Quantum Geometry \& Integrable Systems

Peter Koroteev

Talk at Heriot-Watt University 3/06/2023

My Background

- I work in Representation Theory and Algebraic Geometry with applications to Mathematical Physics, in particular, to Integrable Systems
- A theoretical physicist by training, I have now almost completely switched to pure math. Still, I try to write one or two papers per year in hep-th
- The term `Physical Mathematics’ (in a nutshell - using string theory/QFT intuition to prove math theorems) is perhaps the most precise two-word description of my research

Current Research

- Integrable Systems from Algebraic Geometry

Enumerative counts for Nakajima quiver varieties, Opers, Geometric Langlands Correspondence.

- Geometric Representation Theory

Quantization by Branes. Algebras from deformation quantization of some nice families of hyperKähler spaces.

- Physics and Mathematics of $\mathcal{N}=2$ gauge theories and their stringy origins The BPS/CFT correspondence

Early Career Work

- Cosmology
- Nonperturbative aspects of Supersymmetric Quantum Field Theory
- Condensed Matter applications
- Resurgence in QFT

Papers on AG\&Integrability

[arXiv:23xx.xxxxx]
The qDE/IM Correspondence
E. Frenkel, P. Koroteev, A. M. Zeitlin
[arXiv:2208.08031]
The Zoo of Opers and Dualities
P. Koroteev, A. M. Zeitlin
[arXiv:2108.04184] Crelle Journal
q-Opers, QQ-systems, and Bethe Ansatz II:
Generalized Minors
P. Koroteev, A. M. Zeitlin
[arXiv:2105.00588]
3d Mirror Symmetry for Instanton Moduli Spaces
P. Koroteev, A. M. Zeitlin
[arXiv:2007.11786] J. Inst. Math. Jussieu
Toroidal q-Opers
P. Koroteev, A. M. Zeitlin
[arXiv:2002.07344] JEMS
q-Opers, QQ-Systems, and Bethe Ansatz
E. Frenkel, P. Koroteev, D. S. Sage, A. M. Zeitlin
[arXiv:1805.00986] Commun.Math.Phys. 381 (2021) 175
A-type Quiver Varieties and ADHM Moduli Spaces
P. Koroteev
[arXiv:1811.09937] Commun.Math.Phys. 381 (2021) 641
($\mathrm{SL}(\mathrm{N}), q)$-opers, the q-Langlands correspondence, and quantum/classical duality
P. Koroteev, D. S. Sage, A. M. Zeitlin
[arXiv:1802.04463] Math.Res.Lett. 28 (2021) 435 qKZ/tRS Duality via Quantum K-Theoretic Counts P. Koroteev, A. M. Zeitlin
[arXiv:1705.10419] Selecta Math. 27 (2021) 87
Quantum K-theory of Quiver Varieties and Many-Body Systems P. Koroteev, P. P. Pushkar, A. V. Smirnov, A. M. Zeitlin

Classical Integrability

- Classical integrable systems of n d.o.f. have n integrals of motion that are in involution with each other $\left\{H_{i}, H_{j}\right\}_{\mathrm{PB}}=0$.
- Examples include many-body systems like Calogero, Ruijsenaars, DELL, etc $\sum \frac{p_{i}^{2}}{2 m}+\sum_{i \neq j} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}$, Intermediate Long Wave, etc.
- The former can be defined algebraically. The latter admit soliton solutions and are connected to the former. Both were shown to be connected to the Seiberg-Witten solution of $\mathcal{N}=2$ theories and to geometry
- Compact Lagrangians $\left\{H_{i}=E_{i}\right\}$ are isomorphic to tori and evolution in their vicinity is linear (Liouville-Arnold)

Quantum Integrability

Quantum group $U_{\hbar}(\hat{\mathfrak{g}})$ is a noncommutative deformation of the loop group with a nontrivial intertwiner - R-matrix

Yang-Baxter equation

$$
R_{V_{1}, V_{2}}\left(a_{1} / a_{2}\right): V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \rightarrow V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
$$

Integrability comes from transfer matrices which generates Bethe algebra

$$
T_{W}(u)=\operatorname{Tr}_{W(u)}\left((Z \otimes 1) R_{V, W}\right) \quad\left[T_{W}(u), T_{W}\left(u^{\prime}\right)\right]=0
$$

Transfer matrices are usually polynomials in u whose coefficients are the integrals of motion

Classical IS can be quantized using methods of physics - Omega background [Nekrasov], Quantization by branes [Gukov, Witten]

What I cannot create, Why cont $\times \sec t$:pd
Ido not understand.
Know how to solve every problem that has been robed

Boche Amity Prods. Kors 1
2-D Hall accel. 7 mm
Nan linear clisisal Hysieo

I got really fascinated by these ($1+1$)-dimensional models that are solved by the Bethe ansatz and how mysteriously they jump out at you and work and you don't know why. I am trying to understand all this better.

