to the analysis of the spectrum of the

Hamiltonian (65) at large ↵. There are three spectral
branches terminating at the singular points u = �1,±i,
Fig. 3b (notice that the fourth point u = 1 lies in the mid-
dle of the spectrum and does not have an obvious semi-
classical interpretation). To determine positions of the
bands we quantize the corresponding actions j = 0, 1, 3
(but not j = 2, the latter is responsible for the period
vanishing at u = 1) according to the Bohr-Sommerfeld
rule:

Sj(u
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) = 2⇡↵�1/2(m+ 1/2), m = 0, 1, ...; j = 0, 1, 3.
(81)

Figure 16 shows the semiclassical energies u(j)
m along with

numerically found energy bands. One notices the perfect
agreement between these two for Reu . 1.09. At the
point u ⇡ 1.09 all three actions S0,1,3 are purely real
and the corresponding instanton action (see below) goes
through zero. Beyond this point energy bands are not ex-
ponentially narrow and semiclassical approximation may
not be applicable. Notice that this point is unmistakably
di↵erent from the singular point u = 1. Focusing on the
real energies at the bottom of the spectrum and expand-
ing near u = �1, one finds with the help of identities (79),
(80) S0(u) = (
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8⇡/3)(1 + u) + O(1 + u). The Bohr-

Sommerfeld rule (81) leads to ✏m = 4u(0)
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The two terms here are the ideal gas pressure and the
mean-field Debye-Hueckel correction respectively.
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half-plane of complex energy u for ↵ = 200, cf. Fig. 3b.
ImS0(u) = 0 along the real axis, where the small lines
mark ReS0(u) = 2⇡↵�1/2(m+ 1/2). The line
ImS1(u) = 0 emerges from u = i and intersects the real
axis at u ⇡ 1.09. To the right of this point we observe
bands with narrow gaps and use the same coloring
convention as in FIGs. 1, 3. The small perpendicular lines
mark ReS1(u) = 2⇡↵�1/2(m+ 1/2); red dots, numerically
computed narrow bands.
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of these cycles. Upon the monodromy transformation
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mark ReS0(u) = 2⇡↵�1/2(m+ 1/2). The line
ImS1(u) = 0 emerges from u = i and intersects the real
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convention as in FIGs. 1, 3. The small perpendicular lines
mark ReS1(u) = 2⇡↵�1/2(m+ 1/2); red dots, numerically
computed narrow bands.
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invariant thanks to Bohr-Sommerfeld quantization (81).
The resulting instanton action is

Sinst(u) = Qinst(u) +
i

⇡
S0(u) ln(1 + u) , (82)

where Qinst = Q3 � S2 � Q1 is the regular part of
Sinst(u), cf. Eq. (78). To first order in (1 + u) this is
Qinst(um) ⇡ 14.12i� 6.71i · (1 + u), where e.g. the lead-
ing term originates from

Qinst(�1) = Sinst(�1)

=
3X

k=0

(C3k � C2k � C1k) (�1)kFk(1) ⇡ 14.12i.

Then, for u
(0)
m along the real u-axis satisfying Bohr-

Sommerfeld quantization, Gamow’s formula yields for

14

where Q1,3(u) as well as S0(u) and S2(u) are analytic
near u = �1. Since S1(u) + S3(u) is seen to be invariant
under the monodromy, there are a total of three inde-
pendent periods which have trivial monodromy around
u = �1. This is again supported by considering series
solutions of the Picard-Fuchs equation (67) near u = �1.
This way one finds three regular solutions with leading
behavior (1 + u)0, (1 + u)1, (1 + u)2 along with an irreg-
ular solution with the leading behavior (1 + u) ln(1 + u).
For reasons of space we omit the corresponding 4 ⇥ 4
monodromy matrix.

Although analytical facts about 4F3 series are sparse
(see35,39 for relevant discussion), there are simple consis-
tency checks which our solutions (72) must pass. First
the vanishing of the classical action S0(u) at u = �1
implies the identity

3X

k=0

C0k(�1)kFk(1) = 0 (79)

for the hypergeometric functions given above. In addi-
tion, from inspection of the Hamiltonian (65), one notices
that the classical frequency near u = �1 is ! =

p
8. This

implies S0
0(�1) = 4

3 (2⇡/!) and thus

3X

k=0

C0k
d

du

⇣
u
k
Fk(u

4)
⌘

u=�1
=

p
8⇡

3
. (80)

Being checked numerically, both hold up to 10�16.
Now we turn to the analysis of the spectrum of the

Hamiltonian (65) at large ↵. There are three spectral
branches terminating at the singular points u = �1,±i,
Fig. 3b (notice that the fourth point u = 1 lies in the mid-
dle of the spectrum and does not have an obvious semi-
classical interpretation). To determine positions of the
bands we quantize the corresponding actions j = 0, 1, 3
(but not j = 2, the latter is responsible for the period
vanishing at u = 1) according to the Bohr-Sommerfeld
rule:

