DAHA Representations \& Branes

Peter Koroteev

To appear with S. Gukov, S. Nawata, D. Pei, and I. Saberi

Symplectic Manifold

Harmonic oscillator $\quad H=\frac{p^{2}}{2}+\frac{x^{2}}{2}$

Phase space - symplectic manifold \mathscr{M}
Symplectic form $\omega=d p \wedge d x \quad \frac{p^{2}}{2}+\frac{x^{2}}{2}-E=0$

Lagrangian $\mathscr{L} \subset \mathscr{M}$ is a middle-dimensional submanifold and such that the restriction of the symplectic form on \mathscr{L} vanishes

$$
\left.\omega\right|_{\mathcal{L}}=0
$$

Symplectic form ω is
locally exact on \mathscr{L}

$$
\theta=d^{-1} \omega=p d x
$$

Quantization as Symplectic Geometry

Quantum oscillator energy states

$$
E_{n}=\hbar\left(n+\frac{1}{2}\right)
$$

Symplectic area

$$
E_{n}=\frac{1}{2 \pi} \int d p \wedge d x \sim \oint_{\mathcal{L}} \theta
$$

Quantization

Coordinates and momenta become operators

$$
p, x \mapsto \hat{p}, \hat{x}
$$

Lagrangian constraint

$$
\frac{p^{2}}{2}+\frac{x^{2}}{2}-E=0
$$

Poisson brackets associated to ω become commutators
$\{A, B\}_{P . B .} \mapsto[A, B]$
by operator
$\left(\frac{\hat{p}^{2}}{2}+\frac{\hat{x}^{2}}{2}-E\right) Z(x)=0$
This ODE has square integrable solutions only for special values of E

$$
E_{n}=\hbar\left(n+\frac{1}{2}\right)
$$

$$
\text { e.g. for } n=0 \quad Z(x) \sim e^{-\frac{1}{2 \hbar} x^{2}}
$$

The Art of Quantization

Lagrangian submanifolds $\mathscr{L} \subset \mathscr{M} \longrightarrow$ States in Hilbert space \mathscr{H}

$$
\begin{gathered}
\hat{f}_{i} \mathcal{Z}=0 \\
\operatorname{dim}_{i} \sim \operatorname{Vol}\left(\mathfrak{D}_{i}\right) \quad \begin{array}{l}
\mathcal{Z}=\left(Y+Y^{-1}\right) \mathcal{Z}=\left(a+a^{-1}\right) \mathcal{Z}
\end{array}
\end{gathered}
$$

Double Affine Hecke Algebra

e

- DAHA (and related algebras) were introduced by l. Cherednik in the study of Macdonald polynomials from the viewpoint of representation theory
- A. Oblomkov demonstrated that in Type A DAHA is flat one-parameter deformation (deformation quantization) of the Poisson structure on the Calogero-Moser (CM) space
- The CM space can be described as an SL(2,C) character variety of a torus with puncture. Using this we shall provide geometric construction of DAHA representations

Double Affine Hecke Algebra rank 1

Let \mathfrak{g} be Lie algebra. The (Iwahori)-Hecke algebra is defined as deformation of the group algebra of the Weyl group of \mathfrak{g}

For $\mathfrak{S l}(2)$ it is generated by T with relation $(T-t)\left(T+t^{-1}\right)=0$ where $t \in \mathbb{C}^{\times}$

Affine Hecke algebra (AHA) for $\mathfrak{Z l}(2)$:

$$
\frac{\mathbb{C}\left[X^{ \pm 1}, T\right]}{\left(T X T-X^{-1},(T-t)\left(T-t^{-1}\right)\right)}
$$

Double affine Hecke algebra for $\mathfrak{s l}(2)$ - two copies of AHA (X, T) and (Y, T) in the presence of additional relation and parameter $q \in \mathbb{C}^{\times}$

$$
\ddot{H}\left(\mathbb{Z}_{2}\right)=\frac{\mathbb{C}\left(q^{ \pm 1}, t^{ \pm 1}\right) \otimes \mathbb{C}\left[X^{ \pm 1}, Y^{ \pm 1}, T\right]}{\left(T X T-X^{-1}, T Y T-Y^{-1}, Y^{-1} X^{-1} Y X-q^{-1},(T-t)\left(T+t^{-1}\right)\right)}
$$

DAHA from Affine Braid Group

Orbifold fundamental group
of the torus with puncture $\left(T^{2} \backslash \mathrm{p}\right) / \mathbb{Z}_{2}$

(a)

(b)

(c)

Generated by X, T, Y modulo relations

$$
T X T=X^{-1}, T Y^{-1} T=Y, \text { and } Y^{-1} X^{-1} Y X T^{2}=1
$$

Its central extension is known as elliptic braid group is obtained
by deforming the last relation to

$$
Y^{-1} X^{-1} Y X T^{2}=q^{-1}
$$

The full $\mathfrak{G l}(2)$ DAHA is obtained by imposing Hecke relation

$$
\ddot{H}\left(\mathbb{Z}_{2}\right)=\mathbb{C}_{q, t}\left[T^{ \pm 1}, X^{ \pm 1}, Y^{ \pm 1}\right] /\left\{\begin{array}{l}
T X T=X^{-1}, \quad Y^{-1} X^{-1} Y X T^{2}=q^{-1} \\
T Y^{-1} T=Y, \quad(T-t)\left(T+t^{-1}\right)=0
\end{array}\right\}
$$

