
The Diamond of  
Integrability

Peter Koroteev
2312.17500

Talk at University at Buffalo 2/19/2024

https://arxiv.org/abs/2312.17500


-Opers (G, q)

t -OpersG

XXZ

XXX

rGaudin

tGaudin

tRS

rCM

tCMrRS

<latexit sha1_base64="FQb5k4HIb/3rEaCyXTHDMxQBrhw=">AAACFnicdVDLSgMxFM3UV62vUZdugkVwY5nWPnfFblxWsA/ojEMmzbShmQdJRixDv8KNv+LGhSJuxZ1/Y6YdoYoeSDiccy/33uOEjAppGJ9aZmV1bX0ju5nb2t7Z3dP3D7oiiDgmHRywgPcdJAijPulIKhnph5wgz2Gk50xaid+7JVzQwL+W05BYHhr51KUYSSXZ+pnpITl2nLg1s8MbU1KPiMUPl5y71LH1vFEwGpVqowYVmUORRr1SKp/DYqrkQYq2rX+YwwBHHvElZkiIQdEIpRUjLilmZJYzI0FChCdoRAaK+kgNseL5WTN4opQhdAOuni/hXF3uiJEnxNRzVGWyqvjtJeJf3iCSbt2KqR9Gkvh4MciNGJQBTDKCQ8oJlmyqCMKcql0hHiOOsFRJ5lQI35fC/0m3VChWC+Wrcr55kcaRBUfgGJyCIqiBJrgEbdABGNyDR/AMXrQH7Ul71d4WpRkt7TkEP6C9fwFM16C/</latexit>

C⇥
p ⇥ C⇥

x

<latexit sha1_base64="+dut3qUOmJDfahmz5Rb/oNvI4V8=">AAACD3icdVC7TsMwFHXKq5RXgJHFogIxVWnpc6vowlgk+pCaEDmu01p1HrIdRBX1D1j4FRYGEGJlZeNvcNogFQRHsnV0zr269x4nZFRIw/jUMiura+sb2c3c1vbO7p6+f9AVQcQx6eCABbzvIEEY9UlHUslIP+QEeQ4jPWfSSvzeLeGCBv61nIbE8tDIpy7FSCrJ1k9ND8mx48StmR3emJJ6RCx+uOTc2XreKBiNSrVRg4rMoUijXimVz2ExVfIgRdvWP8xhgCOP+BIzJMSgaITSihGXFDMyy5mRICHCEzQiA0V9pCZa8fyeGTxRyhC6AVfPl3CuLnfEyBNi6jmqMtlR/PYS8S9vEEm3bsXUDyNJfLwY5EYMygAm4cAh5QRLNlUEYU7VrhCPEUdYqghzKoTvS+H/pFsqFKuF8lU537xI48iCI3AMzkAR1EATXII26AAM7sEjeAYv2oP2pL1qb4vSjJb2HIIf0N6/AH9YnZ0=</latexit>

C⇥
p ⇥ Cx

<latexit sha1_base64="IlV8Xr3RjnGdS1EDJQmQeKAe5zI=">AAACD3icdZBLS8NAEMc39VXrK+rRy2JRPJW09nkr9uKxgn1AE8Nmu2mXbh7sbsQS+g28+FW8eFDEq1dvfhs3bYQqOjDw5zczzMzfCRkV0jA+tczK6tr6RnYzt7W9s7un7x90RRBxTDo4YAHvO0gQRn3SkVQy0g85QZ7DSM+ZtJJ675ZwQQP/Wk5DYnlo5FOXYiQVsvVT00Ny7Dhxa2aHpqQeEXAJ3d0smK3njYLRqFQbNajEPJRo1Cul8jkspiQP0mjb+oc5DHDkEV9ihoQYFI1QWjHikmJGZjkzEiREeIJGZKCkj9QSK57/M4MnigyhG3CVvoRzujwRI0+IqeeozuRU8buWwL9qg0i6dSumfhhJ4uPFIjdiUAYwMQcOKSdYsqkSCHOqboV4jDjCUlmYUyZ8fwr/F91SoVgtlK/K+eZFakcWHIFjcAaKoAaa4BK0QQdgcA8ewTN40R60J+1Ve1u0ZrR05hD8CO39C31anZ0=</latexit>

Cp ⇥ C⇥
x

<latexit sha1_base64="pjkOq7CBRf0fKrzy0LAmmTtXH9c=">AAACCHicdVDLSsNAFJ34rPUVdenCwSK4Kkntc1fsxmUF+4AmhMl00g6dPJiZiCV06cZfceNCEbd+gjv/xkkboYoeuHA4517uvceNGBXSMD61ldW19Y3N3FZ+e2d3b18/OOyKMOaYdHDIQt53kSCMBqQjqWSkH3GCfJeRnjtppX7vlnBBw+BGTiNi+2gUUI9iJJXk6CeWj+TYdZPWzIksSX0i4JJ05+gFo2g0KtVGDSoyhyKNeqVUvoBmphRAhrajf1jDEMc+CSRmSIiBaUTSThCXFDMyy1uxIBHCEzQiA0UDpDbayfyRGTxTyhB6IVcVSDhXlycS5Asx9V3Vmd4ofnup+Jc3iKVXtxMaRLEkAV4s8mIGZQjTVOCQcoIlmyqCMKfqVojHiCMsVXZ5FcL3p/B/0i0VzWqxfF0uNC+zOHLgGJyCc2CCGmiCK9AGHYDBPXgEz+BFe9CetFftbdG6omUzR+AHtPcvxEGaew==</latexit>