XXZ Spin chain with anisotropies and twisted periodic boundary conditions Planck's constant \hbar
twist eigenvalues z_{i}
equivariant parameters (anisotropies) a_{i}

Bethe Ansatz Equations: $\exp \frac{\partial Y}{\partial \sigma_{i}}=1$

n-particle trigonometric
Ruijsenaars-Schneider model

Coupling constant \hbar
coordinates z_{i}
energy (eigenvalues of Hamiltonians) $e_{i}\left(a_{i}\right)$

Energy level equations

$$
T_{i}(\mathbf{z}, \hbar)=e_{i}(\mathbf{a}), \quad i=1, \ldots, n
$$

The Gauge/Bethe Correspondence

Hilbert space of states of a quantum integrable system is identified with equivariant Ktheory of Nakajima quiver variety
gauge group $\quad G=\prod_{i=1}^{\mathrm{rkg}} U\left(v_{i}\right) \quad\left(v_{1}, v_{2}, \ldots\right)$ encode weight of a representation
Bethe roots s live in the maximal torus of G, by integrating over s we project on Weyl invariant functions thereof

Flavor group $\quad G_{F}=\prod_{i} U\left(w_{i}\right) \quad$ whose maximal torus gives parameters a
Bifundamental matter $\operatorname{Hom}\left(V_{i}, V_{j}\right)$

Quantum K-theory

Classical K-theory of a quiver variety is generated by tensorial polynomials of tautological bundles and their duals

For quantum deformation parameterized by z we study quasimaps from \mathbb{P}^{1} to X

$$
p_{1}=0, p_{2}=\infty
$$

Vertex functions (vortex partition functions) are eigenfunctions of quantum tRS difference operators (Ward identities)!

$$
T_{i}(a) V(z, a)=e_{i}(z) V(z, a) \quad \hbar \rightarrow \hbar^{-1} \quad T_{i}(z) V(z, a)=e_{i}(a) V(z, a)
$$

Saddle point approximation yields Bethe equations

$$
q \rightarrow 1
$$

$$
\prod_{j=1}^{n} \frac{s_{i}-a_{j}}{\hbar a_{j}-s_{i}}=z \hbar^{-n / 2} \prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{s_{i} \hbar-s_{j}}{s_{i}-s_{j} \hbar}, \quad i=1 \cdots k .
$$

The QQ-System

Baxter Q-operator $\quad Q(u)=\sum_{i=1}^{k}(-1)^{k} u^{k-i}\left(\Lambda^{i} V\right)(z) \circledast \quad$ has eigenvalue $\quad Q(u)=\prod_{i=1}^{k}\left(u-s_{i}\right)$
Short exact sequence of bundles for $T^{*} G r_{k, n} \quad 0 \rightarrow V \rightarrow W \rightarrow V^{\vee} \rightarrow 0$
Eigenvalues of operators Q and \widetilde{Q} (generated by V^{\vee}) satisfy the $Q Q$-relation

$$
z \widetilde{Q}(\hbar u) Q(u)-\widetilde{Q}(u) Q(\hbar u)=\prod_{i=1}^{n}\left(u-a_{i}\right) \quad \text { which is equivalent to Bethe equations }
$$

Also:
Relations in equivariant cohomology/K-theory of Nakajima quiver varieties
[Pushkar, Smirnov, Zeitlin] [PK, Pushkar, Smirnov, Zeitlin]
Relations between generalized minors (Jacobi-like identities)
[Fomin, Zelevinski]
Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\hat{g})$
[Frenkel, Hernandez]..
Spectral determinants in the QDE/IM correspondence
[Frenkel, PK, Zeitlin, to appear][Bazhanov, Lukyanov, Zamolodchikov] [Masoero, Raimondo, Valeri]
Describes (q-)oper bundles

(G,q)-Opers

$$
\begin{aligned}
M_{q}: \mathbb{P}^{1} & \rightarrow \mathbb{P}^{1} \\
u & \mapsto q u
\end{aligned}
$$

Principal bundle \mathscr{F}_{G} over \mathbb{P}^{1}
(G, q)-connection A is a meromorphic section of $\operatorname{Hom}_{\mathscr{O}_{\mathbb{p} 1}}\left(\mathscr{F}_{G}, \mathscr{F}_{G}^{q}\right)$
q-gauge transformation $\quad A(u) \mapsto g(q u) A(u) g(u)^{-1} \quad g(u) \in G(\mathbb{C}(u))$
(SL(2),q)-oper
Triple (E, A, \mathscr{L})
(E, A) is the ($S L(2), q$) connection $\mathscr{L} \subset E$ is a line subbundle

