Opers & Integrability

Peter Koroteev

Talk at ISLAND workshop, Highlands, Scotland 6/26/2023



My heart's in t

ne Hig

My heart's in t

ne Hig

N

ands, my heart is not here,

ands, a-chasing the deer;

Chasing the wild-deer, and following the roe,

My heart's in the Highlands, wherever | go




Classical Integrability

Equations of motion Integrability — family of n conserved quantities
which Poisson commute with each other

d o

d_éz{Hl’f} {H;,H;} =0 4,5=1,...,n
Liouville-Arnold Theorem

Compact Lagrangians &£: {H; = E.} are isomorphic to tori

Evolution in the neighborhood of Z is linearized in action/angle variables {/, ¢;}_;

dy; dl;
Y —0

o dat

Action/angle variables are hard to find



Examples

Many-body integrable systems — Calogero, Toda, Ruijsenaars (more on this later)

Continuous integrable models in (1+1)-dimensions: Korteweg-de-Vries, Intermediate Long-Wave,
etc.

They admit soliton solutions. Sectors with N solitons are described by finite N-body integrable
systems

Inverse scattering method — Lax pair data — action/angle variables
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I got really fascinated by these (1+1)-dimensional models that are solved by the Bethe
ansatz and how mysteriously they jump out at you and work and you dont know why.
I am trying to understand all this better:




l. Many-Body Systems

Calogero in 1971 introduced a new integrable system. Moser in 1975 proved its integrability using Lax pair

X o
X 1 XZ n X2
N o

Hown = Z sz Z — )2 M
i=1

J#@

The Calogero-Moser (CM) system has several generalizations: rational CM — frigonometric CM — elliptic CM

V(r) ~ Z (z; _11.],)2 V(z) = Z sinh(a:z-l— z;)2 V(r) =~ p(x] T ajl)

Another relativistic generalization called Ruijsenaars-Schneider (RS) family RS — tRS — eRS

Hey = lim Hrg — nme?

C— OO



Example: tRS Model with 2 Particles

Hamiltonians Symplectic form Integrals of motion
&1 — héo E2 — N1 dp; = d&;
: &1 — &2 b &2 — &1 b2 Z Di Ei ’ Z
1> = p1po

Coordinates &;, momenta p;
coupling constant 7, energies E;

Quantization tRS Momenta are shift operators Eigenvalue Equations

pi&j = &piq’ q€C” pif (&) = f(a&i) T,V = EV



Calogero-Moser Space

Let V be an N-dimensional vector space over C. Let .#’ be the subset of GL(V) X GL(V) X V X V*
consisting of elements (M, T, u,v) such that

AMT — TM = u @ v!
The group GL(N; C) = GL(V) acts on .4’ by conjugation

(M, T,u,v) — (gMg™',gTg™!, gu,vg™")

The quotient of /4’ by the action of GL(V) is called Calogero-Moser space .7/

M, ={A, B,C}/GL(n;C)
Flat connections on punctured torus
o

<> ABAT'B™' = C

[my DAHA paper with Gukov, Nawata, Pei, Saberi
[arXiv:2206.03565] SpringerBriefs (2023)]

Integrable Hamiltonians are ~TrT*

T-Lax matrix


https://arxiv.org/abs/2206.03565

Il. Quantum Integrability

Quantum group U,(g) is a noncommutative deformation of the loop group with

a nontrivial intertwiner — R-matrix
Yang-Baxter equation

RV1,V2 (al/ag) X Vl(CLl) X VQ(CLQ) — VQ(CLQ) X Vl(al)

Integrability comes from transfer matrices
which generates Bethe algebra

Tw(u) =Trww((Z ®1)Ry,w) Ty (u), Tw (u')] = 0

Transfer matrices are usually polynomials in u whose
coefficients are the integrals of motion

Classical IS can be quantized using methods of physics — Omega background [Nekrasov],
Quantization by branes [Gukov, Witten]



Quantum Classical

21 : j v

<i+1

SU(n) XXZ spin chain on n sites w/ anisotropies 3 n-particle trigonometric

and twisted periodic boundary conditions " Ruijsenaars-Schneider model
Planck’s constant 1 ~'5 Coupling constant A

twist eigenvalues Z; ' coordinates 2;

equivariant parameters (anisotropies) a; energy (eigenvalues of Hamilfonians)  €;(a;)

aY ! Energy level equations

Bethe Ansatz Equations: €XP E =1 ' T, (Z h) — 61( ) 1 =1,.

