
Hello and welcome to class!

Last time

We saw the definition of vector space, and subspace. We saw

many examples: Rn
, its subspaces, spaces of functions.

As you learned, it somewhat harder to figure out whether a given

subset of a function space is a subspace than with the same

question for subsets of Rn
.

That’s not surprising: thinking of function spaces as vector spaces

is a new concept; it takes some time to get used to it.



Hello and welcome to class!

This time

We study the notions of linear independence, spanning sets, and

bases in the context of general vector spaces.

In particular, we emphasize how these notions serve to give

coordinates to abstract, otherwise unfamiliar vector spaces — e.g.

subspaces of function spaces.

This will allow us to pretend that these vector spaces are just Rn
.



Review: the definition of a vector space.

Definition

The data of an R vector space is a set V , equipped with a

distinguished element 0 2 V and two maps

+ : V ⇥ V ! V · : R⇥ V ! V

This data determines a vector space if it obeys the following rules.

u+ (v +w) = (u+ v) + w v +w = w + v v + 0 = v

c · (d · v) = (cd) · v 1 · v = v 0 · v = 0

(c + d)v = cv + dv c(v +w) = cv + cw



Review: the definition of a subspace.

Definition

If V is a vector space, we say a subset W of V is a subspace if:

I Zero is in W .

I The sum of any two elements in W is in W .

I Any scalar multiple of an element in W is in W .

Fact

A subspace is itself a vector space.



Polynomials

Last time we learned that functions R ! R formed a vector space

and observed that polynomial functions formed a subspace.

In particular, polynomial functions form a vector space.

Following the notation of the book, we write:

P all polynomials

Pn polynomials of degree at most n



Polynomials

You add them like this:

5x4 + 4x3 + 3x2 + 2x + 1

+ 2x3 + 4x2 + 8x + 16

5x4 + 6x3 + 7x2 + 10x + 17

You scalar multiply them like this:

7 · (x2 + 2x + 1) = 7x2 + 14x + 2

And there’s a zero polynomial.



Review: linear combinations and linear span

Given a vector space V and v1, . . . vn 2 V and c1, . . . , cn 2 R , we
can name an element

c1v1 + · · ·+ cnvn 2 V

This is said to be a linear combination of the vi .

The set of linear combinations of the vi is the linear span of the vi .

Linear spans are subspaces.



Spanning sets

We can turn this around and ask:

Given a vector space V ,

find a collection of vectors v1, v2, . . .
such that every element of V
is a linear combination of the vi .

In other words, find a collection of vectors which span V .

Such a collection is called a spanning set.



Review: Does it span R2
?

(0, 1) no

(1, 0), (0, 1) yes

(2, 3), (4, 5) yes

(2, 3), (4, 6) no

(2, 3), (4, 6), (1, 0) yes



Does it span P2?

x3 + 3x2 + 3x + 1, x2 + 2x + 1, x + 1, 1

the first one isn’t even in P2

1 no

1, x no

1, x , x2 yes

every polynomial of degree  2 can be written as ax2 + bx + c

1, x + 1, x2 + 2x + 1 yes

1 + 2x + 3x2, 4 + 5x + 6x2, 7 + 8x + 9x2 no

If you don’t see why now, we’ll discuss it in a little bit.



What spans P?

No finite set spans P.

Indeed, given any finite collection of polynomials, they have some

maximal degree, say n. Then no linear combination of them has

degree greater than n: so they do not span P.



What spans P?

There’s an infinite set that spans P: all elements of P.

One can do better: the set {1, x , x2, . . .} spans P.



Linear indepedendence

Definition

Vectors {v1, v2, . . .} in a vector space V are linearly indepedendent

if none is a linear combination of the others.

Equivalently, if, whenever
P

i civi = 0 for some constants ci 2 R,
all the ci must be zero.

We already met this notion for vectors in Rn
.



Linear indepedendence of a single vector

The set {v} is always linearly independent unless v = 0.

