
Hello and welcome to class!

Last time

We introduced linear subspaces and bases.

Today

We talk a bit more about bases, then move on to study the

determinant of a matrix. I am going to do what corresponds to

chapter 3.2 in the book today and then chapters 3.1 and 3.3 next

time.



Bases of Rn

A linearly independent subset of Rn
must have at most n elements,

and a spanning set of Rn
must have at least n elements, so

Every basis of Rn
has exactly n elements.



Bases of Rn

For an n element subset {v1, . . . , vn} of Rn
,

The following are equivalent:

I The vi span Rn

I The vi are linearly independent

I The vi form a basis

I The square matrix whose columns are the vi is invertible.



Bases and linear transformations

From a basis {v1, . . . , vk} of a linear subspace V of Rn
, we can

define a linear map

T : Rk ! Rn

x 7!
⇥
v1 · · · vk

⇤
· x

This linear map has range V , since the vi span V , and is

one-to-one because the vi are linearly independent.

A basis for V is essentially the same as a one-to-one linear map

with range V . This is also called an isomorphism from Rk
to V .



The size of a basis

Suppose given two bases, {v1, . . . , vk} and {w1, . . . ,w`} of the

same linear subspace V of Rn
.

Let T : Rk ! Rn
be the linear map x 7!

⇥
v1 · · · vk

⇤
· x.

Since T is one-to-one with range V , there is a unique element of

Rk
which maps to wi . We write it as T�1

(wi ).

Note that T (T�1
(wi )) = wi .



The size of a basis

Given a linear dependency 0 =
P

ciT�1
(wi ), we obtain

0 = T
⇣X

ciT
�1

(wi )

⌘
=

X
ciT (T�1

(wi )) =
X

ciwi

The wi are linearly independent, hence the ci must all be zero.

Thus the T�1
(wi ) are linearly independent.



The size of a basis

Since the wi span V , each vj can be written as

vj =
X

i

cijwi

By definition, vj = T (ej). So

T (ej) =
X

i

cijwi =
X

i

cijT (T�1
(wi )) = T

 
X

i

cijT
�1

(wi )

!

Since T is one-to-one,

ej =
X

i

cijT
�1

(wi )

Thus the span of the T�1
(wi ) contains all ej , hence all Rk

.



The size of a basis

Thus there are as many wi as elements of a basis for Rk
— i.e., k

of them — which is the same as the number of vj .

We have learned that every basis for a linear subspace has the

same number of elements. This common number is called the

dimension of the linear subspace.



Rank-Nullity

Theorem

If A is a matrix with r rows and c columns, i.e., determines a linear
transformation A : Rc ! Rr , then the dimensions of the column
space and the null space add up to c .

Proof.

The column space has dimension equal to the number of pivot

columns, and the null space has dimension equal to the number of

non-pivot columns.



Row rank and column rank

Theorem

The dimension of the space spanned by the rows of a matrix is
equal to the dimension of the space spanned by the columns.

Proof.

Both are equal to the number of pivots.



Invertibility

Recall that for a square matrix, the following are equivalent:

I The matrix is invertible

I The rows are linearly independent

I The rows span

I The rows form a basis

I The columns are linearly independent

I The columns span

I The columns form a basis

I The linear transformation is one-to-one

I The linear transformation is onto



Review!

Is the matrix invertible?


0 0

0 0

�
no


1 0

0 1

�
yes


1 2

3 6

�
no


1 2

3 5

�
yes



2⇥ 2 determinants

Is


a b
c d

�
invertible?

If a 6= 0,


a b
c d

�
!


a b
ac ad

�
!

a b
0 ad � bc

�
so the

matrix is invertible if and only if ad � bc 6= 0.

If a = 0, then by inspection the matrix is invertible if and only if

b, c are not both zero.

In short, the matrix is invertible if and only if

ad � bc 6= 0

The quantity ad � bc is called the determinant of the matrix.



Try it yourself!

Calculate the determinant.


0 0

0 0

�
0⇥ 0� 0⇥ 0 = 0


1 0

0 1

�
1⇥ 1� 0⇥ 0 = 1


1 2

3 6

�
1⇥ 6� 2⇥ 3 = 0


1 2

3 5

�
1⇥ 5� 2⇥ 3 = �1



Review!

Is the matrix invertible?

2

4
1 0 0

0 1 0

0 0 1

3

5 yes

2

4
3 5 4

0 2 2

0 0 8

3

5 yes

2

4
8 0 0

2 2 0

3 5 4

3

5 yes



Review!

Is the matrix invertible?

2

4
1 2 3

1 2 3

4 5 6

3

5 no

2

4
1 3 4

1 3 2

2 6 8

3

5 no

2

4
1 1 3

1 2 5

1 3 7

3

5 no



3⇥ 3 determinants

Is

2

4
a b c
d e f
g h i

3

5 invertible?

