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Symplectic Manifold
Harmonic oscillator
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Phase space — symplectic manifold  ℳ

Symplectic form ω = dp ∧ dx

Lagrangian  is a middle-dimensional submanifold and 

such that the restriction of the symplectic form on  vanishes 

ℒ ⊂ ℳ
ℒ
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Classical Integrability
Equations of motion Integrability — family of  conserved quantities


which Poisson commute with each other 
n
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{Hi, Hj} = 0 i, j = 1, . . . , n
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df

dt
= {H1, f}

Compact Lagrangians :  are isomorphic to toriℒ {Hi = Ei}

Liouville-Arnold Theorem

Evolution in the neighborhood of  is linearized in action/angle variables  ℒ {Ii, φi}n
i=1
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= !i,

dIi
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= 0

Action/angle variables are hard to find



History (1960–current)
Many-body integrable systems — Calogero, Toda, Ruijsenaars (more on this later)

Continuous integrable models in (1+1)-dimensions: Korteweg-de-Vries, Intermediate Long-Wave, etc.

They admit soliton solutions. Sectors with N solitons are described by finite N-body integrable systems  
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ut = 6uux � uxxx

[my work on (1+1) hydro with Scirappa]
[arXiv:1510.00972]  Lett.Math.Phys. 108 (2018) 45

[arXiv:1601.08238]  J.Math.Phys. 57 (2016) 112302

Inverse scattering method — Lax pair data  action/angle variables→

https://arxiv.org/abs/1510.00972
spires-open-journal://
https://arxiv.org/abs/1601.08238
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Quantization 
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p, x 7! p̂, x̂
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{A,B}P.B. 7! [A,B]

Coordinates and momenta become operators Poisson brackets associated to  become commutatorsω
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[p̂, x̂] = �i~
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x̂f(x) = xf(x)

p̂f(x) = �i~f 0(x)Lagrangian constraint 
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Replaced by operator
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Z(x) = 0

This ODE has square integrable solutions only 

for special values of E

Heisenberg algebra

Integrability
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[Hi, Hj ] = 0
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Hi : H ! H

Finding action/angle variables — simultaneous diagonalization of Hi



I got really fascinated by these (1+1)-dimensional models that are solved by the Bethe ansatz 

and how mysteriously they jump out at you and work and you don’t know why. 

I am trying to understand all this better.



Motivation

Quantum Geometry and Integrability 

Geometric q-Langlands Correspondence

BPS/CFT Correspondence

ODE/IM Correspondence

[Okounkov et al] [Pushkar, Zeitlin, Smirnov]

[PK, Pushkar, Smirnov, Zeitlin]

[Nekrasov Shatashvili]

[Frenkel] [Aganagic, Frenkel, Okounkov]

[Bazhanov, Lukyanov, Zamolodchikov]

[Dorey, Tateo]

Quantum/Classical Integrable Systems [PK, Gaiotto] [PK, Zeitlin] [Matsuo, Cherednik]



I. Many-Body Systems
Calogero in 1971 introduced a new integrable system. Moser in 1975 proved its integrability using Lax pair

HCM =
nX

i=1

p
2
i

2m
+ g

2
X

j 6=i

1

(xi � xj)2

The Calogero-Moser (CM) system has several generalizations rational CM  trigonometric CM  elliptic CM→ →
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where shrieks in the superscripts above designate the absence of terms with i = j in the
corresponding sums in (2.5), and where

(2.7) ζ̃(ξ|p) = ζ(ξ|p)− 2

π
η1ξ =

π

2ω1
cot

(
πξ

2ω1

)
+

2π

ω1

∞∑

l=1

p2l

1− p2l
sin

(
lπξ

ω1

)
,

i.e., ζ̃ is the standard ζ function without the linear term. Note that if we have included

the linear term we would have had δ−1uz term in the ILW equation. Note that ζ̃ = θ′1(ζ|p)
θ1(ζ|p) ,

which was used, say in [BSTV1]. Now, if we denote ũ = u0−u1 then the following equation
holds

(2.8) ut + uuz +
i

2
βũzz = 0 ,

which is equivalent to (2.1) provided that xj’s satisfy equations of motion for the elliptic
Calogero-Moser-Sutherland model for k particles

(2.9) ẍj = −β2∂j
∑

i #=j

℘(xj − xi) , i = 1, . . . , k ,

where the Weierstrass ℘ and ζ functions are related to each other via ℘(ξ) = − ∂
∂ξ ζ(ξ).

Notice that the potential for the integrable many-body system is represented by the same
function as in the pole ansatz for particles xj and momenta yj(2.5).

2.2. Quantization. The model is also quantum integrable, this was studied in details
earlier, see [KS1] and references therein. Complex velocity field u can be expanded intro
infinitely many oscillator modes u(z, 0) =

∑
ameimz which obey canonical commutation

relations. The quantum ILW Hamiltonians which provide quantization of (2.3) have the
following form (see [KS2] for review)

Î2 =
∑

m>0

a−mam ,

Î3 =
ε+m

2

∑

m>0

m
1 + (−p̃)m

1− (−p̃)m
a−mam +

1

2

∑

m,n>0

(a−m−naman + a−ma−nam+n) ,(2.10)

where ε = log q, m = log !, and p̃ is the elliptic parameter. The operators an for negative
n create ILW solitons from the Fock vacuum |0〉 which is annihilated by all positive modes
a>0|0〉 = 0. The operators an obey the following commutation relations of the doubly-
deformed Heisenberg algebra

(2.11) [an, am] = m
1− qm

1− !m
δm,−n ,

where the deformation is a rational function of parameters q and !. In the semi-classical
regime of the ILW model, when these two variables are expanded around unity this rational
function becomes equal to ε/m, which plays the role of the Planck’s constant.

One can see how the scaling limit ! → ∞ is manifest in the ILW pole Ansatz construction
(2.5) and (2.6). Due to (2.11) we are required to rescale generators an → an!

−n
2 in this

limit. If we return back to the oscillator representation of the velocity field u we see
that this rescaling entails shift in z-variable: z → z − i ε2 , where ! = eε, in order to
keep the decomposition u(z, 0) =

∑
ameimz in place. Additionally we put β = !ν, where

ν is a nonzero constant which can be fixed later after we shall complete the quantum

Another relativistic generalization called Ruijsenaars-Schneider (RS) family rRS  tRS  eRS→ →

HCM = lim
c!1

HRS � nmc
2

In this talk, we’ll describe geometry behind these models

x1

x2
xnx1 x2

xn
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V (x) '
X 1

(xi � xj)2
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V (x) '
X 1

sinh(xi � xj)2
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V (x) '



Example: tRS Model with 2 Particles
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T1 =
⇠1 � t⇠2
⇠1 � ⇠2

p1 +
⇠2 � t⇠1
⇠2 � ⇠1

p2
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T2 = p1p2

Hamiltonians Symplectic form
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⌦ =
X

i

dpi
pi

^ d⇠i
⇠i

Integrals of motion
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Ti = Ei

Quantization
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pi⇠j = ⇠jpiq
�ij
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q 2 C⇥

tRS Momenta are shift operators
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pif(⇠i) = f(q⇠i)

Eigenvalue Equations
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TiV = EiV

Coordinates , momenta  coupling constant , energies ξi pi t Ei



Calogero-Moser Space
Let V be an N-dimensional vector space over . Let  be the subset of  consisting of elements 

 such that 
ℂ ℳ′￼ GL(V) × GL(V) × V × V*

(M, T, u, v)

qMT − TM = u ⊗ vT

The group  acts on  by conjugationGL(N; ℂ) = GL(V ) ℳ′￼

(M, T, u, v) ↦ (gMg−1, gTg−1, gu, vg−1)

The quotient of  by the action of  is called Calogero-Moser space ℳ′￼ GL(V ) ℳ

Also can be understood as moduli space of flat 

connections on punctured torus

ABA�1B�1 = C

Mn = {A,B,C}/GL(n;C)

C = diag(q, …, q, qn−1)

[my DAHA paper with Gukov, Nawata, Pei, Saberi

[arXiv:2206.03565]  to appear in SpringerBriefs]

Integrable Hamiltonians are ~TrTk

https://arxiv.org/abs/2206.03565


Hierarchy of ModelsDOUBLE INOZEMTSEV LIMITS OF THE QUANTUM DELL SYSTEM 3

rational trigonometric elliptic

r rational CMS trigonometric CMS elliptic CMS
quantum cohomology

t rational RS 
(dual trig. CMS) trigonometric RS elliptic RS

quantum K-theory

e dual elliptic CMS dual elliptic RS DELL
Elliptic Cohomology

� ! 0

� ! 0

R ! 0 R ! 0R ! 0

qp

p ! 0
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Figure 1. The ITEP table [M] of integrable many body systems according
to their periodicity properties in coordinates q (columns) and momenta p

(rows) together with their geometric interpretations.

where the eigenvalues read

(1.7) �k(a) =
k�1Y

n=0

✓(tN�n)

✓(tn+1)
· ZRS(a, t

~⇢
q
~!k)

ZRS(a, t~⇢)
, k = 1, . . . , N � 1

where ~!k is the k-th fundamental weight of representation of SU(N) and ~⇢ =
�
(N �

1)/2, (N � 3)/2, . . . , (3 � N)/2, (1 � N)/2
�
is the SU(N) Weyl vector.

Proof. In the above system of di↵erence equations, the Hamiltonians have the form

(1.8) Hk =
X

I⇢{1...N}
|I|=k

Y

j /2I
i2I

✓(txi/xj)

✓(xi/xj)

Y

i2I
pi

where pi are the shift operators as defined earlier. While for generic xi this is a non-
trivial system relating values of the eigenfunctions at multiple di↵erent points, there exists
a specific value of xi at which all but one terms in the left hand side of each equation in the
above system vanish. This is the point xi = t

⇢i = t
(N+1)/2�i. Indeed it is easy to see that,

in the k-th equation of (1.6), the product of theta functions at xi = t
⇢i necessarily contains

a factor of ✓(1) because of the linear dependence of i in ⇢i, unless I = {1, 2, . . . , k}. Recall
from (1.3) that ✓(1) = 0, therefore the k-th equation of the system at xi = t

⇢i specializes to

(1.9)
kY

i=1

NY

j=k+1

✓(tj�i+1)

✓(tj�i)
ZRS(a, t

~⇢
q
~!k) = �k(a)ZRS(a, t

~⇢) , k = 1, . . . , N � 1 .

[Gorsky PK Koroteeva Shakirov ]
[Mironov, Morozov, Gorsky…]



II. Quantum Integrability
g Lie algebra loop algebra (Laurent poly valued in g)

V1(a1)⌦ · · ·⌦ Vn(an)

Let

Evaluation modules form a tensor category of ĝ

ĝ = g(t)

 are representations ofVi  are special values of spectral parameter ai tg

Quantum group is a noncommutative deformation U~(ĝ)

with a nontrivial intertwiner — R-matrix

RV1,V2(a1/a2) : V1(a1)⌦ V2(a2) ! V2(a2)⌦ V1(a1)

satisfying Yang-Baxter equation



Transfer Matrix
The intertwiner represents an interaction vertex in integrable models. The quantum group is 
generated by matrix elements of R

[Faddeev Reshetikhin 
Tachtajan]

RV,W

V (a)

W (u)

physical spaceauxiliary space

Z

twist Z 2 eh Integrability comes from transfer matrix

TW (u) = TrW (u) ((Z ⌦ 1)TV,W )

[TW (u), TW (u0)] = 0

Transfer matrices are usually polynomials 

in  whose coefficients are 

the integrals of motion

u



The XXZ Spin Chain
g = sl2 V = C2(a1)⌦ · · ·⌦ C2(an)spin-1/2 chain on n sites

Spectrum can be found using Bethe Ansatz techniques. However, if we want to understand the 
problem for more general algebras we need to think of the Knizhnik-Zamolodchikov difference 
equation (qKZ)

 (a1, . . . , an) 2 V1(a1)⌦ · · ·⌦ Vn(an)

where

Z

RV1,V2

V1

V1

V2
Vn

VnV2

 (qa1, . . . an) = (Z ⌦ 1⌦ · · ·⌦ 1)RV1,Vn · · ·RV1,V2 (a1, . . . an)

[I. Frenkel Reshetikhin]

In the limit q ! 1
qKZ becomes an eigenvalue problem

q 2 C⇥



Solutions of qKZ
Schematic solution

 ↵ =

Z
dx

x
f↵(x, a)K(x, z, a, q)

indexed by physical space universal kernel
representation

q ! 1
logK(x, z, a, q) ⇠ S(x, z, a)

log q
@S

@xi
= 0 Bethe equations for Bethe roots x

ai
@S

@ai
= ⇤i Eigenvalues of qKZ operators

The map ↵ 7! f↵(x
⇤) provides diagonalization

[Aganagic Okounkov]

So we need to find `off  shell’ Bethe eigenfunctions f↵(x, a)



Nekrasov-Shatashvili Correspondence 
The answer will come from enumerative algebraic geometry inspired by physics

Hilbert space of states

of quantum integrable system

Equivariant K-theory of 

Nakajima quiver varitey


(line operators in 3d SUSY

gauge theory)

gauge group G =
rkgY

i=1

U(vi) ( ) encode weight of repv1, v2, … ↵

Bethe roots  live in the maximal torus of , by integrating over x we project on Weyl invariant 
functions of Bethe roots

x G

Flavor group GF =
Y

i

U(wi) whose maximal torus gives parameters a

Bifundamental matter Hom(Vi, Vj)
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.



Quantum K-theory of X
The quiver variety    = {Matter fields}/gauge groupX

We will be computing integrals in K-theory of the space of quasimaps                        
weighted by degree zdegf

(cf Gromov-Witten invariants)

X is a module of some quantum group in Nakajima correspondence construction

Quantum K-theory ring with quantum parameters z whose structure constants arise 

from 3-point correlators

subject to equivariant action on the base nodal curve C⇥
q

f Xq

f : C ��� > X



Nakajima Quiver Varieties
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Rep(v,w) — linear space of quiver reps

µ : T ⇤Rep(v,w) ! Lie(G)⇤

G =
Y

GL(Vi)

moment map

Nakajima quiver variety

Aut(X) =
Y

GL(Qij)⇥
Y

GL(Wi)⇥ C⇥
~Automorphism group

Maximal torus T = T(Aut(X))

Tensorial polynomials of tautological bundles Vi, Wi and their duals generate classical T-
equivariant K-theory ring of X
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where the symbol µ−1(0)s denotes the intersection of the set µ−1(0) ⊂ T ∗R with the
stable locus corresponding to injective elements in R:

stable points in T ∗R = {(A,B) : rank(A) = k}.(3)

Now we give the description of fixed points on Nk,n, tautological bundles, torus
action and equivariant K-theory once again, this time from the perspective of Nakajima
varieties. First, we note that Nk,n is naturally equipped with the following tautological
bundles:

V = µ−1(0)s × V/GL(V ), W = µ−1(0)s ×W/GL(V ).