Indeed, suppose {v} is linearly dependent. This means that there’s

some a 6= 0 such tha 0 = a · v. Multiplying by
1
a and expanding

according to the axioms, we have on the one hand, that anything

times the zero vector is zero:

1

a
· 0 =

1

a
· (0 · 0) = (

1

a
· 0) · 0 = 0 · 0 = 0

and on the other hand,

1

a
· (a · v) = (

1

a
· a) · v = 1 · v = v

So v = 0. (We already saw this argument in Rn
.)



Linear indepedendence of two vectors

The set {v,w} is linearly independent unless one vector is a

multiple of the other.

Indeed, suppose {v,w} is linearly dependent. This means that

there’s some a, b not both zero such that 0 = a · v + b ·w

If a is zero, then b ·w = 0 and b is not zero; by the previous slide

w = 0 = 0 · v.

If on the other hand a is not zero then we can — using the vector

space axioms —rearrange the above equation to

v = �b

a
·w

(We already saw this argument in Rn
.)



Is it linearly independent?

The subset 1, x2, x5 of P5? yes:

Consider a linear combination a · 1+ b · x2 + c · x5 = a+ bx2 + cx5.
This is only the zero polynomial if a = b = c = 0.

The subset (x + 1)
2, (x � 1)

2, x of P? no:

(x + 1)
2 � (x � 1)

2
+ 4 · x = 0



Is it linearly independent?

The subset {ex , e2x} of the space of functions? yes:

Suppose one was a multiple of the other, say ex = ce2x . Then we

would have c = e�x
for some constant c , which is not true.

The subset {sin(x)2, cos(x)2, 1} of the space of functions? no:

sin(x)2 + cos(x)2 = 1



Is it linearly independent?

The subset {ex , e2x , e3x} of the space of functions? yes

You won’t have to do this kind of thing until we start talking

about di↵erential equations, but here’s a hint of things to come:

Suppose aex + be2x + ce3x = 0. If any coe�cient is zero, we can

use the method of last slide. So let’s assume this isn’t the case.

We take a derivative and get aex + 2be2x + 3ce3x = 0.

Subtracting the first equation from this, we see be2x + 2ce3x = 0.

Rearranging, we learn that ex = �b/2c , which is a contradiction.

This sort of interleaving of di↵erential calculus and linear algebra

will characterize the third part of this class.



Bases

Definition

A subset {v1, v2, . . .} of a vector space V is a basis for V if it is

linearly independent and spans V

Example

As we know, the vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),
which are a basis for R3

.

Example

{1, x , x2} is a basis for P2. They span: every polynomial of degree

at most 2 is some ax2 + bx + c . And they’re linearly independent:

ax2 + bx + c is the zero polynomial only if a, b, c are all zero.



Unique representation

Another way to write the definition: a subset {v1, v2, . . .} of a

vector space V is a basis for V if there’s one (spanning) and only

one (linear independence) way to write any element v 2 V as a

linear combination of the vi .



Bases from spanning sets

Given a finite spanning set {vi} of V , one can find a basis by

iteratively throwing out vectors in the linear span of the others.

Indeed, this procedure does not change the linear span of all the

vectors. On the other hand, it must terminate, since the number of

vectors decreases each time, and can only terminate when the

remaining vectors are linearly independent.

(We already saw this argument when finding a basis for the column

space of a matrix)



Example

Consider the polynomials

x + 1, x2 + 2x + 1, 4, 4x + 3, x2

Let’s find, from among them, a basis for whatever space they span.

I x2 + 2x + 1 = (x2) + 2 · (x + 1) +
1
4 · 4. So, let’s throw it out.

We’re left with

x + 1, 4, 4x + 3, x2

I 4x + 3 = 4 · (x + 1)� 1
4 · 4. So throw it out. We’re left with

x + 1, 4, x2

I These are linearly independent.



Let’s see how these notions interact with linear transformations.



Review: Linear transformations

Definition

If V and W are vector spaces, a function T : V ! W is said to be

a linear transformation if

T (cv + c 0v0) = cT (v) + c 0T (v0)

for all c , c 0 in R and all v, v0 in V .



Review: one-to-one and onto

A function f : X ! Y is said to be:

I onto if every element of Y is f of � 1 element of X .

I one-to-one if every element of Y is f of  1 element of X .

For a linear transformation T : Rm ! Rn
, we know that it is

one-to-one if and only if the columns of the associated matrix are

linearly independent, and onto if and only if the columns of the

associated matrix span the codomain.