Symmetries

Discrete symmetry $\quad \Xi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$

$$
\begin{aligned}
& \xi_{1}: \quad T \mapsto T, \quad X \mapsto-X, \quad Y \mapsto Y, \quad q \mapsto q, \quad t \mapsto t \\
& \xi_{2}: \quad T \mapsto T, \quad X \mapsto X, \quad Y \mapsto-Y, \quad q \mapsto q, \quad t \mapsto t
\end{aligned}
$$

Mapping class group of torus $S L(2, \mathbb{C})$

$$
\begin{aligned}
\tau_{+}: & & (X, Y, T) \mapsto\left(X, q^{-\frac{1}{2}} X Y, T\right) \\
\tau_{-}: & & (X, Y, T) \mapsto\left(q^{\frac{1}{2}} Y X, Y, T\right) \\
\sigma: & & (X, Y, T) \mapsto\left(Y^{-1}, X T^{2}, T\right)
\end{aligned}
$$

Nonlinear involution

$$
\tilde{\iota}: T \mapsto-T, \quad X \mapsto X, \quad Y \mapsto Y, \quad q \mapsto q, \quad t \mapsto t^{-1}
$$

Spherical DAHA

$$
\mathbf{e}=\left(T+t^{-1}\right) /\left(t+t^{-1}\right)
$$

q-commutator

Spherical subalgebra

$$
S \ddot{H}:=\mathbf{e} \ddot{H} \mathbf{e}
$$

$$
[a, b]_{q}:=q^{-\frac{1}{2}} a b-q^{\frac{1}{2}} b a
$$

Generators of spherical DAHA

$$
\begin{array}{r}
x=X+X^{-1} \\
y=Y+Y^{-1} \\
z=q^{-\frac{1}{2}} Y^{1} X+q^{\frac{1}{2}} X^{-1} Y
\end{array}
$$

$$
\begin{aligned}
{[x, y]_{q} } & =\left(q^{-1}-q\right) z \\
{[y, z]_{q} } & =\left(q^{-1}-q\right) x \\
{[z, x]_{q} } & =\left(q^{-1}-q\right) y \\
q^{-1} x^{2}+q y^{2}+q^{-1} z^{2}-q^{-\frac{1}{2}} x y z & =\left(q^{-\frac{1}{2}} t-q^{\frac{1}{2}} t^{-1}\right)^{2}+\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right)^{2}
\end{aligned}
$$

`Classical' limit

$$
S \ddot{H} \underset{q \rightarrow 1}{ } \mathscr{O}\left(\mathcal{M}_{\text {flat }}\left(C_{p}, \operatorname{SL}(2, \mathbb{C})\right)\right)
$$

Coordinate ring of the moduli space of $\operatorname{SL}(2, \mathbb{C})$ flat connections on punctured torus

$$
\mathcal{M}_{\text {flat }}\left(C_{p}, \mathrm{SL}(2, \mathbb{C})\right)=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{2}+z^{2}-x y z-2=\operatorname{Tr}(\rho(\mathfrak{c}))=\tilde{t}^{2}+\tilde{t}^{-2}\right\}
$$

SL(2,C) Flat Connection on Punctured Torus

Fundamental group $\quad \pi_{1}\left(C_{p}\right)=\left\langle\mathfrak{m}, \mathfrak{l}, \mathfrak{c} \mid \mathfrak{m l m} \mathfrak{m}^{-1} \mathfrak{l}-1=\mathfrak{c}\right\rangle$

$$
\begin{aligned}
& \text { Let } \quad \rho: \pi_{1}\left(C_{p}\right) \rightarrow \mathrm{SL}(2, \mathbb{C}) \\
& x=\operatorname{Tr}(\rho(\mathfrak{m})), y=\operatorname{Tr}(\rho(\mathfrak{l})), \text { and } z=\operatorname{Tr}\left(\rho\left(\mathfrak{m} \mathfrak{l}^{-1}\right)\right)
\end{aligned}
$$

Markov cubic

$$
\mathcal{M}_{\text {flat }}\left(C_{p}, \mathrm{SL}(2, \mathbb{C})\right)=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{2}+z^{2}-x y z-2=\operatorname{Tr}(\rho(\mathfrak{c}))=\tilde{t}^{2}+\tilde{t}^{-2}\right\}
$$

Elliptic fibration of Kodaira type I_{0}^{*}

Theorem. Spherical DAHA is a deformation quantization of the coordinate ring of the moduli space of flat $S L(2, \mathbb{C})$ connections $\mathfrak{X}=\mathscr{M}_{\text {flat }}\left(C_{p}, S L(2, \mathbb{C})\right)$ with respect to Poisson structure Ω_{J}

$$
\Omega_{J}=\frac{1}{2 \pi i} \frac{d x \wedge d y}{\partial f / \partial z}=\frac{1}{2 \pi i} \frac{d x \wedge d y}{2 z-x y}
$$