Since GL(V ) does not act on W the bundle W is trivial, and because A is injective we
have V ⊂ W and thus V ⊂ W.

More generally, letKGL(V )(·) = Λ[s±1
1 , s±1

2 , · · · , s±1
k ] be the ring of symmetric Laurent

polynomials in k variables. Every such polynomial τ ∈ KGL(V )(·) is a character of some
virtual representation τ(V ) of GL(V ) (tensorial polynomial in V and V ∗).2 We denote
the corresponding virtual tautological bundles on Nk,n by the same symbol τ :

τ = (µ−1(0)s × τ(V ))/GL(V ).

The tautological bundles τ can be uniquely represented by the symmetric Laurent poly-
nomials in the corresponding Chern roots of V and thus there should be no confusion
in our notations.

We set a framing torus A = C×a1 × · · ·× C×an to be a n-torus acting on W by scaling
the coordinates with characters ai. Let C×! be a one-torus acting on T ∗R by scaling
the cotangent directions with character !. We adopt the notation T = A× C×! .

The action of T on T ∗R induces its action on Nk,n. The fixed set NT
k,n consists of

n!/k!/(n−k)! isolated points representing the k-planes spanned by coordinate vectors.
They are conveniently labeled by k-subsets p = {x1, · · · , xk} ⊂ {a1, · · · , an}.

Let us set the following notation for the disjoint union of Nk,n for all k:

N(n) =
n∐

k=0

Nk,n,

so that the fixed point set N(n)T consists of total 2n points.
The equivariant K-theory KT(N(n)) is a module over the ring of equivariant con-

stants: R = KT(·) = Z[a±1 , · · · , a±1
n , !±1]. The localized K-theory

KT(N(n))loc = KT(N(n))
⊗

R

A =
n⊕

k=0

KT(Nk,n)
⊗

R

A(4)

is an A-vector space (A = Q(a1, · · · , an, !)) of dimension 2n spanned by the K-theory
classes of fixed points Op.

2For example, the polynomial

τ(s1, · · · , sk) = (s1 + · · ·+ sk)
2 −

∑

1≤i1<i2<i3≤k

s−1
i1

s−1
i2

s−1
i3

corresponds to τ(V ) = V ⊗2 − Λ3V ∗.

Ex:  T*Gr(k,n)

v1 = k, w1 = n
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X = µ�1(0)//✓G = µ�1(0)ss/G

k

n



Quasimaps
Quasimap f : C �� ! X is described by collection of vector bundles
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as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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on C viof ranks with section satisfying µ = 0

where
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

degrees of

[Ciocan-Fontanine, Kim, Maulik]
[Okounkov]

di
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so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:

QMd
relative p

QMd
nonsing p X

evp

ẽvp

with a proper evaluation map ẽvp from QMd
relative p to X. The construction of this

resolution and the moduli space of relative quasimaps is explained in [Oko1512]. It follows
a similar construction of relative Gromov-Witten and Donaldson-Thomas moduli spaces.
The main idea of this construction is to allow the base curve to change in cases, when
the relative point becomes singular. When this happens we replace the relative point by
a chain of non-rigid projective lines, such that the endpoint and all the nodes are not
singular. Similarly, for nodal curves, we do not allow the singularity to be in the node, and
if that happens we instead paste in a chain of non-rigid projective lines.

These moduli spaces have a natural action of maximal torus T, lifting its action from X.
When there are at most two special (relative or marked) points and the original curve is
P1 we extend T by additional torus C×

q , which scales P1 such that the tangent space T0P
1

has character denoted by q. We call the full torus by G = T× C×
q .

2.3. Picture Notations, Virtual Structure and Gluing Operator. In this section
we introduce some notations and discuss some structures and and properties of quasimap
spaces. There are no new results presented in this section, it is more a collection of things we
will use to construct the further studied objects. Most definitions and properties presented
here are presented in full generality in [CFKM1106] or in [Oko1512].

2.3.1. Picture Notation. In the previous section, several different types of quasimap invari-
ants and conditions were introduced. For the quasimaps considered, the domain curve is
fixed and it is important, which conditions we imply at different points. All this informa-
tion is hard to read off a formula. This makes it is convenient to use picture notation,

4. The line bundle ! eC

⇣P
i
p
0
i
+
P

j
qj

⌘
⌦ L

✏

✓
is ample for every rational

✏ > 0, where L✓ = P ⇥Gv C✓, eC is the closure of C \C0, qj are the nodes

of eC, and C✓ is the one dimensional Gv-module defined by the stability
condition ✓.

Figure 2: An example of the domain of a relative quasimap with four marked
points. A chain of rational curves is attached to each point pi, and condition
4 implies that the last component of each chain has a marked point p0

i
. The

map ⇡ collapses each chain to a single point.

Definition 2. A relative quasimap (C, p01, . . . , p
0
m
, P, f, ⇡) is nonsingular at

p 2 C if f(p) is stable in the sense of (4). In this case, f(p) gives a point in
the quiver variety.

Definition 3. The degree of a quasimap (C, p01, . . . , p
0
m
, P, f, ⇡) is the tuple

d = (di)i2Z where di is the degree of the rank vi vector bundle P ⇥Gv Vi ! C.

Theorem 1. ([CKM14] Theorem 7.2.2) The stack QMd
relative p1,...,pm parame-

terizing the data of stable genus zero quasimaps to X is a Deligne-Mumford
stack of finite type with a perfect obstruction theory.

Definition 4. Let QMd
nonsing p1,...,pm be the stack parameterizing the data of

degree d quasimaps to X relative to p1, . . . , pm such that C ⇠= D ⇠= P1.
For such a quasimap, most of the conditions in Definition 1 become trivially
satisfied.

7

Evaluation map to quotient stack

QM is nonsingular if f(p) 2 X

for all but finitely many singular points
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Definition 3. Let QMd

relative,p1,··· ,pm denote the stack parameterizing stable genus zero

quasimaps relative to p1, . . . , pm, (i.e. the data of Definition 1) of fixed degree d.

The following result is proved in [10] (Theorem 7.2.2):

Theorem 8. The stack QMd

relative,p1,··· ,pm is a Deligne-Mumford stack of finite type with

perfect obstruction theory. The stack QMd

relative,p1,··· ,pm is proper over a�ne scheme N0
k,n

(defined in (4)).

Let (C, p01, . . . , p0m, P, f, ⇡) be a quasimap. By definition, f(p0
i
) is a stable element of

R � R⇤ for all i = 1, . . . ,m. In particular, the corresponding GL(k)-orbit [f(p0
i
)] is a

well-defined point in Nk,n.

Definition 4. The evaluation maps evpi : QM
d

relative,p1,··· ,pm ! Nk,n, i = 1, . . . ,m are

defined by

evpi : (C, p01, . . . , p0m, P, f, ⇡) 7! [f(p0
i
)],(19)

where [f(p0
i
)] denotes a point in Nk,n representing the class of GL(k)-orbit of f(p0

i
).

The properness of QMd

relative,p1,··· ,pm overN0
k,n

provides the following important result.

Corollary 1. The evaluation maps evpi, i = 1, . . . ,m are proper.

Proof. Let us consider the following diagram:

Nk,n

QMd

relative,p1,··· ,pm N0
k,n

evpi

By the previous theorem QMd

relative,p1,··· ,pm is proper over N0
k,n

and thus evpi is also
proper. ⇤
Corollary 2. There exist pushforward maps evpi,⇤ : KT(QM

d

relative,p1,...,pm) ! KT(Nk,n)
for i = 1, . . . ,m.

2.3. Nonsingular quasimaps. For distinct points r1, . . . , rs, p1, . . . , pm 2 D we con-
sider an open subset of QMd

relative,p1,...,pm :

QMd
nonsing,r1,··· ,rs
relative,p1,...,pm

⇢ QMd

relative,p1,...,pm ,

consisting of quasimaps such that f(ri) are stable for all i = 1, . . . , s4. Restricting the
obstruction theory of QMd to this open subset we obtain the following corollary.

Corollary 3. The stack QMd
nonsing,r1,··· ,rs
relative,p1,...,pm

is a Deligne-Mumford stack of finite type, with

perfect obstruction theory.

4Note that ri are separate from the relative points pi and thus we may identify ri with points
⇡�1(ri) 2 C, see discussion after Definition 1 above.

Restricting the obstruction theory of QMd
relative p1,...,pm gives a perfect ob-

struction theory on QMd
nonsing p1,...,pm . The symmetrized virtual structure sheaf

on such a space will be denoted by bOd
vir, with the context determining exactly

which quasimap space we are considering.
Given a quasimap (C, p01, . . . , p

0
m
, P, f, ⇡) and p 2 C, there is an evaluation

map to the quotient stack:

evp(C, p
0
1, . . . , p

0
m
, P, f, ⇡) = f(p) 2 [µ�1(0)/Gv]

Given a Schur functor ⌧ in the tautological bundles on X�, let ⌧stack be
the associated K-theory class on [µ�1(0)/Gv]. Then we can define an induced
K-theory class on QMd

relative p1,...,pm :

⌧ |p := ev⇤
p
(⌧stack) (5)

2.4

The action of the torus T on a quiver variety X and of C⇥
q
on P1 induce an

action of T⇥C⇥
q
on quasimaps to X. Let p1 = 0 and p2 = 1 in P1. In what

follows, we will denote zd =
Q

i
z
di
i
and use this notation to keep track of the

degree of quasimaps. The variables zi are known as the Kähler parameters,
and are characters of the Kähler torus

K :=
�
C⇥�|I|

where I is the vertex set of the quiver.
The evaluation maps on relative quasimaps are proper ([Oko15] Section

7.4), and thus we can make the following definition.

Definition 5. The capped vertex function with descendant ⌧ inserted at p1
is the formal power series

V̂(⌧)(z) =
X

d

evp2,⇤( bOd
vir ⌦ ⌧ |p1 ,QM

d
relative p2)z

d
2 KT(X)[[z]]

where bOd
vir is the symmetrized virtual structure sheaf on QMd

relative p2 .

While the evaluation map evp2 on QMd
nonsing p2 is not proper, the restriction

to the C⇥
q
-fixed locus

evp2 :
�
QMd

nonsing p2

�C⇥
q
! X
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, P, f, ⇡) and p 2 C, there is an evaluation

map to the quotient stack:

evp(C, p
0
1, . . . , p

0
m
, P, f, ⇡) = f(p) 2 [µ�1(0)/Gv]

Given a Schur functor ⌧ in the tautological bundles on X�, let ⌧stack be
the associated K-theory class on [µ�1(0)/Gv]. Then we can define an induced
K-theory class on QMd

relative p1,...,pm :

⌧ |p := ev⇤
p
(⌧stack) (5)

2.4

The action of the torus T on a quiver variety X and of C⇥
q
on P1 induce an

action of T⇥C⇥
q
on quasimaps to X. Let p1 = 0 and p2 = 1 in P1. In what

follows, we will denote zd =
Q

i
z
di
i
and use this notation to keep track of the

degree of quasimaps. The variables zi are known as the Kähler parameters,
and are characters of the Kähler torus

K :=
�
C⇥�|I|

where I is the vertex set of the quiver.
The evaluation maps on relative quasimaps are proper ([Oko15] Section

7.4), and thus we can make the following definition.

Definition 5. The capped vertex function with descendant ⌧ inserted at p1
is the formal power series

V̂(⌧)(z) =
X

d

evp2,⇤( bOd
vir ⌦ ⌧ |p1 ,QM

d
relative p2)z

d
2 KT(X)[[z]]

where bOd
vir is the symmetrized virtual structure sheaf on QMd

relative p2 .

While the evaluation map evp2 on QMd
nonsing p2 is not proper, the restriction

to the C⇥
q
-fixed locus

evp2 :
�
QMd

nonsing p2

�C⇥
q
! X

8



Vertex Function
Spaces of quasimaps admit an action of an extra torus       which scales the base       keeping two 
fixed points

P1

Define vertex function with quantum (Novikov) parameters

Define quantum K-theory as a ring with multiplication
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j !=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

[Okounkov]
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The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K

⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C" degenerate to a nodal curve:

C0 = C0,1 [p C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C" in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C" ! X) is flat, which means that we can replace curve counts for any C"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C" by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (di),

z
d =

Y

i2I
z
di
i .

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).

descendent

[Pushkar Smirnov Zeitlin]

Theorem: QK(X) is a commutative associative unital algebra

C⇥
q
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is ([Oko15] Section 7.2). Using equivariant localization, we can thus make
the following definition.

Definition 6. The bare vertex function with descendant ⌧ inserted at p1 is
the formal power series

V(⌧)(z) =
X

d

evp2,⇤( bOd
vir ⌦ ⌧ |p1 ,QM

d
nonsing p2)z

d
2 KT⇥C⇥

q
(X)loc[[z]]

where bOd
vir is the symmetrized virtual structure sheaf on QMd

nonsing p2 .

In what follows, we will omit the superscript (⌧) in the bare vertex func-
tion when ⌧ = 1.

