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Enumerative AG and Integrability
String theory have been suggesting for a long time that there is a strong 
connection between geometry and integrability

Study of Gromov-Witten invariants was influenced by progress in string theory. 

For a symplectic manifold X GW invariants appear in the expansion of quantum 
multiplication in quantum cohomology of X.

A particular attention is given to genus zero GW invariants. 

In this talk, we study equivariant quantum K-theory of a large family of varieties 
and its connection to integrable systems as well as some applications to 
representation theory and number theory 



Classical Integrability
Equations of motion Integrability — family of  conserved quantities


which Poisson commute with each other 
n
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{Hi, Hj} = 0 i, j = 1, . . . , n
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df

dt
= {H1, f}

Compact Lagrangians :  are isomorphic to toriℒ {Hi = Ei}

Liouville-Arnold Theorem

Evolution in the neighborhood of  is linearized in action/angle variables  ℒ {Ii, φi}n
i=1
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d'i

dt
= !i,

dIi
dt

= 0

Action/angle variables are hard to find



Examples
Many-body integrable systems — Calogero, Toda, Ruijsenaars (more on this later)

Continuous integrable models in (1+1)-dimensions: Korteweg-de-Vries, Intermediate Long-Wave, 
etc.

They admit soliton solutions. Sectors with N solitons are described by finite N-body integrable 
systems  
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ut = 6uux � uxxx

Inverse scattering method — Lax pair data  action/angle variables→



I got really fascinated by these (1+1)-dimensional models that are solved by the Bethe 
ansatz and how mysteriously they jump out at you and work and you don’t know why.  

I am trying to understand all this better.
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I. Many-Body Systems
Calogero in 1971 introduced a new integrable system. Moser in 1975 proved its integrability using Lax pair

HCM =
nX

i=1

p
2
i

2m
+ g

2
X

j 6=i

1

(xi � xj)2

The Calogero-Moser (CM) system has several generalizations: rational CM  trigonometric CM  elliptic CM→ →
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where shrieks in the superscripts above designate the absence of terms with i = j in the
corresponding sums in (2.5), and where

(2.7) ζ̃(ξ|p) = ζ(ξ|p)− 2

π
η1ξ =

π

2ω1
cot

(
πξ

2ω1

)
+

2π

ω1

∞∑

l=1

p2l

1− p2l
sin

(
lπξ

ω1

)
,

i.e., ζ̃ is the standard ζ function without the linear term. Note that if we have included

the linear term we would have had δ−1uz term in the ILW equation. Note that ζ̃ = θ′1(ζ|p)
θ1(ζ|p) ,

which was used, say in [BSTV1]. Now, if we denote ũ = u0−u1 then the following equation
holds

(2.8) ut + uuz +
i

2
βũzz = 0 ,

which is equivalent to (2.1) provided that xj’s satisfy equations of motion for the elliptic
Calogero-Moser-Sutherland model for k particles

(2.9) ẍj = −β2∂j
∑

i #=j

℘(xj − xi) , i = 1, . . . , k ,

where the Weierstrass ℘ and ζ functions are related to each other via ℘(ξ) = − ∂
∂ξ ζ(ξ).

Notice that the potential for the integrable many-body system is represented by the same
function as in the pole ansatz for particles xj and momenta yj(2.5).

2.2. Quantization. The model is also quantum integrable, this was studied in details
earlier, see [KS1] and references therein. Complex velocity field u can be expanded intro
infinitely many oscillator modes u(z, 0) =

∑
ameimz which obey canonical commutation

relations. The quantum ILW Hamiltonians which provide quantization of (2.3) have the
following form (see [KS2] for review)

Î2 =
∑

m>0

a−mam ,

Î3 =
ε+m

2

∑

m>0

m
1 + (−p̃)m

1− (−p̃)m
a−mam +

1

2

∑

m,n>0

(a−m−naman + a−ma−nam+n) ,(2.10)

where ε = log q, m = log !, and p̃ is the elliptic parameter. The operators an for negative
n create ILW solitons from the Fock vacuum |0〉 which is annihilated by all positive modes
a>0|0〉 = 0. The operators an obey the following commutation relations of the doubly-
deformed Heisenberg algebra

(2.11) [an, am] = m
1− qm

1− !m
δm,−n ,

where the deformation is a rational function of parameters q and !. In the semi-classical
regime of the ILW model, when these two variables are expanded around unity this rational
function becomes equal to ε/m, which plays the role of the Planck’s constant.

One can see how the scaling limit ! → ∞ is manifest in the ILW pole Ansatz construction
(2.5) and (2.6). Due to (2.11) we are required to rescale generators an → an!

−n
2 in this

limit. If we return back to the oscillator representation of the velocity field u we see
that this rescaling entails shift in z-variable: z → z − i ε2 , where ! = eε, in order to
keep the decomposition u(z, 0) =

∑
ameimz in place. Additionally we put β = !ν, where

ν is a nonzero constant which can be fixed later after we shall complete the quantum

Another relativistic generalization called Ruijsenaars-Schneider (RS) family
rRS  tRS  eRS→ →

HCM = lim
c!1

HRS � nmc
2

x1

x2
xnx1 x2

xn

<latexit sha1_base64="xCdQ0nak+OzMF6s4GYzzVLc51IM=">AAACDXicbVDLTsJAFJ3iC/GFunQzEU1gIWkJUZdENy4xkUdCazMdpjAy09aZqYE0/IAbf8WNC41x696df+MAXSh4kpucnHNv7r3HixiVyjS/jczS8srqWnY9t7G5tb2T391ryjAWmDRwyELR9pAkjAakoahipB0JgrjHSMsbXE781gMRkobBjRpFxOGoF1CfYqS05OaPmsVhyZaUk3toy5jbvkA4scZJcejSk6F7V7qtjN18wSybU8BFYqWkAFLU3fyX3Q1xzEmgMENSdiwzUk6ChKKYkXHOjiWJEB6gHuloGiBOpJNMvxnDY610oR8KXYGCU/X3RIK4lCPu6U6OVF/OexPxP68TK//cSWgQxYoEeLbIjxlUIZxEA7tUEKzYSBOEBdW3QtxHOg+lA8zpEKz5lxdJs1K2TsvV62qhdpHGkQUH4BAUgQXOQA1cgTpoAAwewTN4BW/Gk/FivBsfs9aMkc7sgz8wPn8AdF6bLw==</latexit>

V (x) '
X 1

(xi � xj)2
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V (x) '
X 1

sinh(xi � xj)2
<latexit sha1_base64="qIRKCL6ITjfS08CJzxPyg61h1Qs=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpexKUY9FLx4r2A/YLiWbzrahyWZNsmJZ+jO8eFDEq7/Gm//GtN2Dtj4YeLw3w8y8MOFMG9f9dlZW19Y3Ngtbxe2d3b390sFhS8tUUWhSyaXqhEQDZzE0DTMcOokCIkIO7XB0M/Xbj6A0k/G9GScQCDKIWcQoMVbyW5Wns65mAh5wr1R2q+4MeJl4OSmjHI1e6avblzQVEBvKida+5yYmyIgyjHKYFLuphoTQERmAb2lMBOggm508wadW6eNIKluxwTP190RGhNZjEdpOQcxQL3pT8T/PT010FWQsTlIDMZ0vilKOjcTT/3GfKaCGjy0hVDF7K6ZDogg1NqWiDcFbfHmZtM6r3kW1dlcr16/zOAroGJ2gCvLQJaqjW9RATUSRRM/oFb05xnlx3p2PeeuKk88coT9wPn8AXQqQqw==</latexit>

V (x) '



Example: tRS Model with 2 Particles
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T1 =
⇠1 � t⇠2
⇠1 � ⇠2

p1 +
⇠2 � t⇠1
⇠2 � ⇠1

p2
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T2 = p1p2

Hamiltonians Symplectic form
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⌦ =
X

i

dpi
pi

^ d⇠i
⇠i

Integrals of motion
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Ti = Ei

Quantization
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pi⇠j = ⇠jpiq
�ij
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tRS Momenta are shift operators
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Eigenvalue Equations
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Calogero-Moser Space
Let  be an N-dimensional vector space over . Let  be the subset of  
consisting of elements  such that 

V ℂ ℳ′ GL(V) × GL(V) × V × V*
(M, T, u, v)

qMT − TM = u ⊗ vT

The group  acts on  by conjugationGL(N; ℂ) = GL(V) ℳ′ 

(M, T, u, v) ↦ (gMg−1, gTg−1, gu, vg−1)

The quotient of  by the action of  is called Calogero-Moser space ℳ′ GL(V) ℳ

Flat connections on punctured torus

ABA�1B�1 = C

Mn = {A,B,C}/GL(n;C)

[my DAHA paper with Gukov, Nawata, Pei, Saberi 
[arXiv:2206.03565]  SpringerBriefs (2023)]

Integrable Hamiltonians are ~  
-Lax matrix

TrTk

T

https://arxiv.org/abs/2206.03565


II. Quantum Integrability
g Lie algebra loop algebra (Laurent poly valued in g)

V1(a1)⌦ · · ·⌦ Vn(an)

Let

Evaluation modules form a tensor category of ̂g

ĝ = g(t)

 are representations ofVi  are special values of spectral parameter ai tg

Quantum group is a noncommutative deformation U~(ĝ)

with a nontrivial intertwiner — R-matrix

RV1,V2(a1/a2) : V1(a1)⌦ V2(a2) ! V2(a2)⌦ V1(a1)

satisfying Yang-Baxter equation



Transfer Matrix
The intertwiner represents an interaction vertex in integrable models. The quantum group is 
generated by matrix elements of R

[Faddeev Reshetikhin Tachtajan]

RV,W

V (a)

W (u)

physical spaceauxiliary space

Z

twist Z 2 eh Integrability comes from transfer matrices 

which generates Bethe algebra

[TW (u), TW (u0)] = 0

Transfer matrices are usually polynomials 

in  whose coefficients are 

the integrals of motion

u
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TW (u) = TrW (u)((Z ⌦ 1)RV,W )



The XXZ Spin Chain
g = sl2 V = C2(a1)⌦ · · ·⌦ C2(an)spin-1/2 chain on  sitesn

Consider Knizhnik-Zamolodchikov (qKZ) difference equation

 (a1, . . . , an) 2 V1(a1)⌦ · · ·⌦ Vn(an)
where

Z

RV1,V2

V1

V1

V2
Vn

VnV2

 (qa1, . . . an) = (Z ⌦ 1⌦ · · ·⌦ 1)RV1,Vn · · ·RV1,V2 (a1, . . . an)

[I. Frenkel Reshetikhin]

In the limit q ! 1
qKZ becomes an eigenvalue problem

q 2 C⇥



Solutions of qKZ
Schematic solution

 ↵ =

Z
dx

x
f↵(x, a)K(x, z, a, q)

indexed by physical space universal kernel
representation

q ! 1
logK(x, z, a, q) ⇠ S(x, z, a)

log q
@S

@xi
= 0 Bethe equations for Bethe roots x

ai
@S

@ai
= ⇤i Eigenvalues of qKZ operators

The map ↵ 7! f↵(x
⇤) provides diagonalization

[Aganagic Okounkov]

So we need to find `off  shell’ Bethe eigenfunctions f↵(x, a)



The Nekrasov-Shatashvili Correspondence 
The answer will come from enumerative algebraic geometry inspired by physics

Hilbert space of states

of quantum integrable system

Equivariant K-theory of 

Nakajima quiver varitey


gauge group G =
rkgY

i=1

U(vi) ( ) encode weight of repv1, v2, … ↵

Bethe roots x live in the maximal torus of , by integrating over x we project on Weyl invariant 
functions of Bethe roots

G

Flavor group GF =
Y

i

U(wi) whose maximal torus gives parameters a

Bifundamental matter Hom(Vi, Vj)
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.