Sj(u
(j)
m

) = 2⇡↵�1/2(m+ 1/2), m = 0, 1, ...; j = 0, 1, 3.
(81)

Figure 16 shows the semiclassical energies u(j)
m along with

numerically found energy bands. One notices the perfect
agreement between these two for Reu . 1.09. At the
point u ⇡ 1.09 all three actions S0,1,3 are purely real
and the corresponding instanton action (see below) goes
through zero. Beyond this point energy bands are not ex-
ponentially narrow and semiclassical approximation may
not be applicable. Notice that this point is unmistakably
di↵erent from the singular point u = 1. Focusing on the
real energies at the bottom of the spectrum and expand-
ing near u = �1, one finds with the help of identities (79),
(80) S0(u) = (

p
8⇡/3)(1 + u) + O(1 + u). The Bohr-

Sommerfeld rule (81) leads to ✏m = 4u(0)
m ↵/3 = �4↵/3+

2
p
2↵1/2(m + 1/2). Employing Eq. (5), this yields the

pressure of the trivalent Coulomb gas as P = 4
3↵�

p
2↵.

The two terms here are the ideal gas pressure and the
mean-field Debye-Hueckel correction respectively.

FIG. 16: (Color online) Narrow energy bands in the upper
half-plane of complex energy u for ↵ = 200, cf. Fig. 3b.
ImS0(u) = 0 along the real axis, where the small lines
mark ReS0(u) = 2⇡↵�1/2(m+ 1/2). The line
ImS1(u) = 0 emerges from u = i and intersects the real
axis at u ⇡ 1.09. To the right of this point we observe
bands with narrow gaps and use the same coloring
convention as in FIGs. 1, 3. The small perpendicular lines
mark ReS1(u) = 2⇡↵�1/2(m+ 1/2); red dots, numerically
computed narrow bands.

Let us now focus on the width of the Bloch bands near
u = �1. This requires to identify a cycle corresponding
to the instanton action. Guided by the cosine potential
example, cf. Fig. 7, we take the corresponding cycle as
connecting the turning points of the classical action S0

through the “classically forbidden region”. This suggests
cycle � shown in Fig. 15b, which is essentially of the
same form as �1 instanton cycle in (1, 1) case. One can
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The width of the lowest band (�✏)0 is compared with the
numerical results in Fig.13. As in the earlier cases the
two results are in strong accord38.

For completeness we address the u = 1 behavior.
For large u the Picard-Fuchs equation is of the form
u
4
S
(4)+8u3

S
(3)+217u2

S
00
/18+uS

0+65S/144 = 0. The
trial S(u) = u

r brings four independent solutions with
leading asymptotic {u1/2

, u
1/2 ln(u), u�5/6

, u
�13/6

}. The
former two are familiar from the genus-1 cases, but the
latter two are novel to the genus-2 case. The fractional
powers / 1/6 may seem unexpected, given the four-fold
symmetries of the periods. However, this symmetry is
manifest at the level of cycles at u = 0, where four turn-
ing points are equally spaced on a circle in the complex
z-plane. By contrast, as u ! 1, the turning points
must satisfy either z

3
⇠ �u or 1/z ⇠ �u, thus only

three of the four turning points tend towards infinity and
one towards zero. This leads to the three-fold exchange
of actions upon monodromy around u = 1. Thus the
u
r behavior of the periods with r = �integer/(2 ⇤ 3) is

exactly what is needed to construct a proper Sp(4,Z)
monodromy matrix.

VII. HIGHER VALENCE GASES

Here we briefly summarize our current state of under-
standing of the higher valence (4, 1) and (3, 2) gases. The
corresponding Hamiltonians are
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In both cases there are five turning points in the z-plane
given by the equation p

2(z) = 0. The behavior at z = 0
and z = 1 is somewhat di↵erent: for (4, 1) there is a
branching point at z = 0, but not at z = 1 (cf. (2,1)
problem); while for (3, 2) the opposite is true: there is no
branching point at z = 0, but there is one at z = 1. In
either case there are six branching points, which dictate
three branch cuts. The resulting Riemann surface is the
double torus, as in (3, 1) case, Fig. 14. In these cases it
is not degenerate as long as u

5
6= �1; otherwise two of

the five turning points collide, leading to a contraction of
one of the cycles. Therefore one expects five branches of
the spectrum terminating at u = (�1)1/5, in agreement
with Figs. 3c,d.