Next: 1) Representations of (spherical) DAHA - Rep (\ddot{H})

$$
\operatorname{dim} V_{i} \sim \operatorname{Vol}\left(\mathfrak{D}_{i}\right)
$$

2) Lagrangian submanifolds of \mathfrak{X} whose quantization yields these representations $-\mathscr{F} u k\left(\mathfrak{X}, \omega_{\mathfrak{X}}\right)$

DAHA Representations

We will talk about polynomial representations of DAHA

$$
\mathscr{P}:=\mathbb{C}_{q, t}\left[X^{ \pm}\right]^{\overleftarrow{Z}_{2}}
$$

$$
\begin{array}{rlr}
x & \mapsto X+X^{-1}, & \\
\operatorname{pol}: S \ddot{H} \rightarrow \operatorname{End}(\mathscr{P}), & y \mapsto \frac{t X-t^{-1} X^{-1}}{X-X^{-1}} \varpi+\frac{t^{-1} X-t X^{-1}}{X-X^{-1}} \varpi^{-1}, & \begin{array}{r}
\text { Shift operator } \\
\pm \\
\\
\\
\\
z
\end{array}>q^{\frac{1}{2}} X \frac{t X-t^{-1} X^{-1}}{X-X^{-1}} \varpi+q^{\frac{1}{2}} X^{-1} \frac{t^{-1} X-t X^{-1}}{X-X^{-1}} \varpi^{-1}
\end{array}
$$

Highest weight representation for y

$$
y \mathcal{Z}=\left(Y+Y^{-1}\right) \mathcal{Z}=\left(a+a^{-1}\right) \mathcal{Z}
$$

For arbitrary value of a the eigenvector is a series of hypergeometric type which arises in enumerative geometry [PK, Zeitlin] When $a=q^{j} t$ we get Macdonald polynomials of type A_{1} labelled spin- $j / 2$ representation

$$
P_{j}(X ; q, t):=X^{j}{ }_{2} \phi_{1}\left(q^{-2 j}, t^{2} ; q^{-2 j+2} t^{-2} ; q^{2} ; q^{2} t^{-2} X^{-2}\right)
$$

Macdonald Polynomials

$$
\begin{aligned}
& P_{1}=X+X^{-1} \\
& P_{2}=X^{2}+X^{-2}+\frac{(q+1)(t-1)}{q t-1} \\
& P_{3}=X^{3}+X^{-3}+\frac{\left(q^{2}+q+1\right)(t-1)}{q^{2} t-1}\left(X^{-1}+X\right)
\end{aligned}
$$

Polynomial Representation

Macdonald Polynomials generate the ring \mathscr{P} over $\mathbb{C}\left[q^{ \pm 1}, t^{ \pm 1}\right]$

Raising and lowering operators

$$
\begin{aligned}
& \mathrm{R}_{j}:=x-q^{j-\frac{1}{2}} t z=X\left(q^{j} t^{-1} Y-q^{2 j} t^{2}\right)+X^{-1}\left(q^{j} t Y^{-1}-q^{2 j} t^{2}\right) \\
& \mathrm{L}_{j}:=x-q^{-j-\frac{1}{2}} t^{-1} z=X\left(q^{-j} t^{-3} Y-q^{-2 j} t^{-2}\right)+X^{-1}\left(q^{-j} t^{-1} Y^{-1}-q^{-2 j} t^{-2}\right)
\end{aligned}
$$

Action

$$
\begin{aligned}
& \operatorname{pol}\left(\mathrm{R}_{j}\right) \cdot P_{j}(X ; q, t)=\left(1-q^{2 j} t^{2}\right) P_{j+1}(X ; q, t) \\
& \operatorname{pol}\left(\mathrm{L}_{j}\right) \cdot P_{j}(X ; q, t)=\frac{\left(1-q^{2 j}\right)\left(1-q^{2(j-1)} t^{4}\right)}{q^{2 j} t^{2}\left(q^{2(j-1)} t^{2}-1\right)} P_{j-1}(X ; q, t)
\end{aligned}
$$

Finite-Dimensional Representations

Shortening condition
$\operatorname{pol}\left(\mathrm{L}_{j}\right) \cdot P_{j}=0$
Raising operator will never be null due to ($1-q^{2 j} t^{2}$)

$$
\frac{\left(1-q^{2 j}\right)\left(1-q^{(j-1)} t^{2}\right)\left(1+q^{(j-1)} t^{2}\right)}{q^{2 j} t^{2}\left(q^{2(j-1)} t^{2}-1\right)}
$$

$$
\begin{aligned}
q^{2 n} & =1 \\
t^{2} & =-q^{-k} \\
t^{2} & =q^{-(2 \ell-1)}
\end{aligned}
$$

must vanish

Higgs Bundles

Nonabelian Hodge correspondence relates representations of the fundamental group of smooth projective algebraic varieties with Higgs bundles (E, φ)

$$
\mathfrak{X} \simeq \mathcal{M}_{H}\left(C_{p}, S U(2)\right)
$$

Hitchin moduli space

Holomorphic $S U(2)$ vector bundle over C_{p} with holomorphic section φ (Higgs field) of $K_{C_{p}} \otimes \operatorname{ad}(E) \otimes \mathcal{O}(p)$