Quantum K-theory of X
The quiver variety    = {Matter fields}/gauge groupX

We will be computing integrals in K-theory of the space of quasimaps                        
weighted by degree zdegf

(cf Gromov-Witten invariants)

 is a module of a quantum group in the Nakajima correspondence constructionX

subject to equivariant action on the base nodal curve C⇥
q

f X

f : C ��� > X

C⇥
q



Nakajima Quiver Varieties
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nonsing p2
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Rep(v,w) — linear space of quiver reps

µ : T ⇤Rep(v,w) ! Lie(G)⇤Moment map

Quiver variety

Aut(X) =
Y

GL(Qij)⇥
Y

GL(Wi)⇥ C⇥
~Automorphism group

Maximal torus (a) T = T(Aut(X))

Tensorial polynomials of tautological bundles Vi, Wi and their duals generate classical T-
equivariant K-theory ring of X
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where the symbol µ−1(0)s denotes the intersection of the set µ−1(0) ⊂ T ∗R with the
stable locus corresponding to injective elements in R:

stable points in T ∗R = {(A,B) : rank(A) = k}.(3)

Now we give the description of fixed points on Nk,n, tautological bundles, torus
action and equivariant K-theory once again, this time from the perspective of Nakajima
varieties. First, we note that Nk,n is naturally equipped with the following tautological
bundles:

V = µ−1(0)s × V/GL(V ), W = µ−1(0)s ×W/GL(V ).

Since GL(V ) does not act on W the bundle W is trivial, and because A is injective we
have V ⊂ W and thus V ⊂ W.

More generally, letKGL(V )(·) = Λ[s±1
1 , s±1

2 , · · · , s±1
k ] be the ring of symmetric Laurent

polynomials in k variables. Every such polynomial τ ∈ KGL(V )(·) is a character of some
virtual representation τ(V ) of GL(V ) (tensorial polynomial in V and V ∗).2 We denote
the corresponding virtual tautological bundles on Nk,n by the same symbol τ :

τ = (µ−1(0)s × τ(V ))/GL(V ).

The tautological bundles τ can be uniquely represented by the symmetric Laurent poly-
nomials in the corresponding Chern roots of V and thus there should be no confusion
in our notations.

We set a framing torus A = C×a1 × · · ·× C×an to be a n-torus acting on W by scaling
the coordinates with characters ai. Let C×! be a one-torus acting on T ∗R by scaling
the cotangent directions with character !. We adopt the notation T = A× C×! .

The action of T on T ∗R induces its action on Nk,n. The fixed set NT
k,n consists of

n!/k!/(n−k)! isolated points representing the k-planes spanned by coordinate vectors.
They are conveniently labeled by k-subsets p = {x1, · · · , xk} ⊂ {a1, · · · , an}.

Let us set the following notation for the disjoint union of Nk,n for all k:

N(n) =
n∐

k=0

Nk,n,

so that the fixed point set N(n)T consists of total 2n points.
The equivariant K-theory KT(N(n)) is a module over the ring of equivariant con-

stants: R = KT(·) = Z[a±1 , · · · , a±1
n , !±1]. The localized K-theory

KT(N(n))loc = KT(N(n))
⊗

R

A =
n⊕

k=0

KT(Nk,n)
⊗

R

A(4)

is an A-vector space (A = Q(a1, · · · , an, !)) of dimension 2n spanned by the K-theory
classes of fixed points Op.

2For example, the polynomial

τ(s1, · · · , sk) = (s1 + · · ·+ sk)
2 −

∑

1≤i1<i2<i3≤k

s−1
i1

s−1
i2

s−1
i3

corresponds to τ(V ) = V ⊗2 − Λ3V ∗.

Ex:  T*Grk,n

v1 = k, w1 = n
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X = µ�1(0)//✓G = µ�1(0)ss/G

W = ℂn

V = ℂk
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G =
Y

GL(vi)



Quasimaps
A quasimap f : C �� ! X is described by
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as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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on C viof ranks

section satisfying µ = 0
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j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

[Ciocan-Fontanine, Kim, Maulik]
[Okounkov]

4. The line bundle ! eC

⇣P
i
p
0
i
+
P

j
qj

⌘
⌦ L

✏

✓
is ample for every rational

✏ > 0, where L✓ = P ⇥Gv C✓, eC is the closure of C \C0, qj are the nodes

of eC, and C✓ is the one dimensional Gv-module defined by the stability
condition ✓.

Figure 2: An example of the domain of a relative quasimap with four marked
points. A chain of rational curves is attached to each point pi, and condition
4 implies that the last component of each chain has a marked point p0

i
. The

map ⇡ collapses each chain to a single point.

Definition 2. A relative quasimap (C, p01, . . . , p
0
m
, P, f, ⇡) is nonsingular at

p 2 C if f(p) is stable in the sense of (4). In this case, f(p) gives a point in
the quiver variety.

Definition 3. The degree of a quasimap (C, p01, . . . , p
0
m
, P, f, ⇡) is the tuple

d = (di)i2Z where di is the degree of the rank vi vector bundle P ⇥Gv Vi ! C.

Theorem 1. ([CKM14] Theorem 7.2.2) The stack QMd
relative p1,...,pm parame-

terizing the data of stable genus zero quasimaps to X is a Deligne-Mumford
stack of finite type with a perfect obstruction theory.

Definition 4. Let QMd
nonsing p1,...,pm be the stack parameterizing the data of

degree d quasimaps to X relative to p1, . . . , pm such that C ⇠= D ⇠= P1.
For such a quasimap, most of the conditions in Definition 1 become trivially
satisfied.

7

Evaluation map to quotient stack
<latexit sha1_base64="E/XybZCly21MJvJN3nC9Ot1YopE="></latexit>

evp(f) = f(p) 2 [µ�1(0)/G] � X

Quasimap is stable if  for all but finitely 

many points — singularities


f(p) ∈ X

The moduli space of stable quasimaps
<latexit sha1_base64="Szl54ccBnnrqrzgHhphnDEhDzZ4=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkoiRT0WvXgRWrAf0May2W7apZtN2J0US+g/8eJBEa/+E2/+G7dtDtr6YODx3gwz8/xYcA2O823l1tY3Nrfy24Wd3b39A/vwqKmjRFHWoJGIVNsnmgkuWQM4CNaOFSOhL1jLH93O/NaYKc0j+QCTmHkhGUgecErASD3b7gJ7Aj9I6/fTx36pfd6zi07ZmQOvEjcjRZSh1rO/uv2IJiGTQAXRuuM6MXgpUcCpYNNCN9EsJnREBqxjqCQh0146v3yKz4zSx0GkTEnAc/X3REpCrSehbzpDAkO97M3E/7xOAsG1l3IZJ8AkXSwKEoEhwrMYcJ8rRkFMDCFUcXMrpkOiCAUTVsGE4C6/vEqaF2X3slypV4rVmyyOPDpBp6iEXHSFqugO1VADUTRGz+gVvVmp9WK9Wx+L1pyVzRyjP7A+fwD9E5M+</latexit>
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as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:

and 
<latexit sha1_base64="mXTTqJLVGzQHkYptyoikscqKUlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPzd+M8w==</latexit>

f vary

vector bundles 
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where

• C is a connected, at most nodal genus zero projective curve and p′i are nonsingular
points of C,

• P is a principal G - bundle over C,
• f is a section of the fiber bundle

(2) p : P ×G (R ⊕R∗) → C

over C satisfying µ = 0, where R = Rep(v,w) - is a representation of G defined
in Section 2.1 (the moment map condition is satisfied pointwise, so for every point
we can consider the moment map and the image of the section f restricted to every
point should be 0),

• π : C → D is a regular map,

satisfying the following conditions:

(1) There is a distinguished component C0 of C such that π restricts to an isomorphism
π : C0

∼= D and π(C \ C0) is zero-dimensional (possibly empty).
(2) π(p′i) = pi.
(3) f(p) is stable for all p ∈ C \B where B is a finite (possibly empty) subset of C.
(4) The set B is disjoint from the nodes and points p′1, . . . , p

′
m.

(5) ω
C̃
(
∑

i p
′
i +

∑
j qi) ⊗ Lε

θ is ample for every rational ε > 0, where Lθ = P ×G Cθ

(θ = det is the character of G), C̃ is the closure of C\C0 and qi are the nodes C0∩ C̃.

We call D the base curve of the quasimap (although for some quasimaps the actual
domain might be bigger). Note that it can have one or multiple components.

Let (C, p′1, . . . , p
′
m, P, f,π) be a quasimap and let V1, V2, . . . be representations of G as in

Section 2.1. Let us denote by

(3) Vi = P ×G Vi → C

the associated rank vi vector bundle over C and bundles Wi and R defined in an analogous
way.

Definition 2.2. The degree of a quasimap (C, p′1, . . . , p
′
m, P, f,π) is the vector of degrees of

vector bundles Vi associated to it.

Definition 2.3. Let QMd
relative,p1,··· ,pm denote the stack parameterizing stable genus zero

quasimaps relative to p1, . . . , pm, (i.e. the data of Definition 2.1) of fixed degree d. Two
quasimaps are considered isomorphic if there is an isomorphism between the bundles which
intertwines the sections.

For any point on the curve p ∈ C we have an evaluation map to the quotient stack
evp : QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains
X as an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X and the quasimap is not relative to p.
In short, we conclude that the open subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular
at the given point p is endowed with a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:

, trivial bundles of ranks <latexit sha1_base64="mr5VFPFPgl2wdW5+l+0PF6vSCk4=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0swm7E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rAbQRsbrHcQJ+xAZKhIIztFK3i/CEQZg9TnqiV664VXcGuky8nFRIjnqv/NXtxzyNQCGXzJiO5yboZ0yj4BImpW5qIGF8xAbQsVSxCIyfzW6e0BOr9GkYa1sK6Uz9PZGxyJhxFNjOiOHQLHpT8T+vk2J45WdCJSmC4vNFYSopxnQaAO0LDRzl2BLGtbC3Uj5kmnG0MZVsCN7iy8ukeVb1Lqrnd+eV2nUeR5EckWNySjxySWrkltRJg3CSkGfySt6c1Hlx3p2PeWvByWcOyR84nz+qcZIb</latexit>wi



Quantum K-theory
Quasimaps spaces admit action of  on base  with two fixed points ℂ×

q ℙ1

Define vertex function for  with quantum (Novikov) parameters zτ

Define quantum K-theory as a ring with multiplication
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j !=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

[Okounkov]
[Pushkar Smirnov Zeitlin]

Theorem:  is a commutative associative unital algebraQK(X)

C⇥
q

<latexit sha1_base64="aN4a8xqUmBrZNSoOjZnpHuIhLFc=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmqoMtiNy4r2Ae0MUymk3bo5OHMRAih/oobF4q49UPc+TdO2iy09cDA4Zx7uWeOF3MmlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRhHZIxCPR97CknIW0o5jitB8LigOP0543beV+75EKyaLwTqUxdQI8DpnPCFZacs3qMMBq4nlZa3Y/VCyg0n1wzZpVt+ZAq8QuSA0KtF3zaziKSBLQUBGOpRzYVqycDAvFCKezyjCRNMZkisd0oGmI9Rknm4efoVOtjJAfCf1Chebq740MB1Kmgacn86hy2cvF/7xBovwrJ2NhnCgaksUhP+FIRShvAo2YoETxVBNMBNNZEZlggYnSfVV0Cfbyl1dJt1G3z+uN24ta87qoowzHcAJnYMMlNOEG2tABAik8wyu8GU/Gi/FufCxGS0axU4U/MD5/ADC3lR4=</latexit>

is ([Oko15] Section 7.2). Using equivariant localization, we can thus make
the following definition.