)



The Quantum/Classical Duality

Why do we expect quantum and classical models to be related to each other?

1) Enumerative Algebraic Geometry Motivated by Physics
2) Geometric Langlands — Opers



[Nekrasov Shatashvili]
[Aganagic Okounkov]

The Gauge/Bethe Correspondence

W,,_

Hilbert space of states of a quantum integrable system is identified with equivariant K- 1
theory of Nakajima quiver variety ‘

V1 V9 oo Vp_1

rkg
gauge group G = ][ U(wv) (v{, V,, ...) encode weight of a representation
1=1

Bethe roots s live in the maximal torus of G, by integrating over s we project on Weyl invariant
functions thereof

Flavor group Gp = H U(w;) whose maximal torus gives parameters a

Bifundamental matter Hom(V;, V)



Quantum K-theory

Classical K-theory of a quiver variety is generated by tensorial polynomials of tautological
bundles and their duals

2
For quantum deformation parameterized by 7 we study quasimaps from P! to X l 1

— — X /0 N\ eI
pl_ov P2 — O Cq <© f » X 2
ai,d

Vertex functions are eigenfunctions of quantum tRS difference operators in equivariant

parameters and in twist parameters!

1 [PK Zeitlin [arXiv:1802.04463]
Ti(a)V(z,a) = ei(2)V (2, a) h—h T,(2)V(z,a) = e;(a)V(z,a) Math.Res.Lett. 28 (2021) 435]

3d Mirror symmetry

Saddle point approximation yields Bethe equations

- ha; . -
qg—1 ’ ji


https://arxiv.org/abs/1802.04463
spires-open-journal://

Bethe Equations for 7’ >l<Grkﬂ

[Pushkar Smirnov Zertlin]

V(T) k
O T f tum multiplicati m»(2) = lim — (2)
perator of quantum multiplication p i1y )

n

Theorem  The eigenvalues of operators of quantum multiplication by 7(z) are given
by the values of the corresponding Laurent polynomials 7(s1,- -, sk) evaluated at the
solutions of the following equations:

=S —a; h_n/zk sih — s ST L
11 o [[ — ~, i=1-k Equivariant parameters a,
j=1 1y — 3 j=1 5i = 9 .
ji twist Z,
Planck constant 7
k k

Baxter Q-operator  Q(u) =) ()" (AV)(2)@ has eigenvalue Qu) = | [(u - s:)



The QQ-System for A

Short exact sequence of bundles

0=V —->W—=VY—=0

Eigenvalues of Q-operators

Satisfy the QQ-relation
QUQw) ~ QuwQ(h) = [[(w ;)

equivalent to the XXZ Bethe equations



lll. (G,g)-Connection

.l 1
Mg 1" =g <© G-simple simply-connected complex Lie group

U — qu

Consider vector bundle & over P!

(G, g)-connection A is a meromorphic section of Hom, (F, FL)

Locally g-gauge transformation of the connection

A(u) = glqu)A(u)g(u) ™ g(u) € G(C(u))

Compare with (standard) gauge transformations

Oy + A(u) = g(u)(0u + A(u))g(u) ™ g(u) € g(u)



(G,q)-Opers

A meromorphic (G,q)-oper onP!isa triple (Fg, A, Fp_)
A is a meromorphic (G, g)-connection

Fp_isareductionof Fg to B_

Oper condition: Restriction of the connection on some Zariski open dense set U
A:Fg — T} to UﬂMq_l(U)

takes values in the double Bruhat cell

Coxeter element: ¢ = ||, s;

B_(ClUN MY (U)))eB_(ClU N MY U)))