Cp ⇥ Cx

r -Opers G

-Opers (G, ϵ)

<latexit sha1_base64="NI6/Z6Xqze9xVB65zjk5eiu7QcM=">AAACCHicdVDLSsNAFJ3UV62vqEsXDhbBVUlLrO2uWASXFewDmhAm02k7dPJgZiKWkKUbf8WNC0Xc+gnu/BsnaQQVPXDhcM693HuPGzIqpGF8aIWl5ZXVteJ6aWNza3tH393riSDimHRxwAI+cJEgjPqkK6lkZBBygjyXkb47a6d+/4ZwQQP/Ws5DYnto4tMxxUgqydEPLQ/JKUYsvkic0JLUIyKTXDduJ86to5eNitGo1eomVCSDIs2GaTRNWM2VMsjRcfR3axTgyCO+xAwJMawaobRjxCXFjCQlKxIkRHiGJmSoqI/UQjvOHkngsVJGcBxwVb6Emfp9IkaeEHPPVZ3pjeK3l4p/ecNIjht2TP0wksTHi0XjiEEZwDQVOKKcYMnmiiDMqboV4iniCEuVXUmF8PUp/J/0apVqvXJ6ZZZb53kcRXAAjsAJqIIz0AKXoAO6AIM78ACewLN2rz1qL9rrorWg5TP74Ae0t08uLpq/</latexit>

Ep ⇥ Cx

e -OpersG

eGaudin
dual eCM

e -Opers (G, q)

XYZ
dual eRS

<latexit sha1_base64="0Nud0d/mdRLgxzwaHP6yHjyjbHM=">AAACD3icdZA7SwNBEMfnfMb4OrW0WQyKVbiEMyZdMAiWEcwDknjsbTbJkr0Hu3tiOO4b2PhVbCwUsbW189u4SU5Q0YGBP7+ZYWb+bsiZVJb1YSwsLi2vrGbWsusbm1vb5s5uUwaRILRBAh6Itosl5cynDcUUp+1QUOy5nLbccW1ab91QIVngX6lJSHseHvpswAhWGjnmUdfDakQwj88TJ+wq5lE5Q64b15LrOXBuHTNn5a1ysViykRaz0KJStq2KjQopyUEadcd87/YDEnnUV4RjKTsFK1S9GAvFCKdJthtJGmIyxkPa0dLHek0vnv2ToENN+mgQCJ2+QjP6fSLGnpQTz9Wd01Pl79oU/lXrRGpQ7sXMDyNFfTJfNIg4UgGamoP6TFCi+EQLTATTtyIywgITpS3MahO+PkX/i2YxXyjlTy7tXPUstSMD+3AAx1CAU6jCBdShAQTu4AGe4Nm4Nx6NF+N13rpgpDN78COMt0/pMZ3h</latexit>

Ep ⇥ C⇥
x

<latexit sha1_base64="5WIfndDuFflIO3gQBI9pkh91WOU=">AAACCXicdVDLSsNAFJ34rPUVdelmsAiuSlJqbXdFEVxWsA9oQphMJ+3QySTMTMQSunXjr7hxoYhb/8Cdf+OkjVBFD1w4nHMv997jx4xKZVmfxtLyyuraemGjuLm1vbNr7u13ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOuPLzK/e0uEpBG/UZOYuCEachpQjJSWPBM6IVIjjFh6OfViR9GQyEXpzjNLVtmqVyq1KtRkBk0a9arVqEI7V0ogR8szP5xBhJOQcIUZkrJvW7FyUyQUxYxMi04iSYzwGA1JX1OO9EY3nX0yhcdaGcAgErq4gjN1cSJFoZST0Ned2ZHyt5eJf3n9RAV1N6U8ThTheL4oSBhUEcxigQMqCFZsognCgupbIR4hgbDS4RV1CN+fwv9Jp1K2a+XT62qpeZ7HUQCH4AicABucgSa4Ai3QBhjcg0fwDF6MB+PJeDXe5q1LRj5zAH7AeP8CBuGbNw==</latexit>

Ep ⇥ Ex

<latexit sha1_base64="krgi1J6SwtB3GQ5+yPWjgZ642hE=">AAACD3icdVDLSgMxFL3js9bXqEs3waK4KtMy1nZXLILLCvYBbR0yadqGZh4kGbEM8wdu/BU3LhRx69adf2PajqCiB0IO59zLvfe4IWdSWdaHsbC4tLyymlnLrm9sbm2bO7tNGUSC0AYJeCDaLpaUM582FFOctkNBsedy2nLHtanfuqFCssC/UpOQ9jw89NmAEay05JhHXQ+rkevGteS6q5hHpRPO/5lBMI/PE+fWMXNW3ioXiyUbaTKDJpWybVVsVEiVHKSoO+Z7tx+QyKO+IhxL2SlYoerFWChGOE2y3UjSEJMxHtKOpj7WE3vx7J4EHWqljwaB0M9XaKZ+74ixJ+XEc3XldEn525uKf3mdSA3KvZj5YaSoT+aDBhFHKkDTcFCfCUoUn2iCiWB6V0RGWGCidIRZHcLXpeh/0izmC6X8yaWdq56lcWRgHw7gGApwClW4gDo0gMAdPMATPBv3xqPxYrzOSxeMtGcPfsB4+wTo253h</latexit>