Definition 6. The bare vertex function with descendant ⌧ inserted at p1 is
the formal power series

V(⌧)(z) =
X

d

evp2,⇤( bOd
vir ⌦ ⌧ |p1 ,QM

d
nonsing p2)z

d
2 KT⇥C⇥

q
(X)loc[[z]]

where bOd
vir is the symmetrized virtual structure sheaf on QMd

nonsing p2 .

In what follows, we will omit the superscript (⌧) in the bare vertex func-
tion when ⌧ = 1.

2.5

Definition 7. The capping operator is the formal series

 (z) =
X

d

evp1,⇤ ⌦ evp2,⇤( bOd
vir,QM

d
relative p1
nonsing p2

)zd
2 K

⌦2
T (X)loc[[z]]

where bOd
vir denotes the symmetrized virtual structure sheaf on QMd

relative p1
nonsing p2

The standard pairing on equivariant K-theory

(F ,G) = �(F ⌦ G)

allows us to interpret  (z) as a linear map

�(z) : KT(X)loc[[z]] ! KT(X)loc[[z]]

We have the following theorem:

Theorem 2. ([Oko15] Section 7.4) The capping operator satisfies the equa-
tion

V̂(⌧)(z) =  (z)V(⌧)(z)

9

p1 = 0, p2 = 1
<latexit sha1_base64="4jM5YqHXHjZNySnQQ6dBsCblhjQ=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCCykzVdBNoejGZQX7gM4wZNJMG5rJhCQjDKVu/BU3LhRx61+4829Mp7PQ1nO5cDjnXpJ7QsGo0o7zbS0tr6yurZc2yptb2zu79t5+WyWpxKSFE5bIbogUYZSTlqaaka6QBMUhI51wdDP1Ow9EKprwe50J4sdowGlEMdJGCuxDEbh16Jx5eUER1Ooe5ZHOArviVJ0ccJG4BamAAs3A/vL6CU5jwjVmSKme6wjtj5HUFDMyKXupIgLhERqQnqEcxUT54/yCCTwxSh9GiTTNNczV3xtjFCuVxaGZjJEeqnlvKv7n9VIdXfljykWqCcezh6KUQZ3AaRywTyXBmmWGICyp+SvEQyQR1ia0sgnBnT95kbRrVfe8Wru7qDSuizhK4Agcg1PggkvQALegCVoAg0fwDF7Bm/VkvVjv1sdsdMkqdg7AH1ifPzSHlNQ=</latexit>

<latexit sha1_base64="AwLfzDMdpxovjLLedhzEssdy9Bc="></latexit>

KT (X)loc = KT (X)⌦Z[a,~] Q(a, ~)

f X

fixed pts
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The first two factors on the right side give M(z) by definition (34). For the last factor
we note that ⇡ is locally an isomorphism at the point p2 because p2 is not a relative
point. Thus H•(V ⌦ ⇡⇤(Op2)) = Vp2 = Vf(p2) where V is the tautological bundle over
Nk,n. The last equality holds by the definition of the evaluation map. We conclude
that H•(V ⌦ ⇡⇤(Op2)) = ev⇤

p2
(V) and detH•(V ⌦ ⇡⇤(Op2)) = ev⇤

p2
(detV).

In the K-theory of Nk,n we have detV = O(1) and thus
1X

d=0

zdevp ⌦ evp2

⇣
QMd

relative p

nonsing p2

, bOvir ⌦ detH•(V ⌦ ⇡⇤(�Op2))
⌘
=  (z)O(1)�1.

Finally,  (0) = ONk,m
which is a boundary condition for the fundamental solution. ⇤

By definition, (34) is a power series M(z) =
P1

d=0 z
dMd. It was computed explicitly

for Nakajima varieties in [35], in particular the following Theorem holds:

Theorem 13 ([35]). For the given k, n the power series M(z) =
P1

d=0 z
dMd is a

Taylor expansion of a rational function, i.e., M(z) 2 KG(Nk,n)(z).

Once M(z) is known explicitly, the corresponding q-di↵erence equation (33) turns
into a system of linear equations for unknown coe�cients  i:

 (z) = ONk,m
+ 1z + 2z

2 + . . . .

This provides the most e�cient tool for computing the capping operators  (z). For the
case Nk,n, which we investigate in this paper, the operator M(z) is described explicitly
in the Section 7.3.6 of [35].

3. Quantum K-theory ring of Nk,n

3.1. Multiplication in quantum K-theory . Recall that we denote by G the gluing
matrix given by Theorem 10. Using the standard scalar pairing in KT(Nk,n), namely
(29), we can think about this tensor as a linear operator, i.e., G 2 End(KT(Nk,n))[[z]].
Let QMd

p1,p2,p3
be the moduli space of quasimaps from P1 with 3 relative points and let

bOd

vir be the virtual structure sheaf on this moduli space. Given a class F 2 KT(Nk,n),
one can construct the following tensor:

F~ :=

 1X

d=0

zdevp1⇤ ⇥ evp3⇤
⇣
ev⇤

p2
(G�1F)⌦ bOd

vir

⌘!
G�1.(39)

By definition, F~ is a rank two tensor, which, thanks to the scalar product in K-theory,
can be identified with the linear operator:

F~ 2 End(KT(Nk,n))[[z]].

Definition 12. We call F~ the operator of quantum multiplication by a class F .

As a diagram, this operator can be represented in the following form:

F~ =
G�1F

G�1

(40)
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3.2. Multiplicative identity element of QKT(Nk,n). Until now, most of the def-
initions and statements about the quantum equivariant K-theory were analogous to
ones in quantum cohomology. However, there is one major di↵erence related to the
structure of the multiplicative identity element in the ring QKT(Nk,n). In quantum
cohomology, the element representing the multiplicative identity with respect to the
quantum product coincides with the multiplicative identity of the classical theory, i.e.
it is given by the fundamental class. In the quantum K-theory it is not true anymore:
the multiplicative identity in the quantum K-theory ring does not always coincide with
the structure sheaf ONk,n

.5

Let 1̂(z) 2 QKT(Nk,n) be the quantum tautological bundle from Definition 10 for
⌧ = ONk,n

:

1̂(z) =
1X

d=0

zdevp2,⇤
⇣
QMd

relative p2 ,
bOd

vir

⌘
.(42)

Theorem 15. 1̂(z) is the multiplicative identity of the quantum K-theory ring, i.e.,

1̂(z)~ ↵ = ↵ for all ↵ 2 QKT(Nk,n).

Proof. We start from the identity Id = G ·G�1. Thanks to the Theorem 10, we can
represent it via the following diagram:

Id = G�1 =
1

G�1 =

1

G�1

= G�1

1

G�1

The second equality is the degeneration of the parametrized domain D in to a nodal
curve given by union of D with rational curve P1. This domain is represented by
the third term in the above equalities. The last equality is the gluing formula (25).
Comparing with the definition (40) we see the last diagram is the operator of quantum
multiplication by the class 1̂(z). ⇤

3.3. Quantum tautological line bundle. Let [O(1)(z) be the quantum tautological
bundle from Definition 10 for ⌧ = O(1) = detV : As an example of tautological class
⌧ , one can consider the line bundle over Nk,n given by ⌧ = O(1) = detV :

[O(1)(z) :=
1X

d=0

zdevp2,⇤
⇣
QMd

relative p2 ,
bOd

vir ⌦ det(V |
p1
)
⌘
2 QKT(Nk,n).(43)

5More precisely, the identity element of the quantum K-theory ring coincides with its classical
version ONk,n in the case n � 2k. We, however, will not discuss this property of the quantum
K-theory ring in this paper.
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Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 � x�1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) �(d) = charT
⇣
T
vir
{(Vi}, Wn�1)

QMd
⌘
.

The condition d 2 Zn
�0 is determined by stability conditions, which characterize all

allowed degrees for quasimaps.
According to [PSZ16], in order to compute localization contributions one has to write down
the term for a single line bundle of P = �xiq

�diO(di) in �(d). It will be convenient to
adopt the following notations:

'(x) =
1Y

i=0

(1� q
i
x), {x}d =

(~/x, q)d
(q/x, q)d

(�q
1/2~�1/2)d, where (x, q)d =

'(x)

'(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ16]).

Lemma 3.1. The contribution of equivariant line bundle xq
�d

O(d) ⇢ P to �(d) is {x}d.

To compute the vertex function we will also need to classify fixed points of QMd
nonsing p2 .

Such a point is described by the data ({Vi}, {Wn�1}), where degVi = di, degWn�1 = 0.
Each bundle Vi can be decomposed into a sum of line bundles Vi = O(di,1)� . . .�O(di,vi)
(here di = di,1 + . . . + di,vi). For a stable quasimap with such data to exist the collection
of di,j must satisfy the following conditions

• di,j � 0,
• for each i = 1, . . . , n � 2 there should exist a subset in {di+1,1, . . . di+1,vi+1} of
cardinality vi {di+1,j1 , . . . di+1,jvi

}, such that di,k � di+1,jk .

To summarize, we will denote collections satisfying such conditions di,j 2 C.
Now we are ready to sum up contributions for the entire vertex function.

Proposition 3.2. Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi = {xi,1, . . . xi,vi}) be

a chain of subsets defining a torus fixed point p 2 X
T
. Then the coe�cient of the vertex

function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1 di,j , N(d) = v0
idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1
di,j�di,k

,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

Vertex coefficient function
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Vertex Functions

Recently we proved the following statement

Proposition 3.1 ([KPSZ1705]). Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi =
{xi,1, . . . xi,vi}) be a chain of subsets defining a torus fixed point p 2 X

T
. Then the coe�-

cient of the vertex function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1

viY

j=1

vi+1Y

k=1

{xi,j/xi+1,k}di,j�di+1,k
.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-

sentation [AFO1701,AO1704]. It is very useful for a lot of applications, in particular for
computing the eigenvalues ⌧p(z).

Proposition 3.2. The bare vertex function is given by

(23) V
(⌧)
p (z) =

1

2⇡i↵p

Z

Cp

n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint⌧(s1, · · · , sk)
n�1Y

i=1

viY

j=1

dsi,j

si,j
,

where

Eint =
n�1Y

i=1

viY

j,k=1

'

⇣
si,j
si,k

⌘

'

⇣
q
~
si,j
si,k

⌘ ,

Gint =

wn�1Y

j=1

vn�1Y

k=1

'

⇣
q
~
sn�1,k

aj

⌘

'

⇣
sn�1,k

aj

⌘ ,

Hint =
n�2Y

i=1

vi+1Y

j=1

viY

k=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

↵p =
n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint

���
si,j=xi,j

,
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At a fixed point

M =
�
O(d)⌦ q�d

�
�

✓
O(d)⌦ q�d

⌦
ai
aj

◆
character

xq�d
O(d) to the character is
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v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 − x−1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) χ(d) = charT
(
T vir
{(Vi}, Wn−1)

QMd
)
.

