Quantum K-theory \&Integrability

Peter Koroteev

Talk at workshop GLSM@30 5/22/2023

Enumerative AG and Integrability

String theory have been suggesting for a long time that there is a strong connection between geometry and integrability

Study of Gromov-Witten invariants was influenced by progress in string theory. For a symplectic manifold X GW invariants appear in the expansion of quantum multiplication in quantum cohomology of X.

A particular attention is given to genus zero GW invariants.

In this talk, we study equivariant quantum K-theory of a large family of varieties and its connection to integrable systems as well as some applications to representation theory and number theory

Classical Integrability

Equations of motion
Integrability - family of n conserved quantities which Poisson commute with each other

$$
\frac{d f}{d t}=\left\{H_{1}, f\right\}
$$

$$
\left\{H_{i}, H_{j}\right\}=0 \quad i, j=1, \ldots, n
$$

Liouville-Arnold Theorem

Compact Lagrangians $\mathscr{L}:\left\{H_{i}=E_{i}\right\}$ are isomorphic to tori
Evolution in the neighborhood of \mathscr{L} is linearized in action/angle variables $\left\{I_{i}, \varphi_{i}\right\}_{i=1}^{n}$

$$
\frac{d \varphi_{i}}{d t}=\omega_{i}, \quad \frac{d I_{i}}{d t}=0
$$

Action/angle variables are hard to find

Examples

Many-body integrable systems - Calogero, Toda, Ruijsenaars (more on this later)

Continuous integrable models in (1+1)-dimensions: Korteweg-de-Vries, Intermediate Long-Wave, etc.

$$
u_{t}=6 u u_{x}-u_{x x x}
$$

They admit soliton solutions. Sectors with N solitons are described by finite N-body integrable systems

Inverse scattering method - Lax pair data \rightarrow action/angle variables

What I cannot create, Why cont $\times \sec t$:pd
Ido not understand.
Know how to solve every problem that has been robed

Boche Amity Prods. Kors 1
2-D Hall accel. 7 mm
Nan linear clisisal Hysieo

I got really fascinated by these ($1+1$)-dimensional models that are solved by the Bethe ansatz and how mysteriously they jump out at you and work and you don't know why. I am trying to understand all this better.

Literature

[arXiv:23xx.xxxxx]
The qDE/IM Correspondence
E. Frenkel, P. Koroteev, A. M. Zeitlin
[arXiv:2208.08031]
The Zoo of Opers and Dualities
P. Koroteev, A. M. Zeitlin
[arXiv:2108.04184] J.Reine Angew.Math. (Crelle) (2023) 271
q-Opers, QQ-systems, and Bethe Ansatz II:
Generalized Minors
P. Koroteev, A. M. Zeitlin
[arXiv:2105.00588]
3d Mirror Symmetry for Instanton Moduli Spaces
P. Koroteev, A. M. Zeitlin
[arXiv:2007.11786] J.Inst.Math.Jussieu 22 (2023) 581
Toroidal q-Opers
P. Koroteev, A. M. Zeitlin
[arXiv:2002.07344] J.European Math. Soc. (2023)
q-Opers, QQ-Systems, and Bethe Ansatz
E. Frenkel, P. Koroteev, D. S. Sage, A. M. Zeitlin
[arXiv:1805.00986] Commun.Math.Phys. 381 (2021) 175
A-type Quiver Varieties and ADHM Moduli Spaces
P. Koroteev
[arXiv:1811.09937] Commun.Math.Phys. 381 (2021) 641
($\mathrm{SL}(\mathbf{N}), \mathbf{q})$-opers, the \mathbf{q}-Langlands correspondence, and quantum/classical duality
P. Koroteev, D. S. Sage, A. M. Zeitlin
[arXiv:1802.04463] Math.Res.Lett. 28 (2021) 435 qKZ/tRS Duality via Quantum K-Theoretic Counts P. Koroteev, A. M. Zeitlin
[arXiv:1705.10419] Selecta Math. 27 (2021) 87
Quantum K-theory of Quiver Varieties and Many-Body Systems P. Koroteev, P. P. Pushkar, A. V. Smirnov, A. M. Zeitlin

I. Many-Body Systems

Calogero in 1971 introduced a new integrable system. Moser in 1975 proved its integrability using Lax pair

$$
H_{C M}=\sum_{i=1}^{n} \frac{p_{i}^{2}}{2 m}+g^{2} \sum_{j \neq i} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}
$$

The Calogero-Moser (CM) system has several generalizations: rational CM \rightarrow trigonometric $C M \rightarrow$ elliptic $C M$

$$
V(x) \simeq \sum \frac{1}{\left(x_{i}-x_{j}\right)^{2}} \quad V(x) \simeq \sum \frac{1}{\sinh \left(x_{i}-x_{j}\right)^{2}} \quad V(x) \simeq \wp\left(x_{j}-x_{i}\right)
$$