Tame ramification at p

$$
\begin{aligned}
A & =\alpha_{p} d \vartheta+\cdots \\
\varphi & =\frac{1}{2}\left(\beta_{p}+i \gamma_{p}\right) \frac{d z}{z}+\cdots
\end{aligned}
$$

Hitchin moduli space is the space of solutions of Hitchin equations modulo gauge transformations

$$
\begin{aligned}
F-[\varphi, \bar{\varphi}] & =0 \\
\bar{D}_{A} \varphi & =0
\end{aligned}
$$

NAHC:

$$
\mathcal{A}=A+i(\varphi+\bar{\varphi})
$$

Hitchin equations equivalent to flatness condition

$$
F_{\mathcal{A}}=0
$$

Complex and Kahler Structures

The space $\mathscr{M}_{H}\left(C_{p}, S U(2)\right)$ is hyperKahler

$$
\begin{aligned}
\omega_{I} & =-\frac{i}{2 \pi} \int_{C}\left|d^{2} z\right| \operatorname{Tr}\left(\delta A_{\bar{z}} \wedge \delta A_{z}-\delta \bar{\varphi} \wedge \delta \varphi\right), \\
\omega_{J} & =\frac{1}{2 \pi} \int_{C}\left|d^{2} z\right| \operatorname{Tr}\left(\delta \bar{\varphi} \wedge \delta A_{z}+\delta \varphi \wedge \delta A_{\bar{z}}\right), \\
\omega_{K} & =\frac{i}{2 \pi} \int_{C}\left|d^{2} z\right| \operatorname{Tr}\left(\delta \bar{\varphi} \wedge \delta A_{z}-\delta \varphi \wedge \delta A_{\bar{z}}\right) .
\end{aligned}
$$

Triplet of holomorphic symplectic forms

$$
\Omega_{I}=\omega_{J}+i \omega_{K}, \Omega_{J}=\omega_{K}+i \omega_{I}, \quad \Omega_{k}=\omega_{I}+i \omega_{J}
$$

Complex structure	Complex modulus	Kähler modulus
I	$\beta_{p}+i \gamma_{p}$	α_{p}
J	$\gamma_{p}+i \alpha_{p}$	β_{p}
K	$\alpha_{p}+i \beta_{p}$	γ_{p}

Geometry of \mathfrak{X}

$$
x^{2}+y^{2}+z^{2}-x y z-2-t^{2}-t^{-2}=0
$$

Symplectic form

$$
\Omega_{J}=\frac{1}{2 \pi i} \frac{d x \wedge d y}{\partial f / \partial z}=\frac{1}{2 \pi i} \frac{d x \wedge d y}{2 z-x y}
$$

Kahler form

$$
\omega_{J}=\frac{i}{4 \pi}(d x \wedge d \bar{x}+d y \wedge d \bar{y}+d z \wedge d \bar{z})
$$

$$
\begin{aligned}
A & =\alpha_{p} d \vartheta+\cdots \\
\varphi & =\frac{1}{2}\left(\beta_{p}+i \gamma_{p}\right) \frac{d z}{z}+\cdots
\end{aligned}
$$

$$
\text { Holonomy around puncture } \quad\left(\begin{array}{cc}
t^{2} & 0 \\
0 & t^{-2}
\end{array}\right)=e^{2 \pi\left(\gamma_{p}+i \alpha_{p}\right)}
$$

When $t=1 \quad \mathcal{M}_{\text {flat }}\left(T^{2}, S L(2, \mathbb{C})\right) \simeq \frac{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}{\mathbb{Z}_{2}}$

Real slice

$$
\mathcal{M}_{\text {flat }}\left(T^{2}, S U(2)\right) \simeq \frac{S^{1} \times S^{1}}{\mathbb{Z}_{2}}
$$

Geometry of \mathfrak{X}

Hitchin fibration $\quad \pi: \mathcal{M}_{H}\left(C_{p}, S U(2)\right) \rightarrow \mathcal{B}_{H} \quad$ whose fibers are Abelian varieties (Liouville tori)

$$
(E, \varphi) \mapsto \operatorname{Tr} \varphi^{2} \quad \text { Holomorphic in complex structure } I
$$

The only singular fiber is pre-image of zero $\quad \mathbf{N}=\pi^{-1}(0)$

$$
\mathbf{N}=\mathbf{V} \cup \bigcup_{i=1}^{4} \mathbf{D}_{i}
$$

Pillowcase' for $\quad \alpha_{p}=\beta_{p}=\gamma_{p}=0$

$$
\mathbf{V} \cong\left(S^{1} \times S^{1}\right) / \mathbb{Z}_{2}
$$

Away from $\beta_{p}=0$ locus resolution of A_{1} singularities (exceptional divisors).
β_{p} - Kahler structure parameter in J