2.5

Definition 7. The capping operator is the formal series

 (z) =
X

d

evp1,⇤ ⌦ evp2,⇤( bOd
vir,QM

d
relative p1
nonsing p2

)zd
2 K

⌦2
T (X)loc[[z]]

where bOd
vir denotes the symmetrized virtual structure sheaf on QMd

relative p1
nonsing p2

The standard pairing on equivariant K-theory

(F ,G) = �(F ⌦ G)

allows us to interpret  (z) as a linear map

�(z) : KT(X)loc[[z]] ! KT(X)loc[[z]]

We have the following theorem:

Theorem 2. ([Oko15] Section 7.4) The capping operator satisfies the equa-
tion

V̂(⌧)(z) =  (z)V(⌧)(z)

9

p1 = 0, p2 = 1
<latexit sha1_base64="4jM5YqHXHjZNySnQQ6dBsCblhjQ=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCCykzVdBNoejGZQX7gM4wZNJMG5rJhCQjDKVu/BU3LhRx61+4829Mp7PQ1nO5cDjnXpJ7QsGo0o7zbS0tr6yurZc2yptb2zu79t5+WyWpxKSFE5bIbogUYZSTlqaaka6QBMUhI51wdDP1Ow9EKprwe50J4sdowGlEMdJGCuxDEbh16Jx5eUER1Ooe5ZHOArviVJ0ccJG4BamAAs3A/vL6CU5jwjVmSKme6wjtj5HUFDMyKXupIgLhERqQnqEcxUT54/yCCTwxSh9GiTTNNczV3xtjFCuVxaGZjJEeqnlvKv7n9VIdXfljykWqCcezh6KUQZ3AaRywTyXBmmWGICyp+SvEQyQR1ia0sgnBnT95kbRrVfe8Wru7qDSuizhK4Agcg1PggkvQALegCVoAg0fwDF7Bm/VkvVjv1sdsdMkqdg7AH1ifPzSHlNQ=</latexit>
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Next, in Section 2.7, (Definition 10), for a tautological bundle ⌧ 2 KT(Nk,n) as above,
we define a deformation which will be referred to as quantum tautological bundle:3

⌧̂(z) = ⌧ +
1X

d>0

⌧dz
d 2 KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multi-
plication by quantum tautological bundles. The following theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 2. The eigenvalues of operators of quantum multiplication by ⌧̂(z) are given

by the values of the corresponding Laurent polynomials ⌧(s1, · · · , sk) evaluated at the

solutions of the following equations:

nQ
j=1

si � aj
~aj � si

= z ~�n/2
kQ

j=1
j 6=i

si~� sj
si � sj~

, i = 1 · · · k.(9)

When z = 0 we obtain the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (9) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[37], [8] for a more detailed outline.
Let us consider a system of n interacting magnetic dipoles (usually refered to as

spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⌦ C2 ⌦ · · ·⌦ C2.(10)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = �
nX

i=1

�i

x
⌦ �i+1

x
+ �i

y
⌦ �i+1

y
+� �i

z
⌦ �i+1

z
,(11)

where � = ~1/2 + ~�1/2 is the parameter of anisotropy and �i

m
are the standard Pauli

matrices acting in the i-th factor of (10). The periodic boundary conditions are imposed
by identifying the first with (n+ 1)-th spin space. Up to a gauge transformation such
identification is given by a diagonal matrix. Modulo an irrelevant scalar this matrix
can be chosen to be in the following form:

✓
z 0
0 1

◆
: C2

(1) ! C2
(n+1).

This free parameter z, defining the periodic boundary condition will play the crucial
role in this paper, namely it is the parameter of deformation in the quantum K-theory.

3To the best of our knowledge, this object is introduced in the present paper for the first time.

Operator of quantum multiplication

from saddle point approximation
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by ⌧̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) ⌧p(z) = lim
q!1

V
(⌧)
p (z)

V
(1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by ⌧̂(z) corresponding to a

fixed point p 2 X
T
.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn�1

wn�1

The stability condition is chosen so that maps Wn�1 ! Vn�1 and Vi ! Vi�1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn�1,wn�1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⇢ . . . ⇢ Vn�1 ⇢ Wn�1, where |Vi| = vi,Wn�1 =
{a1, . . . , awn�1}. The special case when vi = i, wn�1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v0
i = vi+1 � vi�1, for i = 2, . . . , n� 2, v0

n�1 = wn�1 � vn�2, v0
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V
(⌧)
p (z):

V
(⌧)
p (z) =

X

d2Zn
�0

X

(V ,W )2(QMd
nonsing p2

)T

ŝ(�(d)) zdqdeg(P)/2
⌧(V |p1).

2We are using standard quaternionic notations.

k

n

Baxter Q-operator
<latexit sha1_base64="hzg+h/AAhnYyEJatZX9Q22wjxps="></latexit>

Q(z) =
kX

i=1

(�1)izk�i(⇤iV )(z)⌦ Has eigenvalue
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Q(z) =
kY

i=1

(z � si)

Equivariant parameters , 


twist , 

Planck constant 

ai
z

ℏ



QQ-System for A1
V

W
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0 ! V ! W ! V _ ! 0

Short exact sequence of bundles

Eigenvalues of Q-operators
<latexit sha1_base64="L3z5oDbqv26D4WXUeZ0BXnPz+K8="></latexit>

Q(z) =
kX

i=1

(�1)izk�i(⇤iV )(z)~
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eQ(z) =
kX

i=1

(�1)izk�i(⇤iV _)(z)~

Satisfy the QQ-relation
<latexit sha1_base64="z3ptIedohhoF0D7ybgkbu4AWhK8="></latexit>

z eQ(~z)Q(z)� eQ(z)Q(~z) =
nY

i=1

(z � ai)

Which is equivalent to the Bethe equations
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Thus, we have arrived at a nondegenerate Z-twisted Miura (SL(2), q)-oper in the sense

of Section 4: A(z) = gα̌(z)e
Λ(z)
g(z) e, where g(z) = ζQ+(zq)Q+(z)−1.

6. Miura-Plücker q-opers, QQ-system, and Bethe Ansatz equations

In this section, we generalize the results of the previous section to an arbitrary simply
connected simple complex Lie group G. We establish a one-to-one correspondence between
the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the set of nondegenerate
solutions of a system of Bethe Ansatz equations associated to G. A key element of the
construction is an intermediate object between these two sets: the set of nondegenerate
solutions of the so-called QQ-system.

6.1. Miura (G, q)-opers and the QQ-system. First, we construct a one-to-one corre-
spondence between the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the
set of nondegenerate solutions of the QQ-system.

Recall that we have chosen a set of non-zero polynomials {Λi(z)}i=1,...,r, which we will
assume from now on to be monic, and a set of non-zero complex numbers {ζi}i=1,...,r that
correspond to a regular element Z of the maximal torus H ⊂ G by formula (3.1). In this
section, these data are assumed to be fixed. (In the next section, we will also consider
elements w(Z) of the orbit of Z under the action of the Weyl group WG of G and the
corresponding ζi’s.)

From now on, we will assume that our element Z =
∏

i ζ
α̌i
i ∈ H satisfies the following

property:

(6.1)
r∏

i=1

ζ
aij
i /∈ qZ, ∀j = 1, . . . , r .

Since
∏r

i=1 ζ
aij
i $= 1 is a special case of (6.1), this implies that Z is regular semisimple.

Introduce the following system of equations:

(6.2) ξ̃iQ
i
−(z)Q

i
+(qz)− ξiQ

i
−(qz)Q

i
+(z) =

Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji ∏

j<i

[
Qj

+(z)
]−aji

, i = 1, . . . , r,

where

(6.3) ξ̃i = ζi
∏

j>i

ζ
aji
j , ξi = ζ−1

i

∏

j<i

ζ
−aji
j

and we use the ordering of simple roots from the definition of (G, q)-opers.
We call this the QQ-system associated to G and a collection of polynomials Λi(z), i =

1, . . . , r.
A polynomial solution {Qi

+(z), Q
i
−(z)}i=1,...,r of (6.2) is called nondegenerate if it has

the following properties: condition (6.1) holds for the ζi’s; for all i, j, k with i $= j and
aik, ajk $= 0, the zeros of Qj

+(z) and Qj
−(z) are q-distinct from each other and from the

zeros of Λk(z); and the polynomials Qi
+(z) are monic.

Recall Definition 4.3 of nondegenerate Z-twisted Miura-Plücker (G, q)-opers.

Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the
QQ-system (6.2).

QQ-System in General
Consider complex simple Lie algebra  of rank 𝔤 r

Cartan matrix aij = ⟨α̌i, αj⟩
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<latexit sha1_base64="s07K6x6y7nERFp44sMh5Y+nI6kI=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBHahSWRoi6rblxWsA9oY5lMJ+nQmSTOTIQ2dOfGX3HjQhG3/oI7/8ZJm4W2HrhwOOdeZs5xI0alsqxvY2FxaXllNbeWX9/Y3No2d3YbMowFJnUcslC0XCQJowGpK6oYaUWCIO4y0nQHV6nffCBC0jC4VcOIOBz5AfUoRkpLXfPgojgqdTiKpAqhX7wflVLB13OXHNvjrlmwytYEcJ7YGSmADLWu+dXphTjmJFCYISnbthUpJ0FCUczION+JJYkQHiCftDUNECfSSSY5xvBIKz3ohUJPoOBE/X2RIC7lkLt6kyPVl7NeKv7ntWPlnTsJDaJYkQBPH/JiBnXmtBTYo4JgxYaaICyo/ivEfSQQVrq6vC7Bno08TxonZfu0XLmpFKqXWR05sA8OQRHY4AxUwTWogTrA4BE8g1fwZjwZL8a78TFdXTCymz3wB8bnDx2ml5E=</latexit>
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

Oper condition: Restriction of the connection on some Zariski open dense set U
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

takes values in the double Bruhat cell
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
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2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
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Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

q-OPERS, QQ-SYSTEMS, AND BETHE ANSATZ 9

of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

10 P. KOROTEEV AND A.M. ZEITLIN

This we prove 3d-mirror self-duality of the moduli spaces of torsion-free sheaves of rank 1
on C2.

In section 8 we propose the 3d Mirror dual varieties realized as Nakajima varieties as-
sociated to cyclic quiver) to torsion-free sheaves of rank N , which on the level of quantum
equivariant K-theory emerge from A1-quivers with periodicity conditions. We show how
the same method, using finite rank Ar-quivers will allow us to prove the proposed duality.

1.8. Acknowledgements. We thank A. Smirnov for discussions at the early stage of the
project. P.K. is partially supported by AMS Simons grant. A.M.Z. is partially supported
by Simons Collaboration Grant, Award ID: 578501.

2. SL(r + 1) ~-opers and Bethe Ansatz

2.1. Group-theoretic data and notations. Consider SL(r + 1) be the simple algebraic
group of invertible (r + 1) ⇥ (r + 1) matrices over C. We fix a Borel subgroup B� with
unipotent radical N� = [B�, B�] of lower triangular matrices and strictly lower triangular
matrices correspondingly. The maximal torus is the corresponding set of diagonal matrices
H ⇢ B�. Let B+ be the opposite Borel subgroup containing H. Let {↵1, . . . , ↵r} be the
set of positive simple roots for the pair H ⇢ B+. Let {↵̌1, . . . , ↵̌r} be the corresponding
coroots. Then the elements of the Cartan matrix of the Lie algebra sl(r + 1) of G are given
by aij = haj , ↵̌ii. The Lie algebra sl(r + 1) has Chevalley generators {ei, fi, ↵̌i}i=1,...,r, so
that b� = Lie(B�) is generated by the fi’s and the ↵̌i’s and b+ = Lie(B+) is generated
by the ei’s and the ↵̌i’s. In the defining representation ↵̌i ⌘ Eii � Ei+1,i+1, ei ⌘ Ei,i+1,
fi ⌘ Ei�1,i, where Eij stand for the matrix with the only nonzero element 1 at ij-th place.
The fundamental weights !1, . . . !r are defined by the condition h!i, ↵̌ji = �ij .

2.2. Definition of Miura SL(r+1) ~-oper. Let’s consider the automorphism M~ : P1 �!
P1 sending z 7! ~z, where ~ 2 C⇥ is not a root of unity. For any bundle F over P1, we
denote F

~ its pull-back under M~.

Definition 2.1. A meromorphic (GL(r + 1), ~)-oper on P1 is a triple (A, E, L•), where E

is a vector bundle of rank r + 1 and L• is the corresponding complete flag of the vector
bundles,

Lr+1 ⇢ ... ⇢ Li+1 ⇢ Li ⇢ Li�1 ⇢ ... ⇢ L1 = E,

where Lr+1 is a line bundle, so that A 2 HomOU
(E, E

~) satisfies the following conditions:
i) A · Li ⇢ Li�1,
ii) There exists a Zariski open dense subset U ⇢ P1, such that the restriction of the connec-
tion A 2 Hom(L•, L

~
•) to U\M

�1

~ (U), which belongs to GL(r+1) and satisfies the condition
that the induced operator Ā : Li/Li+1 �! L

~
i�1

/L
~
i

is an isomorphism on U \ M
�1

~ (U).
An (SL(r + 1), ~)-oper is a (GL(r + 1), ~)-oper with the condition that det(A) = 1 on
U \ M

�1

~ (U).

Let us choose a trivialization so that Lr+1 is generated by the vector (0, . . . , 0, 1). Then
we obtain that locally the q-oper connection can be represented in the form



(SL(2),q)-Opers
Let G = SL(2) The q-oper definition can be reformulated as

Triple  

 is the  connection 


 is a line subbundle

(E, A, ℒ)
(E, A) (SL(2), q)
ℒ ⊂ E

The induced map        is an isomorphismĀ : ℒ → (E/ℒ)q
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

in a trivialization ℒ = Span(s)

Allow singularities
<latexit sha1_base64="BkzeC/VTaMgGXX3o5XUaNFP8ADk=">AAACCnicbVC5TgMxFPSGK4RrgZLGECElTbSLIqBBCtBQUASJHFI2irzel8SK98D2gpJVahp+hYYChGj5Ajr+BucoIGGkJ41n3rP9xo04k8qyvo3UwuLS8kp6NbO2vrG5ZW7vVGUYCwoVGvJQ1F0igbMAKoopDvVIAPFdDjW3dznya/cgJAuDW9WPoOmTTsDajBKlpZa5L3N3g7zzAF4H8HlukJe68Bl2rvUdHtGHlpm1CtYYeJ7YU5JFU5Rb5pfjhTT2IVCUEykbthWpZkKEYpTDMOPEEiJCe6QDDU0D4oNsJuNVhvhQKx5uh0JXoPBY/T2REF/Kvu/qTp+orpz1RuJ/XiNW7dNmwoIoVhDQyUPtmGMV4lEu2GMCqOJ9TQgVTP8V0y4RhCqdXkaHYM+uPE+qRwX7uFC8KWZLF9M40mgPHaAcstEJKqErVEYVRNEjekav6M14Ml6Md+Nj0poypjO76A+Mzx+88Jhk</latexit>

s(qz) ^A(z)s(z) = ⇤(z)
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4. (SL(N), q)-opers

4.1. Definitions. We now discuss the generalization of (SL(2), q)-opers to SL(N).

Definition 4.1. A (GL(N), q)-oper on P1 is a triple (E, A,L•), where (E, A) is a (GL(N), q)-
connection and L• is a complete flag of subbundles such that A maps Li into L

q
i+1

and the
induced maps Āi : Li/Li�1 �! L

q
i+1

/L
q
i are isomorphisms for i = 1, . . . , N � 1. The triple

is called an SL(N)-oper if (E, A) is an (SL(N), q)-connection.

