Opers
Quantum Geometry \& Integrability

Peter Koroteev

Talk at Sheffield University 3/06/2023

My Background

- I work in Representation Theory and Algebraic Geometry with applications to Mathematical Physics, in particular, to Integrable Systems
- A theoretical physicist by training, I have now almost completely switched to pure math. Still, I try to write one or two papers per year in hep-th
- The term `Physical Mathematics’ (in a nutshell - using string theory/QFT intuition to prove math theorems) is perhaps the most precise two-word description of my research

Current Research

- Integrable Systems from Algebraic Geometry

Enumerative counts for Nakajima quiver varieties, Opers, Geometric Langlands Correspondence.

- Geometric Representation Theory

Quantization by Branes. Algebras from deformation quantization of some nice families of hyperKähler spaces.

- Physics and Mathematics of $\mathcal{N}=2$ gauge theories and their stringy origins The BPS/CFT correspondence

Early Career Work

- Cosmology
- Nonperturbative aspects of Supersymmetric Quantum Field Theories
- Condensed Matter applications
- Resurgence in QFT

Papers on AG\&Integrability

[arXiv:23xx.xxxxx]
The qDE/IM Correspondence
E. Frenkel, P. Koroteev, A. M. Zeitlin
[arXiv:2208.08031]
The Zoo of Opers and Dualities
P. Koroteev, A. M. Zeitlin
[arXiv:2108.04184] Crelle Journal
q-Opers, QQ-systems, and Bethe Ansatz II:
Generalized Minors
P. Koroteev, A. M. Zeitlin
[arXiv:2105.00588]
3d Mirror Symmetry for Instanton Moduli Spaces
P. Koroteev, A. M. Zeitlin
[arXiv:2007.11786] J. Inst. Math. Jussieu
Toroidal q-Opers
P. Koroteev, A. M. Zeitlin
[arXiv:2002.07344] JEMS
q-Opers, QQ-Systems, and Bethe Ansatz
E. Frenkel, P. Koroteev, D. S. Sage, A. M. Zeitlin
[arXiv:1805.00986] Commun.Math.Phys. 381 (2021) 175
A-type Quiver Varieties and ADHM Moduli Spaces
P. Koroteev
[arXiv:1811.09937] Commun.Math.Phys. 381 (2021) 641
($\mathrm{SL}(\mathrm{N}), q)$-opers, the q-Langlands correspondence, and quantum/classical duality
P. Koroteev, D. S. Sage, A. M. Zeitlin
[arXiv:1802.04463] Math.Res.Lett. 28 (2021) 435 qKZ/tRS Duality via Quantum K-Theoretic Counts P. Koroteev, A. M. Zeitlin
[arXiv:1705.10419] Selecta Math. 27 (2021) 87
Quantum K-theory of Quiver Varieties and Many-Body Systems P. Koroteev, P. P. Pushkar, A. V. Smirnov, A. M. Zeitlin

Classical Integrability

- Classical integrable systems of n d.o.f. have n integrals of motion that are in involution with each other $\left\{H_{i}, H_{j}\right\}_{\mathrm{PB}}=0$.
- Examples include many-body systems like Calogero, Ruijsenaars, DELL, etc $H_{2}=\sum \frac{p_{i}^{2}}{2 m}+\sum_{i \neq j} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}$, and continuous (1+1) dimensional models like KdV, Intermediate Long Wave, etc.
- The former can be defined algebraically. The latter admit soliton solutions and are connected to the former. Both were shown to be connected to the Seiberg-Witten solution of $\mathcal{N}=2$ theories and to geometry

What I cannot create, Why cont $\times \sec t$:pd
Ido not understand.
Know how to solve every problem that has been robed

Boche Amity Prods. Kors 1
2-D Hall accel. 7 mm
Nan linear clisisal Hysieo

I got really fascinated by these ($1+1$)-dimensional models that are solved by the Bethe ansatz and how mysteriously they jump out at you and work and you don't know why. I am trying to understand all this better.

