
Hello and welcome to class!

Last time
We discussed when a matrix has a basis of real eigenvectors.

This time
We talk a bit about the complex numbers and discuss their uses in
finding eigenvalues and eigenvectors. Then we’ll move on to the
next chapter, about orthogonality.



The complex numbers

The negative real numbers have no square-roots.

We just invent them: introduce a symbol i , whose square is �1.

Now all real numbers have square-roots:
p
�7 = i

p
7.



The complex numbers

Definition
The complex numbers are the collection of expressions a+ bi ,
where a, b are real numbers, and i squares to �1.

We write C for the set of these numbers.

They add and multiply just like you think they do:

(a+ bi) + (c + di) = (a+ c) + (b + d)i

(a+ bi)(c + di) = ac + bci + adi + bdi2 = (ac � bd) + (ad + bc)i



The complex numbers

A useful fact: observe

(a+ bi)(a� bi) = a2 + b2

This is nonzero so long as a+ bi 6= 0.

Thus any nonzero complex number has an inverse:

1

a+ bi
=

a� bi

a2 + b2
=

a

a2 + b2
+

b

a2 + b2
i



Is that really ok?

For a long time, even many mathematicians didn’t think so.

The following may reassure you.

At some point, you learned to count. Then, addition,
multiplication, subtraction, division.

But, in terms of counting numbers, the questions “what is 1� 2”
and “what is 1/2” didn’t have answers. So we just invented some.

Now you have fractions and negative numbers, but still questions
like “what number squares to two” or “what is the ratio of the
circumference of the circle to its diameter” do not have answers.
So we just invented some.

The complex numbers are the next step in the progression.



The fundamental theorem of algebra

Theorem
Any polynomial xn + an�1xn�1 + · · ·+ a0, possibly with complex
coe�cients, factors into linear factors over the complex numbers.
That is, there exist complex numbers r1, . . . , rn such that

xn + an�1x
n�1 + · · ·+ a0 = (x � r1)(x � r2) · · · (x � rn)

For example, x2 + 1 = (x + i)(x � i).



The complex plane



Polar coordinates



Euler’s identity

e i✓ = cos(✓) + i sin(✓)

So we can write any complex number x + iy first via polar
coordinates as r cos ✓ + ir sin ✓ and then as re i✓.

r =
p
x2 + y2 ✓ = tan�1(y/x)



e i⇡ + 1 = 0



The geometric meaning of complex multiplication

Multiplying by a complex number a+ bi is a linear transformation
on the 2-dimensional real vector space underlying the complex
numbers (the complex plane)


a �b
b a

� 
c
d

�
=


ac � bd
bc + ad

�

In polar form: re i✓ acts by the matrix

r


cos(✓) � sin(✓)
sin(✓) cos(✓)

�

So it scales by r and rotates by ✓.



Back to linear algebra

We developed linear algebra with real coe�cients.

But everything we did since the beginning of class actually makes
sense with complex coe�cients as well.

Good review exercise: go back through and check this! Hint: it
will be important that nonzero complex numbers have inverses.



Why is this useful?

We saw that an n ⇥ n matrix can be diagonalized when its
characteristic polynomial has n distinct real roots.

If we’re willing to use complex numbers, then we can diagonalize a
matrix whenever its characteristic polynomial has n distinct
complex roots. (By the same argument.)

This is a lot more likely:

the fundamental theorem of algebra tells us that every polynomial
factors into linear factors over the complex numbers.



Rotation

Consider the matrix


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
.

Its characteristic polynomial is

(cos(✓)� �)2 + sin(✓)2 = �2 � 2 cos(✓) + 1

This has roots:

� =
2 cos(✓)±

p
4 cos(✓)2 � 4

2
= cos(✓)± i sin(✓) = e±i✓

So: no real eigenvalues — geometrically: rotation preserves no line
— but it can still be diagonalized over C.



Length

In the real world, we are quite interested in distance; length.

In our abstract world of vector spaces, we need to define the
corresponding notion.

For R1 this is easy: we just use the absolute value.

For Rn, we are guided by the Pythagorean theorem.



The Pythagorean theorem



Length

Definition
The length of a vector v = (v1, v2, . . . , vn) in Rn is

||v|| =
q
v21 + v22 + · · ·+ v2n

Note that for a positive scalar �, we have ||�v|| = �||v||.

Example
The vector (5, 3, 1, 1) has length

p
52 + 32 + 12 + 12 =

p
25 + 9 + 1 + 1 =

p
36 = 6



Try it yourself!