Another relativistic generalization called Ruijsenaars-Schneider (RS) family

$$
\begin{gathered}
\mathrm{rRS} \rightarrow \mathrm{tRS} \rightarrow \mathrm{eRS} \\
H_{C M}=\lim _{c \rightarrow \infty} H_{R S}-n m c^{2}
\end{gathered}
$$

Example: tRS Model with 2 Particles

Hamiltonians

$$
T_{1}=\frac{\xi_{1}-t \xi_{2}}{\xi_{1}-\xi_{2}} p_{1}+\frac{\xi_{2}-t \xi_{1}}{\xi_{2}-\xi_{1}} p_{2}
$$

$$
T_{2}=p_{1} p_{2}
$$

Coordinates ξ_{i}, momenta p_{i} coupling constant t, energies E_{i}

Quantization

$$
p_{i} \xi_{j}=\xi_{j} p_{i} q^{\delta_{i j}} \quad q \in \mathbb{C}^{\times}
$$

Symplectic form

$$
\Omega=\sum_{i} \frac{d p_{i}}{p_{i}} \wedge \frac{d \xi_{i}}{\xi_{i}}
$$

Integrals of motion

$$
T_{i}=E_{i}
$$

tRS Momenta are shift operators

$$
p_{i} f\left(\xi_{i}\right)=f\left(q \xi_{i}\right)
$$

Eigenvalue Equations

$$
T_{i} V=E_{i} V
$$

Calogero-Moser Space

Let V be an N -dimensional vector space over \mathbb{C}. Let \mathscr{M}^{\prime} be the subset of $G L(V) \times G L(V) \times V \times V^{*}$ consisting of elements (M, T, u, v) such that

$$
q M T-T M=u \otimes v^{T}
$$

The group $G L(N ; \mathbb{C})=G L(V)$ acts on \mathscr{M}^{\prime} by conjugation

$$
(M, T, u, v) \mapsto\left(g M g^{-1}, g T g^{-1}, g u, v g^{-1}\right)
$$

The quotient of \mathscr{M}^{\prime} by the action of $G L(V)$ is called Calogero-Moser space \mathscr{M}

Flat connections on punctured torus

Integrable Hamiltonians are $\sim \operatorname{Tr} T^{k}$ T-Lax matrix

$$
\mathcal{M}_{n}=\{A, B, C\} / G L(n ; \mathbb{C})
$$

$$
A B A^{-1} B^{-1}=C
$$

II. Quantum Integrability

Let \mathfrak{g} Lie algebra

$$
\hat{\mathfrak{g}}=\mathfrak{g}(t) \text { loop algebra (Laurent poly valued in g) }
$$

Evaluation modules form a tensor category of $\hat{\mathfrak{g}}$

$$
V_{1}\left(a_{1}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

V_{i} are representations of $\mathfrak{g} \quad a_{i}$ are special values of spectral parameter t

Quantum group is a noncommutative deformation $U_{\hbar}(\hat{\mathfrak{g}})$
with a nontrivial intertwiner - R-matrix

$$
R_{V_{1}, V_{2}}\left(a_{1} / a_{2}\right): V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \rightarrow V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
$$

satisfying Yang-Baxter equation

Transfer Matrix

The intertwiner represents an interaction vertex in integrable models. The quantum group is generated by matrix elements of R

Integrability comes from transfer matrices
which generates Bethe algebra

$$
\begin{gathered}
T_{W}(u)=\operatorname{Tr}_{W(u)}\left((Z \otimes 1) R_{V, W}\right) \\
{\left[T_{W}(u), T_{W}\left(u^{\prime}\right)\right]=0}
\end{gathered}
$$

Transfer matrices are usually polynomials in u whose coefficients are the integrals of motion

The XXZ Spin Chain

$$
\mathfrak{g}=\mathfrak{s l}_{2} \quad \text { spin- } 1 / 2 \text { chain on } n \text { sites } \quad V=\mathbb{C}^{2}\left(a_{1}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

Consider Knizhnik-Zamolodchikov (qKZ) difference equation

$$
\Psi\left(q a_{1}, \ldots a_{n}\right)=(Z \otimes 1 \otimes \cdots \otimes 1) R_{V_{1}, V_{n}} \cdots R_{V_{1}, V_{2}} \Psi\left(a_{1}, \ldots a_{n}\right)
$$

where

$$
\Psi\left(a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

In the limit $q \rightarrow 1$
$q K Z$ becomes an eigenvalue problem

Solutions of qKZ

Schematic solution
indexed by physical space

$$
\Psi_{\alpha}=\int \frac{d \mathbf{x}}{\mathbf{x}} f_{\alpha}(\mathbf{x}, a) \mathcal{K}(\underbrace{\mathbf{x}, z, a, q)}_{\text {representation }}
$$

