MATH 53

Quiz 2 - 07/09
Peter Koroteev

This is a closed book/notes test. Calculators are not permitted

1. Let $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{j}-2 \mathbf{k}, \mathbf{c}=\mathbf{i}+\mathbf{k}$.

Calculate
(a) $\mathbf{a} \cdot \mathbf{b}$
(b) $\mathbf{c} \times \mathbf{a}$
(c) $\mathbf{c} \times(\mathbf{a} \times \mathbf{b})$
(d) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$.
2. Given points $A=(1,0,1), B=(2,3,0), C=(-1,1,4)$ and $D=(0,3,2)$ find the volume of the parallelepiped with adjacent edges $A B, A C$ and $A D$.
3. Find the values of x such that vectors $(3 x, 2, x)$ and $(2,4, x)$ are orthogonal.
4. Find parametric equation for the line passing through $(1,0,-1)$ and $(1,1,5)$.
5. Find equation for the plane passing through $(3,-1,1),(4,0,2)$ and $(6,3,1)$.
6. (Extra credit!) Supposed \mathbf{v}_{1} and \mathbf{v}_{2} are vectors such that $\left|\mathbf{v}_{1}\right|=2,\left|\mathbf{v}_{2}\right|=3$ and $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=5$. Let $\mathbf{v}_{3}=\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{v}_{2}, \mathbf{v}_{4}=\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{v}_{3}, \mathbf{v}_{5}=\operatorname{proj}_{\mathbf{v}_{3}} \mathbf{v}_{4}$, etc.
Compute $\sum_{n=1}^{\infty}\left|\mathbf{v}_{n}\right|$.