Quantum XXZ Spin Chain

Bethe Ansatz Equations arise during diagonalization of spin chain Hamiltonian in sectors with k excitations: $\exp \frac{\partial Y}{\partial \sigma_{i}}=1$

Planck's constant \hbar

twist eigenvalues z_{i}

equivariant parameters (anisotropies) a_{i}

Classical Many-Body System

Energy level equations

$$
T_{i}(\mathbf{z}, \hbar)=e_{i}(\mathbf{a}), \quad i=1, \ldots, n
$$

Coupling constant \hbar
coordinates z_{i}
energy (eigenvalues of Hamiltonians) $e_{i}\left(a_{i}\right)$

q-Opers

Riemann sphere with multiplication

$$
\begin{aligned}
M_{q}: \mathbb{P}^{1} & \rightarrow \mathbb{P}^{1} \\
u & \mapsto q u
\end{aligned}
$$

Section $s(u)$
Connection $A(u): E \rightarrow E^{q}$
q-gauge transformation
$A(u) \mapsto g(q u) A(u) g(u)^{-1}$
(SL(2),q)-oper condition

$$
s(q u) \wedge A(u) s(u) \neq 0
$$

Vector bundle E of rank 2

Singularities and Twists

Allow singularities

$$
s(q u) \wedge A(u) s(u)=\Lambda(u) \quad \Lambda(u)=\prod_{l, j_{l}}\left(u-q^{j_{l}} a_{l}\right)
$$

Add Twists

$$
Z=g(q u) A(u) g(u)^{-1}
$$

Section $\quad s(u)=\binom{Q_{+}(u)}{Q_{-}(u)} \quad$ Twist element $\quad Z=\operatorname{diag}\left(\zeta, \zeta^{-1}\right)$
q-Oper condition with $A(u)=Z-\mathrm{SL}(2) Q Q$-system

$$
\zeta^{-1} Q_{+}(u) Q_{-}(q u)-\zeta Q_{+}(q u) Q_{-}(u)=\Lambda(u)
$$

Difference Equation $\quad D_{q}(s)=A s$
Scalar difference operator $\quad\left(D_{q}^{2}-T(q u) D_{q}-\frac{\Lambda(q u)}{\Lambda(u)}\right) s_{1}=0$

Trig Ruijsenaars-Schneider Hamiltonians

(SL(2),q)-oper condition

$$
\operatorname{det}\left(\begin{array}{cc}
Q_{+}(u) & \zeta Q_{+}(q u) \\
Q_{-}(u) & \zeta^{-1} Q_{-}(q u)
\end{array}\right)=\Lambda(u)
$$

Let

$$
Q_{+}(u)=u-p_{+} \quad Q_{-}(u)=u-p_{-}
$$

$$
u^{2}-u\left[\frac{\zeta-q \zeta^{-1}}{\zeta-\zeta^{-1}} p_{+}+\frac{q \zeta-q \zeta^{-1}}{\zeta^{-1}-\zeta} p_{-}\right]+p_{+} p_{-}=\left(u-a_{+}\right)\left(u-a_{-}\right)
$$

$$
\begin{array}{lll}
& & \\
\text { qOper condition yields } & T_{1} & T_{2} \\
\text { tRS Hamiltonians! } & \operatorname{det}(u-T)=\left(u-a_{+}\right)\left(u-a_{-}\right)
\end{array}
$$

tRS Model with 2 Particles

Relativistic Hamiltonians
$T_{1}=\frac{\zeta_{1}-q \zeta_{2}}{\zeta_{1}-\zeta_{2}} p_{1}+\frac{\zeta_{2}-q \zeta_{1}}{\zeta_{2}-\zeta_{1}} p_{2}$
$T_{2}=p_{1} p_{2}$

Symplectic form

$$
\Omega=\sum \frac{d p_{i}}{p_{i}} \wedge \frac{d \zeta_{i}}{\zeta_{i}}
$$

Integrals of motion

$$
T_{i}=E_{i}
$$

Coordinates ζ_{i}, momenta p_{i} coupling constant q, energies E_{i}

Nonrelativistic limit

$$
p_{i}=\exp \frac{P_{i}}{c}
$$

$$
\zeta_{i}=\exp \frac{X_{i}}{c}
$$

$$
T_{\text {Calogero }}=\lim _{c \rightarrow \infty} T_{\mathrm{tRS}}-n m c^{2}
$$