$\frac{\partial S}{\partial x_{i}}=0 \quad$ Bethe equations for Bethe roots x

$$
\log \mathcal{K}(\mathbf{x}, z, a, q) \underset{q \rightarrow 1}{\sim} \frac{S(\mathbf{x}, z, a)}{\log q}
$$

$a_{i} \frac{\partial S}{\partial a_{i}}=\Lambda_{i}$
Eigenvalues of $q K Z$ operators

The map $\quad \alpha \mapsto f_{\alpha}\left(\mathbf{x}^{*}\right) \quad$ provides diagonalization
So we need to find 'off shell' Bethe eigenfunctions $\quad f_{\alpha}(\mathbf{x}, a)$

The Nekrasov-Shatashvili Correspondence

The answer will come from enumerative algebraic geometry inspired by physics

Hilbert space of states
of quantum integrable system

Equivariant K-theory of
Nakajima quiver varitey
gauge group $\quad G=\prod_{i=1}^{\mathrm{rkg}} U\left(v_{i}\right) \quad\left(v_{1}, v_{2}, \ldots\right)$ encode weight of rep α

Bethe roots x live in the maximal torus of G, by integrating over x we project on Weyl invariant functions of Bethe roots

Flavor group $\quad G_{F}=\prod_{i} U\left(w_{i}\right) \quad$ whose maximal torus gives parameters a
Bifundamental matter $\operatorname{Hom}\left(V_{i}, V_{j}\right)$

Quantum K-theory of X

The quiver variety $X=\{$ Matter fields $\} /$ gauge group
X is a module of a quantum group in the Nakajima correspondence construction

We will be computing integrals in K-theory of the space of quasimaps $f: \mathcal{C}--->X$ weighted by degree $\mathbf{z}^{\operatorname{deg} f}$ subject to equivariant action on the base nodal curve \mathbb{C}_{q}^{\times}

Nakajima Quiver Varieties

$\operatorname{Rep}(\mathbf{v}, \mathbf{w})$ - linear space of quiver reps

Moment map

Quiver variety
Automorphism group
Maximal torus (a)

$$
\mu: T^{*} \operatorname{Rep}(\mathbf{v}, \mathbf{w}) \rightarrow \operatorname{Lie}(G)^{*}
$$

$$
X=\mu^{-1}(0) / /{ }_{\theta} G=\mu^{-1}(0)_{s s} / G
$$

$$
G=\prod G L\left(\mathbf{v}_{i}\right)
$$

$$
\operatorname{Aut}(X)=\prod G L\left(Q_{i j}\right) \times \prod G L\left(W_{i}\right) \times \mathbb{C}_{\hbar}^{\times}
$$

$$
T=\mathbb{T}(\operatorname{Aut}(X))
$$

Tensorial polynomials of tautological bundles $\mathrm{Vi}_{\mathrm{i}}, \mathrm{Wi}$ and their duals generate classical T equivariant K-theory ring of X

$$
\begin{array}{cc}
\text { Ex: } T^{*} G r_{k, n} & \tau(V)=V^{\otimes 2}-\Lambda^{3} V^{*} \\
\mathbf{v}_{1}=k, \mathbf{w}_{1}=n & \tau\left(s_{1}, \cdots, s_{k}\right)=\left(s_{1}+\cdots+s_{k}\right)^{2}-\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq k} s_{i_{1}}^{-1} s_{i_{2}}^{-1} s_{i_{3}}^{-1}
\end{array}
$$

$$
\begin{aligned}
& V=\mathbb{C}^{k} \\
& W=\mathbb{C}^{n}
\end{aligned}
$$

Quasimaps

A quasimap $f: \mathcal{C}--\rightarrow X$ is described by

- vector bundles \mathscr{V}_{i} on \mathcal{C} of ranks \mathbf{v}_{i}, trivial bundles \mathscr{W}_{i} of ranks \mathbf{w}_{i}
- section $f \in H^{0}\left(\mathcal{C}, \mathscr{M} \oplus \mathscr{M}^{*} \otimes \hbar\right)$ satisfying $\mu=0$

$$
\mathscr{M}=\sum_{i \in I} \operatorname{Hom}\left(\mathscr{W}_{i}, \mathscr{Y}_{i}\right) \oplus \sum_{i, j \in I} Q_{i j} \otimes \operatorname{Hom}\left(\mathscr{V}_{i}, \mathscr{V}_{j}\right)
$$

Evaluation map to quotient stack

$$
\operatorname{ev}_{p}(f)=f(p) \in\left[\mu^{-1}(0) / G\right] \supset X
$$

Quasimap is stable if $f(p) \in X$ for all but finitely many points - singularities