To make this definition more explicit, consider the determinants

(4.1)
⇣
s(qi�1

z) ^ A(qi�2
z)s(qi�2

z) ^ · · · ^
⇣ i�2Y

j=0

(A(qi�2�j
z)
⌘
s(z)

⌘����
⇤iL

qi�1

i

for i = 1, . . . , N , where s is a local section of L1. Then (E, A,L•) is a q-oper if and only
if at every point, there exists local sections for which each Wi(s)(z) is nonzero. It will be
more convenient to consider determinants with the same zeros as those in (4.1), but with
no q-shifts:

(4.2) Wi(s)(z) =
⇣
s(z) ^ A(z)�1

s(qz) ^ · · · ^
⇣ i�2Y

j=0

(A(qjz)�1

⌘
s(qi�1

z)
⌘����

⇤iLi

.

As in the classical setting, we need to relax these conditions to allow for regular singular-
ities. Fix a collection of L points z1, . . . , zL 6= 0, 1 such that the q

Z-lattices they generate
are pairwise disjoint. We associate a dominant integral weight �m =

P
l
i
m!i to each zm.

Set `
i
m =

Pi
j=1

l
j
m.

Definition 4.2. An (SL(N), q)-oper with regular singularities at the points z1, . . . , zL 6=
0, 1 with weights �1, . . . �L is a meromorphic (SL(N), q)-oper such that each Āi is an

isomorphism except at the points q
�`i�1

m zm, q
�`i�1

m +1
zm, . . . , q

�`im+1
zm for each m, where it

has simple zeros.

znq
�1

znq
�2

zn

q

q
�lkn+1

zn
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Figure 1. Weight of the singularity zn as q-monodromy around the cylin-
der (P1 with 0 and 1 removed).

In order to express the locations of the roots of the Wi(s)’s, it is convenient to introduce
the polynomials

(4.3) ⇤i =
LY

m=1

`im�1Y

j=`i�1
m

(z � q
�j

zm)

q-OPERS, QQ-SYSTEMS, AND BETHE ANSATZ 23

where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),

Add Twists
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Next, we define twisted q-opers; these are q-analogues of the opers with a double pole
singularity considered in Section 2.4. Let Z = diag(⇣, ⇣

�1) be a diagonal matrix with
⇣ 6= ±1.

Definition 3.5. A (SL(2), q)-oper (E, A,L) with regular singularities is called a Z-twisted
q-oper if A is gauge-equivalent to Z

�1.

Finally, we will need the notion of a Miura q-oper. As in the classical case, this is a
quadruple (E, A,L, L̂) where (E, A,L) is a q-oper and L̂ is a line bundle preserved by A.

For the rest of Section 3, (E, A,L) will be a Z-twisted (SL(2), q)-connection with regular
singularities at z1, . . . , zL 6= 0, 1 having (nonnegative) weights k1, . . . kL.

3.2. The quantum Wronskian and the Bethe ansatz. Choose a trivialization for
which the q-connection matrix is Z

�1. Since L is trivial on P1 \ 1, it is generated by a
section

(3.2) s(z) =

✓
Q+(z)
Q�(z)

◆
,

where Q+(z) and Q�(z) are polynomials without common roots. The regular singularity
condition on the q-oper becomes an explicit equation for the quantum Wronskian:

(3.3) ⇣
�1

Q+(z)Q�(qz) � ⇣Q+(qz)Q�(z) = ⇢(z) :=
LY

m=1

km�1Y

j=0

(z � q
�j

zm).

We can assume that ⇢ is monic, since we can multiply s by a nonzero constant. We are also
free to perform a constant diagonal gauge transformation, since this leaves the q-connection
matrix unchanged. Thus, we may assume that Q� is monic, say Q�(z) =

Ql�
i=1

(z � wi).
We now restrict attention to nondegenerate q-opers. This means the q

Z-lattices generated
by the roots of ⇢ and Q� do not overlap, i.e., q

Z
zm \ q

Z
wi = ? for all m and i. Note that

this condition implies that wj 6= qwi for all i, j; if wj = qwi, then (3.3) shows that wi would
be a common zero of ⇢ and Q�.

Evaluating (3.3) at q
�1

z gives ⇢(q�1
z) = ⇣

�1
Q+(q�1

z)Q�(z) � ⇣Q+(z)Q�(q�1
z). If we

divide (3.3) by this equation and evaluate at the zeros of Q�, we obtain the following
constraints:

(3.4)
⇢(wi)

⇢(q�1wi)
= �⇣

�2
Q�(qwi)

Q�(q�1wi)
,

or more explicitly, setting k =
P

km,

(3.5) q
k

LY

m=1

wi � q
1�kmzm

wi � qzm
= �⇣

�2

l�Y

j=1

qwi � wj

q�1wi � wj
.

Rewriting this equation, we obtain the sl2 XXZ Bethe equations (see e.g. [R1]):

(3.6)
LY

m=1

wi � q
1�kmzm

wi � qzm
= �⇣

�2
q
l��k

l�Y

j=1

qwi � wj

wi � qwj
, i = 1, . . . , l�.

We call a solution of the Bethe equations nondegenerate if the q
Z lattices generated by

the wi’s and zm’s are disjoint for all i and m. We have proven the following theorem:

q-Oper condition — SL(2) QQ-system

Z = diag(⇣, ⇣�1)Twist element

Roots of Q+

From QQ-system to XXZ Bethe equations
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),

q-OPERS, QQ-SYSTEMS, AND BETHE ANSATZ 23

where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),
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where the zp’s are mutually q-distinct and non-zero. Setting r =
∑L

p=1 tp, the equations
(5.5) become

(5.7) qr
L∏

p=1

wk − q1−rpzp
wk − qzp

= −ζ2qm
m∏

j=1

qwk − wj

wk − qwj
, k = 1, . . . ,m.

This is a more familiar form of the Bethe Ansatz equations in the XXZ model (see e.g.
[FH1], Section 5.6).

Let us call a solution Q+(z) of the system of Bethe Ansatz equations (5.5) nondegenerate
if Q+(z) is a monic polynomial whose roots are q-distinct from the roots of Λ(z). It is clear
that if {Q+(z), Q−(z)} is a nondegenerate solution of (5.4), then Q+(z) is a nondegenerate
solution of (5.5), and vice versa. The above calculation, combined with Theorem 5.1, proves
the following result.

Theorem 5.2. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the Bethe Ansatz equations (5.5).

It is known that the Bethe Ansatz equations (5.5) parametrize the spectra of the quantum
transfer-matrices in the XXZ model corresponding to Uq′ ŝl2, where q′ = q−2, with the

space of states being the tensor product of finite-dimensional representations of Uq′ ŝl2 (see
e.g. [FH1]). The polynomial Λ(z) is the product of the Drinfeld polynomials of these
representations, up to multiplicative shifts by powers of q. Furthermore, we expect that
the QQ-system (5.4) can be derived from the QQ̃-relation in the Grothendieck ring of the

category O of Uq′ ŝl2 proved in [FH2].

5.3. An approach using the q-Wronskian. In [KSZ], the equations (5.4) and (5.5)
were derived in a slightly different way, and analogous results were also obtained for G =
SL(n). We now make an explicit connection between this approach and the approach of the
preceding section.

Recall Definition 4.2 of (GL(2), q)-opers. Adding the condition that the underlying rank
two vector bundle W can be identified with the trivial line bundle so that det(A) = 1, we
obtain the definition of Miura (SL(2), q)-opers. The oper condition is now expressed as the

existence of a line subbundle L̃ ⊂ W for which Ā : L̃ −→ W/L̃ is an isomorphism on a open
dense subset of P1. Choose any trivialization of W on an open dense subset U , and let s(z)

be a section of W on this subset that generates the line subbundle L̃. The q-connection
A(z) then satisfies the condition

s(qz) ∧A(z)s(z) %= 0

on a Zariski open dense subset V of U . This is the definition of a general meromorphic
(SL(2), q)-oper.

From this perspective, (SL(2), q)-opers with regular singularities are defined in [KSZ] as
follows.

Definition 5.3. An (SL(2), q)-oper with regular singularities determined by Λ(z) is a mero-

morphic (SL(2), q)-oper (E, A, L̃) such that s(qz) ∧A(z)s(z) = Λ(z).

This definition is equivalent to Definition 2.8.
Consider a diagonal matrix Z = diag(ζ, ζ−1) with ζ %= ±1. Recall that an (SL(2), q)-oper

(E, A, L̃) is a Z-twisted q-oper if A is gauge equivalent to Z. (We remark that in [KSZ], a
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4.6. Dependence on the Coxeter element. We end this section with a preliminary re-
sult on the dependence of our results on the specific Coxeter element fixed in the definition
of q-opers. We will see later in Section 7.4 that the QQ-systems obtained from different
choices of Coxeter element are equivalent. Here, we show that if two Coxeter elements c
and c′ are related by a cyclic permutation of their simple reflection factors, then the corre-
sponding spaces of (G, q)-opers with regular singularities are isomorphic via a map defined
in terms of B+(z)-gauge transformations. Moreover, this map preserves nondegeneracy.

Proposition 4.10. Let c and c′ be two Coxeter elements that differ by a cyclic permutation
of their simple reflection factors. Then, there is an isomorphism between the spaces of Z-
twisted Miura (G, q)-opers with regular singularities defined in terms of c and c′ of the form
A(z) !→ fA(qz)A(z)fA(z)−1, where fA ∈ B+(z). This isomorphism takes nondegenerate
opers to nondegenerate opers.

Proof. Without loss of generality, we may assume that c = wi1 . . . wir and c′ = wi2 . . . wirwi1 .
Given

A(z) =
r∏

j=1

gij (z)
α̌ij e

Λij
(z)

gij
(z) eij

,

set

fA(qz) =

(

gi1(z)
α̌i1 e

Λi1
(z)

gi1
(z) ei1

)−1

.

The effect of gauge transformation by fA(z) is to move the q−1-shift of the i1 component
of A to the end of the product, thereby giving the order corresponding to c′. The new yi’s
and Λi’s are the same except for the q−1-shift of yi1 and Λi1 , so it is obvious that the new
q-oper also has regular singularities and is nondegenerate if the original q-oper was. It is
also clear that this map is an isomorphism. !

5. (SL(2), q)-opers and the Bethe Ansatz equations

Our goal is to establish a bijection between the set of nondegenerate Z-twisted Miura-
Plücker (G, q)-opers and the set of nondegenerate solutions of a system of Bethe Ansatz
equations. In this section, we show this for G = SL(2), which corresponds to the XXZ model.
This was already shown in [KSZ], in which a slightly different definition of (SL(2), q)-opers
was used. Below, we explain the connection to the formalism used in [KSZ].

5.1. From non-degenerate (SL(2), q)-opers to the QQ-system. Suppose we have a Z-
twisted nondegenerate Miura (equivalently, a Miura-Plücker) (SL(2), q)-oper. As explained
in Section 4.4, the underlying q-connection may be written in the form

A(z) =

(
g(z) Λ(z)
0 g(z)−1

)
,

and furthermore, there exists v(z) ∈ B+(z) such that

(5.1) A(z) = v(zq)Zv(z)−1, Z =

(
ζ 0
0 ζ−1

)
.

Write

(5.2) v(z) =

(
y(z) 0
0 y(z)−1

)(
1 −Q−(z)

Q+(z)

0 1

)
=

(
y(z) −y(z)Q−(z)

Q+(z)

0 y(z)−1

)
,
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Plücker (G, q)-opers and the set of nondegenerate solutions of a system of Bethe Ansatz
equations. In this section, we show this for G = SL(2), which corresponds to the XXZ model.
This was already shown in [KSZ], in which a slightly different definition of (SL(2), q)-opers
was used. Below, we explain the connection to the formalism used in [KSZ].

5.1. From non-degenerate (SL(2), q)-opers to the QQ-system. Suppose we have a Z-
twisted nondegenerate Miura (equivalently, a Miura-Plücker) (SL(2), q)-oper. As explained
in Section 4.4, the underlying q-connection may be written in the form

A(z) =

(
g(z) Λ(z)
0 g(z)−1

)
,

and furthermore, there exists v(z) ∈ B+(z) such that

(5.1) A(z) = v(zq)Zv(z)−1, Z =

(
ζ 0
0 ζ−1

)
.

Write

(5.2) v(z) =

(
y(z) 0
0 y(z)−1

)(
1 −Q−(z)

Q+(z)

0 1

)
=

(
y(z) −y(z)Q−(z)

Q+(z)

0 y(z)−1

)
,

Z-twisted q-oper condition

The q-oper condition becomes the SL(2) QQ-system
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),

Difference Equation
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

Scalar difference operator

✓
D2

q � T (qz)Dq �
⇤(qz)

⇤(z)

◆
s1 = 0

Miura (SL(2),q)-oper is a quadruple 
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Next, we define twisted q-opers; these are q-analogues of the opers with a double pole
singularity considered in Section 2.4. Let Z = diag(⇣, ⇣

�1) be a diagonal matrix with
⇣ 6= ±1.

Definition 3.5. A (SL(2), q)-oper (E, A,L) with regular singularities is called a Z-twisted
q-oper if A is gauge-equivalent to Z

�1.

Finally, we will need the notion of a Miura q-oper. As in the classical case, this is a
quadruple (E, A,L, L̂) where (E, A,L) is a q-oper and L̂ is a line bundle preserved by A.