The identity function

For a set X , there’s a function from X to itself which does nothing.

idX : X 7! X

x 7! x

When X is a vector space, idX is a linear transformation.

(Do you see why?)

When X = Rn
, the matrix of idX is the identity matrix.



Invertible functions

A function f : X ! Y is said to be invertible if there’s another

function which undoes it, i.e., some g : Y ! X with g � f = idX
and f � g = idY .

Note the similarity to the definition of an invertible matrix. Indeed,

when X ,Y are vector spaces and f , g are linear, then we’re asking

their matrices to multiply to the identity matrix.

As with matrices, if f has an inverse, it’s unique. We write it f �1
.



Invertible functions

A function is invertible if and only if it’s one-to-one and onto.

If f : X ! Y is invertible, then it’s onto: for any y 2 Y , we have

f (f �1
(y)) = y . It’s one-to-one: for any x with f (x) = y , we have

x = f �1f (x) = f �1
(y), so there’s only one such x .

Conversely If f : X ! Y is one-to-one and onto, then for any

y 2 Y , there is a unique x 2 X with f (x) = y . Consider

f �1
: Y ! X

y 7! the unique x with f (x) = y

You can check this is the inverse.



Invertible functions

The inverse of an invertible linear transformation is again linear.

Consider some T : V ! W and its inverse T�1
: W ! V :

T�1
(c1w1 + c2w2) = T�1

(c1TT
�1

(w1) + c2TT
�1

(w2))

= T�1
(T (cT�1

(w1) + cT�1
(w2)))

= cT�1
(w1) + cT�1

(w2)

So T�1
is linear.



Isomorphism

Invertible linear transformations are also called isomorphisms.

If there’s an isomorphism f : V ! W , we say V and W are

isomorphic vector spaces.

Isomorphic vector spaces look the same to linear algebra.

More precisely, any question which can be asked just in terms of

operations which make sense in any vector space must have the

same answer in both.

You use the isomorphism f to translate back and forth.



Isomorphism

For example, the following map is an isomorphism

P2 ! R3

ax2 + bx + c 7! (a, b, c)

For the purposes of linear algebra, P2 and R3
are the same.

For instance, we learn immediately that no collection of more than

three vectors in P2 can ever be linearly independent.

For other purposes, P2 and R3
are quite di↵erent: it doesn’t make

sense to solve an element of R3
for x , or to take its derivative.



Independence, span, bases, and linear transformations

A linear transformation T : V ! W is onto if and only if the

image of a spanning set is a spanning set.

Suppose a collection {vi} of vectors spans V . To say {T (vi )}
spans W means any w in W is a linear combination of the T (vi ).

Since T is onto, we can at least write w = T (v) for some v in V .

Since the vi span, we can write v =
P

i aivi , hence

w = T (v) = T (

X

i

aivi ) =
X

i

aiT (vi )

For the converse: if the image of any collection of vectors in V
span W then by linearity V must map onto W . (I’ll let you think

through the details.)



Independence, span, bases, and linear transformations

A linear transformation T : V ! W is one-to-one if and only if the

only element sent to zero is zero.

Indeed, by definition, T is one-to-one if every element of w has at

most one thing in V mapping to it.

If two things map to zero, then T is certainly not one-to-one.

Conversely, suppose 0 maps to 0. Then T (v1) = T (v2), or in
other words 0 = T (v1)� T (v2) = T (v1 � v2), implies

v1 � v2 = 0, and thus v1 = v2.

(We already saw this argument for T : Rn ! Rm
.)



Independence, span, bases, and linear transformations

A linear transformation T : V ! W is one-to-one if, and only if,

the image of linearly independent vectors are linearly independent.

Say {vi} in V are linearly independent, but their images in W are

not. Then we must have
P

aiT (vi ) = 0 for some ai not all zero.
By linearity, T (

P
aivi ) = 0; by independence,

P
aivi 6= 0. By the

previous slide, T is not one-to-one.

Conversely, if T is not one-to-one, there is some nonzero vector v
with T (v) = 0. Thus the linearly independent set {v} is sent to

the non-linearly-independent set {0}.