Since the Riemann surfaces are genus-2, there is a lin-
ear combination of the 1-form �(u) = p(z)dz/iz and its

four u-derivatives which sum up to an exact form. There-
fore any period S =

H
� must satisfy a 4th-order ODE in

u. This is found by matching coe�cients in a polyno-
mial entering the exact form (see Sec. IVB), yielding the
Picard-Fuchs equations
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While the coe�cients seem arbitrary, some features are
notable. First, changing variable to u

5, the equations can
be brought to the generalized hypergeometric form; one
finds four independent solutions of the form u

k
Fk(u5),

where k = 0, 1, 2, 4 and Fk being a certain 4F3 hyper-
geometric series41. Notice the absence of a k = 3 solu-
tion. This can be verified directly from the Picard-Fuchs
equations, whose leading behavior near u = 0 is given by
S
(4)(u)�u

�1
S
(3)(u) = 0. Substituting S / u

k, one finds
k(k � 1)(k � 2)(k � 4) = 0.
Second, let us focus on the vicinities of fifth roots of

�1, e.g. on u = �1. Notably both Eqs. (86),(87) have
the same leading behavior 5(u+1)S(4)(u) + 10S(3)(u) =
0, with all other terms are subleading. Looking for a
solution in the form S(u) ⇠ (1 + u)s, one finds for the
s-exponent 5s(s � 1)2(s � 2) = 0. Therefore in both
cases there are three analytic solutions with the leading
behavior (1+u)0, (1+u)1, (1+u)2, while the double root
at s = 1 signifies that the fourth independent solution is
of the form (1 + u) ln(1 + u)42.

This observation indicates non-trivial monodromy ma-
trixM�1, allowing one to identify the polynomial in front
of the ln(1 + u) with the classical action S0(u). Being
quantized according to Bohr-Sommerfeld, the latter de-
termines the spectrum along the branch terminating at
u = �1, Figs. 3c,d.

Finally, we consider the behavior at u ! 1. By taking
trial solutions in the form S(u) ⇠ u

r, one obtains 4-th
order algebraic equations for the exponent r. The four
roots of these equations are
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case and
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for (3, 2) case. Remarkably,

there is a double degenerate root at r = 1/2 in both cases,
leading to the two solutions with the leading asymptotic
behavior u

1/2 and u
1/2 ln(u). This was also the case in

all the examples, considered above. The first of these
solutions, being quantized, leads to ✏m = m

2, expected
at large energies. The two other roots bring two addi-
tional solutions with the leading behavior u

�3/4
, u

�13/4

or u
�7/6

, u
�17/6 for (4, 1) and (3, 2) cases, correspond-

ingly. The denominators of these fractional powers may
be related with the fact that four and three turning points
go to infinity as u ! 1 in the two respective cases. The
monodromy transformation M1 interchanges the corre-
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Here we briefly summarize our current state of under-
standing of the higher valence (4, 1) and (3, 2) gases. The
corresponding Hamiltonians are

(4,1) :
5

4
u = p

2
�

✓
z
4

4
+

1

z

◆
, (84)

(3,2) :
5

6
u = p

2
�

✓
z
3

3
+

1

2z2

◆
. (85)

In both cases there are five turning points in the z-plane
given by the equation p

2(z) = 0. The behavior at z = 0
and z = 1 is somewhat di↵erent: for (4, 1) there is a
branching point at z = 0, but not at z = 1 (cf. (2,1)
problem); while for (3, 2) the opposite is true: there is no
branching point at z = 0, but there is one at z = 1. In
either case there are six branching points, which dictate
three branch cuts. The resulting Riemann surface is the
double torus, as in (3, 1) case, Fig. 14. In these cases it
is not degenerate as long as u

5
6= �1; otherwise two of

the five turning points collide, leading to a contraction of
one of the cycles. Therefore one expects five branches of
the spectrum terminating at u = (�1)1/5, in agreement
with Figs. 3c,d.

Since the Riemann surfaces are genus-2, there is a lin-
ear combination of the 1-form �(u) = p(z)dz/iz and its

four u-derivatives which sum up to an exact form. There-
fore any period S =

H
� must satisfy a 4th-order ODE in

u. This is found by matching coe�cients in a polyno-
mial entering the exact form (see Sec. IVB), yielding the
Picard-Fuchs equations

(4,1): (u5 + 1)S(4)(u) +
9u5

� 1

u
S
(3)(u) (86)

+
235

16
u
3
S
00(u) +

5

4
u
2
S
0(u) +

39

64
uS(u) = 0,

(3,2): (u5 + 1)S(4)(u) +
9u5

� 1

u
S
(3)(u) (87)

+
140

9
u
3
S
00(u) +

5

4
u
2
S
0(u) +

119

144
uS(u) = 0.