For the rest of Section 3, (E, A,L) will be a Z-twisted (SL(2), q)-connection with regular
singularities at z1, . . . , zL 6= 0, 1 having (nonnegative) weights k1, . . . kL.

3.2. The quantum Wronskian and the Bethe ansatz. Choose a trivialization for
which the q-connection matrix is Z

�1. Since L is trivial on P1 \ 1, it is generated by a
section

(3.2) s(z) =

✓
Q+(z)
Q�(z)

◆
,

where Q+(z) and Q�(z) are polynomials without common roots. The regular singularity
condition on the q-oper becomes an explicit equation for the quantum Wronskian:

(3.3) ⇣
�1

Q+(z)Q�(qz) � ⇣Q+(qz)Q�(z) = ⇢(z) :=
LY

m=1

km�1Y

j=0

(z � q
�j

zm).

We can assume that ⇢ is monic, since we can multiply s by a nonzero constant. We are also
free to perform a constant diagonal gauge transformation, since this leaves the q-connection
matrix unchanged. Thus, we may assume that Q� is monic, say Q�(z) =

Ql�
i=1

(z � wi).
We now restrict attention to nondegenerate q-opers. This means the q

Z-lattices generated
by the roots of ⇢ and Q� do not overlap, i.e., q

Z
zm \ q

Z
wi = ? for all m and i. Note that

this condition implies that wj 6= qwi for all i, j; if wj = qwi, then (3.3) shows that wi would
be a common zero of ⇢ and Q�.

Evaluating (3.3) at q
�1

z gives ⇢(q�1
z) = ⇣

�1
Q+(q�1

z)Q�(z) � ⇣Q+(z)Q�(q�1
z). If we

divide (3.3) by this equation and evaluate at the zeros of Q�, we obtain the following
constraints:

(3.4)
⇢(wi)

⇢(q�1wi)
= �⇣

�2
Q�(qwi)

Q�(q�1wi)
,

or more explicitly, setting k =
P

km,

(3.5) q
k

LY

m=1

wi � q
1�kmzm

wi � qzm
= �⇣

�2

l�Y

j=1

qwi � wj

q�1wi � wj
.

Rewriting this equation, we obtain the sl2 XXZ Bethe equations (see e.g. [R1]):

(3.6)
LY

m=1

wi � q
1�kmzm

wi � qzm
= �⇣

�2
q
l��k

l�Y

j=1

qwi � wj

wi � qwj
, i = 1, . . . , l�.

We call a solution of the Bethe equations nondegenerate if the q
Z lattices generated by

the wi’s and zm’s are disjoint for all i and m. We have proven the following theorem:

where
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<latexit sha1_base64="HtEsr2oFHH5oxjV+IP9Yr4BLQg0=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl+AQNoTRylAvwtCLxw3cC6xlpFm6haVpTVJhK7t68at48aCIV7+BN7+NWdeDbj4Q8uP/fx6S5+9FjEplWd9GbmV1bX0jv1nY2t7Z3TP3D1oyjAUmTRyyUHQ8JAmjnDQVVYx0IkFQ4DHS9kY3M7/9QISkIb9T44i4ARpw6lOMlJZ6JhyUJuUrZ0IUcnyBcNLonZbuJ+VpCvrumUWrYqUFl8HOoAiyqvfML6cf4jggXGGGpOzaVqTcBAlFMSPTghNLEiE8QgPS1chRQKSbpJtM4YlW+tAPhT5cwVT9PZGgQMpx4OnOAKmhXPRm4n9eN1b+pZtQHsWKcDx/yI8ZVCGcxQL7VBCs2FgDwoLqv0I8RDoQpcMr6BDsxZWXoXVWsc8r1Ua1WLvO4siDI3AMSsAGF6AGbkEdNAEGj+AZvII348l4Md6Nj3lrzshmDsGfMj5/ALrrmRg=</latexit>

g(z) = ⇣
Q+(qz)

Q+(z)

<latexit sha1_base64="lZZYZ6Ufgru3E3eYB10esOf7BpY="></latexit>

v(z) =

✓
Q+(z)�1 ⇠Q+(qz)Q�(z)� ⇠�1Q+(z)Q�(qz)

0 Q+(z)

◆
2 B+(z)



tRS Hamiltonians

Let 
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⇣
1 0

a(z)/⇢(z) 1

⌘
; this brings the q-connection into the form

(3.10) Â(z) =

✓
0 ⇢(z)

�⇢
�1(z) T (qz)⇢�1(qz)

◆
.

If
⇣

f1
f2

⌘
is a solution of the corresponding di↵erence equation, then we have Dq(f1) = ⇢(z)f2

and Dq(f2) = �⇢
�1(z)f1 +T (qz)⇢�1(qz)f2. Simplifying, we see that f1 is a solution of the

second-order scalar di↵erence equation

(3.11)

✓
D

2

q � T (qz)Dq � ⇢(qz)

⇢(z)

◆
f1 = 0.

Summing up, we have

Theorem 3.7. Nondegenerate Z-twisted (SL(2), q)-opers with regular singularities at the
points z1, . . . , zn 6= 0, 1 with weights k1, . . . kn may be represented by meromorphic q-
connections of the form (3.10) or equivalently, by the second-order scalar di↵erence opera-
tors (3.11).

3.4. Embedding of the tRS model into q-opers. We now explain a connection between
nondegenerate twisted (SL(2), q)-opers and the two particle trigonometric Ruijsenaars-
Schneider model. More precisely, we show that the integrals of motion in the tRS model
arise from nondegenerate twisted opers with two regular singularities of weight one and
with Q� linear.

Consider Z-twisted opers with two regular singularities z±, both of weight one, so ⇢ =
(z � z+)(z � z�). For generic q, the degree of the quantum Wronskian equals deg(Q+) +
deg(Q�). Here, we will only look at q-opers for which deg(Q±) = 1, say Q� = z � p� and
Q+ = c(z � p+). Here, c is a nonzero constant for which the quantum Wronskian is monic;
an easy calculation shows that c = q

�1(⇣�1 � ⇣)�1.
Setting the quantum Wronskian equal to ⇢ gives us the equation

(3.12) z
2 � z

q


⇣ � q⇣

�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p�

�
+

p+p�
q

= (z � z+)(z � z�) .

Comparing powers of z on both sides, we obtain

(3.13)

⇣ � q⇣
�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p� = q(z+ + z�)

p+p�
q

= z+z� .

Upon introducing coordinates ⇣+, ⇣� such that ⇣ = ⇣+/⇣� and viewing ⇣±, p± as the
positions and momenta in the two particle tRS model, we see that (3.13) are just the
trigonometric Ruijsenaars-Schneider equations [KPSZ1705]. In fact, the set of Z-twisted
opers with weight one singularities at z± is just the intersection of two Lagrangian sub-
spaces of the two particle tRS phase space: the subspace determined by (3.13) and the
subspace with the ⇣± fixed constants satisfying ⇣ = ⇣+/⇣�. As we will see in Section 7,
this construction can be generalized to higher rank.
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⇣
1 0

a(z)/⇢(z) 1

⌘
; this brings the q-connection into the form

(3.10) Â(z) =

✓
0 ⇢(z)

�⇢
�1(z) T (qz)⇢�1(qz)

◆
.

If
⇣

f1
f2

⌘
is a solution of the corresponding di↵erence equation, then we have Dq(f1) = ⇢(z)f2

and Dq(f2) = �⇢
�1(z)f1 +T (qz)⇢�1(qz)f2. Simplifying, we see that f1 is a solution of the

second-order scalar di↵erence equation

(3.11)

✓
D

2

q � T (qz)Dq � ⇢(qz)

⇢(z)

◆
f1 = 0.

Summing up, we have

Theorem 3.7. Nondegenerate Z-twisted (SL(2), q)-opers with regular singularities at the
points z1, . . . , zn 6= 0, 1 with weights k1, . . . kn may be represented by meromorphic q-
connections of the form (3.10) or equivalently, by the second-order scalar di↵erence opera-
tors (3.11).

3.4. Embedding of the tRS model into q-opers. We now explain a connection between
nondegenerate twisted (SL(2), q)-opers and the two particle trigonometric Ruijsenaars-
Schneider model. More precisely, we show that the integrals of motion in the tRS model
arise from nondegenerate twisted opers with two regular singularities of weight one and
with Q� linear.

Consider Z-twisted opers with two regular singularities z±, both of weight one, so ⇢ =
(z � z+)(z � z�). For generic q, the degree of the quantum Wronskian equals deg(Q+) +
deg(Q�). Here, we will only look at q-opers for which deg(Q±) = 1, say Q� = z � p� and
Q+ = c(z � p+). Here, c is a nonzero constant for which the quantum Wronskian is monic;
an easy calculation shows that c = q

�1(⇣�1 � ⇣)�1.
Setting the quantum Wronskian equal to ⇢ gives us the equation

(3.12) z
2 � z

q


⇣ � q⇣

�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p�

�
+

p+p�
q

= (z � z+)(z � z�) .

Comparing powers of z on both sides, we obtain

(3.13)

⇣ � q⇣
�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p� = q(z+ + z�)

p+p�
q

= z+z� .
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this construction can be generalized to higher rank.

and

qOper condition yields

tRS Hamiltonians!
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det(z � LtRS) = (z � z+)(z � z�)
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Recover 2-body tRS Hamiltonian from a simple q-Oper
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nX

i=1

Y
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~zi � zj
zi � zj
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[Ti, Tj ] = 0

zi

⌦ =
X

i

dpi
pi

^ dzi
zi
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Ti(z, ~) = ei(a), i = 1, . . . , n
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we arrive at the following set of equations which is equivalent to (23)

ζ1
ζ2

·
v1∏

β !=α

!σ1,α − σ1,β
!σ1,β − σ1,α

·
v2∏

β=1

σ1,α − !
1/2σ2,β

σ2,β − !
1/2σ1,α

= (−1)δ1 ,

ζi
ζi+1

·

vi−1∏

β=1

σi,α − !
1/2σi−1,β

σi−1,β − !
1/2σi,α

·
vi∏

β !=α

!σi,α − σi,β
!σi,β − σi,α

·

vi+1∏

β=1

σi,α − !
1/2σi+1,β

σi+1,β − !
1/2σi,α

= (−1)δi ,(30)

ζn−1

ζn
·

vn−2∏

β=1

σn−1,α − !
1/2σn−2,β

σn−2,β − !
1/2σn−1,α

·

vn−1∏

β !=α

!σn−1,α − σn−1,β

!σn−1,β − σn−1,α
·

wn−1∏

β=1

σn−1,α − !
1/2αβ

αβ − !
1/2σn−1,α

= (−1)δn−1 ,

where in the middle equation i = 2, . . . , n − 2 and δi = vi−1 + vi + vi+1 − 1. The reader
may notice that we use slightly non-standard notation for Bethe equations, in particular,
parameters aβ appear in the last equation i = n − 1 (instead of the first equation). Sign
factors (−1)δi in the right hand sides are artifacts of this choice. However, as we saw in
the previous section this way of writing the equations is more convenient from geometric
point of view. Later we shall see that this framework will be convenient in the derivation
of the Lax matrix of the trigonometric Ruijsenaars-Schneider model.

Meanwhile, if we denote v0 = 0 ,vn = wn−1, σn,β = αβ for β = 1, . . . ,wn−1 then (30)
can be written more uniformly as follows

(31)
ζi
ζi+1

vi−1∏

β=1

σi,α − !
1/2σi−1,β

σi−1,β − !
1/2σi,α

·
vi∏

β !=α

!σi,α − σi,β
!σi,β − σi,α

·

vi+1∏

β=1

σi,α − !
1/2σi+1,β

σi+1,β − !
1/2σi,α

= (−1)δi .

Following (26) let us write eigenvalues Qi(u) of Baxter operators in terms of the new
variables and couplement it with Qn(u), being the generating function for elementary
symmetric functions of equivariant parameters.

(32) Qi(u) =
vi∏

α=1

(u− σi,α) , P (u) = Qn(u) =

wn−1∏

a=1

(u− αa) .

In addition, we define shifted polynomials when their arguments are multiplied by !−
1
2 to

the corresponding power: Q(n)(u) = Qi(!
−n

2 u), etc.
Then Bethe equations (31) can be expressed in terms of these polynomials as follows

Lemma 4.1. The equation for Bethe root σi,α in (31) arises as u = σi,α locus of the
following equation

(33) !
∆i
2

ζi
ζi+1

Q(1)
i−1Q

(−2)
i Q(1)

i+1

Q(−1)
i−1 Q(2)

i Q(−1)
i+1

= −1 ,

where ∆i = vi+1 + vi−1 − 2vi.

Note that sign δi disappeared.
In order to proceed further we need to rewrite (33) in a slightly different way.

Bethe Ansatz Equations: 
∂Y
∂σi

= 0
Energy level equations

ai ei(ai)

Planck’s constant ℏ Coupling constant ℏ

QQ-Systems q-Opers
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P1

Figure 1. The network of dualities between various types of opers and
related integrable systems. Short vertical lines are the quantum/classical
dualities, diagonal arrows show the double scaling limits between the models,
while dashed lines designate the action of 3d mirror symmetry.

where Lr+1 is a line bundle, so that the meromorphic (SL(r + 1), q)-connection A 2
HomOU

(E,E
q), where E

q is the pullback of E under Mq, satisfies the following condi-
tions:
i) A · Li ⇢ Li�1,
ii) There exists an open dense subset U ⇢ X, such that the restriction ofA 2 Hom(L•,L

q
•) to

U\M
�1
q (U) is invertible and satisfies the condition that the induced maps Āi : Li/Li+1 �!

Li�1/Li are isomorphisms on U \ M
�1
q (U).

An (SL(r + 1), q)-oper is a (GL(r + 1), q)-oper with the condition that det(A) = 1 on
U \ M

�1
q (U).

Changing the trivialization of E via g(z) 2 SL(r + 1)(z) changes A(z) by the following
q-gauge transformation

(2.1) A(z) 7! g(qz)A(z)g(z)�1
.

The Miura condition for the (SL(r+1), q)-oper adds another flag L̂• of subbundles which
is preserved by the q-connection A. The Z-twisted condition implies that in the gauge when
A is given by fixed semisimple diagonal element Z 2 H such flag is formed by the standard
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We now specialize to the case of the Coxeter element c. The factorization in Theorem 2.5
yields an explicit version of the Fomin-Zelevinsky factorization for C c̃

0, where c̃ =
∏
λα̌i
i si.