Holomorphic Lagrangians with respect to Ω_{I} Branes of type (B, A, A)

Null vector of intersection form

$$
H_{2}\left(\mathcal{M}_{H}\left(C_{p}, G\right), \mathbb{Z}\right)
$$

$$
[\mathbf{F}]=2[\mathbf{V}]+\sum_{i=1}^{4}\left[\mathbf{D}_{i}\right]
$$

\widehat{D}_{4} Dynkin diagram

Complex/Kahler Structure Deformations

For generic values of $\left(\beta_{p}, \gamma_{p}\right)$ the embeddings of two-cycles $\mathbf{D}_{i}, \mathbf{V}$ intro \mathscr{M}_{H} are no longer holomorphic w.r.t. I and singular fiber of type I_{0}^{*} splits into three singular fibers of type I_{2}

$$
y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right) \text { with } e_{1}+e_{2}+e_{3}=0
$$

$$
\mathcal{B}_{H} \ni b_{i}:=e_{i} \operatorname{Tr}\left(\beta_{p}+i \gamma_{p}\right)^{2} \quad(i=1,2,3)
$$

$$
\begin{aligned}
{\left[\mathbf{U}_{1}\right] } & =[\mathbf{V}]+\left[\mathbf{D}_{1}\right]+\left[\mathbf{D}_{2}\right] \\
{\left[\mathbf{U}_{2}\right] } & =[\mathbf{V}]+\left[\mathbf{D}_{3}\right]+\left[\mathbf{D}_{4}\right]
\end{aligned}
$$

Cycles

Pillowcase

$$
\begin{aligned}
& \int_{\mathbf{V}} \frac{\omega_{I}}{2 \pi}=\frac{1}{2}-\left|\alpha_{p}\right| \\
& \int_{\mathbf{V}} \frac{\omega_{J}}{2 \pi}=-\beta_{p} \\
& \int_{\mathbf{V}} \frac{\omega_{K}}{2 \pi}=-\gamma_{p}
\end{aligned}
$$

$$
\int_{\mathbf{F}} \frac{\omega_{I}}{2 \pi}=1, \quad \int_{\mathbf{F}} \frac{\omega_{J}}{2 \pi}=0=\int_{\mathbf{F}} \frac{\omega_{K}}{2 \pi}
$$

$$
\text { Exceptional divisors } \quad i=1,2,3,4
$$

$$
\frac{\alpha_{p}}{2}=\int_{\mathbf{D}_{i}} \frac{\omega_{I}}{2 \pi}, \quad \frac{\beta_{p}}{2}=\int_{\mathbf{D}_{i}} \frac{\omega_{J}}{2 \pi}, \quad \frac{\gamma_{p}}{2}=\int_{\mathbf{D}_{i}} \frac{\omega_{K}}{2 \pi}
$$

Symmetries

$$
\begin{array}{lll}
\xi_{1}: \mathbf{D}_{1} \leftrightarrow \mathbf{D}_{2} & \text { and } & \mathbf{D}_{3} \leftrightarrow \mathbf{D}_{4} \\
\xi_{2}: \mathbf{D}_{1} \leftrightarrow \mathbf{D}_{3} & \text { and } & \mathbf{D}_{2} \leftrightarrow \mathbf{D}_{4} \\
\xi_{3}: \mathbf{D}_{1} \leftrightarrow \mathbf{D}_{4} & \text { and } & \mathbf{D}_{2} \leftrightarrow \mathbf{D}_{3}
\end{array}
$$

$$
\xi_{i}: \mathbf{U}_{2 i+1} \leftrightarrow \mathbf{U}_{2 i+2} \quad \text { and } \quad \mathbf{U}_{2 i+3} \leftrightarrow \mathbf{U}_{2 i+4}
$$

Canonical Coisotropic Brane

Canonical coisotropic brane
$\mathfrak{B}_{\mathrm{cc}}: \quad \stackrel{\mathcal{L}}{ } \quad \underset{\mathfrak{X}}{\downarrow}$

$$
c_{1}(\mathcal{L})=[F / 2 \pi] \in H^{2}(\mathcal{X}, \mathbb{Z})
$$

2d sigma model into \mathfrak{X}
A-branes are flat unitary bundles over Lagrangian submanifold with respect to $\omega_{\mathfrak{X}}=\operatorname{Im}\left(\frac{i}{\hbar} \Omega_{J}\right)$

$$
\hbar=|\hbar| e^{i \theta}
$$

Family of $\mathfrak{B}_{c c}$ branes parameterized by \hbar on symplectic manifold ($\mathfrak{X}, \omega_{\mathfrak{X}}$)