While the coe�cients seem arbitrary, some features are
notable. First, changing variable to u

5, the equations can
be brought to the generalized hypergeometric form; one
finds four independent solutions of the form u

k
Fk(u5),

where k = 0, 1, 2, 4 and Fk being a certain 4F3 hyper-
geometric series41. Notice the absence of a k = 3 solu-
tion. This can be verified directly from the Picard-Fuchs
equations, whose leading behavior near u = 0 is given by
S
(4)(u)�u

�1
S
(3)(u) = 0. Substituting S / u

k, one finds
k(k � 1)(k � 2)(k � 4) = 0.
Second, let us focus on the vicinities of fifth roots of

�1, e.g. on u = �1. Notably both Eqs. (86),(87) have
the same leading behavior 5(u+1)S(4)(u) + 10S(3)(u) =
0, with all other terms are subleading. Looking for a
solution in the form S(u) ⇠ (1 + u)s, one finds for the
s-exponent 5s(s � 1)2(s � 2) = 0. Therefore in both
cases there are three analytic solutions with the leading
behavior (1+u)0, (1+u)1, (1+u)2, while the double root
at s = 1 signifies that the fourth independent solution is
of the form (1 + u) ln(1 + u)42.

This observation indicates non-trivial monodromy ma-
trixM�1, allowing one to identify the polynomial in front
of the ln(1 + u) with the classical action S0(u). Being
quantized according to Bohr-Sommerfeld, the latter de-
termines the spectrum along the branch terminating at
u = �1, Figs. 3c,d.

Finally, we consider the behavior at u ! 1. By taking
trial solutions in the form S(u) ⇠ u

r, one obtains 4-th
order algebraic equations for the exponent r. The four
roots of these equations are

�
1
2 ,

1
2 ,�

3
4 ,�

13
4

 
for (4, 1)

case and
�

1
2 ,

1
2 ,�

7
6 ,�

17
6

 
for (3, 2) case. Remarkably,

there is a double degenerate root at r = 1/2 in both cases,
leading to the two solutions with the leading asymptotic
behavior u

1/2 and u
1/2 ln(u). This was also the case in

all the examples, considered above. The first of these
solutions, being quantized, leads to ✏m = m

2, expected
at large energies. The two other roots bring two addi-
tional solutions with the leading behavior u

�3/4
, u

�13/4

or u
�7/6

, u
�17/6 for (4, 1) and (3, 2) cases, correspond-

ingly. The denominators of these fractional powers may
be related with the fact that four and three turning points
go to infinity as u ! 1 in the two respective cases. The
monodromy transformation M1 interchanges the corre-

all solutions have similar 
semiclassical behavior

S(u) ⇠
p
u,

p
u log u



Resurgence
In a nutshell resurgence is a manifestation of an intimate connection 
between perturbative and nonperturbative phenomena in QFT/String 
theory

We have seen it in our QM examples

8

uF1(u2), where

F0(u
2) = 2F1

✓
�
1

4
,�

1

4
;
1

2
; u2

◆
, (23)

F1(u
2) = 2F1

✓
+
1

4
,+

1

4
;
3

2
; u2

◆
. (24)

These solutions form a basis out of which Sj(u) (and
indeed any period of (14)) must be composed

S0(u) = C00F0(u
2) + C01uF1(u

2), (25)

S1(u) = C10F0(u
2) + C11uF1(u

2). (26)

To find coe�cients Cjk, j, k = 0, 1 appropriate for the
action cycles �j one needs to evaluate the periods at
one specific value of u. Employing the fact that the hy-
pergeometric functions (23–24) are normalized and an-
alytic at u = 0, i.e. Fk = 1 + O(u2), one notices that
Sj(u) = Cj0+uCj1+O(u2). Thus to identify Cjk we ex-
pand Sj(u) to first order in u and evaluate the integrals
at u = 0. The corresponding cycles in the z-plane are
shown in Fig. 9 and explicit calculation yields

C00 = e
�i⇡/2

C10 = 8⇡�1/2�(3/4)2, (27)

C01 = e
+i⇡/2

C11 = ⇡
�1/2�(1/4)2. (28)

The relations between C0k and C1k are not accidental.
They originate from the fact that for u = 0 the turning
points are ±i and so the cycle �1 transforms into �0 by
substitution z

0 = e
�i⇡

z, Fig. 9. Together with Eqs. (25),
(26) these relations imply global symmetry between the
two periods

S0(u) = e
�i⇡/2

S1(e
i⇡
u) . (29)

Equations (23)–(28) fully determine the two actions
S0,1(u) through the hypergeometric functions36. One
should now relate them to physical observables.

FIG. 9: The two cycles �0,1 for u = 0. Here �1 may be
mapped to �0 by rotating 180�.