Theorem 2.5 thus implies that C c̃
0 = C c̃ and Gc

0 = Gc, i.e., in this case, the Fomin-Zelevinsky
map (2.9) gives a factorization for the entire double Bruhat cell. In fact, the same argument
applies to show Gw

0 = Gw for any w whose reduced decompositions do not involve repeated
simple reflections. We remark that this statement is apparently known to specialists and
may also be proved using cluster algebra techniques.2

2.6. q-opers and Miura q-opers with regular singularities. Let {Λi(z)}i=1,...,r be a
collection of nonconstant polynomials.

Definition 2.8. A (G, q)-oper with regular singularities determined by {Λi(z)}i=1,...,r is a
q-oper on P1 whose q-connection (2.2) may be written in the form

(2.10) A(z) = n′(z)
∏

i

(Λi(z)
α̌i si)n(z), n(z), n′(z) ∈ N−(z).

Definition 2.9. A Miura (G, q)-oper with regular singularities determined by polynomials
{Λi(z)}i=1,...,r is a Miura (G, q)-oper such that the underlying q-oper has regular singularities
determined by {Λi(z)}i=1,...,r.

According to Corollary 2.4, we can write the q-connection underlying such a Miura (G, q)-
oper in the form

A(z) ∈ N−(z)
∏

i

((Λi(z)
α̌isi)N−(z) ∩ B+(z).

Recall Theorem 2.5. Observe that we can choose liftings si of the simple reflections
wi ∈ WG in such a way that ti = 1 for all i = 1, . . . , r. From now on, we will only consider
such liftings.

The following theorem follows from Theorem 2.5 in the case F = C(z) and gives an
explicit parametrization of generic elements of the above intersection.

Theorem 2.10. Every element of N−(z)
∏

i(Λi(z))α̌isi)N−(z) ∩ B+ may be written in the
form

(2.11) A(z) =
∏

i

gi(z)
α̌i e

Λi(z)
gi(z)

ei , gi(z) ∈ C(z)×.

Corollary 2.11. For every Miura (G, q)-oper with regular singularities determined by the
polynomials {Λi(z)}i=1,...,r, the underlying q-connection can be written in the form (2.11).

3. Z-twisted q-opers and Miura q-opers

Next, we consider a class of (Miura) q-opers that are gauge equivalent to a constant
element of G (as (G, q)-connections). Let Z be an element of the maximal torus H. Since
G is simply connected, we can write

(3.1) Z =
r∏

i=1

ζ α̌i
i , ζi ∈ C

×.

2We thank Greg Muller for a discussion of these matters.
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Thus, we have arrived at a nondegenerate Z-twisted Miura (SL(2), q)-oper in the sense

of Section 4: A(z) = gα̌(z)e
Λ(z)
g(z) e, where g(z) = ζQ+(zq)Q+(z)−1.

6. Miura-Plücker q-opers, QQ-system, and Bethe Ansatz equations

In this section, we generalize the results of the previous section to an arbitrary simply
connected simple complex Lie group G. We establish a one-to-one correspondence between
the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the set of nondegenerate
solutions of a system of Bethe Ansatz equations associated to G. A key element of the
construction is an intermediate object between these two sets: the set of nondegenerate
solutions of the so-called QQ-system.

6.1. Miura (G, q)-opers and the QQ-system. First, we construct a one-to-one corre-
spondence between the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the
set of nondegenerate solutions of the QQ-system.

Recall that we have chosen a set of non-zero polynomials {Λi(z)}i=1,...,r, which we will
assume from now on to be monic, and a set of non-zero complex numbers {ζi}i=1,...,r that
correspond to a regular element Z of the maximal torus H ⊂ G by formula (3.1). In this
section, these data are assumed to be fixed. (In the next section, we will also consider
elements w(Z) of the orbit of Z under the action of the Weyl group WG of G and the
corresponding ζi’s.)

From now on, we will assume that our element Z =
∏

i ζ
α̌i
i ∈ H satisfies the following

property:

(6.1)
r∏

i=1

ζ
aij
i /∈ qZ, ∀j = 1, . . . , r .

Since
∏r

i=1 ζ
aij
i $= 1 is a special case of (6.1), this implies that Z is regular semisimple.

Introduce the following system of equations:

(6.2) ξ̃iQ
i
−(z)Q

i
+(qz)− ξiQ

i
−(qz)Q

i
+(z) =

Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji ∏

j<i

[
Qj

+(z)
]−aji

, i = 1, . . . , r,

where

(6.3) ξ̃i = ζi
∏

j>i

ζ
aji
j , ξi = ζ−1

i

∏

j<i

ζ
−aji
j

and we use the ordering of simple roots from the definition of (G, q)-opers.
We call this the QQ-system associated to G and a collection of polynomials Λi(z), i =

1, . . . , r.
A polynomial solution {Qi

+(z), Q
i
−(z)}i=1,...,r of (6.2) is called nondegenerate if it has

the following properties: condition (6.1) holds for the ζi’s; for all i, j, k with i $= j and
aik, ajk $= 0, the zeros of Qj

+(z) and Qj
−(z) are q-distinct from each other and from the

zeros of Λk(z); and the polynomials Qi
+(z) are monic.

Recall Definition 4.3 of nondegenerate Z-twisted Miura-Plücker (G, q)-opers.

Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the
QQ-system (6.2).
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In this section, we generalize the results of the previous section to an arbitrary simply
connected simple complex Lie group G. We establish a one-to-one correspondence between
the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the set of nondegenerate
solutions of a system of Bethe Ansatz equations associated to G. A key element of the
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solutions of the so-called QQ-system.

6.1. Miura (G, q)-opers and the QQ-system. First, we construct a one-to-one corre-
spondence between the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the
set of nondegenerate solutions of the QQ-system.

Recall that we have chosen a set of non-zero polynomials {Λi(z)}i=1,...,r, which we will
assume from now on to be monic, and a set of non-zero complex numbers {ζi}i=1,...,r that
correspond to a regular element Z of the maximal torus H ⊂ G by formula (3.1). In this
section, these data are assumed to be fixed. (In the next section, we will also consider
elements w(Z) of the orbit of Z under the action of the Weyl group WG of G and the
corresponding ζi’s.)

From now on, we will assume that our element Z =
∏

i ζ
α̌i
i ∈ H satisfies the following

property:

(6.1)
r∏

i=1

ζ
aij
i /∈ qZ, ∀j = 1, . . . , r .

Since
∏r

i=1 ζ
aij
i $= 1 is a special case of (6.1), this implies that Z is regular semisimple.

Introduce the following system of equations:

(6.2) ξ̃iQ
i
−(z)Q

i
+(qz)− ξiQ

i
−(qz)Q

i
+(z) =

Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji ∏

j<i

[
Qj

+(z)
]−aji

, i = 1, . . . , r,

where

(6.3) ξ̃i = ζi
∏

j>i

ζ
aji
j , ξi = ζ−1

i

∏

j<i

ζ
−aji
j

and we use the ordering of simple roots from the definition of (G, q)-opers.
We call this the QQ-system associated to G and a collection of polynomials Λi(z), i =

1, . . . , r.
A polynomial solution {Qi

+(z), Q
i
−(z)}i=1,...,r of (6.2) is called nondegenerate if it has

the following properties: condition (6.1) holds for the ζi’s; for all i, j, k with i $= j and
aik, ajk $= 0, the zeros of Qj

+(z) and Qj
−(z) are q-distinct from each other and from the

zeros of Λk(z); and the polynomials Qi
+(z) are monic.

Recall Definition 4.3 of nondegenerate Z-twisted Miura-Plücker (G, q)-opers.

Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the
QQ-system (6.2).

Proof uses 
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Proof. Let A(z) be a nondegenerate Z-twisted Miura-Plücker (G, q)-oper. According to
Corollary 2.11, it can be written in the form (2.11):

(6.4) A(z) =
∏

i

gi(z)
α̌i e

Λi(z)
gi(z)

ei , gi(z) ∈ C(z)×,

and there exists v(z) ∈ B+(z) such that for all i = 1, . . . , r, the Miura (GL(2), q)-opers
Ai(z) associated to A(z) by formula (4.1) can be written in the form (4.9):

(6.5) Ai(z) = vi(zq)Zivi(z)
−1, i = 1, . . . , r,

where vi(z) = v(z)|Wi and Zi = Z|Wi .
The element v(z) can be expressed in the form

(6.6) v(z) =
r∏

i=1

yi(z)
α̌i

r∏

i=1

e
−

Qi
−(z)

Qi
+(z)

ei
. . . ,

where the dots stand for the exponentials of higher commutator terms in n+ = LieN+ (these
terms will not matter in the computations below) and Qi

+(z), Q
i
−(z) are relatively prime

polynomials with Qi
+(z) monic for each i = 1, . . . , r. Formula (6.5) shows that, without loss

of generality, we can and will assume that each yi(z) is a monic polynomial.
Acting on the two-dimensional subspace Wi introduced in Section 4.1, v(z) has the form

(6.7) v(z)|W i =

(
yi(z) 0

0 y−1
i (z)

∏
j #=i y

−aji
j (z)

)(
1 −

Qi
−(z)

Qi
+(z)

0 1

)

while Z has the form

(6.8) Z|Wi =

(
ζi 0

0 ζ−1
i

∏
j #=i ζ

−aji
j

)
.

We now apply (4.1) and (6.5)to relate the yi(z)’s and Qi
±(z)’s. First, comparing the

diagonal entries on both sides of (6.5) gives formula (3.9):

(6.9) gi(z) = ζi
yi(qz)

yi(z)
.

Second, by comparing the upper triangular entries on both sides of (6.5), we obtain

(6.10) Λi(z)
∏

j>i

gj(z)
−aji =

yi(z)yi(qz)
∏

j #=i

yj(z)
aji



ζi
Qi

−(z)

Qi
+(z)

− ζ−1
i

∏

j #=i

ζ
−aji
j

Qi
−(qz)

Qi
+(qz)



 .

Since Λi(z) and yi(z) are monic polynomials, the nondegeneracy conditions can only be
satisfied if

(6.11) yi(z) = Qi
+(z), i = 1, . . . , r.

Substituting (6.11) into (6.10), we see that the polynomials Qi
+(z), Q

i
−(z), i = 1, . . . , r,

satisfy the system of equations (6.2). Thus, we obtain a map from the set of nondegenerate
Miura (G, q)-opers to the set of nondegenerate solutions of (6.2).

To show that this map is a bijection, we construct its inverse. Suppose that we are given
a nondegenerate solution {Qi

+(z), Q
i
−(z)}i=1,...,r of the system (6.2). The nondegeneracy
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condition implies that the polynomials Qi
+(z) and Qi

−(z) are relatively prime. We then
define A(z) by formula (6.4), where we set

gi(z) = ζi
Qi

+(qz)

Qi
+(z)

,

i.e.

A(z) =
∏

j

[

ζj
Qj

+(qz)

Qj
+(z)

]α̌j

e

Λj (z)Q
j
+(z)

ζjQ
j
+(qz)

ei
(6.12)

=
∏

j

[
ζjQ

j
+(qz)

]α̌j

e

Λj (z)

ζjQ
j
+(qz)Q

j
+(z)

ej[
Qj

+(z)
]−α̌j

.(6.13)

We also set

(6.14) v(z) =
r∏

i=1

yi(z)
α̌i

r∏

i=1

e
−

Q
j
−(z)

Q
j
+(z)

ei
.

Equations (6.5) are satisfied for all i = 1, . . . , r. Using Proposition 4.8, we check that the
nondegeneracy conditions on A(z) are satisfied. Therefore, A(z) defines a nondegenerate
Z-twisted Miura-Plücker (G, q)-oper. This completes the proof. !

Remark 6.2. The system (6.2) depends on our choice of ordering of the simple roots of
G. In Section 7.4 we will show that the systems corresponding to different orderings are
equivalent. !

6.2. Prior work on the QQ-system. The system (6.2) has an interesting history. As
far as we know, for G = SL(2) the corresponding equation (5.4) with Λ(z) = 1 was first
written by Bazhanov, Lukyanov, and Zamolodchikov [BLZ] in their study of the quantum
KdV system. It was then generalized to the case G = SL(3) (also with Λi(z) = 1) in [BHK].
However, in both of these works, the conditions imposed on Qi

±(z) are different from those
considered here; they are not polynomials, but rather entire functions in z with a particular
asymptotic behavior as z → ∞.

For a general simply laced G, the system (6.2) with Λi(z) = 1 is equivalent to a system
that, as far as we know, was first proposed by Masoero, Raimondo, and Valeri in [MRV1],
in their study of (differential) affine opers introduced in [FF]. (For G = SL(n), a Yangian
version of this system is closely related to the system introduced in [BFL+]; see Remark
3.4 of [FH2].) The goal of [MRV1] was to generalize the results of [BLZ] in light of the
conjecture of [FF] (see also [FH2]) linking the spectra of quantum ĝ-KdV system and affine
Lĝ-opers on P1 of a special kind. Here, Lĝ is the affine Kac-Moody algebra that is Langlands
dual to ĝ, i.e., its Cartan matrix is the transpose of that of ĝ. If g is simply laced, then
Lĝ = ĝ. The authors of [MRV1] considered the simplest of the ĝ-opers proposed in [FF],
those corresponding to the ground states of the quantum ĝ-KdV system, and associated
to each of them a solution of a system equivalent to (6.2) with Λi(z) = 1. (This was
subsequently generalized in [MR] by Masoero and Raimondo to the ĝ-opers conjectured
in [FF] to correspond to the excited states of the quantum ĝ-KdV system.) However, the
meaning of this system from the point of view of quantum integrable systems remained
unclear.

[Frenkel, PK, Zeitlin, Sage, 2021, to appear in JEMS]

Theorem: There is a one-to-one correspondence between the set of nondegenerate -twisted -opers on  and the set of 

nondegenerate polynomial solutions of the QQ-system based on 

Z (G, q) ℙ1

̂L𝔤



Cluster Algerbras
[PK, Zeitlin, 2022, to appear in Crelle]
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Straightforward computation leads us to the desired result. Indeed, the inverse of the
Vandermonde matrix reads

(2.18) (V �1
1,...,n)t,j = (�1)t+j

q
�t+1Sn�t,j(⇠1, . . . , ⇠n)

nQ
l 6=j

(⇠j � ⇠l)
,

where
Sk,j(⇠1, . . . , ⇠n) = Sk(⇠1, . . . , ⇠j�1, ⇠j+1, ⇠n) ,

and

Sk(⇠1, . . . , ⇠n) =
nX

1i1···ikn

⇠i1 · · · ⇠ik .