The moduli space of stable quasimaps $\mathbf{Q M}^{d}(X)$

$$
\mathscr{V}_{i} \text { and } f \text { vary }
$$

Quantum K-theory

Quasimaps spaces admit action of \mathbb{C}_{q}^{\times}on base \mathbb{P}^{1} with two fixed points $p_{1}=0, p_{2}=\infty$

Define vertex function for τ with quantum (Novikov) parameters \mathbf{z}

$$
\begin{array}{r}
\mathbf{V}^{(\tau)}(\boldsymbol{z})=\sum_{d} \operatorname{ev}_{p_{2}, *}\left(\left.\widehat{\mathcal{O}}_{\text {vir }}^{d} \otimes \tau\right|_{p_{1}}, \mathrm{QM}_{\text {nonsing } p_{2}}^{d}\right) \boldsymbol{z}^{d} \in K_{\mathbf{T} \times \mathbb{C}_{q}^{\times}}(X)_{l o c}[[\boldsymbol{z}]] \quad \text { fixed pts } \\
K_{T}(X)_{l o c}=K_{T}(X) \otimes_{\mathbb{Z}[a, \hbar]} \mathbb{Q}(a, \hbar)
\end{array}
$$

Define quantum K-theory as a ring with multiplication

$$
\mathcal{F} \circledast=\underset{\mathrm{G}^{-1} \mathcal{F}}{\stackrel{)}{\longrightarrow}} \mathrm{G}^{-1} \quad A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \circledast_{d} B z^{d}
$$

Theorem: $Q K(X)$ is a commutative associative unital algebra

$$
\hat{\mathbf{1}}(z)=\sum_{d=0}^{\infty} z^{d} \operatorname{ev}_{p_{2}, *}\left(\mathrm{QM}_{\text {relative } p_{2}}^{d}, \widehat{\mathcal{O}}_{\text {vir }}^{d}\right)
$$

Vertex computation for $T^{*} G / P$

Localization $\quad V_{\mathbf{p}}^{(\tau)}(z)=\sum_{\mathbf{d} \in \mathbb{Z}_{\geq 0}^{n}(\mathscr{V}, \mathscr{W}) \in\left({\text { QMnonsing } p_{2}}_{\mathbf{d}}\right)^{\top}} \hat{s}(\chi(\mathbf{d})) z^{\mathbf{d}} q^{\operatorname{deg}(\mathscr{P}) / 2} \tau\left(\left.\mathscr{V}\right|_{p_{1}}\right) . \quad \chi(\mathbf{d})=\operatorname{char}_{\mathbf{T}}\left(T_{\left\{\left(\mathscr{V}_{i}\right\}, \mathscr{W}_{n-1}\right)}^{v i r} \mathrm{QM}^{\mathbf{d}}\right)$
$\hat{s}(x)=\frac{1}{x^{1 / 2}-x^{-1 / 2}}$

At a fixed point

$$
\mathcal{M}=\left(\mathcal{O}(d) \otimes q^{-d}\right) \oplus\left(\mathcal{O}(d) \otimes q^{-d} \otimes \frac{a_{i}}{a_{j}}\right)
$$

character

$$
\operatorname{char}_{\mathrm{T}}\left(H \cdot\left(a_{i} q^{-d_{i}} \mathcal{O}\left(d_{i}\right)\right)\right)=a_{i} \frac{q^{-d_{i}-1}-1}{q^{-1}-1}
$$

Contribution of $x q^{-d} \mathcal{O}(d)$ to the character is

$$
\{x\}_{d}=\frac{(\hbar / x, q)_{d}}{(q / x, q)_{d}}\left(-q^{1 / 2} \hbar^{-1 / 2}\right)^{d}, \quad \text { where } \quad(x, q)_{d}=\frac{\varphi(x)}{\varphi\left(q^{d} x\right)} \quad \varphi(x)=\prod_{i=0}^{\infty}\left(1-q^{i} x\right)
$$

Vertex coefficient function

$$
V_{p}^{(\tau)}(z)=\sum_{d_{i, j} \in C} z^{\mathrm{d}} q^{N(\mathbf{d}) / 2} E H G \tau\left(x_{i, j} q^{-d_{i, j}}\right)
$$

$$
E=\prod_{i=1}^{n-1} \prod_{j, k=1}^{\mathbf{v}_{i}}\left\{x_{i, j} / x_{i, k}\right\}_{d_{i, j}-d_{i, k}}^{-1}
$$

