
Hello and welcome back from spring break!

Before the midterm
We had been discussing orthogonality, how to compute orthogonal
projections, and how to find orthonormal bases (Gram-Schmidt).

This time
We discuss how to solve the linear interpolation or “least squares”
problem, and then discuss how to think about orthogonality in a
more abstract setting.



Least Squares

As you know, the equation Ax = b need not have a solution.

Now that we have a notion of distance, we can instead ask for the
“closest thing to a solution”.

More precisely, we ask for x so that ||Ax� b|| is minimized.

This is called the “least squares” problem, because taking length
involves squares.



Least Squares

Ax = b can be solved if and only if b is in the span of A’s columns.

The closest point to b in the column space of A is the orthogonal
projection

b̂ := ProjectionCol A(b)

So solving the least squares problem — minimizing ||Ax� b|| — is
the same as solving the usual linear algebraic problem Ax = b̂.

This sounds like we must first compute b̂.



Least Squares

Actually it’s not necessary to compute b̂.

Since b̂ is the orthogonal projection of b to the column space of A,
certainly b� b̂ is orthogonal to A’s columns: AT (b� b̂) = 0

Thus if Ax = b̂, then AT (Ax� b) = 0.



Least Squares

Conversely, suppose x satisfies AT (Ax� b) = 0.

Then b� Ax is orthogonal to the column space of A,

and Ax is in the column space of A,

so Ax is the orthogonal projection of b to the column space of A.

I.e., Ax = b̂.



Least Squares

Thus solving the “least squares problem”

I.e., finding x which minimizes ||Ax� b||

Is the same as solving the linear equation

ATAx = ATb



Example

Find the vector x minimizing
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I.e., solve
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Try it yourself

Find the vector x minimizing
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Orthogonal projection revisited

We know that one way to find the orthogonal projection to V is to:

Determine an orthogonal basis v1, . . . , vk of V

Use these vectors to find the orthogonal projection:

ProjectionV (b) =
X✓

b · vi
vi · vi

◆
vi



Orthogonal projection revisited

Here is another way. Take any basis v1, . . . , vk of V ; let A be the
matrix with these columns.

Finding the orthogonal projection of b to V is the same as finding
a least squares solution x for Ax = b and then computing Ax.

In other words,
b̂ = A(ATA)�1ATb

In the case that the basis was orthonormal ATA is the identity.



Fitting lines

Suppose given data (x1, y1), (x2, y2), . . . , (xn, yn) for which you
want the closest fit line.

What does closest fit line mean?

Let’s say, the sum of the squares of the discrepancies,P
(yi � f (xi ))2, is minimized.



Fitting lines

Since f (xi ) = axi + b, this means minimizing
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You know how to do this.



Fitting lines





Properties of the dot product

Distributivity (aka ”bilinearity”)

(av+bv0)·(cw+dw0) = ac(v·w)+bc(v0 ·w)+ad(v·w0)+bd(v0 ·w0)

Commutativity
v ·w = w · v

Positivity

v · v � 0, with equality only when v = 0



Inner products

Definition
An inner product on a vector space V is a map

h · , · i : V ⇥ V ! R

which is distributive, commutative, and positive.



Inner product properties

Distributivity (aka ”bilinearity”)

hav+bv0, cw+dw0i = achv,wi+bchv0,wi+adhv,w0i+bdhv0,w0i

Commutativity
hv,wi = hw, vi

Positivity

hv, vi � 0, with equality only when v = 0



Example: Evaluation inner products

Recall that a polynomial of degree n is determined by its
evaluation at any n + 1 distinct real numbers.

Choosing such, say r0, . . . , rn, determines an isomorphism

Ev : Pn ! Rn+1

f 7! (f (r0), f (r1), . . . , f (rn))

This determines a function on pairs of polynomials:

hf , gi = Ev(f ) · Ev(g)

It is an inner product on Pn — the properties hold because they
held for the dot product.



Example: The integral inner product

Consider the vector space of continuous functions on the interval
[a, b], and the pairing

hf , gi =
Z b

a
f (x)g(x)dx

This is an inner product: it is clearly distributive and commutative
and it is positive because, if f is continuous and nonzero, then
hf , f i =

R b
a f (x)2dx is the integral of a nonnegative continous

function which is somewhere nonzero.



Example: The integral inner product

The integral inner product is a continuum limit of evaluation inner
products:

Z b

a
f (x)g(x)dx = lim

n!1

1

n

nX

t=1

f (a+
t

n
(b � a))g(a+

t

n
(b � a))



Length, distance, orthogonality

An inner product on a vector space determines notions of:

Length: the length of a vector v is ||v|| =
p
hv, vi.

Distance: the distance from a to b is ||a� b||.

Orthogonality: the vectors v,w are orthogonal if hv,wi = 0.



Example: `2

Consider the vector space Seq of all infinite sequences of real
numbers, (a1, a2, a3, . . .). It is tempting to define

h(a1, a2, a3, . . .), (b1, b2, b3, . . .)i :=
1X

i=1

aibi

However, the sum need not converge.

In fact, already the putative length

||a|| = h(a1, a2, a3, . . .), (a1, a2, a3, . . .)i1/2 =
⇣X

a2i

⌘1/2

may fail to be defined.



Example: `2

Consider the set of sequences (a1, a2, . . .) for which
P

a2i is finite.
This set is called `2.

E.g., (1, 12 ,
1
3 , . . .) 2 `2 because

P 1
n2 = ⇡2

6 .

However, (1, 1p
2
, 1p

3
, . . .) /2 `2 because

P 1
n diverges.