C⇥
p ⇥ Ex

<latexit sha1_base64="Lh2BC0m+3LgjZQzIRLaY6ySd3ps=">AAACCHicdVDLSsNAFJ3UV62vqEsXDhbBVUlLrO2uWASXFewDmhAm02k7dPJgZiKWkKUbf8WNC0Xc+gnu/BsnaQQVPXDhcM693HuPGzIqpGF8aIWl5ZXVteJ6aWNza3tH393riSDimHRxwAI+cJEgjPqkK6lkZBBygjyXkb47a6d+/4ZwQQP/Ws5DYnto4tMxxUgqydEPLQ/JqevG7cQJLUk9IjIFIxZfJM6to5eNitGo1eomVCSDIs2GaTRNWM2VMsjRcfR3axTgyCO+xAwJMawaobRjxCXFjCQlKxIkRHiGJmSoqI/URjvOHkngsVJGcBxwVb6Emfp9IkaeEHPPVZ3pkeK3l4p/ecNIjht2TP0wksTHi0XjiEEZwDQVOKKcYMnmiiDMqboV4iniCEuVXUmF8PUp/J/0apVqvXJ6ZZZb53kcRXAAjsAJqIIz0AKXoAO6AIM78ACewLN2rz1qL9rrorWg5TP74Ae0t08txJq/</latexit>

Cp ⇥ Ex

?? 

???

??

??

<latexit sha1_base64="dhPp5E4MSFQ4cCTAaHSDYKVjlxc=">AAACA3icdVDJSgNBEO1xjXGLetNLYxAihDATs+gtUQ85RjCLJCH0dDpJk57F7hoxDAEv/ooXD4p49Se8+Td2FkFFHxQ83quiqp7tC67AND+MufmFxaXlyEp0dW19YzO2tV1VXiApq1BPeLJuE8UEd1kFOAhW9yUjji1YzR6cjf3aDZOKe+4lDH3WckjP5V1OCWipHdttAruF8LxYKo7aYbNvE5m8HiXqyavDdixupo7SJ9l8Gpspc4IJyWTyOWzNlDiaodyOvTc7Hg0c5gIVRKmGZfrQCokETgUbRZuBYj6hA9JjDU1d4jDVCic/jPCBVjq460ldLuCJ+n0iJI5SQ8fWnQ6BvvrtjcW/vEYA3eNWyF0/AObS6aJuIDB4eBwI7nDJKIihJoRKrm/FtE8koaBji+oQvj7F/5NqOmXlUtmLTLxwOosjgvbQPkogC+VRAZVQGVUQRXfoAT2hZ+PeeDRejNdp65wxm9lBP2C8fQIVQ5cs</latexit>

DAHA~,q(X,Y )

<latexit sha1_base64="XyJ1M/T69B2xxbnF0Th+7SaJun8=">AAACAnicdVDJSgNBEO1xjXEb9SReGoMQIYRJzKK3aC4eI5gFkhB6Op2kSc9Cd404DMGLv+LFgyJe/Qpv/o2dZAQVfVDweK+Kqnq2L7gCy/owFhaXlldWE2vJ9Y3NrW1zZ7ehvEBSVqee8GTLJooJ7rI6cBCs5UtGHFuwpj2uTv3mDZOKe+41hD7rOmTo8gGnBLTUM/c7wG4hgur5pBd1RjaRGTpJtzLhcc9MWdmT/FmxnMdW1pphRgqFcgnnYiWFYtR65nun79HAYS5QQZRq5ywfuhGRwKlgk2QnUMwndEyGrK2pSxymutHshQk+0kofDzypywU8U79PRMRRKnRs3ekQGKnf3lT8y2sHMDjtRtz1A2AunS8aBAKDh6d54D6XjIIINSFUcn0rpiMiCQWdWlKH8PUp/p808tlcKVu8KqQqF3EcCXSADlEa5VAZVdAlqqE6ougOPaAn9GzcG4/Gi/E6b10w4pk99APG2yflVpce</latexit>

tCA~,c(X, y)
<latexit sha1_base64="bEc38YRhlo5UH2zju4S1v0teIDo=">AAACAnicdVDJSgNBEO1xjXGLehIvjUGIEMIkZtFbNBePEcwiSQg9nU7SpGehu0YShuDFX/HiQRGvfoU3/8bOZAQVfVDweK+KqnqWJ7gC0/wwFhaXlldWY2vx9Y3Nre3Ezm5dub6krEZd4cqmRRQT3GE14CBY05OM2JZgDWtUmfmNWyYVd51rmHisY5OBw/ucEtBSN7HfBjaGACrn027QHlpEpuk0NU7fHHcTSTNzkjsrlHLYzJghQpLPl4o4GylJFKHaTby3ey71beYAFUSpVtb0oBMQCZwKNo23fcU8QkdkwFqaOsRmqhOEL0zxkVZ6uO9KXQ7gUP0+ERBbqYlt6U6bwFD99mbiX17Lh/5pJ+CO5wNz6HxR3xcYXDzLA/e4ZBTERBNCJde3YjokklDQqcV1CF+f4v9JPZfJFjOFq3yyfBHFEUMH6BClUBaVUBldoiqqIYru0AN6Qs/GvfFovBiv89YFI5rZQz9gvH0C5ZaXHg==</latexit>

tCA~,c(x, Y )