Values of the B-field are determined by equation

$$
\Omega:=F+B+i \omega_{\mathfrak{X}}=\frac{\Omega_{J}}{i \hbar} \quad B \in H^{2}(\mathfrak{X}, \mathrm{U}(1))
$$

$$
\begin{aligned}
& F+B=\operatorname{Re} \Omega \\
&=\frac{1}{|\hbar|}\left(\omega_{I} \cos \theta-\omega_{K} \sin \theta\right), \\
& \omega_{\mathfrak{X}}=\operatorname{Im} \Omega
\end{aligned}=-\frac{1}{|\hbar|}\left(\omega_{I} \sin \theta+\omega_{K} \cos \theta\right) .
$$

HyperKahler condition $\quad F+B=\omega_{\mathfrak{X}} J$
E.g. for real \hbar we have $\omega_{\mathfrak{X}}=\omega_{K}$ and $\mathfrak{B}_{c c}$ brane is of type (B, A, A), for purely imaginary of type (A, A, B)

Branes and Quantization

$\operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\text {cc }}\right)$ parameterized by \hbar provides deformation of the space of holomorphic functions on \mathfrak{X} which is spherical DAHA $=S \ddot{H}$

$$
\left(\omega_{\mathfrak{X}}^{-1}(B+F)\right)^{2}=J^{2}=-1 \quad \int_{\mathbf{F}} \frac{\Omega}{2 \pi}=\frac{1}{\hbar} \quad \frac{1}{2 \pi} \int_{\mathbf{D}_{i}} F+B+i \omega_{\mathfrak{X}}=\int_{\mathbf{D}_{i}} \frac{\Omega_{J}}{2 \pi i \hbar}=\frac{\gamma_{p}+i \alpha_{p}}{2 i \hbar}=-c+\frac{1}{2}
$$

$$
q=t^{c}
$$

$$
\begin{array}{ccc}
\mathscr{O}^{q}(\mathfrak{X}) & = & \operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\mathrm{cc}}\right) \\
Q^{2} & Q^{2} \\
\mathscr{B}^{\prime} & = & \operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}^{\prime}\right)
\end{array}
$$

$$
\operatorname{End}\left(\mathfrak{B}_{\mathrm{cc}}\right) \cong S \ddot{H}
$$

Lagrangian Branes

Grothendieck-Riemann-Roch formula

$$
\begin{aligned}
\operatorname{dim} \mathscr{L} & =\operatorname{dim} H^{0}\left(\mathbf{L}, \mathfrak{B}_{\mathrm{cc}} \otimes \mathfrak{B}_{\mathbf{L}}^{-1}\right) \\
& =\int_{\mathbf{L}} \operatorname{ch}\left(\mathfrak{B}_{\mathrm{cc}}\right) \wedge \operatorname{ch}\left(\mathfrak{B}_{\mathbf{L}}^{-1}\right) \wedge \operatorname{Td}(T \mathbf{L})
\end{aligned}
$$

For a Lagrangian in two dimensions

$$
\operatorname{Td}(T \mathbf{L})=\operatorname{ch}\left(K_{\mathbf{L}}^{-1 / 2}\right) \widehat{A}(T \mathbf{L})
$$

So the dimension reads

$$
\operatorname{dim} \mathscr{L}=\int_{\mathbf{L}} \operatorname{ch}\left(\mathfrak{B}_{\mathrm{cc}}\right)=\int_{\mathbf{L}} \frac{F+B}{2 \pi}
$$

Representations vs Branes: Generic fiber F

Generic fiber $\quad \theta=0$

$$
\omega_{\mathfrak{X}}=-\frac{\omega_{K}}{\hbar}, \quad \text { and } \quad F+B=\frac{\omega_{I}}{\hbar}
$$

$\operatorname{dim} \operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\mathbf{F}}^{\lambda}\right)=\int_{\mathbf{F}} \frac{F+B}{2 \pi}=\int_{\mathbf{F}} \frac{\omega_{I}}{2 \pi \hbar}=\frac{1}{\hbar} \quad \quad$ Quantization condition $\quad \hbar=1 / m$
Shortening condition

$$
q=e^{2 \pi i / m}
$$

Finite-dimensional representation

$$
\mathscr{F}_{m}^{\left(x_{m},+\right)}=\mathscr{P} /\left(X^{m}+X^{-m}-x_{m}-x_{m}^{-1}\right)
$$

Singular fibers of type I_{2}

$F_{\mathbf{U}_{1}}^{\prime}+\left.B\right|_{\mathbf{U}_{1}}=0$
brane $\mathfrak{B}_{\mathbf{U}_{1}}$ can exist only at $1 /(2 \hbar)=n \in \mathbb{Z}_{>0}$

Representation

$$
\begin{aligned}
& \operatorname{pol}\left(\mathrm{L}_{n}\right) \cdot P_{n}(X ; q, t \\
& \mathscr{U}_{n}^{(1)}:=\mathscr{P} /\left(P_{n}\right)
\end{aligned}
$$

where
$P_{n}(X ; q, t)=X^{n}+X^{-n}$

$$
\mathscr{U}_{n}^{(1)}=\operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\mathbf{U}_{1}}\right)
$$