Vertex for $T^{*} \mathbb{P}^{1}$

Vertex function coefficient with trivial insertion

$$
V_{\mathbf{P}}^{(1)}=\sum_{d>0} z^{d} \prod_{i=1}^{2} \frac{\left(\frac{q}{\hbar} \frac{a_{\mathbf{p}}}{a_{i}} ; q\right)_{d}}{\left(\frac{a_{\mathbf{p}}}{a_{i}} ; q\right)_{d}}={ }_{2} \phi_{1}\left(\hbar, \hbar \frac{a_{\mathbf{p}}}{a_{\overline{\mathbf{p}}}}, q \frac{a_{\mathbf{p}}}{a_{\overline{\mathbf{p}}}} ; q ; \frac{q}{\hbar} z\right) .
$$

> two fixed points $\mathbf{p}=\left\{a_{1}\right\}$ and $\mathbf{p}=\left\{a_{2}\right\}$

a_{1}, a_{2}
Truncation on V - Macdonald
Polynomials!!
As a contour integral

$$
V=\frac{e^{-\frac{\log z \cdot \log a_{1} a_{2}}{\log q}}}{2 \pi i} \int_{C} \frac{d s}{s} e^{\frac{\log z \cdot \log s}{\log q}} \frac{\varphi\left(\hbar \frac{s}{a_{1}}\right)}{\varphi\left(\frac{s}{a_{1}}\right)} \frac{\varphi\left(\hbar \frac{s}{a_{2}}\right)}{\varphi\left(\frac{s}{a_{2}}\right)}
$$

[PK [arXiv:1805.00986] Comm.Math.Phys. (2021)]

Vertex functions are eigenfunctions of quantum tRS difference operators!

$$
T_{i}(a) V(z, a)=e_{i}(z) V(z, a) \quad T_{i}(z) V(z, a)=e_{i}(a) V(z, a)
$$

$$
\hbar \rightarrow \hbar^{-1}
$$

Quantum K-theory Ring

$$
Q K_{T}\left(T^{*} \mathbb{F} l_{n}\right)=\frac{\mathbb{C}\left[\zeta_{1}^{ \pm 1}, \ldots, \zeta_{n}^{ \pm 1} ; a_{1}^{ \pm 1}, \ldots, a_{n}^{ \pm 1}, \hbar^{ \pm 1} ; p_{1}^{ \pm 1}, \ldots, p_{n}^{ \pm 1}\right]}{\left(H_{r}\left(\zeta_{i}, p_{i}, \hbar\right)-e_{r}\left(a_{1}, \ldots, a_{n}\right)\right)}
$$

tRuijsenaars-Schneider integrals of motion

Contributions from the base and the fiber in $T^{*} G / B$ split $\quad\left(\omega, \omega^{-1} \hbar\right)$

$$
\frac{1}{\omega^{1 / 2}-\omega^{-1 / 2}} \frac{1}{\left(\hbar \omega^{-1}\right)^{1 / 2}-\left(\hbar \omega^{-1}\right)^{-1 / 2}}=\frac{1}{1-\omega^{-1}} \frac{-\hbar^{1 / 2}}{1-\hbar^{-1} \omega^{-1}}
$$

$$
\hbar \rightarrow \infty \quad \hat{s}\left(\omega, \omega^{-1} \hbar\right) \rightarrow \frac{1}{1-\omega^{-1}}
$$

Vertex functions satisfy q-Toda difference relations

$$
\begin{aligned}
& V_{\mathbf{p}}^{(1)} \rightarrow_{2} \phi_{1}\left(0,0, \frac{a_{\mathbf{p}}}{a_{\overline{\mathbf{p}}}} ; q ; z^{\sharp}\right)=:_{1} \phi_{0}\left(\frac{a_{\mathbf{p}}}{a_{\overline{\mathbf{p}}}} ; q ; z^{\sharp}\right)=\sum_{k=0}^{\infty} \frac{\left(z^{\sharp}\right)^{k}}{\left(\frac{a_{\mathbf{p}}}{a_{\overline{\mathbf{p}}}}, q\right)_{k}(q, q)_{k}} \\
& H_{r}^{\mathrm{q}-\text { Toda }}=\sum_{\substack{\mathcal{J}=\left\{i_{1}<\cdots<i_{r}\right\} \\
\mathcal{J} \subset\{1, \ldots, n\}}} \prod_{\ell=1}^{r}\left(1-\frac{\mathfrak{z}_{i_{\ell}-1}}{\mathfrak{z}_{\ell}}\right)^{1-\delta_{i_{\ell}-i_{\ell-1}, 1}} \prod_{k \in \mathcal{J}} \mathfrak{p}_{k}
\end{aligned} \quad q \rightarrow 1 \quad Q K_{T^{\prime}}\left(\mathbb{F} l_{n}\right)=\frac{\mathbb{C}\left[\mathfrak{z}_{1}^{ \pm 1}, \ldots, \mathfrak{z}_{n}^{ \pm 1} ; \mathfrak{a}_{1}^{ \pm 1}, \ldots, \mathfrak{a}_{n}^{ \pm 1} ; \mathfrak{p}_{1}^{ \pm 1}, \ldots, \mathfrak{p}_{n}^{ \pm 1}\right]}{\left(H_{r}^{q-T o d a}\left(\mathfrak{z} i, \mathfrak{p}_{i}\right)=e_{r}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right)\right)}
$$