<latexit sha1_base64="8GGmSUOTlQ6KTTb6UtNgkrDefuw=">AAACAnicdVDJSgNBEO2JW4xb1JN4aQxChDBMYha9RXPxGMEskITQ0+kkTXoWumskYRi8+CtePCji1a/w5t/YWQQVfVDweK+Kqnq2L7gCy/owYkvLK6tr8fXExubW9k5yd6+uvEBSVqOe8GTTJooJ7rIacBCs6UtGHFuwhj2qTP3GLZOKe+4NTHzWccjA5X1OCWipmzxoAxtDKCsXUTdsD20iMzRKjzOTk24yZZmnufNCKYct05phRvL5UhFnF0oKLVDtJt/bPY8GDnOBCqJUK2v50AmJBE4FixLtQDGf0BEZsJamLnGY6oSzFyJ8rJUe7ntSlwt4pn6fCImj1MSxdadDYKh+e1PxL68VQP+sE3LXD4C5dL6oHwgMHp7mgXtcMgpiogmhkutbMR0SSSjo1BI6hK9P8f+knjOzRbNwnU+VLxdxxNEhOkJplEUlVEZXqIpqiKI79ICe0LNxbzwaL8brvDVmLGb20Q8Yb58TGZc8</latexit>

rCA~,c(x, y)

eCM

???
eRS

???
DELL

<latexit sha1_base64="12lWjKv2iiwRQiRXeq8KXi4rrSw=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmZiFj0l6MVjFLNAMoSeTk/SpGehu0cIQ/7AiwdFvPpH3vwbO5MRVPRBweO9KqrquRFnUlnWh5FbWV1b38hvFra2d3b3ivsHHRnGgtA2CXkoei6WlLOAthVTnPYiQbHvctp1p1cLv3tPhWRhcKdmEXV8PA6YxwhWWrptNIbFkmWelS+q9TKyTCtFSiqVeg3ZmVKCDK1h8X0wCkns00ARjqXs21aknAQLxQin88IgljTCZIrHtK9pgH0qnSS9dI5OtDJCXih0BQql6veJBPtSznxXd/pYTeRvbyH+5fVj5Z07CQuiWNGALBd5MUcqRIu30YgJShSfaYKJYPpWRCZYYKJ0OAUdwten6H/SKZt2zazeVErNyyyOPBzBMZyCDXVowjW0oA0EPHiAJ3g2psaj8WK8LltzRjZzCD9gvH0CXtCNRw==</latexit>

??

<latexit sha1_base64="12lWjKv2iiwRQiRXeq8KXi4rrSw=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmZiFj0l6MVjFLNAMoSeTk/SpGehu0cIQ/7AiwdFvPpH3vwbO5MRVPRBweO9KqrquRFnUlnWh5FbWV1b38hvFra2d3b3ivsHHRnGgtA2CXkoei6WlLOAthVTnPYiQbHvctp1p1cLv3tPhWRhcKdmEXV8PA6YxwhWWrptNIbFkmWelS+q9TKyTCtFSiqVeg3ZmVKCDK1h8X0wCkns00ARjqXs21aknAQLxQin88IgljTCZIrHtK9pgH0qnSS9dI5OtDJCXih0BQql6veJBPtSznxXd/pYTeRvbyH+5fVj5Z07CQuiWNGALBd5MUcqRIu30YgJShSfaYKJYPpWRCZYYKJ0OAUdwten6H/SKZt2zazeVErNyyyOPBzBMZyCDXVowjW0oA0EPHiAJ3g2psaj8WK8LltzRjZzCD9gvH0CXtCNRw==</latexit>

??

<latexit sha1_base64="9M9Q0ly4yim46ykzRr/SKX7WC7k=">AAAB+XicdVDLSgNBEJyNrxhfqx69DAbBi8tGErO5Bb14jGBUSJYwO+nokNlHZnrFsORPvHhQxKt/4s2/cRJXUNGChqKqm+6uIJFCo+u+W4W5+YXFpeJyaWV1bX3D3ty60HGqOLR5LGN1FTANUkTQRoESrhIFLAwkXAbDk6l/eQtKizg6x3ECfsiuIzEQnKGRerY9GnUR7jA70GONEE56dtl13Bmo61QbtbrnGVJveEdVj1Zyq0xytHr2W7cf8zSECLlkWncqboJ+xhQKLmFS6qYaEsaH7Bo6hkYsBO1ns8sndM8ofTqIlakI6Uz9PpGxUOtxGJjOkOGN/u1Nxb+8TooDz89ElKQIEf9cNEglxZhOY6B9oYCjHBvCuBLmVspvmGIcTVglE8LXp/R/cnHoVI6c2lm13DzO4yiSHbJL9kmF1EmTnJIWaRNObsk9eSRPVmY9WM/Wy2drwcpntskPWK8fzjmUdQ==</latexit>