The condition d ∈ Zn
≥0 is determined by stability conditions, which characterize all

allowed degrees for quasimaps.
According to [PSZ16], in order to compute localization contributions one has to write down
the term for a single line bundle of P = ⊕xiq−diO(di) in χ(d). It will be convenient to
adopt the following notations:

ϕ(x) =
∞∏

i=0

(1− qix), {x}d =
(!/x, q)d
(q/x, q)d

(−q1/2!−1/2)d, where (x, q)d =
ϕ(x)

ϕ(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ16]).

Lemma 3.1. The contribution of equivariant line bundle xq−dO(d) ⊂ P to χ(d) is {x}d.

Localization

10 PETER KOROTEEV

In order to understand the proof we shall use the integral formula for the vertex function.
Using Theorem 4.8 from [KZ1802] we can write vertex (2.10) as follows
(2.15)

V
(1)
p =

e

log ⇣n·log a1···an
log q

2⇡i

Z

Cp

n�1Y

m=1

mY

i=1

dsm,i

sm,i
E(sm,i) e

�
log ⇣m/⇣m+1·log sm,i

log q ·
m+1Y

j=1

Hm,m+1 (sm,i, sm+1,j) ,

where contour Cp surrounds poles corresponding to the fixed point p of the maximal torus
of Xn and the functions in the integrand are given by

(2.16) Hvm,vm+1(sm, sm+1) =
vmY

i=1

vm+1Y

j=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

corresponding to the contribution of Hom(Vm,Vm+1) and

(2.17) E(sn) =
vnY

j,k=1

'

⇣
sn,j

sn,k

⌘

'

⇣
t
sn,j

sn,k

⌘ ,

emerging from Hom(Vm,Vm) in the localization computation, and where

(2.18) '(x) =
1Y

i=0

(1� q
i
x) .

Proof of Theorem 2.6. By acting with the tRS operators on the vertex function in the
integral form (2.15) we get

(2.19) Tr(~⇣)V
(1)
p = V(Tr)

p ,

where on the right we have a vertex function with descendant class Tr which is defined
as follows (see [KPSZ1705]). The tRS momenta pi correspond to multiplication by class
d⇤iVi ⌦ \⇤i+1V⇤

i+1 in KT (Xn), where Vi is the i-th tautological bundle over Xn, and are
given by the following ratio of products of the corresponding Chern roots.

(2.20) pi =
si+1,1 · · · · · si+1,i+1

si,1 · · · · · si,i
, i = 1, . . . , n� 1 .

Using this fact and the definition of tRS operators (2.12) we can define new quantum

classes V(Tr)
p for r = 1, . . . , n. We can refer to them as tRS classes.

In [KPSZ1705] it was proven that the eigenvalues of the multiplication operator by a
quantum class b⌧ in quantum K-theory of Xn is given by ⌧(s), where Chern roots s of the
corresponding virtual bundle solve the XXZ Bethe Ansatz equations for Xn with s playing
the role of Bethe roots. It was also proven in loc. cit. that these Bethe equations are
equivalent to classical tRS equations Tr(~⇣) = er(a).

If we use saddle point analysis to study the right hand side of (2.19) we can then replace
Tr in the integrand by its eigenvalue, which leads us to

(2.21) V(Tr)
p = er(a)V

(1)
p + . . . ,
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Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 − x−1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) χ(d) = charT
(
T vir
{(Vi}, Wn−1)

QMd
)
.

The condition d ∈ Zn
≥0 is determined by stability conditions, which characterize all

allowed degrees for quasimaps.
It will be convenient to adopt the following notations:

ϕ(x) =
∞∏

i=0

(1− qix), {x}d =
(!/x, q)d
(q/x, q)d

(−q1/2!−1/2)d, where (x, q)d =
ϕ(x)

ϕ(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ]).

Lemma 3.1. The contribution of equivariant line bundle xq−dO(d) ⊂ P to χ(d) is {x}d.

To compute the vertex function we will also need to classify fixed points of QMd
nonsing p2 .

Such a point is described by the data ({Vi}, {Wn−1}), where degVi = di,degWn−1 = 0. Each
bundle Vi can be decomposed into a sum of line bundles Vi = O(di,1)⊕ . . .⊕ O(di,vi) (here
di = di,1 + . . . + di,vi). For a stable quasimap with such data to exist the collection of di,j
must satisfy the following conditions

• di,j ≥ 0,
• for each i = 1, . . . , n − 2 there should exist a subset in {di+1,1, . . . di+1,vi+1} of
cardinality vi {di+1,j1 , . . . di+1,jvi

}, such that di,k ≥ di+1,jk .

To summarize, we will denote collections satisfying such conditions as lying in a chamber
di,j ∈ C.

Now we are ready to sum up contributions for the entire vertex function.

Proposition 3.2. Let p = V1 ⊂ . . . ⊂ Vn−1 ⊂ {a1, · · · , awn−1} (Vi = {xi,1, . . . xi,vi}) be
a chain of subspaces defining a torus fixed point p ∈ XT. Then the coefficient of the vertex
function for this point is given by:

V (τ)
p (z) =

∑

di,j∈C

zdqN(d)/2 EHG τ(xi,jq
−di,j ),

where d = (d1, . . . , dn−1), di =
∑vi

j=1 di,j, N(d) = v′
idi,

E =
n−1∏

i=1

vi∏

j,k=1

{xi,j/xi,k}
−1
di,j−di,k

,

G =

vn−1∏

j=1

wn−1∏

k=1

{xn−1,j/ak}dn−1,j ,

H =
n−2∏

i=1

vi∏

j=1

vi+1∏

k=1

{xi,j/xi+1,k}di,j−di+1,k
.
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Localization in K-theory gives the following formula for the equivariant pushforward:

V (⌧)
p (z) =

1X

d=0

X

(V ,W )2(QMd

nonsing p2
)T

ŝ(�(d)) zdqdeg(P)/2⌧(V |
p1
),

where the sum runs over the T-fixed quasimaps which take value p at the nonsingular
point p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 � x�1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

Note, that the tangent weight contribute to vertex via the roof function ŝ(x) because
the symmetrized virtual structure sheaf (51) is defined together with a shift on the

square root of canonical bundle K 1/2
vir . Thus, our goal is to compute (53). The reduced

virtual tangent space to QMd

nonsing p2 at such point is given by7:

T vir

(V ,W )QM
d = H•(P � ~P⇤)� TpNk,n,(54)

where P is the polarization bundle P = W ⇤ ⌦ V � V ⇤ ⌦ V .
The following Lemma drastically simplifies the computation of the contribution of

charT
⇣
T vir

(V ,W )QM
d

⌘
to the localization formula.

Lemma 1. Let P be a polarization bundle on P1
corresponding to a T-fixed point on

QMd

nonsing p2. It splits into a sum of T-equivariant line bundles P =
L

i
aiq�diO(di)

with for some characters ai of the framing torus A. The cohomology of these line

bundles have the following T-characters:

charT

⇣
H•(aiq

�diO(di))
⌘
= ai

q�di�1 � 1

q�1 � 1
=

8
><

>:

ai + aiq�1 + · · ·+ aiq�di if di > 0

0 if di = �1

�aiq � aiq2 � · · ·� aiq�di�1 if di < �1.

(55)

Proof. It is clear that the tautological bundles V and W representing T-fixed quasimap
split into the sum of line bundles equivalently. It means that P =

L
i
xiO(di) for

some T -characters xi. Since the quasimap is nonsingular at p2 = 1 the corresponding
section should not vanish at p2. The only such section of O(di) is zdi . The torus T
acts on sections by z ! qz. By assumption, this section must be T-fixed. It is possible
only if xi = aiq�di for some character ai of framing torus A, which does not act on P1.
Finally, if di � 0 then only zeroth cohomology group H0(O(di)) is nontrivial and is
spanned by global sections 1, z, · · · , zdi . Thus, we obtain (55). For di < 0, applying
the Serre duality one obtains same result. ⇤

7We use the reduced virtual tangent space which di↵ers from standard one by subtracting TpNk,n.
This term does not depend on d and thus produces a simple multiple in the vertex function. This is

the multiple normalizing the vertex such that V (⌧)
p (0) = ⌧ .



   Vertex for T*ℙ1

Vertex function coefficient with trivial insertion
two fixed points

QKZ/TRS DUALITY VIA QUANTUM K-THEORETIC COUNTS 15

Ss(!ζ(n−1)/ζn, t) of Ts(sn) to get the following formula for the eigenvalue of Tr(a):

(29) Sr

(
ζnt

1−wn−1
2 , . . . , ζnt

wn−1−1

2

)
·

min(r,wn−1−vn−1)∑

s=0

qdim
(
Λwn−1−vn−1
s

)
·Ss(!ζ

(n−1)/ζn, t) ,

where for the first polynomial we used that Sr

(
ζnt

1−wn−1
2 , . . . , ζnt

wn−1−1

2

)
=

ζrner
(
t
1−wn−1

2 , . . . , t
wn−1−1

2

)
. It can be shown using properties of Schur polynomials that

the above expression is equal to an r-symmetric polynomial of variables listed in (24). !

4.2. Vertex Functions from tRS Eigenfunctions. We can also demonstrate how to
compute vertex functions from Proposition 3.1 using the general tRS solution (22) by
properly specifying the contour of integration. In order to do that we need to understand
how to identify each chamber C by choosing contour C in (22).

The prescription goes as follows. We shall only pick poles of functions H in the integrand
and ignore poles of E functions3. Poles of Hvn,vn+1(sn, sn+1) have the form sn,i/sn+1,k =
q−dn,i for some nonnegative degrees dn,i. Thus there is a one-to-one correspondence between
chambers described in the beginning of Sec. 3 and poles of the integrand – we merely select
those poles for which the degrees dn,i satisfy the corresponding inequalities which describe
a given fixed point of the maximal torus.

Once the contour is chosen for a given point p the integral from 3.1 can be evaluated.

Theorem 4.9. Consider αp and V (1)
p as defined previously in Theorem 3.1. Then for

each fixed point p of the maximal torus of X there is a contour C for which integral (22)
evaluates to

(30) V = e
log ζn

∑n−1
i=1 log ai

log q αpV
(1)
p .

Let us illustrate this statement on a simple example.

4.3. Example for T ∗P1. The vertex function (5) for T ∗P1 for a trivial class τ = 1 reads

(31) V (1)
p =

1

2πiαp

∫

Cp

ds

s
(z!)−

log s
log q

2∏

i=1

ϕ
(
t s
ai

)

ϕ
(

s
ai

) ,

for the two fixed points p = {a1} and p = {a2}. The poles are given by s = apq−d for
nonnegative d. By taking the residues we arrive to the q-hypergeometric function

(32) V (1)
p =

∑

d>0

(z!)d
2∏

i=1

(
q
!
ap
ai
; q
)

d(
ap
ai
; q
)

d

=2φ1

(
t, t

ap
ap̄

,
ap
ap̄

; q; z!
)

.

3Moreover, it can be argued [BKK15] that for a contour which encircles all poles of φ functions of the
integrand only poles of H functions survive, whereas poles of E functions are cancelled by zeroes of H ’s.