Bun $_{G}$ Component

Assume $\beta_{p}=0$ for simplicity. For V to be Lagrangian with respect to $\omega_{\mathfrak{X}}$ the following should hold

$$
\operatorname{Im} \frac{\left(\frac{1}{2}-\alpha_{p}\right)+i \gamma_{p}}{\hbar}=0
$$

There is no deformation parameter

$$
\operatorname{dim} \operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\mathbf{V}}\right)=\int_{\mathbf{V}} \frac{F+B}{2 \pi}=\frac{1}{2 \hbar}-\frac{\gamma_{p}+i \alpha_{p}}{i \hbar}=\frac{1}{2 \hbar}+2 c-1
$$

$$
q=t^{c}
$$

Shortening condition

$$
\frac{1}{2 \hbar}+2 c-1=k+1 \in \mathbb{Z}_{+} \quad t^{2}=-q^{k+2}
$$

Additional series [Cherednik]

$$
\mathscr{V}_{k+1}:=\mathscr{P} /\left(P_{k+1}\right)
$$

Exceptional Divisors

Exceptional divisors \mathbf{D}_{i} are Lagrangian w.r.t. $\omega_{\mathfrak{X}}$ if deformation parameter $\gamma_{i}+i \alpha_{p}$ in complex structure J is proportional to $i \hbar$
$\operatorname{Im} \frac{\gamma_{p}+i \alpha_{p}}{2 i \hbar}=0$
Value of β_{p} can be arbitrary
Flatness condition

$$
F_{\mathbf{D}_{i}}^{\prime}+\left.B\right|_{\mathbf{D}_{i}}=0
$$

$\int_{\mathbf{D}_{i}} \frac{\operatorname{Im} \Omega}{2 \pi}=\int_{\mathbf{D}_{i}} \frac{\omega_{\mathcal{X}}}{2 \pi}=0$
Shortening condition

$$
t^{2}=q^{-(2 \ell-1)}
$$

$\operatorname{pol}\left(\mathrm{L}_{2 \ell}\right) \cdot P_{2 \ell}(X ; q, t)=0$
$\operatorname{dim} \operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\mathbf{D}_{i}}\right)=\int_{\mathbf{D}_{i}} \frac{F+B}{2 \pi}=-c+\frac{1}{2}=\ell \in \mathbb{Z}_{+}$
2ℓ-dim representation

$$
\mathscr{D}_{2 \ell}:=\mathscr{P} /\left(P_{2 \ell}\right)
$$

Splits intro two modules

$$
\mathscr{D}_{2 \ell}=\mathscr{D}_{\ell}^{(1)} \oplus \mathscr{D}_{\ell}^{(2)}
$$

P_{j} and $P_{2 \ell-j-1}$ have the same eigenvalue

$$
\mathscr{D}_{\ell}^{(1)}=\bigoplus_{j=0}^{\ell-1} \mathbb{C}_{q, t}\left[\frac{P_{j}(X)}{P_{j}\left(t^{-1}\right)}+\frac{P_{2 \ell-j-1}(X)}{P_{2 \ell-j-1}\left(t^{-1}\right)}\right], \quad \mathscr{D}_{\ell}^{(2)}=\bigoplus_{j=0}^{\ell-1} \mathbb{C}_{q, t}\left[\frac{P_{j}(X)}{P_{j}\left(t^{-1}\right)}-\frac{P_{2 \ell-j-1}(X)}{P_{2 \ell-j-1}\left(t^{-1}\right)}\right]
$$

Summary

finite-dim rep	shortening condition	A-brane condition
$\mathscr{F}_{m}^{\left(x_{m}, y_{m}\right)}$	$q^{m}=1$	$m=\frac{1}{\hbar}$
\mathscr{U}_{n}	$q^{2 n}=1$	$n=\frac{1}{2 \hbar}$
\mathscr{V}_{k+1}	$t^{2}=-q^{-k}$	$k=\frac{1}{2 \hbar}+\frac{\gamma_{p}+i \alpha_{p}}{i \hbar}$
\mathscr{D}_{ℓ}	$t^{2}=q^{-\ell+1 / 2}$	$\ell=\frac{\gamma_{p}+i \alpha_{p}}{2 i \hbar}$

Extensions

Compact Lagrangians $\mathfrak{B}_{\mathrm{F}}$ and $\mathfrak{B}_{\mathrm{U}_{i}}$ can exist when q is a root of unity and t generic
Irreducible components \mathbf{U}_{1} and \mathbf{U}_{2} intersect at two double points

Floer complex

$$
\operatorname{Hom}^{*}\left(\mathfrak{B}_{\mathbf{U}_{1}}, \mathfrak{B}_{\mathbf{U}_{2}}\right):=C F^{*}\left(\mathfrak{B}_{\mathbf{U}_{1}}, \mathfrak{B}_{\mathbf{U}_{2}}\right) \cong \mathbb{C}\left\langle p_{1}\right\rangle \oplus \mathbb{C}\left\langle p_{2}\right\rangle
$$