qq-system

<latexit sha1_base64="pflH5r1302YGzWa5hQ5O7z7Vhes="></latexit>

U~,q

✓
ccgl1

◆

<latexit sha1_base64="KDA8G0cjV8qOzYylI0c+ZPiyMrA="></latexit>

Y~,✏
⇣
cgl1

⌘

<latexit sha1_base64="Stih5VRlIc06uLCLg5GyRAqz8/U="></latexit>

eDIM~,q,p

<latexit sha1_base64="i1ePeu4q2pdc+1RCF9TtfuBOOrw=">AAAB+XicdVDJSgNBEO1xjXEb9eilMQheDBPJMrkFvXhMwCyQhNDTqSRNeha6a4JhyJ948aCIV//Em39jZxFU9EHB470qqup5kRQaHefDWlvf2NzaTu2kd/f2Dw7to+OGDmPFoc5DGaqWxzRIEUAdBUpoRQqY70loeuObud+cgNIiDO5wGkHXZ8NADARnaKSebddqHYR7TC71VCP4s56dcbLOAtTJ5suFkusaUiq7xbxLcysrQ1ao9uz3Tj/ksQ8Bcsm0buecCLsJUyi4hFm6E2uIGB+zIbQNDZgPupssLp/Rc6P06SBUpgKkC/X7RMJ8rae+Zzp9hiP925uLf3ntGAduNxFBFCMEfLloEEuKIZ3HQPtCAUc5NYRxJcytlI+YYhxNWGkTwten9H/SuMrmitlCLZ+pXK/iSJFTckYuSI6USIXckiqpE04m5IE8kWcrsR6tF+t12bpmrWZOyA9Yb59pmZQ1</latexit>

QQ-system

<latexit sha1_base64="Hg4kSwtLOQ4prx93zRkX9ToVt5o=">AAAB+3icdVDLTgJBEJz1ifhCPHqZSEy8SHYNyHIjevGIiYAJIJkdemHi7MOZXgPZ8CtePGiMV3/Em3/jgJio0Uo6qVR1p7vLi6XQaNvv1sLi0vLKamYtu76xubWd28k3dZQoDg0eyUhdeUyDFCE0UKCEq1gBCzwJLe/mbOq37kBpEYWXOI6hG7BBKHzBGRqpl8vf3l5jB2GE6ZEea4Rg0ssV7KI9A7WLpWq54rqGVKruScmlztwqkDnqvdxbpx/xJIAQuWRatx07xm7KFAouYZLtJBpixm/YANqGhiwA3U1nt0/ogVH61I+UqRDpTP0+kbJA63Hgmc6A4VD/9qbiX147Qd/tpiKME4SQfy7yE0kxotMgaF8o4CjHhjCuhLmV8iFTjKOJK2tC+PqU/k+ax0XnpFi+KBVqp/M4MmSP7JND4pAKqZFzUicNwsmI3JNH8mRNrAfr2Xr5bF2w5jO75Aes1w9kgZVb</latexit>

qqt-system
<latexit sha1_base64="DyX3lyyGiYAqWIZY9L1V3mg0IBg=">AAAB+XicdVDLSgNBEJyNrxhfqx69DAbBi8tGotncgl48KpgYSJYwO+nokNmHM73BsORPvHhQxKt/4s2/cRJXUNGChqKqm+6uIJFCo+u+W4W5+YXFpeJyaWV1bX3D3txq6ThVHJo8lrFqB0yDFBE0UaCEdqKAhYGEq2B4OvWvRqC0iKNLHCfgh+w6EgPBGRqpZ9sXt12EO8wO9FgjhJOeXXYddwbqOtX6Uc3zDKnVveOqRyu5VSY5znv2W7cf8zSECLlkWncqboJ+xhQKLmFS6qYaEsaH7Bo6hkYsBO1ns8sndM8ofTqIlakI6Uz9PpGxUOtxGJjOkOGN/u1Nxb+8TooDz89ElKQIEf9cNEglxZhOY6B9oYCjHBvCuBLmVspvmGIcTVglE8LXp/R/0jp0KsfO0UW13DjJ4yiSHbJL9kmF1EiDnJFz0iScjMg9eSRPVmY9WM/Wy2drwcpntskPWK8fm9mUVQ==</latexit>

Qq-system

<latexit sha1_base64="4Y2XFsmFePLr59SwwsqJwhBnKx4=">AAACBHicdVA9SwNBEN3zM8avU0ubxSDYGC6SmLML2lgaMCrkjrC3mUuW7H2wOyeGI4WNf8XGQhFbf4Sd/8ZNjKCiDwYe780wMy9IpdDoOO/WzOzc/MJiYam4vLK6tm5vbF7oJFMcWjyRiboKmAYpYmihQAlXqQIWBRIug8HJ2L+8BqVFEp/jMAU/Yr1YhIIzNFLH3m56EcN+qNggb448hBvM9/VQI0Sjjl1yys4E1ClXj2p11zWkfuQeVl1amVolMsVZx37zugnPIoiRS6Z1u+Kk6OdMoeASRkUv05AyPmA9aBsaswi0n0+eGNFdo3RpmChTMdKJ+n0iZ5HWwygwneOL9W9vLP7ltTMMXT8XcZohxPxzUZhJigkdJ0K7QgFHOTSEcSXMrZT3mWIcTW5FE8LXp/R/cnFQrhyWa81qqXE8jaNAtskO2SMVUicNckrOSItwckvuySN5su6sB+vZevlsnbGmM1vkB6zXD2eZmUU=</latexit>