As a contour integral

V (1)
p =

X

d>0

zd
2Y

i=1

⇣
q
~
ap

ai
; q
⌘

d⇣
ap

ai
; q
⌘

d

=2�1

✓
~, ~ap

ap̄
, q

ap
ap̄

; q;
q

~z
◆

.
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2⇡i

Z
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s
e

log z·log s
log q

'
⇣
~ s
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'
⇣

s
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Classical limit  yieldsq → 1

tRuijsenaars-Schneider integrals of motion

QKT (T
⇤Fln) =

C[⇣±1
1 , . . . , ⇣

±1
n ; a±1

1 , . . . , a
±1
n , ~±1; p±1

1 , . . . , p
±1
n ]

(Hr(⇣i, pi, ~)� er(a1, . . . , an))

Contributions from the base and the fiber in T*G/B split 
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Proof. When applying the localization theorem to compute the bare vertex for the cotan-
gent bundle to partial flags we can brake up the terms in pairs of the form (ω,ω−1!). The
latter corresponds to the cotangent fiber. The contribution of such a pair to the vertex
will be equal to:

1

ω1/2 − ω−1/2

1

(!ω−1)1/2 − (!ω−1)−1/2
=

1

1− ω−1

−!
1/2

1− !−1ω−1
.

Therefore after rescaling by (−!
1/2), which corresponds to expressing z to z! will be equal

to 1
1−ω−1 in the ! → ∞ limit, that is exactly the contribution of ω in the case of the partial

flag variety. One can check that the resulting sum is indeed finite by looking at the intergal
formula for the vertex (22). Namely, the integrand in the expression for the vertex after
fiber removal is as follows:

Eint →
n−1∏

i=1

vi∏

j,k=1

ϕ
( si,j
si,k

)
,

Gint →

wn−1∏

j=1

vn−1∏

k=1

1

ϕ
(
sn−1,k

aj

) ,

Hint →
n−2∏

i=1

vi+1∏

j=1

vi∏

k=1

1

ϕ
(

si,k
si+1,j

) .

In order to obtain the corresponding Bethe equations, one can again compute q → 1
asymptotics or just simply evaluating the limit ! → ∞ of (23) while expresing z in terms
of z!. !

4. XXZ/tRS Duality

In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider (tRS) model which first appeared in physics literature [GK13,BKK15]. It was
there referred to as quantum/classical duality. Here we will prove main statements of
[BKK15].

4.1. XXZ Spin Chain. To start let us change the Kähler parameters in Bethe equations
(23) according to

z1 =
ζ1
ζ2

,

zi =
ζi
ζi+1

, i = 2, . . . , n− 2

zn−1 =
ζn−1

ζn
.(28)

Additionally after rescaling Bethe roots and equivariant parameters

(29) σi,k = !
i
2 si,k , i = 1, . . . , n− 1 , αk = !

n
2 ak ,
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~ ! 1 ŝ(!,!�1~) ! 1

1� !�1

[cf Givental Lee]

Vertex functions satisfy q-Toda difference relations 
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vertex functions for T ∗G/B will transform into Givental J-functions for the correspond-
ing flags G/B5. A similar statement is expected in cohomology, however, in K-theory it
demonstrates a non-trivial connection between the theory of quasimaps which we used to
study T ∗G/B and theory of Stable maps which was used by Givental et al.

As an illustration let us take X = T ∗P1 again. Taking the limit ! → ∞6 (or t → 0) in
(32) we obtain

(35) V (1)
p →2φ1

(
0, 0,

ap
ap̄

; q; z!
)

=:1φ0

(
ap
ap̄

; q; z!
)

=
∞∑

k=0

(z!)k(
ap
ap̄
, q
)

k
(q, q)k

,

where p and p̄ denote two fixed points, which up to a constant coincides with Givental
J-function for P1 from [GL01].

We would like to emphasize that, despite the coincidences above, Givental’s and Ok-
ounkov’s approaches to quantum K-theoretic counts are conceptually different and more
works needs to be done in order to understand the exact relationship.

5. qKZ versus tRS

In this final section we shall study in detail qKZ equations for the cotangent bundle to
partial flag variety and its solutions. After reminding the reader about exact correspon-
dences between K-theoretic and representation-theoretic data, we discuss the derivation
from the paper by Zabrodin and Zotov [ZZ17] of the relation between qKZ equations and
tRS eigenvalue problem. For completeness we shall provide the generalization of the argu-
ment give in [ZZ17] applied to the trigonometric RS model ([ZZ17] offers a proof only for
the rational case). In the end we show that this alaysis leads to a nontrivial relation for
K-theoretic vertex functions with relative insertions, which is a second main result of this
paper.

5.1. Notations and Conventions. The localized quantum K-theory for a union of the
cotangent bundles for partial flag varieties, identified with Nakajima varieties of type An

in Sec. 2, as a vector space, is spanned by K-theory classes corresponding to fixed points.
Those vector spaces can be identified with the standard weight subspaces in

(36) V = V (a1)⊗ · · · ⊗ V (awn−1
) = ⊕{sa}V({sa}),

where V (a) is an n-dimensional evaluation representation of U!(ĝln) with a being a value
of evaluation parameter [CP94] and the weight parameters sa are the eigenvalues of Sa =∑n

k=1 e
(k)
aa .

The identification of the weight subspaces V({sa}) with K-theoretic data is as follows:

V({sa}) = K loc
T (N(v,w))

if sa = va − va−1, where vn ≡ wn−1 and s1 = v1.

5Here B is a parabolic subgroup of G. In this paper G = U(wn−1) and B = U(wn−1 − vn−1) × · · · ×

U(v2 − v1)× U(v1)
6The so-called Inosemtsev limit [Ino89]

Quantum K-theory Ring
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.
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a�ne q-Toda model 5d/3d N = 2 SYM theory 3d 1
2 -ADHM theory

Coordinates zi Kähler parameters K-ring generators xi

Eigenfunctions Defect partition functions 1
2 -ADHM Coulomb branch vacua

Planck constant log q equivariant parameter q C⇥
q acting on C

A�ne parameter q 5d dynamical scale p⇤ FI coupling ep⇤ = ep(�q~)
Eigenvalues EToda

r VEVs of Wilson loop hW⇤r i Chern polynomials E⇤
r of ⇤r

U

Table 3. The correspondence table between the closed q-Toda model, its
5d/3d gauge theory description and large-n 1

2 -ADHM quiver description.

1 2 . . . n� 1

n
W

V

Figure 2. Left: Quiver diagram for the complete flag variety Fln. Right:
The 1

2 -ADHM quiver. Chiral multiplets are depicted with arrows.

(6.5) in the Nekrasov-Shatashvili limit at large n becomes the VEV of the corresponding
flavor-Wilson line of the U(1) 3d N = 2 quiver theory whose Coulomb branch describes
the vortex moduli space.

By examining Tab. 1 we conclude that in the ~ ! 1 limit adjoint chiral field B1 and
anti-chital field J decouple leaving us with only B1 and I (� becomes constant due the
F-term constraint). This illustrates on the level of the 3d gauge theories how the ADHM
model becomes the 1

2 -ADHM model.

6.3. Geometric Meaning. Therefore we conclude that the spectrum of �ILW Hamil-
tonians is in one-to-one correspondence with the operators of quantum multiplication in
QKq(Hilb

k(C)) by the symmetric powers of the universal bundles.
One can think of a subscheme Zk of Hilbk[C2] parametrizing ideals scheme-theoretically

supported on C ⇢ C2 (i.e. where the y matrix is identically 0) is the same as the 1/2 ADHM
quiver variety. The complete Hall algebra which acts on �kKq,~(Hilb

k) does not preserve
the K-theory of this subscheme Zk, but there is a one-parameter Heisenberg subalgebra
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inside it that preserves �kKq(Zk). This Heisenberg subalgebra is the natural analogue of
Nakajima’s construction4.

Our calculations lead to the new results on equivariant K-theory. First, we remind the
reader about the following theorem

Theorem 6.1 ([KPSZ1705]). The quantum equivariant K-theory of the complete n-dimensional

flag variety is given by

(6.7) QKT 0(Fln) =
C[z±1

1 , . . . , z±1
n ; a±1

1 , . . . , a±1
n ; p±1

1 , . . . , p±1
n ]⇣

Hq-Toda
r (zi, pi) = er(a1, . . . , an)

⌘ ,

where Hq-Toda
r are given by (5.3) and T 0

is the maximal torus of GL(N) with equivariant

parameters a1, . . . , an .

Inspired by this result we can prove a theorem about the projective n ! 1 limit of the
above ring similar to Theorem 6.2 when we further specialize the values of ais as in (6.5).

Similarly to Hn we can define the moduli space of quasimaps to complete n-flags (as
opposed to the cotangent bundles to those flags earlier in the paper)

(6.8) Pn := KT(QM(P1,Fln))

for extended maximal torus T0 = T 0 ⇥ C⇥
q .

As it was discussed in [KZ1802] the vertex functions (quantum classes) of Pn, under
proper normalization, be directly obtained from the vertex functions of Hn. Thus for a
fixed point q of the maximal torus

(6.9) Iq = lim
~!1

Vq .

Then the following statement follows

Theorem 6.2. For n > k there is the following embedding of Hilbert spaces

kM

l=0

Kq(Hilb
l(C)) ,! Pn(6.10)

[�] 7! Iq ,

where Iq is the K-theory vertex function for some fixed point q of maximal torus T 0
. The

statement also holds in the limit n ! 1

(6.11)
1M

l=0

Kq(Hilb
l(C)) ,! P1 ,

where P1 is defined as a stable limit of Pn as n ! 1.

4We thank A Negut for discussions about the geometric properties
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1 2 . . . n� 1

n
W

V

Figure 1. Left: Quiver diagram for the cotangent bundle to the complete
flag variety Xn = T ⇤Fln. Right: The ADHM quiver. Undirected links
between nodes depict 3d N = 4 hypermultiplets.

5.1. Quantum q-Toda System. In [BKK15] (Section 5.2) it was shown that the eigen-
function of n-body q-Toda Hamiltonians is given by a partition function Z

YM of pure
N = 1 supersymmetric U(n) Yang-Mills gauge theory on Cq ⇥ C ⇥ S1 in the presence of
the monodromy defect of maximal type wrapping Cq ⇥ S1.

This was established by studying limit ~ ! 1 in (5.9) after certain rescaling also
known as Inozemtsev limit [Ino89]. First we rescale tRS coordinates, momenta (3.1) and
equivariant parameters ai as follows

(5.1) zi = ~�i⇣i , pi = ~�i+1/2pi , ai = ~�
n
2 ↵i = ai .

After taking ~ ! 1 limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(5.2) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(5.3) Hq-Toda
r =

X

I={i1<···<ir}
I⇢{1,...,n}

rY

`=1

✓
1� zi`�1

zi`

◆1��i`�i`�1,1 Y

k2I
pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(5.4) Hopen
1 = p1 +

nX

i=2

pi

✓
1� zi�1

zi

◆
.

