Mathematics 53

Quiz $3-07 / 16$
Peter Koroteev

This is a closed book/notes test. Calculators are not permitted

1. Find the tangential and normal components of the acceleration vector of a particle with position function $\mathbf{r}(t)=\left(t, 2 t, t^{2}\right)$.
2. Find the curvature of the ellipse $x=3 \cos t, y=\sin t$ at the points $(3,0)$ and $(0,1)$.
3. Find the length of the curve $\mathbf{r}(t)=\left(t^{\frac{3}{2}}, \cos (2 t), \sin (2 t)\right)$ for $0 \leq t \leq 1$.
4. Show that the curve with vector equation

$$
\mathbf{r}(t)=\left(a_{1} t^{2}+b_{1} t+c_{1}, a_{2} t^{2}+b_{2} t+c_{2}, a_{3} t^{2}+b_{3} t+c_{3}\right)
$$

lies in a plane and find an equation of the plane.
5. (extra credit!) In class we derived the following formulae for Frenet-triple $\mathbf{T}, \mathbf{N}, \mathbf{B}=$ $\mathbf{T} \times \mathbf{N}$

$$
\begin{aligned}
\frac{d \mathbf{T}}{d s} & =\kappa \mathbf{N}, \\
\frac{d \mathbf{N}}{d s} & =-\kappa \mathbf{T}+\tau \mathbf{B} \\
\frac{d \mathbf{B}}{d s} & =-\tau \mathbf{N}
\end{aligned}
$$

Using these relations show that
(a) $\mathbf{r}^{\prime \prime}=s^{\prime \prime} \mathbf{T}+\kappa\left(s^{\prime}\right)^{2} \mathbf{N}$,
(b) $\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}=\kappa\left(s^{\prime}\right)^{3} \mathbf{B}$,
where primes denote derivatives with respect to t and s is the arc-length parameter.