QQ-system

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??
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<latexit sha1_base64="tp7pkqv4aThs3oIVQxDrxjua1gk="></latexit>

eDIM!
~,q,p

<latexit sha1_base64="92zevwm+cD8RPdv/QqYIU0YjaOs="></latexit>

el.trig.DAHA~,c,p
<latexit sha1_base64="b/uodcdtmA35ANorP3SRS07NXCc="></latexit>

trig.el.DAHA~,c,p

<latexit sha1_base64="YnnoUIcajd4HrqwRMSiExkz5eVk="></latexit>

rat.el.DAHA~,c,p

<latexit sha1_base64="gtuHXIJBq2qhkQ2aC65JNBQSNig=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgKWwka9ZbNDl4jGAesFnC7GQ2GTL7YKZXDEs+w4sHRbz6Nd78GyfJCipa0FBUddPd5cWCKzDNDyO3srq2vpHfLGxt7+zuFfcPOipKJGVtGolI9jyimOAhawMHwXqxZCTwBOt6k8bc794xqXgU3sI0Zm5ARiH3OSWgJacP7B7SZrNxORsUS2bZrloXVg2bZXMBTWzTqtpVXMmUEsrQGhTf+8OIJgELgQqilFMxY3BTIoFTwWaFfqJYTOiEjJijaUgCptx0cfIMn2hliP1I6goBL9TvEykJlJoGnu4MCIzVb28u/uU5Cfi2m/IwToCFdLnITwSGCM//x0MuGQUx1YRQyfWtmI6JJBR0SgUdwten+H/SOStXzsvWTbVUv8riyKMjdIxOUQXVUB1doxZqI4oi9ICe0LMBxqPxYrwuW3NGNnOIfsB4+wRki5Fa</latexit>

DDCA

https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
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The Diamond
• I shall review the current status of integrable models of the Calogero-

Ruijsenaars family in the context of recent developments in algebraic 
geometry and representation theory. This study is strongly motivated by 
progress in string theory and supersymmetric quantum field theories 
beginning in the early 90s [Seiberg Witten, circa 1994] 

• One particular theory stands out — the  theory in four 
dimensions. It has few parameters — the gauge coupling, the gauge 
group type, and SUSY breaking mass 

• Relative simplicity of the parameter space provides a perfect playground 
for mathematicians — algebraic geometers, representation theorist, and, 
more recently, even number theorists.

𝒩 = 2*



2 P. KOROTEEV

Type of Oper

Spin chain
Many-body system

<latexit sha1_base64="ul2t4P1/rlz32dV69DNaGyWgtLc=">AAACDHicdVDLSgMxFM3Ud31VXboJFsFVmUprx11RBJcVrAptkUx6pw3NZMbkjrQM/QA3/oobF4q49QPc+TemD0FFD1kczjmX3Hv8WAqDrvvhZGZm5+YXFpeyyyura+u5jc0LEyWaQ51HMtJXPjMghYI6CpRwFWtgoS/h0u8dj/zLW9BGROocBzG0QtZRIhCcoZWuc/kmQh/Tk5tkLFD7jlgfQdMgUXwkmaFNuQV3DOoWSofliudZUjn0DkoeLU6tPJmidp17b7YjnoSgkEtmTKPoxthKmUbBJQyzzcRAzHiPdaBhqWIhmFY6PmZId63SpkFkN4gU0rH6fSJloTGD0LfJkGHX/PZG4l9eI8HAa6VCxQmC4pOPgkRSjOioGdoWGjjKgSWMa2F3pbzLNOO2DZO1JXxdSv8nF/uF4kGhfFbKV4+mdSySbbJD9kiRVEiVnJIaqRNO7sgDeSLPzr3z6Lw4r5NoxpnObJEfcN4+AfrnnEE=</latexit>

Equation on Baxter functions

<latexit sha1_base64="ljogF/r6ktgG3JAcggXw32/e3Wg=">AAACFnicdVDLSgMxFM34rPVVdekmWAQXWqa1trrzsXGpYFXolJJJb2swkxmSO2IZ+hVu/BU3LhRxK+78G9PpCCp6IOFwzr3JvcePpDDouh/O2PjE5NR0biY/Oze/sFhYWj43Yaw5NHgoQ33pMwNSKGigQAmXkQYW+BIu/OujoX9xA9qIUJ1hP4JWwHpKdAVnaKV2YctDuMXkQPbA14x2Qz3wNr1NqtJ7ZEZMo+ASzKBdKLql7creTr1C3ZKbIiXVar1Gy5lSJBlO2oV3rxPyOACFXDJjmmU3wlaSPTjIe7GBiPFr1oOmpYoFYFpJutaArlulMxzJHoU0Vb93JCwwph/4tjJgeGV+e0PxL68ZY3e3lQgVxQiKjz7qxpJiSIcZ0Y7QwFH2LWFcCzsr5VdMM442ybwN4WtT+j85r5TKtdLOabW4f5jFkSOrZI1skDKpk31yTE5Ig3ByRx7IE3l27p1H58V5HZWOOVnPCvkB5+0TUmifhA==</latexit>

Algebra for n particles

<latexit sha1_base64="GvLoyiprVkpluyOMNSBmz5z3xj0=">AAAB+3icdVBLS0JBGJ1rL7OX2bLNkASt5CpmupPatDTKB+hF5o7f1cG5D2a+G8rFv9KmRRFt+yPt+jeNj6CiDgwczvlec9xICo22/WGl1tY3NrfS25md3b39g+xhrqXDWHFo8lCGquMyDVIE0ESBEjqRAua7Etru+Grut+9BaREGdziNwPHZMBCe4AyN1M/meggTTBojM4PeRozDrJ/N2wW7WipVytSQBQypVct2rUyLKyVPVmj0s++9QchjHwLkkmndLdoROglTKLiEWaYXazCTx2wIXUMD5oN2ksXtM3pqlAH1QmVegHShfu9ImK/11HdNpc9wpH97c/EvrxujV3USEUQxQsCXi7xYUgzpPAg6EAo4yqkhjCthbqV8xBTjaOLKmBC+fkr/J61SoVgpnN+U8/XLVRxpckxOyBkpkgtSJ9ekQZqEkwl5IE/k2ZpZj9aL9bosTVmrniPyA9bbJ2vflLc=</latexit>

