
Hello and welcome to class!

Last time

We discussed the “least squares” problem, and then considered
notions of distance and orthogonality in a general setting, as
captured by inner products.

This time

We meet the spectral theorem, and the singular value
decomposition. This is the last class on linear algebra. Next week,
we begin di↵erential equations!



Review: Inner products

Definition

An inner product on a vector space V is a map

h · , · i : V ⇥ V ! R

which is distributive, commutative, and positive.



Review: Inner product properties

Distributivity (aka ”bilinearity”)

hav+bv0, cw+dw0i = achv,wi+bchv0,wi+adhv,w0i+bdhv0,w0i

Commutativity
hv,wi = hw, vi

Positivity

hv, vi � 0, with equality only when v = 0



Review: Inner products on Rn

Last time, we saw that distributivity implies that any inner product
on Rn is given by a matrix:

hv,wi = vTAw Ai ,j = hei , eji



When does a matrix define an inner product?

For any matrix A, consider the formula hv,wi = vTAw.

This always satisfies the distributivity axiom.

It satisfies commutativity i↵ A is symmetric, i.e. AT = A.

When does it satisfy positivity?
(last time: when A is 2x2, positive i↵ the eigenvalues are)



Eigenvectors of symmetric matrices

Eigenvectors with di↵erent eigenvalues are linearly independent.

For a symmetric matrix, eigenvectors with di↵erent eigenvalues are
in fact orthogonal:

Indeed, since M
T = M, for any vector v, we have vTM = (Mv)T .

If vi , vj are eigenvectors with eigenvalues �i ,�j :

vTi Mvj = �jv
T
i vj

vTi Mvj = (Mvi )
Tvj = �iv

T
i vj

So if �i 6= �j , then vTi vj = 0.



The spectral theorem

Theorem

A symmetric matrix M has all real eigenvalues and an orthonormal

basis of eigenvectors.

Proof. Given any real basis of eigenvectors, those of di↵erent
eigenvalues are already orthogonal; and if some eigenspace is of
dimension > 1, we may use Gram-Schmidt to replace our basis
with an orthonormal one. So it is enough to find a basis of real
eigenvectors. Our first task is to produce a single such vector.



The spectral theorem

Certainly M has a complex eigenvector v with complex eigenvalue
�. Let † denote the operation of taking transpose and complex
conjugate.

Then
�v†v = v†Mv = (Mv)†v = �v†v

Since v†v is the sum of the squares of the lengths of the entries of
v, it is positive, hence nonzero, hence � = � is a real number.



The spectral theorem

Now we know there is a real unit eigenvector v with the real
eigenvalue �. Consider the orthogonal complement v?. This is
preserved by M: if wTv = 0, then

(Mw)Tv = wT
Mv = �wTv = 0

Pick an orthonormal basis w2, . . . ,wn of v?. In the basis
v,w2,w3, . . . ,wn, the matrix M takes the shape

M =

2

6664

vTMv 0 · · · 0
0 wT

2 Mw2 · · · wT
2 Mwn

...
...

. . .
...

0 wT
n Mw2 · · · wT

n Mwn

3

7775

The lower-right block is a smaller symmetric matrix; we are done
by induction.



The spectral theorem

Theorem

A symmetric matrix M has all real eigenvalues and an orthonormal

basis of eigenvectors.



The spectral theorem: reformulation

Recall that a square matrix O is said to be orthogonal if
O

T = O
�1; equivalently, if the columns are orthonormal;

equivalently, if the rows are orthonormal.

Theorem

If M is symmetric, there is an orthogonal matrix O and a real

diagonal matrix D with

M = ODO
�1 = ODO

T

Proof: the columns of O are orthonormal eigenvectors of M.



The spectral theorem: reformulation

Theorem

If M is symmetric, there is an orthonormal basis vi and real

numbers �i such that

M = �1v1v
T
1 + · · ·+ �nvnv

T
n

Proof: the vi are the eigenvectors of M and the �i are their
eigenvalues.

Note by orthonormality, (vivTi )
2 = vivTi , and (vivTi )(vjv

T
j ) = 0

when i 6= j .



What does positive mean?

Suppose M is a symmetric matrix. When is it true that:

wT
Mw � 0, with equality only when w = 0

Claim: if and only if M has only positive eigenvalues.

Take an orthonormal basis vi of eigenvectors for M, with
eigenvalues �i . Note vTi Mvi = �ivTi vi = �i . So if any of the �i is
 0, then certainly M is not positive.

On the other hand, expand any w = (
P

wivi ). Then

wT
Mw = (

X
wivi )

T
M(

X
wivi ) =

X
w

2
i �i

This is certainly positive if the �i are positive and w 6= 0.



Square-roots of positive matrices

Positive numbers have square-roots.

So do positive symmetric matrices: if A = ODO
�1 with D having

all non-negative entries, then we can write
p
D for the diagonal

matrix whose entries are the square-roots of D’s entries, and:

p
A := O

p
DO

�1

Note that
p
A is again symmetric and positive.



Stretching and shrinking

How big or small can be |Aw|
|w| ?

If A is symmetric, then we take a basis of orthonormal eigenvectors
vi with eigenvalues �i and write:

w =
X

wivi

Aw =
X

wi�ivi

From this it is not hard to see

min(|�i |) 
|Aw|
|w| =

sP
w2
i �

2
iP

w2
i

 max(|�i |)



Stretching and shrinking

What about for matrices A in general? Maybe not even square?

|Av|2 = (Av)T (Av) = vTAT
Av

Note the matrix A
T
A is (square and) symmetric. It’s also

non-negative: vTAT
Av = |Av|2 � 0.

So it has a symmetric non-negative square-root B =
p
ATA. So

we reduced the problem to the symmetric case, since

|Av|2 = vTAT
Av = vTB2v = vTBT

Bv = |Bv|2



Singular values

Let vi be an orthonormal basis of eigenvectors for AT
A, with

eigenvalues �i . We order them so that �1 � �2 � · · · .

As we have seen, all �i � 0. We write �i =
p
�i . The �i are called

the singular values of A. Note:

(Avi ) · (Avj) = vTj A
T
Avi = 0 i 6= j

(Avi ) · (Avi ) = vTi A
T
Avi = �2

i v
T
i vi = �2

i



Singular value decomposition

So the vi are an orthonormal basis whose images are also
orthogonal. We rescale the images to the orthonormal

ui :=
1

�i
Avi

We extend the ui to an orthonormal basis. The matrices U,V
whose columns are the basis vectors ui , vi are orthogonal:
U

T = U
�1 and V

T = V
�1.

The matrix ⌃ := U
T
AV is diagonal, with entries �i .

A = U⌃V T