C. Structure of Sj(u) near u = �1

To this end we consider the structure of Sj(u) in the
neighborhood of u = �1. As noted earlier, the cycle �0 =
�0 contracts to a point as u ! �1 and therefore S0(�1) =
0 by Cauchy’s theorem. By contrast, S1(�1) remains
finite. Moreover, while S0 is analytic near u = �1, it
turns out that S1 is not. To see this, choose some u & �1
and allow u to wind around �1 (i.e. (u + 1) ! (u +
1)e2⇡i). Since u ⇡ �1 the roots z± in (15) are of the form
z± = �1 ± i

p
2(u+ 1) we see that this transformation

exchanges these branch points via a counter-clockwise
half-turn; the branch cut in e↵ect rotates by 180�. For
the cycle �0, which encloses the turning cut, this has no
e↵ect: the cut turns within it. Not so for �1: as the
cut rotates, one must allow �1 to continuously deform if
�1 is never to intersect the branch points. The overall
e↵ect is shown in Fig. 10. The e↵ect of this monodromy

transformation is to produce a new cycle �01. Thus, while
we have returned to the initial value of u, the period
S1(u) (unlike S0(u)) does not return to its original value
and so S1(u) cannot be analytic near u = �1.
These facts are consistent, of course, with the origin

of the integrals as the classical and instanton actions.
At u ! �1, the classically allowed region collapses and
p(✓) ! 0, so the classical action at the bottom of the co-
sine potential approaches that of the harmonic oscillator
S0(u) / (1 + u) (indeed the classical period T / @uS0 is
a constant). For the instanton trajectory �1 the action
S1 does not vanish. Moreover as u ! �1 the period on
the instanton trajectory is logarithmically divergent since
the trajectory goes to the extrema of the cosine potential,
Fig. 7. This implies that S1(u) / const+(1+u) ln(1+u).

FIG. 10: (Color online). Monodromy transformation
(u+ 1) ! (u+ 1)e2⇡i rotates the branch cut between
[z�, z+] by 180� counter-clockwise. This changes the cycle
�1 ! �01 = �1 � �0 along with it.

In fact, more can be said. Under monodromy trans-
formation basis cycle �

0
1 relates to the original basis as

�
0
1 = �1 � �0 (as may be seen by counting intersec-
tions of cycles or by moving onto the torus). Thus
(�0, �1) ! (�0, �1� �0). From the decomposition of �0, �1
noted in (20) it follows that the Sj(u) must transform as

✓
S0(u)
S1(u)

◆
!

✓
1 0
�2 1

◆✓
S0(u)
S1(u)

◆
= M�1

✓
S0(u)
S1(u)

◆
, (30)

The classical action    was related to the action on instanton-
antiinstanton trajectory [I, Ī]

[0]

Remarkably, this continues further…

[0] ⇠ [I, Ī] ⇠ [IIĪĪ] ⇠ . . .

The reason of this is that perturbation series 
in QFT are asymptotic



Resurgence — 0+0d example
Integral
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Figure 1. (Color Online.) The left-hand plot illustrates the (unsurprising)
failure of naive perturbation theory to accurately approximate the exact
‘partition function’ Z(g) once g leaves the g ⌧ 1 domain. The right-hand
plot illustrates the less familiar point that even when |g| ⌧ 1, naive pertur-
bation theory fails to give correct results once ✓ ⌘ arg g 6= 0.

2. Periodic Potential and two failures of perturbation theory

Consider the following exponential integral

(1) Z(g) =
1
p
g

⇡/2Z

�⇡/2

dx e
� 1

2g sin(x)2 =

+⇡/(2
p
g)Z

�⇡/(2
p
g)

dy e
� 1

2g sin(yg1/2)2
,

which formally can be thought of as a partition function of a self-interacting 0 + 0 di-
mensional QFT2. In the above formula the second expression is canonically normalized
such that the Gaussian terms are g-independent. In this particular example, Z(g) can be
explicitly evaluated in terms of known functions:

(2) Z(g) =
⇡
p
g
e
� 1

4g I0

✓
1

4g

◆
.

However, in the rest of the section we shall generally proceed assuming that we do not
know the exact answer, and (2) will be used as a consistency check for our results.

2In cases where expressions like (1) appear via e.g. dimensional reduction from an actual QFT, the
quantity we are calling g is often the square of the coupling constant of the QFT.

can be done to get a Bessel function
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Taylor expand near x =0, integrate…

two saddles: pert at x = 0, S=0 and non-pert at x = pi/2, S = 1/2gRESURGENCE AND HOLOMORPHY: FROM WEAK TO STRONG COUPLING 5

To motivate the subsequent discussion, we note that when |g| ⌧ 1, it is tempting to
think that the standard perturbative power series approximation (around the perturbative
saddle)

Z(g)
?
'

p
2⇡


1 +

g

2
+

9g2

8
+

75g3

16
+

3675g4

128
+

59535g5

256
+

2401245g6

1024
+ · · ·

�
(3)

should accurately approximate (1). (The derivation of this expression is given in the
following section.) Indeed, if the number of terms in (3) is fixed to n⇤, then for any value
of arg g, one can see that if |g| is su�ciently small, the O(gn+1) term is parametrically
smaller in absolute value than the O(gn) term for any 0  n  n⇤. Hence, so long as
|g| ⌧ 1, the standard criterion for the reliability of a perturbative expansion is satisfied,
and one might thus expect that (3) will accurately approximate (1) for any arg g.