Phase Space

<latexit sha1_base64="2M3Cao6nEUnlQqOQvVTYp7phIO4=">AAACCXicdVDLSgNBEJz1bXxFPXoZDIKHEDaSmHjzcfGoYB6QDWF20psMmZ1dZnrFsOTqxV/x4kERr/6BN//GSYygogUNRVU33V1+LIVB1313Zmbn5hcWl5YzK6tr6xvZza26iRLNocYjGemmzwxIoaCGAiU0Yw0s9CU0/MHZ2G9cgzYiUlc4jKEdsp4SgeAMrdTJUg/hBtMT2QPtMxpEeuTlvbzyMPKECnDYyebcQrVUPipXqFtwJ7Ck6pZL1RItTpUcmeKik33zuhFPQlDIJTOmVXRjbKdMo+ASRhkvMRAzPmA9aFmqWAimnU4+GdE9q3THV9hSSCfq94mUhcYMQ992hgz75rc3Fv/yWgkG1XYqVJwgKP65KEgkxYiOY6FdoYGjHFrCuBb2Vsr7TDOONryMDeHrU/o/qR8UioeF8mUpd3w6jWOJ7JBdsk+KpEKOyTm5IDXCyS25J4/kyblzHpxn5+WzdcaZzmyTH3BePwAnoJqp</latexit>

Algerba for n ! 1

Figure 1. Notations for the diamond in Fig. 2

take their values. For instance, Hamiltonians of the tRS model in the middle of the
diamond are periodic in both coordinates and momenta hence the notation for its
phase space – C⇥

p ⇥ C⇥
x .

(2) Type of Oper. The space of G-opers under certain conditions describes the phase
space of a classical many-body system according to [KZ4]. The space of opers
thereby provides a bridge to establish the quantum/classical duality between quan-
tum spin chains and classical n-particle systems. In the terminology of [KZ4] this
description corresponds to magnetic frame, i.e. the tCM model is dual to the XXX
spin chain in the magnetic frame. There is also an electric frame of the quan-
tum/classical duality under which the tCM is dual to tGaudin model and the rRS
is dual to the XXX chain. Here e(G, q)-opers stands for (G, q)-opers on the elliptic
curve (elliptic q-opers [GKSZ]). Similarly, eG-opers are elliptic opers from the same
work in progress.

(3) Many-body system. The name of the corresponding n-particle model – Calogero-
Moser (CS), Ruijsenaars-Schneider (RS), double elliptic (DELL), and their duals.
Prefixes r, t, and e stand for rational, trigonometric, and elliptic respectively.

(4) Spin Chain. The quantum spin chain which is related to the many-body system
from the same oval via the quantum/classical duality in the magnetic frame. The
known models are XXX, XXZ, XYZ, and Gaudin spin systems. There are rational,
trigonometric, and elliptic Gaudin systems.

(5) Equation on Baxter functions. Baxter Q-functions play important roles in
representation theory and enumerative geometry. These functions depend on an
auxiliary (spectral) parameter and satisfy certain di↵erence or di↵erential equations
depending on the type of G-oper. For example, for the (G, q)-oper they satisfy a
di↵erence QQ-relation.

(6) Algebra for n particles. The phase space of a complex algebraic integrable
system is a holomorphic symplectic manifold X. The ring of holomorphic functions
on this manifold admits deformation quantization Oq(X) taken with respect to its
holomorphic symplectic form. In the case when X is the moduli space of SL(n)-flat
connections on the punctured torus the latter yields spherical spherical subalgebra
of the double a�ne Hecke algebra or DAHA for gln [O2,C3]. This algebra admits
degenerations.

(7) Algebra for n �! 1. gln DAHAs admit direct n �! 1 limit which is known in
the literature by various names: Hall algebra of the elliptic curve, Ding-Iohara-Miki

Legend



Classical Integrability
Equations of motion Integrability — family of  conserved quantities


which Poisson commute with each other 
n
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df

dt
= {H1, f}

Compact Lagrangians :  are isomorphic to toriℒ {Hi = Ei}Liouville-Arnold Theorem

Evolution in the neighborhood of  is linearized in action/angle variables ℒ

Calogero in 1971 introduced a new integrable system. Moser in 1975 proved its integrability using Lax 
pair

HCM =
nX

i=1

p
2
i

2m
+ g

2
X

j 6=i

1

(xi � xj)2

rational CM  trigonometric CM  elliptic CM→ →

Another relativistic generalization called Ruijsenaars-Schneider (RS) family
rRS  tRS  eRS→ → HCM = lim

c!1
HRS � nmc

2

x1 x2
xn



Symplectic Manifold
Harmonic oscillator
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Phase space — symplectic manifold  ℳ

Symplectic form ω = dp ∧ dx

Lagrangian  is a middle-dimensional submanifold and  
such that the restriction of the symplectic form on  vanishes 

ℒ ⊂ ℳ
ℒ
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Symplectic form  is  
locally exact on 