Locally Aluw) = n'(u (u @Si nlu



(SL(2),q)-Opers

Let G = SL(2) The g-oper definition can be formulated as

Triple (E,A, <)
(E,A) is the (SL(2), g) connection
< C E is a line subbundle

The induced map A : & — (E/Z)? is an isomorphism

in a trivialization &£ = Span(s)

s(qu) N A(u)s(u) #£ 0

Add Twists = g(qu)A(u)g(u) ™ c H C H(u) C G(u)



g-Opers, QQ-System & Bethe Ansatz

Chose trivialization of £ s(u) = (8%3) Twist element 7 — diag(C,C_l)

gq-Oper condition — SL(2) QQ-system

s(qu) A A(u)s(u) = Au) > (Q-(W)Q4(qu) — (T'Q-(qu)Qy(u) = A(u)

QQ-system to XXZ Bethe equations

.

m Hsz’_qlal_ quHqsi_Sj
H U—Sk 1 S; — Q Si — 4S;
k=1



q-Miura Transformation

Miura q-oper: (E, A, <, ff), where (E,A, ) is a g-oper and L is preserved by g-connection A

Alu) = (9(“) /(\(U ) Z-twisted g-oper condition  A(u) = v(qu)Zv(u) " 7 = diag(¢, ¢ )
0 g(u)?!
_ Q4 (qu) _ (Q+(u) CQ-(u)Q+(qu) — (T'Q—(u)Q+(qu) ’
g(u) = (LT o) = (44 0y O e b
The q-oper condition becomes the SL(2) QQ-system Q- (u)Q+(qu) — ¢ Q—(qu)Q (u) = A(u)

Difference Equation Dq(s) = As

A(qu
Scalar difference operator (Dg — T'(qu)D, (4 )> s1 =20



tRS Hamiltonians

Recover 2-body tRS Hamiltonian from an (SL(2),q)-Oper

Q+(u)  (Qi(qu) \ _
(G700 (G ) = A

qOper condition vyields
tRS Hamiltonians! det(u —T) = (v — a4 )(u —a-)



Network of Dualities

Twisted
(G, q)-Opers

(tRS)

I

XXZ
C; xC;

Trig. twisted s Twisted
G-Opers (G, €)-Opers
(rRS) (tCM)

I (Y (T L liik . Cpx(CX I

tGaudin \ / XXX

C, x C,
Rat. twisted
G-Opers
rCM

|

rGaudin




q-Opers and g-Langlands

[Frenkel, PK, Zeitlin, Sage, JEMS 2023]

Miura (G,q)-oper with singularities A(u) =1 (Cz- CZ;’Z ((q;;)> | exp Ai(u)e-
"

1

Theorem: There is a 1-to-1 correspondence between the set of nondegenerate Z-twisted
1

(G, g)-opers on P" and the set of nondegenerate polynomial solutions of the QQ-system

based on Lg



Energy Levels of
Space of Solutions tRS Model (Type A)

of LG QQ-System
Space of
/ (G,q)-OperS

Quantum Equivariant
\ K-theory of Nakajima
Space of Solutions variety X

of G XXZ
Bethe Equations

Space of (G,q)-
Generalized
Minors



IW. Cluster Algerbras

[PK, Zeitlin, Crelle (2023)]

The QQ-system  &i+1 Q" (U)Ql(u +e) —&QY (u+ G)Qi(u) = Ai(u) Tl(u + €) Tl(u)

For G = SL(n) obtain Lewis Carrol (Desnanot-Jacobi-Trudi) identity MIM2 — MIM? = MM
[ [ 1

For general G obtain relation on generalized minors A¥ (v(u)) = Q% (u) [Fomin Zelevinsky]
Au-wi,v-wi Auwi-wi,vwi-wi o Auwi-wi,v-wi U-Wi , DW; Wy — H Au-wj,v-wja
JFe

u,ve Wgq



Number Theory Applications

Consider cohomological vertex (J-function)

[Smirnov Varchenko]

<
o0 . k
V(z) = caz' € Q] i 1= / w l
d=0 QI\/Id(X,OO) n
a1, d2

For a prime p construct a sequence of polynomials 7,(z) € Z|z] from the superpotnential which converges
to the vertex in the p-adic norm |
lim T,(z) = V(z) T,(2) = coeff Laps 1 (CDS(x, z))

S— OO

Some properties

Dwork identity — mod p