So long as arg g = 0, this standard intuition is correct. However, as illustrated3 by the
left plot in Fig. 1, (3) fails badly once arg g deviates from zero! Fig. 1 also verifies the
less surprising fact that the naive perturbative approximation represented by (3) does not
work well once g ⇠ 1. In the subsequent sections, we explain the reasons for these failures
of perturbation theory from several perspectives, and explain that actually the two failures
are interrelated.

2.1. Weak Coupling Approach. Most of the results in this section are well-known and
have previously appeared in the literature in e.g. [DU12,CDU14], but we review them here
to keep our discussion self-contained.

The ‘action’ � 1
2g sin(x)

2 in (1) has two saddle points: a ‘perturbative’ saddle point x = 0

with action S0 = 0, and a ‘non-perturbative’ saddle-point at x = ⇡/2 with action S1 =
1/(2g). It is natural — and correct — to expect that the non-perturbative saddle point
needs to be taken into account to resolve the issues with naive perturbation theory that
we highlighted above. The question is how this is to be done systematically. When Z(g)
is evaluated perturbatively around each saddle point, the contributions can be expressed
as power series weighed by exponentials of the saddle-point actions. It is then tempting
to guess that that the contributions of fluctuations of the non-perturbative saddle must
simply be added to the perturbative series:

Z(g)
?
= e

�S0

1X

k=0

pk,0g
k + e

�S1

1X

k=0

pk,1g
k
.(4)

However, (4) is wrong. While both terms on the right-hand-side do indeed appear in the
correct answer, (4) does not correctly reflect the analytic continuation properties of the
problem. The correct approach is to use the technology of resurgent transcendental series
(or simply transseries), which we now explain.

To compute pn,0 we work with the second rescaled integral in (1), which is canonically
normalized for working out the perturbative expansion. Evaluating (1) term by term in

3The exploration of the behavior of asymptotics as a function of arg g dates all the way to Stokes [Sto64],
and was popularized in recent years starting with [Ber91].

coefficients grow factorially and needs to be resumed!

A well-defined answer should have this form

RESURGENCE AND HOLOMORPHY: FROM WEAK TO STRONG COUPLING 7

sum of �0(g) does not exist. Our problem is a classic example of a non-Borel summable
series.

Note, however, that we can also define a generalized Borel sum associated with integrals
along other rays in the complex t plane

S✓�0,1(g) =
1

g

Z +1ei✓

0
dt e

�t/ggB�0,1(t) .(10)

This integral exists if ✓ 6= 0 and ✓ 6= ⇡ for �0 and �1 respectively. But for �0, the result
of this generalized Borel summation is complex-valued for ✓ = 0±, and ambiguous at ✓ = 0
(for real g) as the ✓ = 0 limit of the integration from above and below do not agree. Since
we started with a problem defined by a manifestly real integral for g 2 R+, getting a
complex-valued and ambiguous result may not seem like progress. Yet it turns out that
understanding the relation of (10) to (1) is an essential step.

To see this, we introduce some terminology from resurgence theory. We will call expres-
sions of the form

Z(g,�0,�1) = �0e
�S0

1X

k=0

pk,0g
k + �1e

�S1

1X

k=0

pk,1g
k
,(11)

transseries, and will refer to �0,1 as transseries parameters. The two distinct power series
(weighted by exponentials) represent contributions from the two distinct integration cycles
in a complexified version of (1) where the variable x is complex. These two cycles are
associated with the steepest descent paths of the two critical points. The appearance of
�0,1 parametrizes the generalized partition functions Z(g,�0,�1) which can be defined using
various linear combinations of the convergent integration cycles of the complexified integral.
The transseries parameters are constant in any given Stokes chamber, but their values jump
across Stokes rays, i.e, they are piece-wise constant. These jumps are the key feature which
explains why the complex-valued generalized Borel sums are so useful in understanding
our original real integral. We refer the interested reader to e.g. [DU13,CDU14] for more
details about these matters.

In the present case, we are in the fortunate position of knowing exact expressions for
the analytic continuations of the Borel transforms

gB�0(t) =
p
2⇡2F1

✓
1

2
,
1

2
, 1; 2t

◆
,(12)

gB�1(t) =
p
2⇡2F1

✓
1

2
,
1

2
, 1;�2t

◆
.(13)

This can be verified by comparing the above formulae with the power series expressions
for the hypergeometric function4

2F1(a, b; c; z) =
�(c)

�(a)�(b)

1X

n=0

�(a+ n)�(b+ n)

�(c+ n)�(n+ 1)
z
n
.(14)

4See e.g. http://dlmf.nist.gov/15.2#E1.