5.2. Inozemtsev Limit to Closed qToda. For the elliptic RS model the Inozemtsev
limit works as follows. The theta function has the following expansion near p = 0

(5.5) ✓1(e
z|p) = 2p

1
4

+1X

k=0

(�1)kpk(k+1) sin((2k + 1)z) ,

q → 1

[PK Pushkar Smirnov Zeitlin]
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Next, in Section 2.7, (Definition 10), for a tautological bundle ⌧ 2 KT(Nk,n) as above,
we define a deformation which will be referred to as quantum tautological bundle:3

⌧̂(z) = ⌧ +
1X

d>0

⌧dz
d 2 KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multi-
plication by quantum tautological bundles. The following theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 2. The eigenvalues of operators of quantum multiplication by ⌧̂(z) are given

by the values of the corresponding Laurent polynomials ⌧(s1, · · · , sk) evaluated at the

solutions of the following equations:

nQ
j=1

si � aj
~aj � si

= z ~�n/2
kQ

j=1
j 6=i

si~� sj
si � sj~

, i = 1 · · · k.(9)

When z = 0 we obtain the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (9) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[37], [8] for a more detailed outline.
Let us consider a system of n interacting magnetic dipoles (usually refered to as

spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⌦ C2 ⌦ · · ·⌦ C2.(10)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = �
nX

i=1

�i

x
⌦ �i+1

x
+ �i

y
⌦ �i+1

y
+� �i

z
⌦ �i+1

z
,(11)

where � = ~1/2 + ~�1/2 is the parameter of anisotropy and �i

m
are the standard Pauli

matrices acting in the i-th factor of (10). The periodic boundary conditions are imposed
by identifying the first with (n+ 1)-th spin space. Up to a gauge transformation such
identification is given by a diagonal matrix. Modulo an irrelevant scalar this matrix
can be chosen to be in the following form:

✓
z 0
0 1

◆
: C2

(1) ! C2
(n+1).

This free parameter z, defining the periodic boundary condition will play the crucial
role in this paper, namely it is the parameter of deformation in the quantum K-theory.

3To the best of our knowledge, this object is introduced in the present paper for the first time.
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by ⌧̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) ⌧p(z) = lim
q!1

V
(⌧)
p (z)

V
(1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by ⌧̂(z) corresponding to a

fixed point p 2 X
T
.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn�1

wn�1

The stability condition is chosen so that maps Wn�1 ! Vn�1 and Vi ! Vi�1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn�1,wn�1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⇢ . . . ⇢ Vn�1 ⇢ Wn�1, where |Vi| = vi,Wn�1 =
{a1, . . . , awn�1}. The special case when vi = i, wn�1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v0
i = vi+1 � vi�1, for i = 2, . . . , n� 2, v0

n�1 = wn�1 � vn�2, v0
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V
(⌧)
p (z):

V
(⌧)
p (z) =

X

d2Zn
�0

X

(V ,W )2(QMd
nonsing p2

)T

ŝ(�(d)) zdqdeg(P)/2
⌧(V |p1).

2We are using standard quaternionic notations.

k

n

Baxter Q-operator has eigenvalue

Equivariant parameters , 

twist , 

Planck constant 

ai
z

ℏ

<latexit sha1_base64="RuhVa+vImBZll1BYHAzTJ9JQTYw=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyxCu7AkUtRNoejGZQv2AW0Mk8mkHTqZCTMToYTixl9x40IRt36FO//GaZuFth64cDjnXu69x48pkcq2v43cyura+kZ+s7C1vbO7Z+4ftCVPBMItxCkXXR9KTAnDLUUUxd1YYBj5FHf80c3U7zxgIQlnd2ocYzeCA0ZCgqDSkmceNUtJudaPBQ+8lNScyf2olJxJj5Q9s2hX7BmsZeJkpAgyNDzzqx9wlESYKUShlD3HjpWbQqEIonhS6CcSxxCN4AD3NGUwwtJNZy9MrFOtBFbIhS6mrJn6eyKFkZTjyNedEVRDuehNxf+8XqLCKzclLE4UZmi+KEyopbg1zcMKiMBI0bEmEAmib7XQEAqIlE6toENwFl9eJu3zinNRqTarxfp1FkceHIMTUAIOuAR1cAsaoAUQeATP4BW8GU/Gi/FufMxbc0Y2cwj+wPj8AXvnljg=</latexit>

Q(u) =
kY

i=1

(u� si)

<latexit sha1_base64="NFV2ZNxSyXSSlBT7jeLwqrTAvCg="></latexit>

Q(u) =
kX

i=1

(�1)kuk�i(⇤iV )(z)~

[Pushkar Smirnov Zeitlin]
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0 ! V ! W ! V _ ! 0

Short exact sequence of bundles

Eigenvalues of Q-operators

Satisfy the QQ-relation

equivalent to the XXZ Bethe equations
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Q(u) =
kX

i=1

(�1)kuk�i(⇤iV )(z)~
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eQ(u) =
kX

i=1

(�1)kuk�i(⇤iV _)(z)~
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z eQ(~u)Q(u)� eQ(u)Q(~u) =
nY

i=1

(u� ai)
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Thus, we have arrived at a nondegenerate Z-twisted Miura (SL(2), q)-oper in the sense

of Section 4: A(z) = gα̌(z)e
Λ(z)
g(z) e, where g(z) = ζQ+(zq)Q+(z)−1.

6. Miura-Plücker q-opers, QQ-system, and Bethe Ansatz equations

In this section, we generalize the results of the previous section to an arbitrary simply
connected simple complex Lie group G. We establish a one-to-one correspondence between
the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the set of nondegenerate
solutions of a system of Bethe Ansatz equations associated to G. A key element of the
construction is an intermediate object between these two sets: the set of nondegenerate
solutions of the so-called QQ-system.

6.1. Miura (G, q)-opers and the QQ-system. First, we construct a one-to-one corre-
spondence between the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the
set of nondegenerate solutions of the QQ-system.

Recall that we have chosen a set of non-zero polynomials {Λi(z)}i=1,...,r, which we will
assume from now on to be monic, and a set of non-zero complex numbers {ζi}i=1,...,r that
correspond to a regular element Z of the maximal torus H ⊂ G by formula (3.1). In this
section, these data are assumed to be fixed. (In the next section, we will also consider
elements w(Z) of the orbit of Z under the action of the Weyl group WG of G and the
corresponding ζi’s.)

From now on, we will assume that our element Z =
∏

i ζ
α̌i
i ∈ H satisfies the following

property:

(6.1)
r∏

i=1

ζ
aij
i /∈ qZ, ∀j = 1, . . . , r .

Since
∏r

i=1 ζ
aij
i $= 1 is a special case of (6.1), this implies that Z is regular semisimple.

Introduce the following system of equations:

(6.2) ξ̃iQ
i
−(z)Q

i
+(qz)− ξiQ

i
−(qz)Q

i
+(z) =

Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji ∏

j<i

[
Qj

+(z)
]−aji

, i = 1, . . . , r,

where

(6.3) ξ̃i = ζi
∏

j>i

ζ
aji
j , ξi = ζ−1

i

∏

j<i

ζ
−aji
j

and we use the ordering of simple roots from the definition of (G, q)-opers.
We call this the QQ-system associated to G and a collection of polynomials Λi(z), i =

1, . . . , r.
A polynomial solution {Qi

+(z), Q
i
−(z)}i=1,...,r of (6.2) is called nondegenerate if it has

the following properties: condition (6.1) holds for the ζi’s; for all i, j, k with i $= j and
aik, ajk $= 0, the zeros of Qj

+(z) and Qj
−(z) are q-distinct from each other and from the

zeros of Λk(z); and the polynomials Qi
+(z) are monic.

Recall Definition 4.3 of nondegenerate Z-twisted Miura-Plücker (G, q)-opers.

Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the
QQ-system (6.2).

QQ-System in General
Consider complex simple Lie algebra  of rank 𝔤 r

Cartan matrix aij = ⟨α̌i, αj⟩

Polynomials  contain Bethe roots,  contain equivariant parametersQ+(u) Λ(u)

Polynomials  are auxiliaryQ−(u)

<latexit sha1_base64="J5X8AbePmpNyK04xt2GoJcOyXbM="></latexit>

e⇠i Qi
�(u)Q

i
+(~u)� ⇠iQ

i
�(~u)Qi

+(u) = ⇤i(u)
Y

j>i

h
Qj

+(~u)
i�aji Y

j<i

h
Qj

+(u)
i�aji

, i = 1, . . . , r,



The Ubiquitous QQ-System
Bethe Ansatz equations for XXX, XXZ models — eigenvalues of Baxter operators

Relations in the extended Grothendieck ring for finite-dimensional representations of Uℏ( ̂g)

[Mukhin, Varchenko] ….

Relations in equivariant cohomology/K-theory of Nakajima quiver varieties

[Frenkel, Hernandez] ….

[Pushkar, Smirnov, Zeitlin] [PK, Pushkar, Smirnov, Zeitlin] ….[Nekrasov-Shatashvili]

Spectral determinants in the QDE/IM Correspondence
[Bazhanov, Lukyanov, Zamolodchikov] [Masoero, Raimondo, Valeri] ….

(G,q)-Opers



III.    (G,q)-Connection
Mq : P1 ! P1

Consider vector bundle  over  ℱG ℙ1

q

-connection  is a meromorphic section of (G, q) A Hom𝒪ℙ1
(ℱG, ℱq

G)

Locally q-gauge transformation of the connection

-simple simply-connected complex Lie groupG

Compare with (standard) gauge transformations
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

takes values in the double Bruhat cell
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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(SL(2),q)-Opers
Let G = SL(2) The q-oper definition can be formulated as

Triple  

 is the  connection 

 is a line subbundle

(E, A, ℒ)
(E, A) (SL(2), q)
ℒ ⊂ E

The induced map    is an isomorphismĀ : ℒ → (E/ℒ)q

in a trivialization ℒ = Span(s)

Allow singularities
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4. (SL(N), q)-opers

4.1. Definitions. We now discuss the generalization of (SL(2), q)-opers to SL(N).

Definition 4.1. A (GL(N), q)-oper on P1 is a triple (E, A,L•), where (E, A) is a (GL(N), q)-
connection and L• is a complete flag of subbundles such that A maps Li into L

q
i+1

and the
induced maps Āi : Li/Li�1 �! L

q
i+1

/L
q
i are isomorphisms for i = 1, . . . , N � 1. The triple

is called an SL(N)-oper if (E, A) is an (SL(N), q)-connection.

To make this definition more explicit, consider the determinants

(4.1)
⇣
s(qi�1

z) ^ A(qi�2
z)s(qi�2

z) ^ · · · ^
⇣ i�2Y

j=0

(A(qi�2�j
z)
⌘
s(z)

⌘����
⇤iL

qi�1

i

for i = 1, . . . , N , where s is a local section of L1. Then (E, A,L•) is a q-oper if and only
if at every point, there exists local sections for which each Wi(s)(z) is nonzero. It will be
more convenient to consider determinants with the same zeros as those in (4.1), but with
no q-shifts:

(4.2) Wi(s)(z) =
⇣
s(z) ^ A(z)�1

s(qz) ^ · · · ^
⇣ i�2Y

j=0

(A(qjz)�1

⌘
s(qi�1

z)
⌘����

⇤iLi

.

As in the classical setting, we need to relax these conditions to allow for regular singular-
ities. Fix a collection of L points z1, . . . , zL 6= 0, 1 such that the q

Z-lattices they generate
are pairwise disjoint. We associate a dominant integral weight �m =

P
l
i
m!i to each zm.

Set `
i
m =

Pi
j=1

l
j
m.

Definition 4.2. An (SL(N), q)-oper with regular singularities at the points z1, . . . , zL 6=
0, 1 with weights �1, . . . �L is a meromorphic (SL(N), q)-oper such that each Āi is an

isomorphism except at the points q
�`i�1

m zm, q
�`i�1

m +1
zm, . . . , q

�`im+1
zm for each m, where it

has simple zeros.

znq
�1

znq
�2

zn

q

q
�lkn+1

zn
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Figure 1. Weight of the singularity zn as q-monodromy around the cylin-
der (P1 with 0 and 1 removed).

