> MATH 53
> Midterm $-07 / 23$
> Peter Koroteev

This is a closed book/notes test. Calculators are not permitted

1. Consider the curve in \mathbb{R}^{2} defined by the parametric quations

$$
x=e^{t}, \quad y=e^{2 t}-2 e^{t}+1
$$

Write down the Cartesian equation of this curve, sketch the curve, and indicate with an arrow the direction in which the curve is traced as the parameter t is increasing.
2. Sketch the curve $r=3+3 \cos \theta$ and find the area enclosed by this curve.
3. Find an equation of the plane containing the line

$$
\frac{x-1}{2}=\frac{y+2}{3}=-z
$$

and the point $(-2,0,5)$.
4. Find parametric equations of the line of intersection of the planes $3 x-2 y+z=1$ and $2 x+y-3 z=3$.
5. Find an equation for the surface consisting of all points P in the three-dimensional space such that the distance from P to the point $(0,-1,0)$ is equal to the distance from P to the plane $y=1$.

Identify this surface by name and sketch it.
6. Find the differential of the function $f(x, y, z)=\sqrt{x^{2}+4 y^{2}+z^{2}}$ and use it to approximate the number $f(1.98,1.01,1.02)$.
7. Write down an equation of the tangent plane to the surface $y=x^{2} z-2 x z^{3}+z^{2}$ and the point $(2,1,1)$.
8. Let $f(x, y)$ be a function with continuous second partial derivatives. Suppose that $x=a u+b v$ and $y=-b u+a v$, where a and b are two real numbers such that $a^{2}+b^{2}=1$. Show that

$$
\frac{\partial^{2} f}{\partial u^{2}}+\frac{\partial^{2} f}{\partial v^{2}}=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} .
$$

9. Show that the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{3} \sin x \cdot \cos y}{x^{10}+y^{6}}
$$

does not exist.