Generic fiber \mathbf{F} over b_{1} may split into \mathbf{U}_{1} and \mathbf{U}_{2}

Corresponding representation of DAHA $-\tau_{-}$-invariant module $\quad \mathscr{F}_{2 n}^{(-,+)} \cong \mathscr{P} /\left(P_{2 n}\right)$

$$
P_{2 n}=\left(P_{n}\right)^{2} \quad P_{2 n}=X^{2 n}+X^{-2 n}+2
$$

Short exact sequence

$$
\mathfrak{B}_{\mathbf{F}}^{(-,+)} \in \operatorname{Hom}^{1}\left(\mathfrak{B}_{\mathbf{U}_{1}}, \mathfrak{B}_{\mathbf{U}_{2}}\right)
$$

$$
0 \rightarrow \mathscr{U}_{n}^{(2)} \rightarrow \mathscr{F}_{2 n}^{(-,+)} \rightarrow \mathscr{U}_{n}^{(1)} \rightarrow 0
$$

Global Nilpotent Cone I_{0}^{*}

In order to $\mathfrak{B}_{\mathrm{V}}$ and $\mathfrak{B}_{\mathrm{D}_{i}}$ be Lagrangian two conditions must be satisfied at the same time

$$
\operatorname{Im} \frac{\left(\frac{1}{2}-\alpha_{p}\right)+i \gamma_{p}}{\hbar}=0
$$

$$
\operatorname{Im} \frac{\gamma_{p}+i \alpha_{p}}{2 i \hbar}=0
$$

This implies $\gamma_{p}=0, \hbar$ is real, and α_{p}, γ_{p} are arbitrary

$$
\omega_{\mathfrak{X}}=\omega_{K} / \hbar
$$

$$
-c+\frac{1}{2}=\ell, \quad \frac{1}{2 \hbar}+2 c-1=k+1
$$

Entail

$$
1 / 2 \hbar=2 \ell+k+1
$$

Quantization conditions

$$
0 \longrightarrow \iota\left(\mathscr{V}_{k+1}\right) \longrightarrow \mathscr{U}_{n}^{(1)} \stackrel{f}{\longrightarrow}_{\mathscr{D}_{\ell}^{(1)}} \mathscr{D}_{\ell}^{(2)} \longrightarrow 0
$$

Morphism matching

$$
\begin{aligned}
& \operatorname{Hom}^{1}\left(\mathfrak{B}_{\mathbf{D}_{1}}, \mathfrak{B}_{\mathbf{V}}\right) \cong \mathbb{C}\left\langle q_{1}\right\rangle \\
& 0 \longrightarrow \iota\left(\mathscr{V}_{k+1}\right) \longrightarrow f^{-1}\left(\mathscr{D}_{\ell}^{(1)}\right) \longrightarrow \mathscr{D}_{\ell}^{(1)} \longrightarrow 0
\end{aligned}
$$

$$
\operatorname{Hom}^{1}\left(\mathfrak{B}_{\mathbf{D}_{1}} \oplus \mathfrak{B}_{\mathbf{D}_{2}}, \mathfrak{B}_{\mathbf{V}}\right) \cong \mathbb{C}\left\langle q_{1}\right\rangle \oplus \mathbb{C}\left\langle q_{2}\right\rangle
$$

$$
0 \longrightarrow \iota\left(\mathscr{V}_{k+1}\right) \longrightarrow f^{-1}\left(\mathscr{D}_{\ell}^{(1)}\right) \oplus \mathscr{D}_{\ell}^{(2)} \longrightarrow \mathscr{D}_{\ell}^{(1)} \oplus \mathscr{D}_{\ell}^{(2)} \longrightarrow 0
$$

$$
0 \longrightarrow \iota\left(\mathscr{V}_{k+1}\right) \longrightarrow f^{-1}\left(\mathscr{D}_{\ell}^{(2)}\right) \oplus \mathscr{D}_{\ell}^{(1)} \longrightarrow \mathscr{D}_{\ell}^{(1)} \oplus \mathscr{D}_{\ell}^{(2)} \longrightarrow 0
$$

Main Theorem

Let C_{p} be a punctured genus-one Riemann surface, $\mathfrak{X}=\mathscr{M}_{\text {flat }}\left(C_{p}, S L(2, \mathbb{C})\right)$ the moduli space of flat $S L(2, \mathbb{C})$ connections with prescribed monodromy at the puncture, and $S \ddot{H}\left(\mathbb{Z}_{2}\right)$ be the spherical subalgebra of DAHA of type A_{1}. Then there is a derived equivalence between the Fukaya category of \mathfrak{X} and the category of finite-dimensional $S \ddot{H}\left(\mathbb{Z}_{2}\right)$-modules

$$
D^{b} \mathscr{F} u k\left(\mathfrak{X}, \omega_{\mathfrak{X}}\right) \simeq D^{b} \operatorname{Rep}(\ddot{H})
$$

The left had side can be upgraded to a larger category of A-branes, while the right had side to all representations

