Mathematics 53

Quiz 5-08/06
Peter Koroteev

This is a closed book/notes test. Calculators are not permitted

1. Evaluate the following integral

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

2. Give five other iterated integrals that are equal to

$$
\int_{0}^{2} \int_{0}^{y^{3}} \int_{0}^{y^{2}} f(x, y, z) d z d x d y
$$

3. Evaluate the integral over $D \subset \mathbb{R}^{2}$ which is enclosed by $x=0$ and $x=\sqrt{1-y^{2}}$.

$$
\iint_{D} x y^{2} d A
$$

4. Calculate the integral

$$
\iint_{R} y e^{x y} d A, \quad \text { where } \quad R=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 2,0 \leq y \leq 3\right\}
$$

5. Show that when Laplace equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0
$$

when written in cylindrical coordinates $x=r \cos \theta, y=r \sin \theta, z=z$ becomes

$$
\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0 .
$$

6. (Extra Credit!) The plane

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1, \quad a>0, b>0, c>0
$$

cuts the solid ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

into two pieces. Find their volumes.