Find the lengths:

||(0, 0, 0, 0)|| =
p
02 + 02 + 02 + 02 = 0

||(1, 1)|| =
p
12 + 12 =

p
2

||(�1, 2,�3, 4)|| =
q

(�1)2 + 22 + (�3)2 + 42 =
p
1 + 4 + 9 + 16 =

p
30



Unit vectors

Given a vector v 2 Rn, there is a unique vector of length 1 pointing
in the same direction: v

||v|| . Indeed, since ||v|| is a positive scalar:
����

����
v

||v||

����

���� =
1

||v|| ||v|| = 1

We call this the unit vector in the direction of v.

Example
The vector (5, 3, 1, 1) has length

p
52 + 32 + 12 + 12 =

p
25 + 9 + 1 + 1 =

p
36 = 6

The unit vector in the same direction is (56 ,
3
6 ,

1
6 ,

1
6).



Try it yourself!

Find a unit vector in the given direction:

(3, 4) The length is
p
32 + 42 = 5. So the unit vector is (3/5, 4/5).

(3, 4, 5) The length is

||(3, 4, 5)|| =
p
32 + 42 + 52 =

p
9 + 16 + 25 =

p
50 = 5

p
2

So the unit vector in the same direction is 1
5
p
2
(3, 4, 5).



Distance

A notion of length of vectors determines a notion of distance in Rn:

The distance between a and b is ||b� a||.

Example
The distance between (1, 2, 3) and (3, 2, 1) is

||(1, 2, 3)� (3, 2, 1)|| = ||(�2, 0, 2)|| =
q

(�2)2 + 02 + 22 = 2
p
2



Orthogonality

Recall: for a triangle with sides of lengths a, b, c , we have the
relation a2 + b2 = c2 if and only if the angle between the sides of
lengths a and b is a right angle.

So in R2, the vectors a and b are at a right angle if and only if

||a||2 + ||b||2 = ||a� b||2



Orthogonality

In higher dimensions, we turn this fact into a...

Definition
In Rn, the vectors a and b are orthogonal if and only if

||a||2 + ||b||2 = ||a� b||2



Orthogonality

Expanding these out, for a = (a1, . . . , an) and b = (b1, . . . , bn):

||a||2 + ||b||2 =
X

i

a2i + b2i

||a� b||2 =
X

i

a2i + b2i � 2aibi

We find

||a||2 + ||b||2 � ||a� b||2 = 2
X

i

aibi



The dot product

So a and b are orthogonal if and only if
P

i aibi = 0.

Definition
For vectors a = (a1, . . . , an) and b = (b1, . . . , bn), we write

a · b = a1b1 + · · ·+ anbn

This is called the dot product.

The vectors a,b 2 Rn are orthogonal if and only if a · b = 0.



Dot product properties

Observe:

a · a = (a1, . . . , an) · (a1, . . . , an) = a21 + · · ·+ a2n = ||a||2

||a+b|| =
X

i

(ai+bi )
2 =

X

i

a2i +2aibi+b2i = ||a||2+||b||2+2(a·b)

a · (cv + dw) = c(a · v) + d(a ·w)



Try it yourself!

Compute the dot products:

(1, 2) · (3, 4) = 1 · 3 + 2 · 4 = 11

(2,�1, 3) · (1, 2, 4) = 2 · 1 +�1 · 2 + 3 · 4 = 12



Try it yourself!

Are they orthogonal?

(1, 1, 0), (0, 0, 1)? The dot product is

(1, 1, 0) · (0, 0, 1) = 1 · 0 + 1 · 0 + 0 · 1 = 0

so yes.

(3, 1, 4), (�2, 1, 1)? The dot product is

3 · (�2) + 1 · 1 + 4 · 1 = �1

so no.



The law of cosines



Angles

Thus if ✓ is the angle between a and b,

||b� a||2 = ||a||2 + ||b||2 � 2||a||||b|| cos(✓)

On the other hand, we saw

||b� a||2 = ||a||2 + ||b||2 � 2(a · b)

Thus
a · b = ||a||||b|| cos(✓)



Angles

Example
The angle ✓ between the vectors (1, 2) and (3, 4) can be
determined by

(1, 2) · (3, 4) = ||(1, 2)||||(3, 4)|| cos(✓)

We compute

(1, 2) · (3, 4) = 11 ||(1, 2)|| =
p
5 ||(3, 4)|| = 5

✓ = cos�1

✓
11

5
p
5

◆