Calogero-Moser Space

Let V be an N -dimensional vector space over \mathbb{C}. Let \mathscr{M}^{\prime} be the subset of $G L(V) \times G L(V) \times V \times V^{*}$ consisting of elements (M, T, u, v) such that

$$
q M T-T M=u \otimes v^{T}
$$

The group $G L(N ; \mathbb{C})=G L(V)$ acts on \mathscr{M}^{\prime} by conjugation

$$
(M, T, u, v) \mapsto\left(g M g^{-1}, g T g^{-1}, g u, v g^{-1}\right)
$$

The quotient of \mathscr{M}^{\prime} by the action of $G L(V)$ is called Calogero-Moser space \mathscr{M}

Flat connections on punctured torus
tRS Integrable Hamiltonians are $\sim \operatorname{Tr} T^{k}$ T-Lax matrix

$$
\begin{aligned}
& \mathcal{M}_{n}=\{A, B, C\} / G L(n ; \mathbb{C}) \\
& A B A^{-1} B^{-1}=C \\
& C=\operatorname{diag}\left(q, \ldots, q, q^{n-1}\right)
\end{aligned}
$$

XXZ Bethe Equations

Consider the QQ-system equation $\quad \zeta^{-1} Q_{+}(u) Q_{-}(q u)-\zeta Q_{+}(q u) Q_{-}(u)=\Lambda(u)$
Q_{+}vanishes at Bethe roots

$$
Q_{+}(u)=\prod_{j=k}^{m}\left(u-s_{j}\right) \quad \text { Framing } \quad \Lambda(u)=\prod_{l, j_{l}}\left(u-q^{j_{l}} a_{l}\right)
$$

Evaluate $Q Q$ at $u=s_{i}$

$$
-\zeta Q_{+}\left(q s_{i}\right) Q_{-}\left(s_{i}\right)=\Lambda\left(s_{i}\right)
$$

Then at $u=q^{-1} s_{i}$

$$
\zeta^{-1} Q_{+}\left(q^{-1} s_{i}\right) Q_{-}\left(s_{i}\right)=\Lambda\left(q^{-1} s_{i}\right)
$$

Dividing one by another yields Bethe equations Notice that we did not use Q_{-}at all

$$
\prod_{l=1}^{n} \frac{s_{i}-q^{r_{l}} a_{l}}{s_{i}-a_{l}}=\zeta^{2} q^{k} \prod_{j=1}^{k} \frac{q s_{i}-s_{j}}{s_{i}-q s_{j}}
$$

These equations appear as relations in quantum equivariant K -theory of $T^{*} G r_{k, n}$ where q scales the cotangent direction

The Ubiquitous QQ-System

Bethe Ansatz equations for $X X X, X X Z$ models - eigenvalues of Baxter operators [Mukhin, Varchenko]

Relations in equivariant cohomology/K-theory of Nakajima quiver varieties
[Nekrasov-Shatashvili] [Pushkar, Smirnov, Zeitlin] [PK, Pushkar, Smirnov, Zeitlin]
Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\hat{g})$ [Frenkel, Hernandez] ..

Spectral determinants in the QDE/IM Correspondence
[Bazhanov, Lukyanov, Zamolodchikov] [Masoero, Raimondo, Valeri]
Relations between generalized minors in cluster algebra calculations

[^0]

Network of Dualities

(G,q)-Opers

A meromorphic (\mathcal{G}, q)-oper on \mathbb{P}^{1} is a triple $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}\right)$
A is a meromorphic (G, q)-connection
$\mathcal{F}_{B_{-}}$is a reduction of \mathcal{F}_{G} to B_{-}
Oper condition: Restriction of the connection on some Zariski open dense set U

$$
A: \mathcal{F}_{G} \longrightarrow \mathcal{F}_{G}^{q} \text { to } U \cap M_{q}^{-1}(U)
$$

takes values in the double Bruhat cell

$$
B_{-}\left(\mathbb{C}\left[U \cap M_{q}^{-1}(U)\right]\right) c B_{-}\left(\mathbb{C}\left[U \cap M_{q}^{-1}(U)\right]\right)
$$