Let’s assume a 6= 0. Then we row reduce:

2

4
a b c
d e f
g h i

3

5!

2

4
a b c
ad ae af
ag ah ai

3

5!

2

4
a b c
0 ae � bd af � cd
0 ah � bg ai � cg

3

5

This matrix is invertible i↵ the bottom two rows are linearly

independent; this happens i↵:



3⇥ 3 determinants

The bottom two rows of the previous matrix are linearly

independent i↵

0 6=
����
ae � bd af � cd
ah � bg ai � cg

����

= (ae � bd)(ai � cg)� (af � cd)(ah � bg)

= a2ei � aceg � abdi + bcdg � a2fh + abfg + acdh � bcdg

= a(aei + bfg + cdh � afh � ecg � bdi)

As we’d assumed a 6= 0, this is true i↵

0 6= aei + bfg + cdh � afh � ecg � bdi

The quantity on the right is called the determinant of the matrix.



3⇥ 3 determinants

We saw that the matrix

2

4
a b c
d e f
g h i

3

5

is invertible if and only if its determinant

aei + bfg + cdh � afh � ecg � bdi

is not zero. (Strictly speaking, we saw this assuming a 6= 0; this

assumption can easily be removed.)



Terms in the determinant

In the 2x2 case:


a b
c d

�

+ad


a b
c d

�

�bc



Terms in the determinant

In the 3x3 case:

2

4
a b c
d e f
g h i

3

5

+aei

2

4
a b c
d e f
g h i

3

5

+bfg

2

4
a b c
d e f
g h i

3

5

+cdh

2

4
a b c
d e f
g h i

3

5

�afh

2

4
a b c
d e f
g h i

3

5

�bdi

2

4
a b c
d e f
g h i

3

5

�ceg



Terms in the determinant

The determinant of an n ⇥ n matrix is the sum

over all ways of choosing n entries of the matrix such that one is in

each row and each column

of the product of those entries

with some signs.



Terms in the determinant

In the 2x2 case:


a b
c d

�

+ad


a b
c d

�

�bc



Terms in the determinant

In the 3x3 case:

2

4
a b c
d e f
g h i

3

5

+aei

2

4
a b c
d e f
g h i

3

5

+bfg

2

4
a b c
d e f
g h i

3

5

+cdh

2

4
a b c
d e f
g h i

3

5

�afh

2

4
a b c
d e f
g h i

3

5

�bdi

2

4
a b c
d e f
g h i

3

5

�ceg



What are the signs?

Given a choice of n entries in an n⇥ n matrix with one in each row

and each column,

An inversion is a pair of these entries such that the row of the first

is before the row of the second but the column of the first is after

the column of the second.

In other words, it’s the number of %’s you can draw connecting

one entry to another.



Number of inversions

In the 2x2 case:


a b
c d

�

0


a b
c d

�

1



Number of inversions

In the 3x3 case:

2

4
a b c
d e f
g h i

3

5

0

2

4
a b c
d e f
g h i

3

5

2

2

4
a b c
d e f
g h i

3

5

2

2

4
a b c
d e f
g h i

3

5

1

2

4
a b c
d e f
g h i

3

5

1

2

4
a b c
d e f
g h i

3

5

3



The formula for the determinant

The determinant of an n ⇥ n matrix is the sum

over all ways of choosing n entries of the matrix such that one is in

each row and each column

of the product of those entries

times (�1)
#inversions

.



Terms in the determinant

In the 2x2 case:


a b
c d

�

+ad


a b
c d

�

�bc



Terms in the determinant

In the 3x3 case:

2

4
a b c
d e f
g h i

3

5

+aei

2

4
a b c
d e f
g h i

3

5

+bfg

2

4
a b c
d e f
g h i

3

5

+cdh

2

4
a b c
d e f
g h i

3

5

�afh

2

4
a b c
d e f
g h i

3

5

�bdi

2

4
a b c
d e f
g h i

3

5

�ceg



Try it yourself!

Compute the determinant of the matrix:

2

4
1 2 3

4 5 6

7 8 9

3

5



Computing the determinant

2

4
1 2 3

4 5 6

7 8 9

3

5

+45

2

4
1 2 3

4 5 6

7 8 9

3

5

+84

2

4
1 2 3

4 5 6

7 8 9

3

5

+96

2

4
1 2 3

4 5 6

7 8 9

3

5

�48

2

4
1 2 3

4 5 6

7 8 9

3

5

�72

2

4
1 2 3

4 5 6

7 8 9

3

5

�105

45� 48 + 84� 72 + 96� 105 = �3 + 12� 9 = 0



Example

Compute the determinant of the matrix:

2

6666664

1 4 7 3 2 1

5 2 9 3 2 4

1 6 3 4 3 8

0 0 0 0 0 0

3 4 6 1 5 2

1 2 6 3 3 6

3

7777775



Example

Compute the determinant of the matrix:

2

6666664

1 4 7 3 2 1

5 2 9 3 2 4

1 6 3 4 3 8

0 0 0 0 0 0

3 4 6 1 5 2

1 2 6 3 3 6

3

7777775

There’s no way to choose an entry from each row and each column

without choosing a zero. So every term in the determinant is zero.