Bethe Equations for $T^{*} G r_{k, n}$

Operator of quantum multiplication

$$
\tau_{p}(z)=\lim _{q \rightarrow 1} \frac{V_{p}^{(\tau)}(z)}{V_{p}^{(1)}(z)}
$$

Theorem The eigenvalues of operators of quantum multiplication by $\hat{\tau}(z)$ are given by the values of the corresponding Laurent polynomials $\tau\left(s_{1}, \cdots, s_{k}\right)$ evaluated at the solutions of the following equations:

$$
\prod_{j=1}^{n} \frac{s_{i}-a_{j}}{\hbar a_{j}-s_{i}}=z \hbar^{-n / 2} \prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{s_{i} \hbar-s_{j}}{s_{i}-s_{j} \hbar}, \quad i=1 \cdots k .
$$

Equivariant parameters a_{i}, twist z,
Planck constant \hbar

Baxter Q-operator $\quad Q(u)=\sum_{i=1}^{k}(-1)^{k} u^{k-i}\left(\Lambda^{i} V\right)(z) \circledast \quad$ has eigenvalue $\quad Q(u)=\prod_{i=1}^{k}\left(u-s_{i}\right)$

The QQ-System for A_{1}

Short exact sequence of bundles

$$
0 \rightarrow V \rightarrow W \rightarrow V^{\vee} \rightarrow 0
$$

Eigenvalues of Q-operators

$$
\begin{aligned}
& Q(u)=\sum_{i=1}^{k}(-1)^{k} u^{k-i}\left(\Lambda^{i} V\right)(z) \circledast \\
& \widetilde{Q}(u)=\sum_{i=1}^{k}(-1)^{k} u^{k-i}\left(\Lambda^{i} V^{\vee}\right)(z) \circledast
\end{aligned}
$$

Satisfy the QQ-relation

$$
z \widetilde{Q}(\hbar u) Q(u)-\widetilde{Q}(u) Q(\hbar u)=\prod_{i=1}^{n}\left(u-a_{i}\right)
$$

equivalent to the XXZ Bethe equations

QQ-System in General

Consider complex simple Lie algebra \mathfrak{g} of rank r

Cartan matrix $a_{i j}=\left\langle\check{\alpha}_{i}, \alpha_{j}\right\rangle$

$$
\begin{gathered}
\widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u)=\Lambda_{i}(u) \prod_{j>i}\left[Q_{+}^{j}(\hbar u)\right]^{-a_{j i}} \prod_{j<i}\left[Q_{+}^{j}(u)\right]^{-a_{j i}}, \quad i=1, \ldots, r, \\
\widetilde{\xi}_{i}=\zeta_{i} \prod_{j>i} \zeta_{j}^{a_{j i}}, \quad \xi_{i}=\zeta_{i}^{-1} \prod_{j<i} \zeta_{j}^{-a_{j i}}
\end{gathered}
$$

Polynomials $Q_{+}(u)$ contain Bethe roots, $\Lambda(u)$ contain equivariant parameters
Polynomials $Q_{-}(u)$ are auxiliary

The Ubiquitous QQ-System

Bethe Ansatz equations for $X X X, X X Z$ models - eigenvalues of Baxter operators
[Mukhin, Varchenko]

Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\hat{g})$ [Frenkel, Hernandez] ...

Relations in equivariant cohomology/K-theory of Nakajima quiver varieties
[Nekrasov-Shatashvili] [Pushkar, Smirnov, Zeitlin] [PK, Pushkar, Smirnov, Zeitlin] ..

Spectral determinants in the QDE/IM Correspondence
[Bazhanov, Lukyanov, Zamolodchikov] [Masoero, Raimondo, Valeri]

III. (G,q)-Connection

G-simple simply-connected complex Lie group

Consider vector bundle \mathscr{F}_{G} over \mathbb{P}^{1}
(G, q)-connection A is a meromorphic section of $\operatorname{Hom}_{\mathscr{O}_{\mathbb{P} 1}}\left(\mathscr{F}_{G}, \mathscr{F}_{G}^{q}\right)$

Locally q-gauge transformation of the connection

$$
A(u) \mapsto g(q u) A(u) g(u)^{-1} \quad g(u) \in G(\mathbb{C}(u))
$$

Compare with (standard) gauge transformations

$$
\partial_{u}+A(u) \mapsto g(u)\left(\partial_{u}+A(u)\right) g(u)^{-1} \quad g(u) \in \mathfrak{g}(u)
$$