Coxeter element: $c=\prod_{i} s_{i}$

Locally

$$
A(u)=n^{\prime}(u) \prod_{i}\left(\phi_{i}(u)_{i}^{\check{\alpha}} s_{i}\right) n(u)
$$

$$
\phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N_{-}(u)=\left[B_{-}(u), B_{-}(u)\right]
$$

q-Opers and q-Langlands

Miura (G,q)-oper with singularities

$$
A(u)=\prod_{i} g_{i}(u)^{\check{\alpha}_{i}} e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}
$$

Theorem: There is a 1-to-1 correspondence between the set of nondegenerate Z-twisted (G, q)-opers on \mathbb{P}^{1} and the set of nondegenerate polynomial solutions of the QQ-system based on $\widehat{L_{\mathfrak{g}}}$

$$
\begin{gathered}
\widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u)=\Lambda_{i}(u) \prod_{j>i}\left[Q_{+}^{j}(\hbar u)\right]^{-a_{j i}} \prod_{j<i}\left[Q_{+}^{j}(u)\right]^{-a_{j i}}, \quad i=1, \ldots, r, \\
\widetilde{\xi}_{i}=\zeta_{i} \prod_{j>i} \zeta_{j}^{a_{j i}}, \quad \xi_{i}=\zeta_{i}^{-1} \prod_{j<i} \zeta_{j}^{-a_{j i}}
\end{gathered}
$$

Cluster Algerbras

The QQ-system $\xi_{i+1} Q_{-}^{i}(u) Q_{+}^{i}(u+\epsilon)-\xi_{i} Q_{-}^{i}(u+\epsilon) Q_{+}^{i}(u)=\Lambda_{i}(u) Q_{+}^{i+1}(u+\epsilon) Q_{+}^{i+1}(u)$

For $G=S L(n)$ obtain Lewis Carroll (Desnanot-Jacobi-Trudi) identity

$$
M_{1}^{1} M_{i}^{2}-M_{i}^{1} M_{1}^{2}=M_{1 i}^{12} M
$$

For general G obtain relation on generalized minors

$$
\Delta^{\omega_{i}}(v(u))=Q_{+}^{i}(u)
$$

$$
\Delta_{u \cdot \omega_{i}, v \cdot \omega_{i}} \Delta_{u w_{i} \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}-\Delta_{u w_{i} \cdot \omega_{i}, v \cdot \omega_{i}} \Delta_{u \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}=\prod_{j \neq i} \Delta_{u \cdot \omega_{j}, v \cdot \omega_{j}}^{-a_{j i}},
$$

$u, v \in W_{G}$

q-Langlands Correspondence

Two types of solutions of the qKZ equation:

Analytic in chamber of equivariant parameters $\left\{a_{i}\right\}$ - conformal blocks of $U_{\hbar}(\hat{g})$

Analytic in chamber of quantum parameters (twists) $\left\{\zeta_{i}\right\}$ - conformal blocks for deformed W-algebra $W_{q, \hbar}\left({ }^{L} \widehat{g}\right)$

The q-Langlands correspondence

Equivalence of categories

Branes and DAHA Representations

- Authors: Du Pei , Ingmar Saberi , Peter Koroteev, Satoshi Nawata , Sergei Gukov

Geometric representation theory of double affine Hecke algebra (DAHA) in terms of Hitchin moduli space of once-punctured torus

$$
\begin{aligned}
& \text { Spherical } \mathfrak{H}_{2} \text { DAHA } \\
& \text { (line ops in } \mathcal{N}=2^{*} \text { theory) } \\
& q x y-y x=\left(q-q^{-1}\right) z+\text { cyclic }
\end{aligned}
$$

$$
\rho: \pi_{1}\left(C_{p}\right) \rightarrow \mathrm{SL}(2, \mathbb{C})
$$

$x=\operatorname{Tr}(\rho(\mathfrak{m})), y=\operatorname{Tr}(\rho(\mathfrak{l}))$, and $z=\operatorname{Tr}\left(\rho\left(\mathfrak{m l}^{-1}\right)\right)$
Wilson 't Hooft Dyonic

Categorification

$\operatorname{Hom}\left(\mathcal{B}_{c c},-\right): D^{b} \operatorname{ABrane}(X) \longrightarrow D^{b} \boldsymbol{\operatorname { R e p }}\left(\mathscr{O}^{q}(X)\right)$

[^0]: [Fomin Zelevinski][PK Zeitlin]