In order to express the locations of the roots of the Wi(s)’s, it is convenient to introduce
the polynomials

(4.3) ⇤i =
LY

m=1

`im�1Y

j=`i�1
m

(z � q
�j

zm)

Add Twists
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q-Opers, QQ-System & Bethe Ansatz
Chose trivialization of L

q-Oper condition — SL(2) QQ-system

Z = diag(⇣, ⇣�1)Twist element

QQ-system to XXZ Bethe equations
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q-Miura Transformation

Z-twisted q-oper condition

The q-oper condition becomes the SL(2) QQ-system

Difference Equation

(SL(N), q)-OPERS, q-LANGLANDS CORRESPONDENCE, QUANTUM/CLASSICAL DUALITY 13

permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

Scalar difference operator

Miura q-oper: , where  is a q-oper and  is preserved by q-connection (E, A, ℒ, ℒ̂) (E, A, ℒ) ℒ̂ A
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Figure 1. The network of dualities between various types of opers and
related integrable systems. Short vertical lines are the quantum/classical
dualities, diagonal arrows show the double scaling limits between the models,
while dashed lines designate the action of symplectic/bispectral dualities.
The momenta p and coordinates x of the many body systems may take
values in C⇥ or C which is displayed in the figure.

corresponding elliptic generalizations of the space of opers on P1 and on the elliptic curve
E which will describe the space of solutions of the novel elliptic QQ-systems. As of this
writing, the bispectral dual of the DELL system is not known.

1.5. Structure of the Paper. In Section 2 we study the top and right corners of the
diamond which correspond to Z-twisted (SL(r + 1), q)-opers and (SL(r + 1), ✏)-opers re-
spectively. Next, in Section 3 we address the bottom and right corners where di↵erential
SL(r+1)-opers on P1 are discussed, one is gauge equivalent to constant regular semisimple
element, another to a simple polar connection with residue given by regular semisimple
element. We call these SL(r + 1)-opers respectively as rationally Z-twisted and trigono-
metrically Z-twisted.

In both Sections we prove the respective quantum/classical dualities between the space of
opers and the QQ-systems (or the qq-systems for the di↵erential opers). We demonstrate,
for each corner of the diamond, that the conditions for the existence of the corresponding
canonical nondegenerate opers provide the recipe to compute the Lax matrices for the
related integrable systems. In the final Section 4 we provide the algebraic description of
the Calogero-Moser space which can be used in deriving the trigonometric Ruijsenaars-
Schneider hamiltonians. Then we consider three di↵erent double-scaling limits which will
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Thus, we have arrived at a nondegenerate Z-twisted Miura (SL(2), q)-oper in the sense

of Section 4: A(z) = gα̌(z)e
Λ(z)
g(z) e, where g(z) = ζQ+(zq)Q+(z)−1.

6. Miura-Plücker q-opers, QQ-system, and Bethe Ansatz equations

In this section, we generalize the results of the previous section to an arbitrary simply
connected simple complex Lie group G. We establish a one-to-one correspondence between
the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the set of nondegenerate
solutions of a system of Bethe Ansatz equations associated to G. A key element of the
construction is an intermediate object between these two sets: the set of nondegenerate
solutions of the so-called QQ-system.

6.1. Miura (G, q)-opers and the QQ-system. First, we construct a one-to-one corre-
spondence between the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the
set of nondegenerate solutions of the QQ-system.

Recall that we have chosen a set of non-zero polynomials {Λi(z)}i=1,...,r, which we will
assume from now on to be monic, and a set of non-zero complex numbers {ζi}i=1,...,r that
correspond to a regular element Z of the maximal torus H ⊂ G by formula (3.1). In this
section, these data are assumed to be fixed. (In the next section, we will also consider
elements w(Z) of the orbit of Z under the action of the Weyl group WG of G and the
corresponding ζi’s.)

From now on, we will assume that our element Z =
∏

i ζ
α̌i
i ∈ H satisfies the following

property:

(6.1)
r∏

i=1

ζ
aij
i /∈ qZ, ∀j = 1, . . . , r .

Since
∏r

i=1 ζ
aij
i $= 1 is a special case of (6.1), this implies that Z is regular semisimple.

Introduce the following system of equations:

(6.2) ξ̃iQ
i
−(z)Q

i
+(qz)− ξiQ

i
−(qz)Q

i
+(z) =

Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji ∏

j<i

[
Qj

+(z)
]−aji

, i = 1, . . . , r,

where

(6.3) ξ̃i = ζi
∏

j>i

ζ
aji
j , ξi = ζ−1

i

∏

j<i

ζ
−aji
j

and we use the ordering of simple roots from the definition of (G, q)-opers.
We call this the QQ-system associated to G and a collection of polynomials Λi(z), i =

1, . . . , r.
A polynomial solution {Qi

+(z), Q
i
−(z)}i=1,...,r of (6.2) is called nondegenerate if it has

the following properties: condition (6.1) holds for the ζi’s; for all i, j, k with i $= j and
aik, ajk $= 0, the zeros of Qj

+(z) and Qj
−(z) are q-distinct from each other and from the

zeros of Λk(z); and the polynomials Qi
+(z) are monic.

Recall Definition 4.3 of nondegenerate Z-twisted Miura-Plücker (G, q)-opers.

Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the
QQ-system (6.2).

[Frenkel, PK, Zeitlin, Sage, JEMS 2023]

Theorem: There is a 1-to-1 correspondence between the set of nondegenerate -twisted 
-opers on  and the set of nondegenerate polynomial solutions of the QQ-system 

based on 

Z
(G, q) ℙ1

̂L𝔤
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We started this section from the explicit definition of the principal minors by means of
Gaussian decomposition. The following proposition (see Corollary 2.5 in [FZ1]) provides a
necessary and sufficient condition of its existence for a given group element.

Proposition 4.7. An element g ∈ G admits the Gaussian decomposition if and only if
∆ωi(g) "= 0 for any i = 1, . . . , r.

Finally, we end this section with the fundamental relation ([FZ1], Theorem 1.17) between
generalized minors, which we will relate to the QQ-systems.

Proposition 4.8. Let, u, v ∈ W , such that for i ∈ {1, . . . , r}, !(uwi) = !(u) + 1, !(vwi) =
!(v) + 1. Then

(4.7) ∆u·ωi,v·ωi∆uwi·ωi,vwi·ωi −∆uwi·ωi,v·ωi∆u·ωi,vwi·ωi =
∏

j !=i

∆
−aji
u·ωj ,v·ωj ,

4.2. Generalized Wronskians and generalized minors. First, we introduce a notion
of generalized q-Wronskian which, as we will see later is, under certain nondegenracy con-
ditions, is equivalent to the definition of Z-twisted Miura (G, q)-oper.

Let V +
i be the irreducible representation of G with highest weight ωi with respect to B+.

It comes equipped with a line L+
i ⊂ V +

i of highest weight vectors stable under the action of
B+. Let ν+ωi

be a generator of the line L+
i ⊂ V +

i . It is a vector of weight ωi with respect to
our maximal torus H ⊂ B−. The subspace L+

c,i of Vi of weight c−1 · ωi is one-dimensional

and is spanned by s−1ν+ωi
.

Suppose we have a principal G-bundle FG and its B+-reduction FB+ and thus an H-
reduction FH as well. Therefore for each i = 1, . . . , r, the vector bundle

V
+
i = FB+ ×

B+

V +
i = FG ×

G
V +
i

associated to V +
i contains an H-line subbundles

L
+
i = FH ×

H
L+
i , L

+
c,i = FH ×

H
L+
c,i

associated to L+
i , L

+
c,i ⊂ V +

i .
Consider a meromorphic section G of FG. It is a section of FG on U , a Zariski dense set

of P1. Given the fact that can always choose U , so that restriction of FG to U is a trivial
G-bundle, one can express this section as an element G (z) ∈ G(z).

Definition 4.9. The generalized q-Wronskian on P1 is the quadruple (FG,FB+ ,G , Z), where
G is a meromorphic section of a principle bundle FG, FB+ is a reduction of FG to B+,
Z ∈ H = B+/[B+, B+], satisfying the following condition. There exist a Zariski open dense
subset U ⊂ P1 together with the trivialization ıB+ of FB+ , so that for certain {v+i , v

+
c,i}i=1,...,r

which are the sections of line bundles {L+
i ,L

+
c,i}i=1,...,r on U ∩ M−1

q (U) we have G as an
element of G(z) satisfy the following condition:

G
q · v+i = Z · G · v+c,i,(4.8)

where the superscript q stands for the pull-back of the corresponding section with respect
to the map Mq.

Effectively, the definition implies that there exists a Zariski open dense subset U ⊂ P1

together with a trivialization ıB+ of FB+ such that the restriction of G to U ∩ M−1
q (U)

u, v ∈ WG
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albeit written in a slightly different convention and normalization). The condition corre-
sponding to the whole q-Wronskian reads detW (z) = 1, whereas the others can be readily
written using minors of matrix W (z).

5.3. Lewis Carroll Identity. For the type A root system the relation (4.7) reads

(5.8) ∆uωi,vωi∆usiωi,vsiωi −∆usiωi,vωi∆uωi,vsiωi = ∆uωi−1,vωi−1∆uωi+1,vωi+1 ,

which as we have shown previously are equivalent to the corresponding QQ-system. As
was discussed in [KPSZ,KSZ] these equations can be reduced to the following determinant
identity known from the 19th century (Desnanot-Jacobi-Lewis Carroll Identity) using matrix
of the form (5.7).

(5.9) M1
1M

2
i −M1

i M
2
1 = M12

1i M ,

where Ma
b is the determinant of the quantum Wronskian matrix W (z) with the ath row

and bth column removed and M = detW (z).
The identification between (5.8) and (5.9) works as follows. We put u = 1 and v =

s1 · s2 · · · si−1. This way vsi = s1 · · · si is the element which permutes the first the the last
column of matrix M as well as
(5.10)
M = ∆ωi+1,vωi+1 , M1

1 = ∆ωi,vωi , M2
i = ∆siωi,vsiωi , M2

1 = ∆siωi,vωi , M1
i = ∆ωi,vsiωi

In other words, after acting with element v on the columns the Lewis Carroll identity
can be presented in terms of principal minors

(5.11) M̃1
1 M̃

2
2 − M̃1

2 M̃
2
1 = M̃12

12 M̃ ,

where M̃ = M · v.
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q-Langlands Correspondence
Two types of solutions of the qKZ equation:

Analytic in chamber of equivariant parameters — conformal blocks of {ai} Uℏ( ̂g )

Analytic in chamber of quantum parameters (twists) — conformal blocks for deformed W-algebra {ζi} Wq,ℏ(L ̂g )

The q-Langlands correspondence 

[Aganagic Frenkel Okounkov]

XXZ Bethe -oper (G, ℏ)

Uℏ( ̂g ) Wq,ℏ(L ̂g )

q → 1

Equivalence of categories

Dmodκ(BunG) Dmod− 1
mκ

(BunLG)



Number Theory
[Smirnov Varchenko]

Consider cohomological vertex (J-function)

ar
X

iv
:2

30
2.

03
09

2v
2 

 [m
at

h-
ph

]  
5 

A
pr

 2
02

3

THE p -ADIC APPROXIMATIONS OF VERTEX FUNCTIONS VIA
3D-MIRROR SYMMETRY
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Abstract. Using the 3D mirror symmetry we construct a system of polynomials Ts(z)
with integral coefficients which solve the quantum differential equitation of X = T ∗Gr(k, n)
modulo ps, where p is a prime number. We show that the sequence Ts(z) converges in the
p-adic norm to the Okounkov’s vertex function of X as s → ∞. We prove that Ts(z) satisfy
Dwork-type congruences which lead to a new infinite product presentation of the vertex
function modulo ps.