So the determinant is zero.



Try it yourself!

Compute the determinant of the matrix:

2

6666664

1 4 7 3 2 1

0 2 9 3 2 4

0 0 3 4 3 8

0 0 0 4 1 7

0 0 0 0 5 2

0 0 0 0 0 6

3

7777775

There’s only one way to choose an entry from each row and each

column without choosing a zero – choosing the entries along the

diagonal. So the determinant is

1⇥ 2⇥ 3⇥ 4⇥ 5⇥ 6 = 720



Rescaling a row

What’s the determinant of this:

2

4
�a �b �c
d e f
g h i

3

5



Triangular matrices

More generally, any matrix with no entries above the diagonal

2

6666664

⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ⇤ ⇤
0 0 ⇤ ⇤ ⇤ ⇤
0 0 0 ⇤ ⇤ ⇤
0 0 0 0 ⇤ ⇤
0 0 0 0 0 ⇤

3

7777775

has determinant equal to the product of the entries on the

diagonal, since any other way of selecting one entry from each row

and each column must pick a zero.



Terms in the determinant

2

4
�a �b �c
d e f
g h i

3

5

+�aei

2

4
�a �b �c
d e f
g h i

3

5

+�bfg

2

4
�a �b �c
d e f
g h i

3

5

+�cdh

2

4
�a �b �c
d e f
g h i

3

5

��afh

2

4
�a �b �c
d e f
g h i

3

5

��bdi

2

4
�a �b �c
d e f
g h i

3

5

��ceg



Rescaling a row

det

2

4
�a �b �c
d e f
g h i

3

5 = � · det

2

4
a b c
d e f
g h i

3

5

More generally, the same is true for a square matrix of any size:

rescaling a row rescales the determinant by the same factor:

Each term in the determinant is a product of entries, one from

each row — hence containing exactly one from the rescaled row.

Rescaling a column likewise rescales the determinant.



Linearity in the rows

What’s the determinant of this:

2

4
a+ a0 b + b0 c + c 0

d e f
g h i

3

5



Linearity in the rows
2

4
a+ a0 b + b0 c + c 0

d e f
g h i

3

5

+(a+ a0)ei

2

4
a+ a0 b + b0 c + c 0

d e f
g h i

3

5

+(b + b0)fg

2

4
a+ a0 b + b0 c + c 0

d e f
g h i

3

5

+(c + c 0)dh

2

4
a+ a0 b + b0 c + c 0

d e f
g h i

3

5

�(a+ a0)fh

2

4
a+ a0 b + b0 c + c 0

d e f
g h i

3

5

�(b + b0)di

2

4
a+ a0 b + b0 c + c 0

d e f
g h i

3

5

�(c + c 0)eg



Linearity in the rows

det

2

4
a+ a0 b + b0 c + c 0

d e f
g h i

3

5 = det

2

4
a b c
d e f
g h i

3

5+det

2

4
a0 b0 c 0

d e f
g h i

3

5

More generally, the same is true for a square matrix of any size:

the determinant is linear in any given row (or column):

det

2

6666664

r1
r2
. . .

ark + br0k
. . .
rn

3

7777775
= a det

2

6666664

r1
r2
. . .
rk
. . .
rn

3

7777775
+ b det

2

6666664

r1
r2
. . .
r0k
. . .
rn

3

7777775



Linearity in the rows

det

2

66664

r1
. . .

ark + br0k
. . .
rn

3

77775
= a det

2

66664

r1
. . .
rk
. . .
rn

3

77775
+ b det

2

66664

r1
. . .
r0k
. . .
rn

3

77775

Each term in the determinant on the left is a product of entries,

one from each row, hence exactly one in the k ’th row.

This entry is a times the entry of rk plus b times the entry of r0k .

The term in the determinant to the left is the sum of a times the

corresponding term in the first determinant to the right, and

b times the corresponding term in the second.



Try it yourself!

Observe that


1 0

0 1

�
=


1 0

0 0

�
+


0 0

0 1

�

Is it true that:

det


1 0

0 1

�
?
= det


1 0

0 0

�
+ det


0 0

0 1

�

No! That would say 1 = 0 + 0. The determinant is linear in one

row (or column) at a time, not in the whole matrix at once.



Try it yourself!