[A. Cherman, P. Koroteev, M. Unsal]
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Holomorphic Approach
Rewrite the partition function 


using inverse coupling as
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2.3. Holomorphic Analysis at Strong Coupling. Let us now take a direct look at the
strong coupling description of the problem9. We will be using (2⇠)�1 = 2g, so that (1) now
reads

(25) Z(⇠) =
p
⇠

+⇡Z

�⇡

e
�2⇠ sin2 �

d� ,

where we have doubled the integration limits to (�⇡,⇡) and divided the integral by two.
In what follows we shall try to reproduce (15) without doing any explicit expansion and/or
resummation. Instead, we will explore the analytic properties of Z as a function of com-
plexified coupling ⇠. For our purposes it will be more convenient to work with an integral
which is a slight variation of (25):

(26) Z⇤(⇠) =

+⇡Z

�⇡

e
⇠ cos�

d� = 2⇡I0(⇠) , where Z(⇠) =
p
⇠e

�⇠
Z⇤(⇠) .

In (26) the partition function is real and the contour of integration lies along the real
� axis. We will relax this reality condition, and only assume that some closed contour in
complex �-plane is chosen. Due to the periodicity of the cosine function in the exponential
we can parameterize cos� = �x to get

(27) Z⇤(⇠) =

Z

C

e
�⇠x

p
(1 + x)(1� x)

dx ,

for some contour C in the complex x-plane. The complex x-plane has two branching points
at �1 and 1, so there is one non-contractable cycle around the cut between these points.
From the change of variable we made above, it is clear that the original integral in (26)
can be written as an integral of the one-form

(28) � =
e
�⇠x

p
(1 + x)(1� x)

dx

over this cycle, which we will call the A-cycle:

(29) Z⇤(⇠) =

Z

A

� .

One may wonder if there are other nontrivial cycles on the x-plane. To check this,
we will assume that another cycle (B-cycle) exists and work out the consequences of the
assumption, which will then be verified self-consistently. We will also assume that there
are just two cycles on the surface. Then Poincaré duality implies that there should be
two independent one-forms. Using these assumptions we can compute the integral of � of
B-cycle without evaluating the integral explicitly. Indeed, let us pick some cycle � on the

9Analyses similar to what follows in this subsection has been discussed in the literature (see e.g.
[KKKT10,Vor12]). In the this work our emphasis is on the connection of the strong coupling monodromy
analysis to resurgence theory.
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One may wonder if there are other nontrivial cycles on the x-plane. To check this,
we will assume that another cycle (B-cycle) exists and work out the consequences of the
assumption, which will then be verified self-consistently. We will also assume that there
are just two cycles on the surface. Then Poincaré duality implies that there should be
two independent one-forms. Using these assumptions we can compute the integral of � of
B-cycle without evaluating the integral explicitly. Indeed, let us pick some cycle � on the

9Analyses similar to what follows in this subsection has been discussed in the literature (see e.g.
[KKKT10,Vor12]). In the this work our emphasis is on the connection of the strong coupling monodromy
analysis to resurgence theory.
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There must be a B-cycle. Let’s try Picard-Fuchs
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surface. Then we can exploit the dependence on the parameter ⇠ to generate new forms
by di↵erentiating �. Indeed

(30)
d

d⇠

Z

�

�

gives a new period integral. However, by our assumption that there are only two indepen-
dent periods, the second derivative will not give a new integral. Therefore we conclude
that if our assumptions are correct, then there is a linear combination of Z⇤(⇠),Z 0

⇤(⇠) and
Z

00
⇤ (⇠) which vanishes. Indeed, we can compute

(31)
d

dx

⇣
e
�⇠x

p
1� x2

⌘
=

⇠x
2
� x� ⇠

p
1� x2

e
�⇠x

,

and observe that a closed integral of the above expression is, first, equal to zero since it is a
total derivative, and, second, it is a linear combination of ⇠ derivatives of Z. This verifies
our assumptions, and we find that Z⇤ satisfies the following equation of Picard-Fuchs type

(32) ⇠Z
00
⇤ + Z

0
⇤ � ⇠Z⇤ = 0 ,

In the analogy to QFT, one can think of Picard-Fuchs equations as analogs of Schwinger-
Dyson equations. In this particular case, the Picard-Fuchs equation happens to be the
Bessel equation, and its exact solutions are Bessel functions:

(33) Z⇤ = C1I0(⇠) + C2K0(⇠) .

Thus we see that (26) is one of the fundamental solutions of the Picard-Fuchs equation, and
we also explicitly verify that there is precisely one other non-trivial cycle in the x-plane.

The above-mentioned surface where the form � lives can be thought of as a double
sheeted structure such that each sheet is an infinite strip. Indeed, since real part of x is
bounded, �1 < Re(x) < 1, we can imagine the surface as two strips �1 < Re(x) < 1
connected by a branch cut which connects the points 1 and �1. The A-cycle goes along
the cut, whereas the B-cycle goes from plus infinity on the first sheet, passes through the
cut and continues back to plus infinity on the second sheet. Somewhat less trivially one
can represent this surface as a torus10.