1. Introduction

1.1. The vertex functions are among the main objects studied in enumerative geometry of
Nakajima’s quver varieties [Oko17]. These functions are analogs of Givental’s J-functions in
quantum cohomology [Giv96]. The vertex functions are defined as power series

V(z) =
∞
∑

d=0

cd z
d ∈ Q[[z]]

where the coefficient cd counts the number of degree d rational curves in a quiver variety X .
More precisely, cd is given by the regularized integral of the virtual fundamental class ωvir

cd :=

∫

QMd(X,∞)

ωvir

over the moduli space QMd(X,∞) of degree d quasimaps from a rational curve C ∼= P1 to
X with prescribed behaviour at ∞ ∈ C, see Section 7 of [Oko17] for definitions.

1.2. In this paper we initiate a study of arithmetic properties of cd. For this goal, we
consider the vertex function V(z) for the simplest Nakajima quiver variety, given by the
cotangent bundle over the Grassmannian, X = T ∗Gr(k, n).

For a prime number p, we construct a sequence of polynomials Ts(z) ∈ Z[z], s = 0, 1, . . . ,
starting from T0(z) = 1 which converges to the vertex function,

lim
s→∞

Ts(z) = V(z).

!E-mail: asmirnov@email.unc.edu
!E-mail: anv@email.unc.edu
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p-adic norm to the Okounkov’s vertex function of X as s → ∞. We prove that Ts(z) satisfy
Dwork-type congruences which lead to a new infinite product presentation of the vertex
function modulo ps.

1. Introduction

1.1. The vertex functions are among the main objects studied in enumerative geometry of
Nakajima’s quver varieties [Oko17]. These functions are analogs of Givental’s J-functions in
quantum cohomology [Giv96]. The vertex functions are defined as power series

V(z) =
∞
∑

d=0

cd z
d ∈ Q[[z]]

where the coefficient cd counts the number of degree d rational curves in a quiver variety X .
More precisely, cd is given by the regularized integral of the virtual fundamental class ωvir

cd :=

∫

QMd(X,∞)

ωvir

over the moduli space QMd(X,∞) of degree d quasimaps from a rational curve C ∼= P1 to
X with prescribed behaviour at ∞ ∈ C, see Section 7 of [Oko17] for definitions.

1.2. In this paper we initiate a study of arithmetic properties of cd. For this goal, we
consider the vertex function V(z) for the simplest Nakajima quiver variety, given by the
cotangent bundle over the Grassmannian, X = T ∗Gr(k, n).

For a prime number p, we construct a sequence of polynomials Ts(z) ∈ Z[z], s = 0, 1, . . . ,
starting from T0(z) = 1 which converges to the vertex function,

lim
s→∞

Ts(z) = V(z).

!E-mail: asmirnov@email.unc.edu
!E-mail: anv@email.unc.edu

For a prime  construct a sequence of polynomials  from the superpotnential which converges

 to the vertex in the p-adic norm

p Ts(z) ∈ ℤ[z]

k

n
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Abstract. Using the 3D mirror symmetry we construct a system of polynomials Ts(z)
with integral coefficients which solve the quantum differential equitation of X = T ∗Gr(k, n)
modulo ps, where p is a prime number. We show that the sequence Ts(z) converges in the
p-adic norm to the Okounkov’s vertex function of X as s → ∞. We prove that Ts(z) satisfy
Dwork-type congruences which lead to a new infinite product presentation of the vertex
function modulo ps.

1. Introduction

1.1. The vertex functions are among the main objects studied in enumerative geometry of
Nakajima’s quver varieties [Oko17]. These functions are analogs of Givental’s J-functions in
quantum cohomology [Giv96]. The vertex functions are defined as power series

V(z) =
∞
∑

d=0

cd z
d ∈ Q[[z]]

where the coefficient cd counts the number of degree d rational curves in a quiver variety X .
More precisely, cd is given by the regularized integral of the virtual fundamental class ωvir

cd :=

∫

QMd(X,∞)

ωvir

over the moduli space QMd(X,∞) of degree d quasimaps from a rational curve C ∼= P1 to
X with prescribed behaviour at ∞ ∈ C, see Section 7 of [Oko17] for definitions.

1.2. In this paper we initiate a study of arithmetic properties of cd. For this goal, we
consider the vertex function V(z) for the simplest Nakajima quiver variety, given by the
cotangent bundle over the Grassmannian, X = T ∗Gr(k, n).

For a prime number p, we construct a sequence of polynomials Ts(z) ∈ Z[z], s = 0, 1, . . . ,
starting from T0(z) = 1 which converges to the vertex function,

lim
s→∞

Ts(z) = V(z).
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The convergence is understood in the p-adic norm, see Theorem 4.4. We refer to the poly-
nomials Ts(z) as the p-adic approximations of V(z).

We find that, unlike the vertex functions themselves, their p-adic approximations satisfy
a number of remarkable congruences:

Theorem 1.1 (Theorem 5.1). The p-adic approximations Ts(z) satisfy the Dwork-type con-
gruences:

Ts+1(z)

Ts(zp)
=

Ts(z)

Ts−1(zp)
mod ps(1.1)

with s = 1, 2, . . . .

This type of congruences played an important role in the work of Dwork [Dwo69], which
laid foundation of the theory of p-adic hypergeometric equations. In fact, for X = T ∗P1 our
Ts(z) are close to the truncations of the hypergeometric function 2F1(

1
2 ,

1
2 , 1; z) considered

by Dwork as his primary example, but not the same.
Among other things, Theorem 5.1 implies that modulo ps, the vertex function has the

following infinite product presentation.

Theorem 1.2 (Theorem 5.3). The vertex function of X = T ∗Gr(k, n) has the infinite
product presentation:

V(z) =
∞
∏

i=0

Tm(zp
i
)

Tm−1(zp
i+1)

mod pm, m = 1, 2 . . .

in particular, for m = 1 we obtain

V(z) =
∞
∏

i=0

T1(z
pi) mod p.

To prove the congruences (1.1) we use the technique of ghosts rooted in [Mel09, MeVl16]
and developed further in [VZ21, Var22b]. An important difference with the previous papers
is that our approach here does not require working with the whole Hasse-Witt matrices.
Due to internal symmetry of the functions we consider here, only a specific matrix elements
of these matrices play a role. So, an alternative title of this paper could be Dwork type
congruences with symmetries.

1.3. The construction of p-adic approximations Ts(z) is inspired by the idea of p-adic ap-
proximations of hypergeometric solutions of the KZ equations in [SV19] and by the idea of
3D-mirror symmetry, in the spirit of [RSVZ19, RSVZ21]. In Section 3 we consider a quiver
variety X !, known as a 3D-mirror X . From the quiver of X ! for a choice of a prime p and
s ∈ N we construct a polynomial

Φs(x, z) ∈ Z[x, z].

The auxiliary variables x = (xi,j) play a role of the Chern roots of the tautological bundle
over the quiver varietyX !. The polynomial Φs(x, z) can be understood as a p-adic polynomial

Some properties
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Ts(z) are close to the truncations of the hypergeometric function 2F1(

1
2 ,

1
2 , 1; z) considered

by Dwork as his primary example, but not the same.
Among other things, Theorem 5.1 implies that modulo ps, the vertex function has the

following infinite product presentation.

Theorem 1.2 (Theorem 5.3). The vertex function of X = T ∗Gr(k, n) has the infinite
product presentation:

V(z) =
∞
∏

i=0

Tm(zp
i
)

Tm−1(zp
i+1)

mod pm, m = 1, 2 . . .

in particular, for m = 1 we obtain

V(z) =
∞
∏

i=0

T1(z
pi) mod p.

To prove the congruences (1.1) we use the technique of ghosts rooted in [Mel09, MeVl16]
and developed further in [VZ21, Var22b]. An important difference with the previous papers
is that our approach here does not require working with the whole Hasse-Witt matrices.
Due to internal symmetry of the functions we consider here, only a specific matrix elements
of these matrices play a role. So, an alternative title of this paper could be Dwork type
congruences with symmetries.

1.3. The construction of p-adic approximations Ts(z) is inspired by the idea of p-adic ap-
proximations of hypergeometric solutions of the KZ equations in [SV19] and by the idea of
3D-mirror symmetry, in the spirit of [RSVZ19, RSVZ21]. In Section 3 we consider a quiver
variety X !, known as a 3D-mirror X . From the quiver of X ! for a choice of a prime p and
s ∈ N we construct a polynomial

Φs(x, z) ∈ Z[x, z].

The auxiliary variables x = (xi,j) play a role of the Chern roots of the tautological bundle
over the quiver varietyX !. The polynomial Φs(x, z) can be understood as a p-adic polynomial
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approximation of the superpotential of the 3D-quantum field theory with the Higgs branch
X !. We then define Ts(z) as a specific x-coefficient in Φs(x, z)

Ts(z) = coeffxdps−1

(

Φs(x, z)
)

,(1.2)

see Section 4.2 for details. This definition is natural in the sense that the operator of taking
coefficients (1.2) behave in many respects similar to the integration over a closed cycle in
the complex setting. This operation can be viewed as an Fps - version of integration, see
[SV19, Var22a, RV21, RV22].

The normalized vertex function V(z) associated with a quiver variety, can be characterized
as a unique analytic solution of the quantum differential equation which governs the quan-
tum cohomology of X . For instance, for X = T ∗Pn, n = 1, 2, . . . , these are the standard
generalized hypergeometric equations. It can be shown that the coefficient (1.2) is a solution
of these equations modulo ps, which explains the motivation for definition (1.2).

We also note that for our running example X = T ∗P1, the polynomial T1(z) is the Hasse-
Witt invariant of an elliptic curve, which was first observed to be a modulo p solution to the
Gauss hypergeometric differential equation by Igusa [Igu58].

1.4. Among other things, congruences (1.1) mean that Is(z) = Ts+1(z)/Ts(zp) is a Cauchy
sequence which converges uniformly to a Zp-valued analytic function I(z) in a large do-
main D ⊂ Zp . That function I(z) is the p-adic analytic continuation to D of the function
V(z)/V(zp) defined as a ratio of power series in a neighborhood of z = 0. For points in D
we have a modular transformation identity

zdI(1/z) = I(z)

where d is a constant depending on the choice of p, see Theorem 6.3. This property of
V(z)/V(zp) differs drastically from the properties of the vertex functions over C, which have
much more non-trivial analytic continuation.

1.5. The results of the present paper have several straightforward generalizations in the
number of obvious directions. First, the quiver variety X = T ∗Gr(k, n) which we only
consider here, can be, with some extra work, replaced by the cotangent bundles over par-
tial flag varieties. Second, the idea of p-adic approximations of vertex functions can be
straightforwardly applied to the vertex functions with descendents. These functions are
solutions to a number of enumerative and geometric problems. For instance, as shown in
[Oko17] for the special choice of the descendent insertions, given by the stable envelope func-
tions [AO16, MO19], the descendent vertex functions are equal to the capping operators. In
enumerative geometry these functions count the quasimaps in X with relative boundary con-
ditions, see Section 7.4 of [Oko17]. At the same time, as it was recently shown by Danilenko
[Dan22], the capping operators can be understood as the fundamental solution matrices of
the quantum Knizhnik-Zamolodchikov equations associated with mirror varieties. Our ap-
proach suggests a natural p-adic approximations of all these objects. We plan to return to
these ideas in separate papers.
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