Compute the determinant of the matrix:

2

4
1 2 3

1 2 3

4 5 6

3

5



Computing the determinant

2

4
1 2 3

1 2 3

4 5 6

3

5

+12

2

4
1 2 3

1 2 3

4 5 6

3

5

+24

2

4
1 2 3

1 2 3

4 5 6

3

5

+15

2

4
1 2 3

1 2 3

4 5 6

3

5

�15

2

4
1 2 3

1 2 3

4 5 6

3

5

�12

2

4
1 2 3

1 2 3

4 5 6

3

5

�24

Note they cancel in pairs; the determinant is zero.



Repeated rows

Any matrix with a repeated row has determinant zero.

Say the repeated rows are in positions i and j .

Then for any term in the determinant, say with selected entries in

positions (i , x) and (j , y), there will be another term with the same

selected entries in all rows except i and j , and in these rows, the

entries (i , y) and (j , x).

The i and j rows are the same, so the terms are products of the

same numbers. One of them has exactly one more inversions than

the other, so they have opposite signs and hence cancel.



Try it yourself!

Compute the determinants of


1 2

3 4

� 
3 4

1 2

�

These are

1⇥ 4� 2⇥ 3 = �2 3⇥ 2� 4⇥ 1 = 2



Swapping rows

det

2

66664

r1
r2
r3
. . .
rn

3

77775
= �det

2

66664

r2
r1
r3
. . .
rn

3

77775

Consider a term in the expansion of the determinant to the left.

Maybe it contains the entries (1, x) and (2, y).

The term on the right containing entries (1, y) and (2, x), and all

others the same, is a product of the same numbers, and has all the

same inversions, except that (1, x) and (2, y) is an inversion if and

only if (1, y) and (2, x) is not. So the terms have opposite signs.



Adding a multiple of one row to another

det

2

66664

r1
r2 + cr1

r3
. . .
rn

3

77775
= det

2

66664

r1
r2
r3
. . .
rn

3

77775
+ c · det

2

66664

r1
r1
r3
. . .
rn

3

77775
= det

2

66664

r1
r2
r3
. . .
rn

3

77775

By linearity and the vanishing of determinants with repeated rows.



Computing determinants by row reduction

We have learned the following facts:

I Swapping rows negates the sign of the determinant.

I Rescaling a row rescales the determinant by the same factor.

I Adding a multiple of a row to another preserves determinants.

I The determinant of a triangular matrix — in particular, an

echelon matrix — is the product of the diagonal entries.



Computing determinants by row reduction

So to compute the determinant of a matrix, row reduce it, and

keep track of any row switches or rescalings of rows.

At the end, multiply together:

I the inverses of the row rescaling factors

I the diagonal entries of the final echelon matrix

I (�1)
#rowswaps

That’s the determinant of the original matrix.

This method is much much faster than summing all the terms.



Determinants of elementary matrices

If Eam, Eswap, and Escale(�) are elementary matrices which,

respectively, add a multiple of one row to another, swap two rows,

and rescale one row by �, then:

det(Eam) = 1 det(Eswap) = �1 det(Escale(�)) = �

This follows from the previous slide: each is row reduced to the

identity in one move; the determinant of the identity is 1, and the

e↵ect of that one move is as above.



Determinants of elementary matrices

If E1, . . . ,Em are elementary matrices, and M is any (square)

matrix, then

det(Em · · ·E1M) = det(Em) · · · det(E1)det(M)

This again follows from the previous slides: we have seen that each

row operation changes the determinant by multiplying by the

determinant of the corresponding elementary matrix.



Determinants and invertibility

Theorem

A matrix is invertible if and only if its determinant is nonzero.

Proof.

The determinant of a matrix is a nonzero multiple of the product

of the diagonal entries of its row reduced version.This is not zero if

and only if the pivots run down the diagonal, i.e. there’s one pivot

in each row and each column, i.e., the matrix is invertible.



Invertibility and products

If A and B are invertible, then B�1A�1AB = I = ABB�1A�1
, so

AB is invertible and B�1A�1
is its inverse.

On the other hand, if AB is invertible, then AB(AB)�1
= I and

(AB)�1AB = I . If A and B are square, this is enough to guarantee

they are both invertible.



Determinants and products

Theorem

For square matrices A,B we have: det(A) · det(B) = det(AB)

Proof.

If any of these matrices is not invertible, then both sides are zero.

If the matrices are invertible, then A and B can each be row

reduced to the identity. This means we can write A = E1 · · ·Ea and

B = F1 · · ·Fb, where the Ei and Fj are elementary matrices. Then

det(A) · det(B) = det(E1 · · ·Ea) · det(F1 · · ·Fb)
= det(E1) · · · det(Ea) · det(F1) · · · det(Fb)
= det(E1 · · ·EaF1 · · ·Fb)
= det(AB)