(G,q)-Opers

A meromorphic (\mathcal{G}, q)-oper on \mathbb{P}^{1} is a triple $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}\right)$
A is a meromorphic (G, q)-connection
$\mathcal{F}_{B_{-}}$is a reduction of \mathcal{F}_{G} to B_{-}
Oper condition: Restriction of the connection on some Zariski open dense set U

$$
A: \mathcal{F}_{G} \longrightarrow \mathcal{F}_{G}^{q} \text { to } U \cap M_{q}^{-1}(U)
$$

takes values in the double Bruhat cell

$$
B_{-}\left(\mathbb{C}\left[U \cap M_{q}^{-1}(U)\right]\right) c B_{-}\left(\mathbb{C}\left[U \cap M_{q}^{-1}(U)\right]\right)
$$

Coxeter element: $c=\prod_{i} s_{i}$

Locally

$$
A(u)=n^{\prime}(u) \prod_{i}\left(\phi_{i}(u)_{i}^{\check{\alpha}} s_{i}\right) n(u)
$$

$$
\phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N_{-}(u)=\left[B_{-}(u), B_{-}(u)\right]
$$

(SL(2),q)-Opers

Let $G=S L(2) \quad$ The q-oper definition can be formulated as

Triple (E, A, \mathscr{L})
(E, A) is the $(S L(2), q)$ connection $\mathscr{L} \subset E$ is a line subbundle

The induced map $\bar{A}: \mathscr{L} \rightarrow(E / \mathscr{L})^{q}$ is an isomorphism in a trivialization $\mathscr{L}=\operatorname{Span}(s)$

$$
s(q u) \wedge A(u) s(u) \neq 0
$$

Allow singularities $\quad s(q u) \wedge A(u) s(u)=\Lambda(u)$

$$
\Lambda(u)=\prod_{l, j_{l}}\left(u-q^{j_{l}} a_{l}\right)
$$

Add Twists

$$
Z=g(q u) A(u) g(u)^{-1}
$$

$$
Z \in H \subset H(u) \subset G(u)
$$

q-Opers, QQ-System \& Bethe Ansatz

Chose trivialization of $\mathcal{L} \quad s(u)=\binom{Q_{+}(u)}{Q_{-}(u)} \quad$ Twist element $\quad Z=\operatorname{diag}\left(\zeta, \zeta^{-1}\right)$
q-Oper condition - SL(2) QQ-system

$$
s(q u) \wedge A(u) s(u)=\Lambda(u) \longrightarrow \zeta Q_{-}(u) Q_{+}(q u)-\zeta^{-1} Q_{-}(q u) Q_{+}(u)=\Lambda(u)
$$

QQ-system to $X X Z$ Bethe equations

$$
Q_{+}(u)=\prod_{k=1}^{m}\left(u-s_{k}\right)
$$

$$
\prod_{l=1}^{n} \frac{s_{i}-q^{r_{l}} a_{l}}{s_{i}-a_{l}}=\zeta^{2} q^{k} \prod_{j=1}^{k} \frac{q s_{i}-s_{j}}{s_{i}-q s_{j}}
$$

$$
i=1, \ldots, k
$$

q-Miura Transformation

Miura q-oper: $(E, A, \mathscr{L}, \hat{\mathscr{L}})$, where (E, A, \mathscr{L}) is a q-oper and $\hat{\mathscr{L}}$ is preserved by q-connection A

$$
\begin{array}{cc}
A(u)=\left(\begin{array}{cc}
g(u) & \Lambda(u) \\
0 & g(u)^{-1}
\end{array}\right) & \text { Z-twisted q-oper condition }
\end{array} A(u)=v(q u) Z v(u)^{-1} \quad Z=\operatorname{diag}\left(\zeta, \zeta^{-1}\right)
$$

The q-oper condition becomes the $\operatorname{SL}(2) Q Q$-system

$$
\zeta Q_{-}(u) Q_{+}(q u)-\zeta^{-1} Q_{-}(q u) Q_{+}(u)=\Lambda(u)
$$

Difference Equation $\quad D_{q}(s)=A s$
Scalar difference operator $\quad\left(D_{q}^{2}-T(q u) D_{q}-\frac{\Lambda(q u)}{\Lambda(u)}\right) s_{1}=0$

tRS Hamiltonians

Recover 2-body tRS Hamiltonian from an (SL(2),q)-Oper

$$
\operatorname{det}\left(\begin{array}{lc}
Q_{+}(u) & \zeta Q_{+}(q u) \\
Q_{-}(u) & \zeta^{-1} Q_{-}(q u)
\end{array}\right)=\Lambda(u)
$$