The induced map $\bar{A}: \mathscr{L} \rightarrow(E / \mathscr{L})^{q}$ is an isomorphism in a trivialization $\mathscr{L}=\operatorname{Span}(s)$

$$
s(q u) \wedge A(u) s(u) \neq 0
$$

Chose trivialization of $\mathscr{L} \quad s(u)=\binom{Q(u)}{\widetilde{Q}(u)} \quad$ Twist element $\quad Z=\operatorname{diag}\left(\zeta, \zeta^{-1}\right)$
q-Oper condition with $A(u)=Z-\mathrm{SL}(2) \mathrm{QQ}$-system

$$
z \widetilde{Q}(\hbar u) Q(u)-\widetilde{Q}(u) Q(\hbar u)=\prod_{i=1}^{n}\left(u-a_{i}\right)
$$

$$
q=\hbar
$$

q-Opers, QQ-System \& Bethe Ansatz

[Frenkel, PK, Sage, Zeitlin to appear in JEMS]

Theorem: There is a 1-to-1 correspondence between the set of nondegenerate Z-twisted (G, q)-opers on \mathbb{P}^{1} and the set of nondegenerate polynomial solutions of the QQ-system based on $\widehat{L_{\mathfrak{g}}}$

Branes and DAHA Representations

- Authors: Du Pei , Ingmar Saberi , Peter Koroteev, Satoshi Nawata , Sergei Gukov

Geometric representation theory of double affine Hecke algebra (DAHA) in terms of Hitchin moduli space of once-punctured torus

$$
\begin{aligned}
& \text { Spherical } \mathfrak{H}_{2} \text { DAHA } \\
& \text { (line ops in } \mathcal{N}=2^{*} \text { theory) } \\
& q x y-y x=\left(q-q^{-1}\right) z+\text { cyclic }
\end{aligned}
$$

$$
\rho: \pi_{1}\left(C_{p}\right) \rightarrow \mathrm{SL}(2, \mathbb{C})
$$

$x=\operatorname{Tr}(\rho(\mathfrak{m})), y=\operatorname{Tr}(\rho(\mathfrak{l}))$, and $z=\operatorname{Tr}\left(\rho\left(\mathfrak{m l}^{-1}\right)\right)$
Wilson 't Hooft Dyonic

Categorification

$\operatorname{Hom}\left(\mathcal{B}_{c c},-\right): D^{b} \operatorname{ABrane}(X) \longrightarrow D^{b} \boldsymbol{\operatorname { R e p }}\left(\mathscr{O}^{q}(X)\right)$

Teaching at University of California

- I taught math and physics and various levels: undergraduate math courses at UC Berkeley and UC Davis

University of California, Berkeley
Math-55 Discrete Mathematics. 2022
Math-54 Linear Algebra. 202I
Math-53 Multivariable Calculus. 2020
Math-ı42 Elementary Algebraic Topology. 2019
My favorite course!! Math-Hı85 Honors Introduction to Complex Analysis. 2019
Math-185 Introduction to Complex Analysis. 2019
University of California, Davis
MAT-ı25A Real Analysis. Spring quarter 2016
MAT-ı8 Introduction to Abstract Math. Winter quarter 2016
MAT-oı6A Short Calculus. Spring quarter 2017
MAT-25 Advanced Calculus. Winter quarter 2018
MAT-ı6B Calculus. Spring quarter 2018
MAT-2IB Calculus. Fall quarter 2018

Earlier Teaching Activities

- Physics teaching assistant at University of Minnesota
- Mentoring USPhO\&USMO students
- Organizing school olympiads during my undergrad years
- Running Summer school for advanced high school students in STEM fields

Teaching Philosophy

- Creating an adequate grading scheme
- Splitting tests (midterms/quizzes) throughout the term. It has been known by brain researchers that learning is more efficient if the new material is presented in smaller portions and then students are tested immediately after. Last-minute (day/week) learning does not develop long-term memory
- A graduate-level course should be designed to prepare students for their independent research in mathematics. Ideally, after having completed a course, a grad student should be capable of investigating the topic on there own
- You don't know it until you teach it!

Berkeley/Stanford Math Circle

- The Bay Area has a long history of mathematical education with UC Berkeley, UC Davis, USCF, and Stanford around
- There are math circle programs for grade school students
- I teach in Berkeley and Stanford Math circles in both elementary and upper divisions
- I also help with math Olympiads in Berkeley and Stanford
- Olympiads/Circles, etc in Scotland/UK? I am ready to contribute

Some Math Circle Problems

Show that the set of all distinct partitions of n is in bijection with the set of all odd partitions of n

Find the number of ways to put in a row of length \boldsymbol{n} dominoes of sizes 2×1 and 1×1

Can a 10×10 square board be paved with the 4×1 rectangular plates?