Example: `2

In fact, `2 is a subspace. Let’s check: given (a1, a2, . . .) and
(b1, b2, . . .) in `2, we have for each finite n:

 
nX

i=1

(ai + bi )
2

!1/2

= ||(a1 + b1, . . . , an + bn)||

 ||(a1, . . . , an)||+ ||(b1, . . . , bn)||

=

 
nX

i=1

a2i

!1/2

+

 
nX

i=1

b2i

!1/2

This final quantity is, by assumption, bounded as n ! 1, hence so
is the first, so (a1 + b1, a2 + b2, . . .) 2 `2.



Example: `2

The formula

h(a1, a2, a3, . . .), (b1, b2, b3, . . .)i :=
1X

i=1

aibi

is finite on `2:

X
aibi =

1

2

⇣X
(ai + bi )

2 �
X

a2i �
X

b2i

⌘

The distributivity, commutativity, and positivity properties hold for
the same reasons as for the dot product.

We have defined an inner product on `2.



Example: `2

Consider the set FinSeq of all sequences whose entries are
eventually all zero.

FinSeq ⇢ `2 since
P

a2i is actually a finite sum in this case.

FinSeq has a basis ei , where ei is the sequence with all zeroes,
except in the i ’th position, where it has a 1.



Example: `2

For any a = (a1, a2, . . .) 2 `2, we have ha, ei i = ai . Thus the
orthogonal complement of FinSeq is {0}.

Unlike in the finite dimensional case:

(1, 12 ,
1
3 , . . .) cannot be written as a sum of something in FinSeq

and something in the orthogonal complement to FinSeq.

(FinSeq?)? = `2 ) FinSeq.

The orthogonal projection to FinSeq is not well defined.



Orthogonal projections, orthogonal bases, Gram-Schmidt

In a finite dimensional vector space V with an inner product,

given a subspace W , we write W? for the set of vectors whose
inner product with anything in W is zero.

Any vector v can be uniquely decomposed as v = w + w? with
w 2 W and w? 2 W?.

This holds by the same proof as before. Challenge question: where
did that proof use finite dimensionality?



Orthogonal projections, orthogonal bases, Gram-Schmidt

This gives a notion of orthogonal projection.

Given an orthogonal basis w1, . . . ,wk for W — i.e., hwi ,wji = 0
when i 6= j — one has

ProjectionW (v) =
X hv,wi i

hwi ,wi i
wi

Orthonormal bases can be found by the Gram-Schmidt process.



Writing inner products in a basis

Let V be a finite dimensional vector space with an inner product,
and let B := b1, . . . ,bn be a basis of V .

Recall that for a vector v 2 V , we can uniquely expand

v = v1b1 + v2b2 + · · ·+ vnbn

We write [v]B for the vector (v1, . . . , vn).

Since v ! [v]B gives an isomorphism V ! Rn, we should be able
to express the inner product just in terms of [v]B.



Writing inner products in a basis

Consider the matrix [hbi ,bji], whose entry in the i ’th row and j ’th
column is hbi ,bji.

hv,wi = h
X

i

vibi ,
X

j

wjbji

=
X

i ,j

hvibi ,wj ,bji

=
X

i ,j

vi hbi ,bjiwj

= [v]TB [hbi ,bji][w]B



Writing inner products in a basis

If the basis b1, . . . ,bn was orthonormal, then the matrix [hbi ,bji]
is the identity matrix.

That is, in an orthonormal basis B,

hv,wi = [v]TB [w]B

Orthonormal bases always exist (Gram-Schmidt) so any inner
product looks like the dot product in an appropriate basis.



Classifying inner products

What are all the inner products on Rn?

In the preceding discussion, we could have taken V = Rn and the
basis B to be the standard basis.

Then the inner product h , i is determined by its Gram matrix
[hei , eji], and is given explicitly as

hv,wi = vT [hei , eji]w



Classifying inner products

The matrix [hei , eji] is always symmetric — recall this means equal
to its transpose — because the inner product is commutative.

Conversely, for any symmetric matrix M, the map

Rn ⇥ Rn ! R
v,w 7! vTMw

is automatically distributive and commutative.

To classify inner products in terms of matrices, it remains to
understand when this is positive.



What does positive mean?

Example

The matrix


2 �1
�1 2

�
is positive. Indeed,

[ a b ]


2 �1
�1 2

� 
a
b

�
= 2a2 + 2b2 � 2ab = (a� b)2 + a2 + b2

which vanishes only when a = b = 0.



What does positive mean?

Example

The matrix


1 2
2 1

�
is not positive. Indeed,

[ 1 � 1 ]


1 2
2 1

� 
1
�1

�
= 2� 4 + 2 = 0



What does positive mean?

More generally, [ a b ]


x y
y z

� 
a
b

�
= a2x + b2z � 2aby =

b2
✓
x
⇣a
b

⌘2
� 2

⇣a
b

⌘
y + z

◆

This quantity will always be positive so long as x is positive, and
the parenthetical quantity has no real roots in the variable b/a,
which is true so long as the discriminant 4y2 � 4xz < 0.

Note this quantity is �4 times the determinant of


x y
y z

�
.



What does positive mean?

We saw that


x y
y z

�
was positive when x > 0 and xz � y2 > 0.

Note that in this case, since y2 > 0, also z > 0.

The eigenvalues of the above matrix are the roots of
t2 � (x + z)t + (xz � y2), i.e.,

2t = (x+z)±
q

(x + z)2 � 4(xz � y2) = (x+z)±
q
(x � z)2 + y2

From the second expression, we see both are real numbers; from
the first, since x and z and xz � y2 > 0, we see they are positive.


