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Supersymmetry

From my PhD thesis at University of Minnesota

Let us mention, however, that the status of supersymmetry as a branch of theoretical

physics may soon completely change its form after new data on SUSY search will start

coming from the Large Hadron Collider (LHC) in CE:
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discovery at mpy ~ 126 GeV has happened [5, 6] w.

hingly the Higgs boson

nile the aut!
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current thesis. Experimentalists in Geneva have done (and keep doing) an extraordinary
job, and steadily we will know the answers to many questions about how real the
supersymmetry is in the nearest future. As of the present day (Summer 2012) the
perspectives of finding SUSY at LHC are not very optimistic (see e.g. |7]). In the worst
case scenario, when the SUSY will be found not to be present, at least in the form we

use to think about it, phenomenological studies in this direction will be virtually over

and only abstract and formal aspects of supersymmetry will remain on the frontline of

physics.



The Success of SUSY

LHC says — sorry folks...” but:
SUSY helps solve theories at strong coupling

SUSY provides a plethora of exact computations (i.e. NSVZ, ADS, Gluino
condensate, SW, etc.)

SUSY is indispensable for String Theory

SUSY gauge theories/String Theory provide powerful tools to approach
mathematical problems (physical mathematics)



N = 4 3d Gauge Theories
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A = 2 vectormultiplet inside ./ = 4 multiplet
can be dualized to linear multiplet O3

Altogether give a complex scalar Y — 6¢3/92+z’a
‘mohnopole’ operator charged
under topological U(1) symmetry J=x«xF dxJ =0

N = 4 vectormultiplet contains one more complex scalar

b = ¢ + i Tro"

Classically Coulomb branchis M ~ (R? x §1)™2C /I¥,

Monopole operators receive quantum corrections

Higgs

interchanged by
3d mirror

Parameterized by VEVs of hypermultiplets modulo
gauge transformations

Moment map u: T*Rep(v,w) — Lie(G)”
Quiver variety X =p"0)//6G = p(0)ss/G
Ex: T%Gry, V= C* l
Vi =k, Wi =n w=_c"

No quantum corrections



N = 2 Deformations

N = 4 R-symmetry Flavor symmetry The resulting theory is .//* = 2* 3d theory
. e on R*x S! -
SU2)e x SU(2) c X UH l k
SU(2)c x SU(2)y U(k) SQCD with n squarks .
N =2 R-symmetry Fl terms masses ai, as
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Circle compactificaiton
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I got really fascinated by these (1+1)-dimensional models that are solved by the Bethe
ansatz and how mysteriously they jump out at you and work and you dont know why.
I am trying to understand all this better:




Seiberg-like Duality

There is a bijection between the spaces of vacua for U(k) and U(n — k) theories
These are different UV descriptions of the same IR fixed point

Short exact sequence of bundles y
0=V ->W=V’"—=0

Introduce Baxter Q-functions Q) = [ (u - s ()
1=1
Satisfy the QQ-relation ~ ~ -
Q(qu)Q(u) — Q(u)Q(qu) = | [(u — a;)
i=1

equivalent fo the XXZ Bethe (SUSY vacua) equations



The Juxtaposition of Duality Frames

Calculate the determinant (g-Wronskian) (
o0 )= (G G

Almost reproduces the left-hand side of the QQ-relation
Q(qu)Q(u) — Q(u)Q(qu) = | [(u — ay)

This brings us to a new geometric object - Oper



Riemann sphere with multiplication
M, :P' — P q <
U — qu
Section s(u)

Connection A(u): E — E1

g-gauge transformation
A(u) = g(qu)A(u)g(u) ™

(SL(2),q)-oper condition
s(qu) N A(u)s(u) # 0

q-Opers

Vector bundle E of rank 2




Singularities and Twists

Allow singularities  s(qu) A A(u)s(u) = A(u) Alu) = H(u — ¢’lay)
L,J1
Add Twists = g(qu)A(u)g(u) ™"
Section  s(u) = (8%23) Twist element 7 = diag(¢, (1) 2 ="
gq-Oper condition with A(u) = Z — SL(2) QQ-system C_1Q+ (u)Q_(qu) — Q1 (qu)Q_(u) = A(u)

Difference Equation Dq(s) = As

A(qu
Scalar difference operator (Dg — T'(qu)D, ( )) s1 =0



Trig Ruijsenaars-Schneider Hamiltonians

(SL(2),q)-oper condition

Let Q(u) =u — pr Q(u) =u — po
T L S o B
U —u C— (-1 1 ¢ 2| +p1p2 = (u—a1)(u — az)

qOper condition vyields
tRS Hamiltonians! det(u —T') = (u — a1)(u — as)



tRS Model with 2 Particles

Relativistic Hamiltonians Symplectic form Integrals of motion
C1 — qC2 C2 — qC1 dp;  d(;
17 = | () = /\ 1; = E;
: C1 — G2 - C2 — C1 b2 Z Pi Gi
15 = p1po

Coordinates {;,, momenta p; coupling constant ¢, energies £,

PZ' Xz’ 2

Nonrelativistic limit Pi = €XP — Cz — €XPp — TCalogero = lim TtRS — nNmc
C C C— OO



q-Opers and g-Langlands

[Frenkel, PK, Zeitlin, Sage, JEMS 2023]

Miura (G, g)-oper with singularities Au) =T (Cz- QQ% ((q;))) e i)
_I_

1

Theorem: There is a 1-to-1 correspondence between the set of nondegenerate Z-twisted
1

(G, g)-opers on P" and the set of nondegenerate polynomial solutions of the QQ-system

based on Lg

Q (W@ (qu) — £ Q" (qw)Q' (w) = M) [ [@Law)] [T | ] ", i=1.r

i>1 ] §<i

c=allg" s=¢']1g™
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Network of Dualities

Twisted
(G, q)-Opers
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The Ubiquitous QQ-System

Bethe Ansatz equations for XXX, XXZ models — eigenvalues of Baxter operators

[Mukhin, Varchenko] ....

Relations in the extended Grothendieck ring for finite-dimensional representations of U.(g)

[Frenkel, Hernandez] ....

Relations in equivariant cohomology/K-theory of Nakajima quiver varieties

[Nekrasov-Shatashvili] [Pushkar, Smirnov, Zeitlin] [PK, Pushkar, Smirnov, Zeitlin] ....

Spectral determinants in the QDE/IM Correspondence

[Bazhanov, Lukyanov, Zamolodchikov] [Masoero, Raimondo, Valeri] ....

(G,q)-Opers



Energy Levels of
Space of Solutions tRS Model (Type A)

of LG QQ-System
Space of
/ (G,q)-OperS

Quantum Equivariant
\ K-theory of Nakajima
Space of Solutions variety X

of G XXZ
Bethe Equations

Space of (G,q)-
Generalized
Minors



Cluster Algerbras

[PK, Zeitlin, 2022, Crelle]

The QQ-system  &i+1 Q" (U)Ql(u +e) —&QY (u+ G)Qi(u) = Ai(u) Tl(u + €) Tl(u)

For G = SL(n) obtain Lewis Carrol (Desnanot-Jacobi-Trudi) identity MIM2 — MIM? = MM
[ [ 1

For general G obtain relation on generalized minors A¥ (v(u)) = Q% (u) [Fomin Zelevinsky]
Au-wi,v-wi Auwi-wi,vwi-wi o Auwi-wi,v-wi U-Wi , DW; Wy — H Au-wj,v-wja
J7?

u,ve Wgq