Let

$$
Q_{+}(u)=u-p_{+} \quad Q_{-}(u)=u-p_{-}
$$

$$
u^{2}-u\left[\frac{\zeta-q \zeta^{-1}}{\zeta-\zeta^{-1}} p_{+}+\frac{q \zeta-q \zeta^{-1}}{\zeta^{-1}-\zeta} p_{-}\right]+p_{+} p_{-}=\left(u-a_{+}\right)\left(u-a_{-}\right)
$$

qOper condition yields
tRS Hamiltonians!

$$
\operatorname{det}(u-T)=\left(u-a_{+}\right)\left(u-a_{-}\right)
$$

Network of Dualities

q-Opers and q-Langlands

Miura (G,q)-oper with singularities

$$
A(u)=\prod_{i}\left(\zeta_{i} \frac{Q_{+}^{i}(q u)}{Q_{+}^{i}(u)}\right)^{\check{\alpha}_{i}} \exp \frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}
$$

Theorem: There is a 1-to-1 correspondence between the set of nondegenerate Z-twisted (G, q)-opers on \mathbb{P}^{1} and the set of nondegenerate polynomial solutions of the $Q Q$-system based on $\widehat{L_{\mathfrak{g}}}$

$$
\begin{gathered}
\widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u)=\Lambda_{i}(u) \prod_{j>i}\left[Q_{+}^{j}(\hbar u)\right]^{-a_{j i}} \prod_{j<i}\left[Q_{+}^{j}(u)\right]^{-a_{j i}}, \quad i=1, \ldots, r, \\
\widetilde{\xi}_{i}=\zeta_{i} \prod_{j>i} \zeta_{j}^{a_{j i}}, \quad \xi_{i}=\zeta_{i}^{-1} \prod_{j<i} \zeta_{j}^{-a_{j i}}
\end{gathered}
$$

IV. Cluster Algerbras

The QQ-system $\xi_{i+1} Q_{-}^{i}(u) Q_{+}^{i}(u+\epsilon)-\xi_{i} Q_{-}^{i}(u+\epsilon) Q_{+}^{i}(u)=\Lambda_{i}(u) Q_{+}^{i+1}(u+\epsilon) Q_{+}^{i+1}(u)$

For $G=S L(n)$ obtain Lewis Carrol (Desnanot-Jacobi-Trudi) identity

$$
M_{1}^{1} M_{i}^{2}-M_{i}^{1} M_{1}^{2}=M_{1 i}^{12} M
$$

For general G obtain relation on generalized minors

$$
\Delta^{\omega_{i}}(v(u))=Q_{+}^{i}(u)
$$

$$
\Delta_{u \cdot \omega_{i}, v \cdot \omega_{i}} \Delta_{u w_{i} \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}-\Delta_{u w_{i} \cdot \omega_{i}, v \cdot \omega_{i}} \Delta_{u \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}=\prod_{j \neq i} \Delta_{u \cdot \omega_{j}, v \cdot \omega_{j}}^{-a_{j i}},
$$

$u, v \in W_{G}$

q-Langlands Correspondence

Two types of solutions of the qKZ equation:

Analytic in chamber of equivariant parameters $\left\{a_{i}\right\}$ - conformal blocks of $U_{\hbar}(\hat{g})$

Analytic in chamber of quantum parameters (twists) $\left\{\zeta_{i}\right\}$ - conformal blocks for deformed W-algebra $W_{q, \hbar}\left({ }^{L} \widehat{g}\right)$

The q-Langlands correspondence

Equivalence of categories

Number Theory

Consider cohomological vertex (J-function)

$$
\mathrm{V}(z)=\sum_{d=0}^{\infty} c_{d} z^{d} \in \mathbb{Q}[[z]] \quad c_{d}:=\int_{\mathrm{QM}_{d}(X, \infty)} \omega^{v i r}
$$

For a prime p construct a sequence of polynomials $T_{s}(z) \in \mathbb{Z}[z]$ from the superpotnential which converges to the vertex in the p -adic norm

$$
\lim _{s \rightarrow \infty} \mathrm{~T}_{s}(z)=\mathrm{V}(z) \quad \mathrm{T}_{s}(z)=\operatorname{coeff}_{x^{d p^{s}-1}}\left(\Phi_{s}(x, z)\right)
$$

Some properties

$$
\mathrm{V}(z)=\prod_{i=0}^{\infty} \frac{\mathrm{T}_{m}\left(z^{p^{i}}\right)}{\mathrm{T}_{m-1}\left(z^{p^{i+1}}\right)} \quad \bmod p^{m}, \quad m=1,2 \ldots
$$

Dwork identity $\quad \frac{\mathrm{T}_{s+1}(z)}{\mathrm{T}_{s}\left(z^{p}\right)}=\frac{\mathrm{T}_{s}(z)}{\mathrm{T}_{s-1}\left(z^{p}\right)} \quad \bmod p^{s}$