Then we have �
�M

0
1,...,n(0)

�
ij
= ⇠

j�1
i pi .

Thus, according to (2.17)

Tij =
nX

t=1

(�1)t+j
q
�t+1

Sn�t,j(⇠1, . . . , ⇠n)
nQ
l 6=j

(⇠j � ⇠l)
pi =

nQ
m 6=j

�
q
�1

⇠i � ⇠m
�

nQ
l 6=j

(⇠j � ⇠l)
pi ,

which is the Lax matrix for the trigonometric Ruijsenaars-Schneider model. ⇤

2.2.1. The XXZ Bethe Ansatz. Let ⇤j(z) =
QMj

c=1(z � aj,c) and Q
+
j (z) =

QNj

c=1(z � sj,c).

Theorem 2.4 ([FKSZ]). The solutions of the nondegenerate SL(n + 1) QQ-system (2.9)
are in one-to-one correspondence to the solutions of the Bethe Ansatz equations for sl(n+1)
XXZ spin chain:

(2.19)
Q

+
i (qsi,k)

Q
+
i (q

�1si,k)

⇠i

⇠i+1
= �

⇤i(si,k)Q
+
i+1(qsi,k)Q

+
i�1(si,k)

⇤i(q�1si,k)Q
+
i+1(si,k)Q

+
i�1(q

�1si,k)
,

where i = 1, . . . , n; k = 1, . . . , Ni.

2.3. (G, q)-opers on X = P1: tCM Model. The shift operator acts p s(z) = p(z + ✏) so
the quantum Wronskian relations (2.8) can be written

(2.20) det
i,j

h
⇠
j�1
i sr+1�k+i(z + ✏(j � 1))

i
= �kWkVk ,

Along the lines of Theorem 2.2 we can prove the connection between (G, q)-opers on
X = P1 and the QQ-system with additive shifts.

(2.21) ⇠i+1Q
+
i (z + ✏)Q�

i (z) � ⇠iQ
+
i (z)Q

�
i (z + ✏) = (⇠i+1 � ⇠i)⇤i(z)Qi�1(z)Qi+1(z) ,

Theorem 2.5 ([KSZ]). Polynomials {Vk(z)}k=1,...,r give the solution to the QQ-system
(2.21) so that Q

+
j (z) = Vj(z) under certain nondegeneracy conditions. The polynomials

Q
+
j , Q

�
j for j = 1, . . . , n can be presented using quantum Wronskians

(2.22) Q
+
j (z) =

det
⇣
M1,...,j

⌘

det
⇣
V1,...,j

⌘ , Q
�
j (z) =

det
⇣
M1,...,j�1,j+1

⌘

det
⇣
V1,...,j�1,j+1

⌘ ,

For  obtain Lewis Carrol identity G = SL(n)

[Fomin Zelevinsky]For general  obtain relation on generalized minorsG
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Proposition 4.3. Action of the group element on the highest weight vector in

g · ν+ωi
=
∑

w∈W

∆w·ωi,ωi(g)w̃ · ν+ωi
+ . . . ,(4.4)

where dots stand for the vectors, which do not belong to the orbit OW .

The set of generalized minors {∆w·ωi,ωi}w∈W ;i=1,...,r creates a set of coordinates on G/B+,
known as generalized Plücker coordinates. In particular, the set of zeroes of each of ∆w·ωi,ωi

is a uniquely and unambiguously defined hypersurface in G/B. This feature is important
for characterizing Schubert cells as quasi-projective subvarieties of a generalized flag variety,
see [FZ2] for details. We will need the following Corollary.

Corollary 4.4. If the collection {∆w·ωi,ωi(g)}w∈W ;i=1,...,r does not have vanishing elements,
then g ∈ B+w0B+.

One of the first consequences of the formalism of generalized minors is the following
Proposition.

Proposition 4.5. For a W -generic Z-twisted Miura-Plücker (G, q)-oper with q-connection
A(z) = v(qz)Zv(z)−1, where v(z) ∈ B−(z) we have the following relation:

(4.5) ∆w·ωi,ωi(v
−1(z)) = Qw,i

+ (z)

for any w ∈ W .

Proof. Notice that ∆ωi(v−1(z)) = Qi
+(z). Indeed, following (3.19), we have:

v−1(z) =
r∏

i=1

e

Qi
−

(z)

Qi
+(z)

fi
r∏

i=1

[
Qi

+(z)
]α̌i

. . . ,

where dots stand for exponentials of higher commutators of {fi}, we obtain that

v−1(z)ν+ωi
= Qi

+(z)ν
+
ωi

+Qi
−(z)fiν

+
ωi

+ . . . ,(4.6)

where dots stand for the vectors of lower weights.
Now take into account that v(z)w̃−1 = u+(z)vw(z), where u+(z) ∈ N+(z), vw(z) ∈

B−(z). Here vw(z) is the trivializing element for Aw(z) = vw(z)w(Z)v−1
w (z). This means

that ∆ωi(v−1
w (z)) = Qw,i

+ (z), which is obtained by Bäcklund transformations. Therefore,

generalized minors satisfy the relation ∆w·ωi,ωi(v
−1(z)) = Qw,i

+ (z). !

As a corollary we have the following important theorem.

Theorem 4.6. The nondegenerate Z-twisted Miura-Plücker (G, q)-oper is Z-twisted Miura
(G, q)-oper.

Proof. Let us first assume that Z-twisted Miura-Plücker (G, q)-oper is W -generic. Then
it is a Z-twisted Miura (G, q)-oper, namely for its q-connection A(z) we have A(z) =
v(qz)Zv(z)−1, v(z) ∈ B−(z) and∆w·ωi,ωi(v

−1(z)) = Qw,i
+ (z). The minors∆w·ωi,ωi determine

the element v−1(z) entirely following, e.g., Theorem 1.12 of [FZ1]. The corresponding group
element will be still defined if the full QQ-system is non-WG generic. Thus the relation
A(z) = v(qz)Zv(z)−1 is still satisfied since it is defined on the dense subset of W -generic
q-opers. !
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We started this section from the explicit definition of the principal minors by means of
Gaussian decomposition. The following proposition (see Corollary 2.5 in [FZ1]) provides a
necessary and sufficient condition of its existence for a given group element.

Proposition 4.7. An element g ∈ G admits the Gaussian decomposition if and only if
∆ωi(g) "= 0 for any i = 1, . . . , r.

Finally, we end this section with the fundamental relation ([FZ1], Theorem 1.17) between
generalized minors, which we will relate to the QQ-systems.

Proposition 4.8. Let, u, v ∈ W , such that for i ∈ {1, . . . , r}, !(uwi) = !(u) + 1, !(vwi) =
!(v) + 1. Then

(4.7) ∆u·ωi,v·ωi∆uwi·ωi,vwi·ωi −∆uwi·ωi,v·ωi∆u·ωi,vwi·ωi =
∏

j !=i

∆
−aji
u·ωj ,v·ωj ,

4.2. Generalized Wronskians and generalized minors. First, we introduce a notion
of generalized q-Wronskian which, as we will see later is, under certain nondegenracy con-
ditions, is equivalent to the definition of Z-twisted Miura (G, q)-oper.

Let V +
i be the irreducible representation of G with highest weight ωi with respect to B+.

It comes equipped with a line L+
i ⊂ V +

i of highest weight vectors stable under the action of
B+. Let ν+ωi

be a generator of the line L+
i ⊂ V +

i . It is a vector of weight ωi with respect to
our maximal torus H ⊂ B−. The subspace L+

c,i of Vi of weight c−1 · ωi is one-dimensional

and is spanned by s−1ν+ωi
.

Suppose we have a principal G-bundle FG and its B+-reduction FB+ and thus an H-
reduction FH as well. Therefore for each i = 1, . . . , r, the vector bundle

V
+
i = FB+ ×

B+

V +
i = FG ×

G
V +
i

associated to V +
i contains an H-line subbundles

L
+
i = FH ×

H
L+
i , L

+
c,i = FH ×

H
L+
c,i

associated to L+
i , L

+
c,i ⊂ V +

i .
Consider a meromorphic section G of FG. It is a section of FG on U , a Zariski dense set

of P1. Given the fact that can always choose U , so that restriction of FG to U is a trivial
G-bundle, one can express this section as an element G (z) ∈ G(z).

Definition 4.9. The generalized q-Wronskian on P1 is the quadruple (FG,FB+ ,G , Z), where
G is a meromorphic section of a principle bundle FG, FB+ is a reduction of FG to B+,
Z ∈ H = B+/[B+, B+], satisfying the following condition. There exist a Zariski open dense
subset U ⊂ P1 together with the trivialization ıB+ of FB+ , so that for certain {v+i , v

+
c,i}i=1,...,r

which are the sections of line bundles {L+
i ,L

+
c,i}i=1,...,r on U ∩ M−1

q (U) we have G as an
element of G(z) satisfy the following condition:

G
q · v+i = Z · G · v+c,i,(4.8)

where the superscript q stands for the pull-back of the corresponding section with respect
to the map Mq.

Effectively, the definition implies that there exists a Zariski open dense subset U ⊂ P1

together with a trivialization ıB+ of FB+ such that the restriction of G to U ∩ M−1
q (U)

u, v ∈ WG
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albeit written in a slightly different convention and normalization). The condition corre-
sponding to the whole q-Wronskian reads detW (z) = 1, whereas the others can be readily
written using minors of matrix W (z).

5.3. Lewis Carroll Identity. For the type A root system the relation (4.7) reads

(5.8) ∆uωi,vωi∆usiωi,vsiωi −∆usiωi,vωi∆uωi,vsiωi = ∆uωi−1,vωi−1∆uωi+1,vωi+1 ,

which as we have shown previously are equivalent to the corresponding QQ-system. As
was discussed in [KPSZ,KSZ] these equations can be reduced to the following determinant
identity known from the 19th century (Desnanot-Jacobi-Lewis Carroll Identity) using matrix
of the form (5.7).

(5.9) M1
1M

2
i −M1

i M
2
1 = M12

1i M ,

where Ma
b is the determinant of the quantum Wronskian matrix W (z) with the ath row

and bth column removed and M = detW (z).
The identification between (5.8) and (5.9) works as follows. We put u = 1 and v =

s1 · s2 · · · si−1. This way vsi = s1 · · · si is the element which permutes the first the the last
column of matrix M as well as
(5.10)
M = ∆ωi+1,vωi+1 , M1

1 = ∆ωi,vωi , M2
i = ∆siωi,vsiωi , M2

1 = ∆siωi,vωi , M1
i = ∆ωi,vsiωi

In other words, after acting with element v on the columns the Lewis Carroll identity
can be presented in terms of principal minors

(5.11) M̃1
1 M̃

2
2 − M̃1

2 M̃
2
1 = M̃12

12 M̃ ,

where M̃ = M · v.
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Quantum/Classical Duality & 3d Mirror Symmetry

 

 

 

 

Lµ

L�

W = �W

Figure 10: Two Lagrangian submanifolds L
⇢

L,µ
and L

⇢
_

R,⌧
intersect at loci which coincide with the

moduli space of vacua for the corresponding T [U(Q)]⇢
_

⇢ theory. The e↵ective twisted superpotential
W for the XXZ chain and its mirror dual W

_ coincide at those loci.

3d N = 2⇤ AL quiver 4d U(Q) N = 2⇤ SYM
gauge theory on segment with 1

2 BPS b.c.

Moduli space of vacua Intersection of Lagrangians

of a quiver theory L L
⇢

L,µ
\ L

⇢
_

R,⌧

Twisted masses µi Eigenvalues of M
Complexified FI parameters ⌧a Eigenvalues of T

Twisted mass for U(1)✏ R-symmetry Eigenvalue of E
Color and flavor labels Embeddings su(2) ,! u(Q)

(Ni,Mi) ⇢ and ⇢_

Table 1: The duality table between quiver gauge theories and segment compactifications of SYM
theories.

4 Applications to Integrable Systems

In the last couple of decades dualities between various integrable systems have been discussed
extensively [37–39]. The network of dualities between various integrable systems we are about
to present widely generalizes results from the literature. In the main text we have connected
XXZ spin chains and tRS models in a rich circle of dualities. See figure Fig. 11 for a sketch
of the gauge theory origin of these dualities. We can summarize it as follows. A reasonable
starting point is the Lax matrix description of the tRS model: the Hamiltonians of the tRS
model are built from the positions ↵i and the momenta pi

↵
by taking traces of powers of the

Lax matrix T described by (3.20) and (3.21). The Lax matrix and the diagonal matrix M
built out of the ↵i satisfy the flatness condition (3.26), which treats M and T in a symmetric
fashion (up to ⌘ ! �⌘�1).

This suggests a natural question: how do we map into each other the phase spaces of the
original tRS model, and of the S-dual tRS_ model which is defined by a gauge transformation
to a basis where T is diagonal? Our analysis gives a surprising answer to this question: this
LS Lagrangian submanifold in the product of the two phase spaces M ⇥ M

_ coincides with
the moduli space of the T [U(Q)] theory (for Q particles in the tRS model), i.e. with the
solution of Bethe equations for an XXZ SU(Q) spin chain with Q fundamental spins, in
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Figure 17. 3d mirror dual quivers with their labels.

According to the mirror map (6.24) also describes the magnetic frame of X
�

�! where ⇠i

are mapped to ai, ai are sent to xi, and ~ is inverted.

6.3.4. Self-Dual Family Xk,l. Consider quiver variety Xk,l with Kähler parameters ⇣i = ⇠i
⇠i+1

,
equivariant parameters ak, . . . , ak+r�1 and ak+r,1, . . . ak+r,k+1, and scaling weight of the
cotangent fibers is ~ (see top of Fig. 18). On the bottom of Fig. 18 we see quiver variety
X

!

k,l
has equivariant parameters a1,1,, . . . , a1,k+1 and a2 . . . ar as well as Kähler parameters

zi = ⇠i
⇠i+1

and ~! for the weight of the C⇥ action.
Thus we have the following Theorem.