Now we are ready to look more carefully at the analytic structure of the ⇠-plane. There
are two apparent singularities: ⇠ = 0 and ⇠ = 1. Working near the ⇠ = 0 singularity,
which corresponds to the strong-coupling limit, one can show that solutions of (32) (which

10If instead of putting a cut from �1 to 1 we put two complementary cuts along the real x-axis: (�1,�1)
and (1,+1) then we can visualize a torus after completing both x-planes with points at infinities. In this,
somewhat dual description, integration over the new A-cycle gives K0 and B-cycle integral (which passes
through both cuts) yields I0. One should not be worried about the essential singularity in the exponent as
it gets ‘excised’ by a branch cut and the contour never approaches it.
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which has 2 solutions!

Near ⇠ = 0
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are Bessel functions) behave as

K0(⇠) = �(f(⇠) + �E) log

✓
⇠

2

◆
+ g(⇠) ,

I0(⇠) = f(⇠) ,(34)

where

(35) f(⇠) = �1�
⇠
2

4
+O(⇠4) ,

g(⇠) is another power series in ⇠, and �E is the Euler-Mascheroni constant. Remarkably,
as one can easily check order by order in an expansion of (32) in ⇠, the same function f(⇠)
appears in both expressions. This suggests nice monodromy properties for the solutions.
Indeed, because of the logarithm in (34), the solutions must have the monodromy property

(36) K0(e
⇡i
⇠) = f(⇠) log ⇠ � ⇡if(⇠) = K0(⇠)� ⇡iI0(⇠) .

This is of course an implementation of a well-known identity for Bessel functions. However,
we have reproduced this identity directly from the monodromy properties of solutions to
(32) around ⇠ = 0. This means that recognizing (32) as a Bessel equation is not important,
and our method can be used in more generic situations where the partition function of
a theory cannot be written via known special functions, or one does not know the entire
strong-coupling expansion. Moreover, by choosing the coe�cients C1 and C2 appropriately,
we can make the monodromy matrix around ⇠ = 0 integer-valued. For example, defining

(37) Z⇤A(⇠) = K0(⇠) , Z⇤B =
1

⇡i
I0(⇠) ,

we find that

(38) Z(⇠, c1, c2) = c1ZA(⇠) + c2ZB(⇠) ,

with integer c1,2 will give an integral of � over a cycle � = c1A + c2B. We have restored
the original partition function Z in this formula. Note the extreme similarity of the above
formula to (11). From (34) we see that matrix

(39) M0 =

✓
1 �2
0 1

◆

describes the monodromy properties of period integrals ZA,B at ⇠ = 0. In other words, if
one goes around ⇠ = 0 point the A-period integral changes as follows

(40) ZA ! ZA � 2ZB ,

and the ZB integral does not change.
We emphasize that on the strong-coupling side of the problem, these jumps appear even

though all the series are convergent. In fact, we can summarize the situation by saying
that at strong coupling our toy model can be naturally represented by transseries built
from formal convergent series in ⇠ and logarithms log(⇠/2), while at weak coupling it is
naturally represented in terms of transseries built from formal divergent series in g ⇠ 1/⇠
and ‘instanton’ factors e�1/g

⇠ e
�⇠.
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(32) around ⇠ = 0. This means that recognizing (32) as a Bessel equation is not important,
and our method can be used in more generic situations where the partition function of
a theory cannot be written via known special functions, or one does not know the entire
strong-coupling expansion. Moreover, by choosing the coe�cients C1 and C2 appropriately,
we can make the monodromy matrix around ⇠ = 0 integer-valued. For example, defining

(37) Z⇤A(⇠) = K0(⇠) , Z⇤B =
1

⇡i
I0(⇠) ,

we find that

(38) Z(⇠, c1, c2) = c1ZA(⇠) + c2ZB(⇠) ,

with integer c1,2 will give an integral of � over a cycle � = c1A + c2B. We have restored
the original partition function Z in this formula. Note the extreme similarity of the above
formula to (11). From (34) we see that matrix

(39) M0 =

✓
1 �2
0 1

◆

describes the monodromy properties of period integrals ZA,B at ⇠ = 0. In other words, if
one goes around ⇠ = 0 point the A-period integral changes as follows

(40) ZA ! ZA � 2ZB ,

and the ZB integral does not change.
We emphasize that on the strong-coupling side of the problem, these jumps appear even

though all the series are convergent. In fact, we can summarize the situation by saying
that at strong coupling our toy model can be naturally represented by transseries built
from formal convergent series in ⇠ and logarithms log(⇠/2), while at weak coupling it is
naturally represented in terms of transseries built from formal divergent series in g ⇠ 1/⇠
and ‘instanton’ factors e�1/g

⇠ e
�⇠.
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Perturbation series is divergent, however, if we take the series and 
subtract from it the same series after taking the monodromy, we’ll 

get the `instanton’ part. Factorially-divergent pieces disappear

The same can conclusion can be drawn from Borel resumation



Thanks!