Theorem 6.9. Under 3d mirror symmetry quiver varieties Xk,l and X
!

k,l
are dual to each

other. Moreover

(6.25) KT (Xk,l) ' KT !(X !

k,l
) ,

where the Kähler and equivariant tori parameters of Xk,l and X
!

k,l
are mapped to each other

as follows

⇠j = ak+l,j , j = 1, . . . , k + 1, ⇠k+i = ai , i = 2, . . . , l

ak+l,j = ⇠j , j = 1, . . . , k + 1, ai = ⇠k+i, i = 2, . . . , l ,(6.26)

as well as ~! = ~�1.
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We refer to (�i, p
�

i
) as electric frame for tRS system and (⇢i, p

⇢

i
) as its magnetic frame

we call the map i
em the electric-magnetic map. Notice, that we already established the

isomorphism of Lemma 6.1 in a di↵erent manner, when we discussed the ring KT (FFlL)
in its electric an oper magnetic frames formulation, which coincide with the electric and
magnetic frames of tRS systems. As a consequence we obtain the following statement,
previously discussed in [GK,KPSZ]:

Theorem 6.2. The contangent bundle to the full flag variety is 3d Mirror self-dual.

Remark 6.3. Consider the product of two N -body tRS model phase spaces M ⇥ M
!. Recall

that tRS momenta can be obtained from the XXZ Yang-Yang function for full flag variety:
Y = Y ({si,k}, {ai}, {⇠i}, ~), which depends on Bethe variables, which provides the relation

(6.3) p
⇠

i
= exp

@Y

@⇠i

, p
a

i = exp
@Y

@ai

.

It turns out the Yang-Yang function serves as a generating function on Lagrangian subva-
riety L ⇢ M⇥M

! which is specified by the choice of eigenvalues of tRS Lax matrices T and
M above with the symplectic form

(6.4) ⌦ =
NX

i=1

dp
⇠

i

p
⇠

i

^ d⇠i

⇠i

� dp
a

i

p
a

i

^ dai

ai

vanishes. From this geometric viewpoint transition from M to the dual phase space M
! is

a canonical transformation of type I.

We will describe mirror maps for quiver varieties from this statement by applying de-
generation constraints on Kähler and equivariant parameters. Previously we described the
recursive procedure how to e↵ectively degenerate the electric frame version of the K

q

T
(FFlL)

to produce K
q

T
(Yv,w). The first step in that procedure is to degenerate it to the partial flag

X
� by imposing the relations on Kähler parameters ⇠i. One can use the map i from Lemma

6.1 to produce what we call a ‘true magnetic frame’ for the partial flag. Namely, we have

Proposition 6.4. Consider the electric frame formulation of K
q

T
(X�), i.e. using matrix

T as a Lax matrix. Let Fun�(~Op)(FFlL) be the space of Z-twisted Miura ~-opers corre-
sponding to the quiver FFlL with Z-twist components given by the eigenvalues of the tRS
matrix M and regular singularities given by the equivariant parameters of X

�. Then we
have the following isomorphism:

K
q

T
(X�) ⇠= Fun�(~Op)(FFlL)(6.5)

Proof. Indeed, let us apply map i in the case of M with these degenerate eigenvalues. It
still works, since tRS Hamiltonians do not produce any singularities upon the degenerations
produced by the electric frame for partial flag. Then through Wronskian realization in the
Theorem 3.3 we obtain the corresponding oper space ~Op(FFlL). ⇤

We call the roots of the monomials of section s in the Wronskian formulation of ~Op�(FFlL)
as true magnetic momenta. Then one can interpret the space Fun�(~Op)(FFlL) as the space
of functions on the intersection of two Lagrangian subvarieties in the space with coordinates
(p�

i
, �i)i=1,...,L by setting �i to be equal to the eigenvalues of matrix M for the electric frame

formulation of K
q

T
(X�) and the second is given by the tRS Hamiltonians set to be equal to

the symmetric functions of the parameters of regular singularities.

tRS momenta
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We refer to (�i, p
�

i
) as electric frame for tRS system and (⇢i, p

⇢

i
) as its magnetic frame

we call the map i
em the electric-magnetic map. Notice, that we already established the

isomorphism of Lemma 6.1 in a di↵erent manner, when we discussed the ring KT (FFlL)
in its electric an oper magnetic frames formulation, which coincide with the electric and
magnetic frames of tRS systems. As a consequence we obtain the following statement,
previously discussed in [GK,KPSZ]:

Theorem 6.2. The contangent bundle to the full flag variety is 3d Mirror self-dual.

Remark 6.3. Consider the product of two N -body tRS model phase spaces M ⇥ M
!. Recall

that tRS momenta can be obtained from the XXZ Yang-Yang function for full flag variety:
Y = Y ({si,k}, {ai}, {⇠i}, ~), which depends on Bethe variables, which provides the relation

(6.3) p
⇠

i
= exp

@Y

@⇠i

, p
a

i = exp
@Y

@ai

.

It turns out the Yang-Yang function serves as a generating function on Lagrangian subva-
riety L ⇢ M⇥M

! which is specified by the choice of eigenvalues of tRS Lax matrices T and
M above with the symplectic form

(6.4) ⌦ =
NX

i=1

dp
⇠

i

p
⇠

i

^ d⇠i

⇠i

� dp
a

i

p
a

i

^ dai

ai

vanishes. From this geometric viewpoint transition from M to the dual phase space M
! is

a canonical transformation of type I.

We will describe mirror maps for quiver varieties from this statement by applying de-
generation constraints on Kähler and equivariant parameters. Previously we described the
recursive procedure how to e↵ectively degenerate the electric frame version of the K

q

T
(FFlL)

to produce K
q

T
(Yv,w). The first step in that procedure is to degenerate it to the partial flag

X
� by imposing the relations on Kähler parameters ⇠i. One can use the map i from Lemma

6.1 to produce what we call a ‘true magnetic frame’ for the partial flag. Namely, we have

Proposition 6.4. Consider the electric frame formulation of K
q

T
(X�), i.e. using matrix

T as a Lax matrix. Let Fun�(~Op)(FFlL) be the space of Z-twisted Miura ~-opers corre-
sponding to the quiver FFlL with Z-twist components given by the eigenvalues of the tRS
matrix M and regular singularities given by the equivariant parameters of X

�. Then we
have the following isomorphism:

K
q

T
(X�) ⇠= Fun�(~Op)(FFlL)(6.5)

Proof. Indeed, let us apply map i in the case of M with these degenerate eigenvalues. It
still works, since tRS Hamiltonians do not produce any singularities upon the degenerations
produced by the electric frame for partial flag. Then through Wronskian realization in the
Theorem 3.3 we obtain the corresponding oper space ~Op(FFlL). ⇤

We call the roots of the monomials of section s in the Wronskian formulation of ~Op�(FFlL)
as true magnetic momenta. Then one can interpret the space Fun�(~Op)(FFlL) as the space
of functions on the intersection of two Lagrangian subvarieties in the space with coordinates
(p�

i
, �i)i=1,...,L by setting �i to be equal to the eigenvalues of matrix M for the electric frame

formulation of K
q

T
(X�) and the second is given by the tRS Hamiltonians set to be equal to

the symmetric functions of the parameters of regular singularities.
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Clearly, one would like to construct the similar set of coordinates for general quiver. We
will call such set of coordinates a true magnetic frame. The key to construct it is through
the “dual” system of coordinates which we called electric frame, directly related to tRS
model.

For the electric frame we started from a partial flag quiver. In this case we established
the isomorphism between the algebra of functions on the space of Miura (SL(r + 1), ~)-
opers and the algebra of functions on the intersection of two Lagrangian subvarieties in
the symplectic space with coordinates {⇢i, p

⇢

i
}i=1,...,L. where the first one is determined by

{⇢i = ai}1,...,L and the second one is deterimined by the tRS Hamiltonians set to be equal
to the elementary symmetric functions of {�i = ⇠ki~li}i=1,...,L, where {ki, li} are determined
by partial flag labels. Of course, this is a degeneration of the algebra corresponding the full
flag quiver, where we imposed the condition �i = ~kij�j for some integers kij .

Remarkably, one can reproduce this tRS realization of the equivariant quantum K-theory
by means of the recursive procedure of Section 4 by imposing degeneration conditions on
the {ai} parameters.

Given all this information, we will define a map from electric frame to a true magnetic
frame using the explicit structure of tRS model (as was suggested in Sections 3 and 4 of
[GK]).

6.2. tRS variables, the Mirror Map and the True Magnetic Frame. As we know,
the Lax matrix of the tRS model admits two di↵erent realizations – it can be either matrix
M or matrix T in (4.1). This can be achieved by diagonalization of each of the matrices
so we can pick a g such that M is diagonal with eigenvalues �1, . . . , �N or T diagonal with
eigenvalues ⇢1, . . . , ⇢N . Assume for now that ⇢i 6= ~Z

⇢j for i 6= j. As we discussed above,
upon diagonalization of M , T can be written in the form of Lax matrix: (4.5). Notice
that the same can be done for M matrix, the only di↵erence is that one has to exchange
~ ! ~�1. Let us reformulate this nontrivial relation in the following way.

Consider the symplectic spaces M
e with coordinates (⇢i, p

⇢i) and M
m with coordinates

(�i, p
�i). The tRS relation between M , T matrices produces a Lagrangian subvariety L

e
� ⇢

M described by setting the tRS Hamiltonians to be the symmetric functions of � variables.
On the other hand, it produces a Lagrangian subvariety L

m
⇢ ⇢ M with tRS Hamiltonians

under the transformation ~ �! ~�1.

Lemma 6.1. The transformation of the tRS system with

det(u � T ) =
NY

i=1

(u � ai) , det(u � M) =
NY

i=1

(u � ⇠i) ,

which maps

(6.1) i
em : M �! T , T �! M , ~ �! ~�1

.

corresponds to the following symplectic map

M
e �! M

m : (⇢i, p
⇢

i
) ! (�i, p

�

i
) ,

which produces a one-to-one correspondence between the intersections of the pairs of La-
grangian subvarieties:

(6.2) i
em : {⇢i = ai} \ L

e

⇠
�! {�i = ⇠i} \ L

m

a .

tRS energy relations = XXZ Bethe equations

[PK Gaiotto]

Lµ

L⌧

Eigenvalues of M and Slodowy form on T

Eigenvalues of T and Slodowy form on M

Solutions of Bethe equations — intersection points
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i
) as electric frame for tRS system and (⇢i, p
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we call the map i
em the electric-magnetic map. Notice, that we already established the

isomorphism of Lemma 6.1 in a di↵erent manner, when we discussed the ring KT (FFlL)
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magnetic frames of tRS systems. As a consequence we obtain the following statement,
previously discussed in [GK,KPSZ]:
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Remark 6.3. Consider the product of two N -body tRS model phase spaces M ⇥ M
!. Recall

that tRS momenta can be obtained from the XXZ Yang-Yang function for full flag variety:
Y = Y ({si,k}, {ai}, {⇠i}, ~), which depends on Bethe variables, which provides the relation

(6.3) p
⇠

i
= exp

@Y

@⇠i

, p
a

i = exp
@Y

@ai

.

It turns out the Yang-Yang function serves as a generating function on Lagrangian subva-
riety L ⇢ M⇥M

! which is specified by the choice of eigenvalues of tRS Lax matrices T and
M above with the symplectic form

(6.4) ⌦ =
NX

i=1

dp
⇠

i

p
⇠

i

^ d⇠i

⇠i

� dp
a

i

p
a

i

^ dai

ai

vanishes. From this geometric viewpoint transition from M to the dual phase space M
! is

a canonical transformation of type I.

We will describe mirror maps for quiver varieties from this statement by applying de-
generation constraints on Kähler and equivariant parameters. Previously we described the
recursive procedure how to e↵ectively degenerate the electric frame version of the K

q

T
(FFlL)

to produce K
q

T
(Yv,w). The first step in that procedure is to degenerate it to the partial flag

X
� by imposing the relations on Kähler parameters ⇠i. One can use the map i from Lemma

6.1 to produce what we call a ‘true magnetic frame’ for the partial flag. Namely, we have

Proposition 6.4. Consider the electric frame formulation of K
q

T
(X�), i.e. using matrix

T as a Lax matrix. Let Fun�(~Op)(FFlL) be the space of Z-twisted Miura ~-opers corre-
sponding to the quiver FFlL with Z-twist components given by the eigenvalues of the tRS
matrix M and regular singularities given by the equivariant parameters of X

�. Then we
have the following isomorphism:

K
q

T
(X�) ⇠= Fun�(~Op)(FFlL)(6.5)

Proof. Indeed, let us apply map i in the case of M with these degenerate eigenvalues. It
still works, since tRS Hamiltonians do not produce any singularities upon the degenerations
produced by the electric frame for partial flag. Then through Wronskian realization in the
Theorem 3.3 we obtain the corresponding oper space ~Op(FFlL). ⇤

We call the roots of the monomials of section s in the Wronskian formulation of ~Op�(FFlL)
as true magnetic momenta. Then one can interpret the space Fun�(~Op)(FFlL) as the space
of functions on the intersection of two Lagrangian subvarieties in the space with coordinates
(p�

i
, �i)i=1,...,L by setting �i to be equal to the eigenvalues of matrix M for the electric frame

formulation of K
q

T
(X�) and the second is given by the tRS Hamiltonians set to be equal to

the symmetric functions of the parameters of regular singularities.

Symplectic form

[PK Zeitlin]

3d mirror symmetry

Y = Y !

qMT − TM = u ⊗ vT



q-Langlands Correspondence
Two types of solutions of the qKZ equation:

Analytic in chamber of equivariant parameters — conformal blocks of {ai} Uℏ( ̂g )

Analytic in chamber of quantum parameters (twists) — conformal blocks for deformed W-algebra {ζi} Wq,ℏ(L ̂g )

The q-Langlands correspondence 

[Aganagic Frenkel Okounkov]

XXZ Bethe -oper (G, ℏ)

Uℏ( ̂g ) Wq,ℏ(L ̂g )

q → 1

Equivalence of categories

Dmodκ(BunG) Dmod− 1
mκ

(BunLG)



Merci Beaucoup!