ω
ℒ
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Quantization as Symplectic Geometry
Quantum oscillator energy states
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Quantization 
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{A,B}P.B. 7! [A,B]

Coordinates and momenta become operators Poisson brackets associated to  become commutatorsω
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x̂f(x) = xf(x)

p̂f(x) = �i~f 0(x)
Lagrangian constraint 
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Replaced by operator
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Z(x) = 0

This ODE has square integrable solutions only 

for special values of E
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e.g. for n = 0
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The Art of Quantization

Symplectic manifold (ℳ, ω) Hilbert space ℋ

Algebra of functions on ℳ Algebra of operators on ℋ

Lagrangian submanifolds  ℒ ⊂ ℳ States in Hilbert space ℋ
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Algebra

(i.e. DAHA)

Representations

Highest weight vectors
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Trigonometric-Trigonometric

-Opers (G, q)

XXZ

tRS
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All ingredients are known in the middle of the diamond
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Double Affine Hecke Algebra of Rank One
Let  be Lie algebra. The (Iwahori)-Hecke algebra is defined as the deformation of the group algebra 
of the Weyl group of  

𝔤
𝔤

For (2) it is generated by  with relation  where 𝔰𝔩 T (T − t)(T + t−1) = 0 t ∈ ℂ×

Affine Hecke algebra (AHA) for :𝔰𝔩(2)
ℂ(t±1) ⊗ ℂ[X±1, T]

(TXT − X−1, (T − t)(T − t−1))
Double affine Hecke algebra for  — two copies of AHA  and  in the presence of 
additional relation and parameter  

𝔰𝔩(2) (X, T) (Y, T)
q ∈ ℂ×

··H(ℤ2) =
ℂ(q±1, t±1) ⊗ ℂ[X±1, Y±1, T ]

(TXT − X−1, TYT − Y−1, Y−1X−1YX − q−1, (T − t)(T + t−1))



DAHA from Affine Braid Group

T

Y

X

(a) (b) (c)

Figure 3: Generators and relations in the orbifold fundamental group of the once-punctured torus.
On the left, generators and relations are drawn on the double cover. The relations depicted are
TXT = X

�1, TY �1
T = Y , and Y

�1
X

�1
Y XT

2 = 1.

This coefficient ring contains the two central generators of the algebra
..
H(Z2), q and t, which can

be thought of as continuous deformation parameters and start life (in any irreducible representation)
as arbitrary complex numbers. Many remarkable things happen when these two parameters assume
special values, as will be further discussed in the sequel. In a way, the behavior of the algebra and its
representations under such specializations—and the match of this behavior to the A-brane category—is
one of the most interesting aspects of the geometric/physical approach.

Another standard notation for the second deformation parameter (which is convenient for some of
the specializations) is

t = q
c
. (2.42)

where c is often called the “central charge”. In what follows, we will use the shorthand notation
..
H =

..
H(Z2) unless we wish to make a statement about DAHA of Cartan type other than A1.

For further details and properties of DAHA, we refer the reader to the fundamental book [Che05].
The representation theory of DAHA there will be introduced throughout this section, as they emerge
from physics and geometry. Also, some basics of DAHA are assembled in Appendix B.

The construction of
..
H based on the punctured torus allows us to see the action of the symmetry

group (2.27), and the symmetry plays a pivotal role in the geometric understanding of the representa-
tion theory of (spherical) DAHA in what follows. Under ⌅, the generators are transformed as

⇠1 : T 7! T, X 7! �X, Y 7! Y, q 7! q, t 7! t,

⇠2 : T 7! T, X 7! X, Y 7! �Y, q 7! q, t 7! t .
(2.43)

The mapping class group SL(2,Z) acts on the generators of
..
H as follows5:

⌧+ : (X,Y, T ) 7! (X, q
� 1

2XY, T )

⌧� : (X,Y, T ) 7! (q
1
2Y X, Y, T )

� : (X,Y, T ) 7! (Y �1
, XT

2
, T )

(2.44)

Since � essentially exchanges the canonically conjugate variables X and Y , it is sometimes called the
Fourier transform of

..
H. Also,

..
H enjoys the following (non-inner) involution,

◆̃ : T 7! �T, X 7! X, Y 7! Y, q 7! q, t 7! t
�1

. (2.45)

It is easy to check from the Hecke relation that e = (T + t
�1)/(t+ t

�1) is an idempotent element
(e2 = e) of

..
H. Then, the spherical subalgebra S

..
H is defined by the idempotent projection

S
..
H := e

..
He . (2.46)

5Although we follow the notation of [Che05] for the transformations ⌧± on the generators of DAHA here and in (B.6),
we change matrix assignments to ⌧± as in (2.34) and (B.5) from [Che05] since it is consistent with the projective action
(2.37) of SL(2,Z) on the exceptional divisors geometrically.
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Orbifold fundamental group 

of the torus with puncture (T2\p)/ℤ2

Generated by  modulo relationsX, T, Y

Its central extension is known as elliptic braid group is obtained 

by deforming the last relation to

In addition, these generators permute the singular fibers of type I2 in the Hitchin fibration as S3:

⇡
�1(b2)

⇡
�1(b1) ⇡

�1(b3)

�

⌧+

⌧�

⌧+

⌧� �

(2.38)

In the above, we pointed out that V is invariant under both symmetries ⌅ and PSL(2,Z) only as
a set, not pointwise. Also, the same is true about PSL(2,Z) action on D1. While in the case of V
the reason for both claims is fairly clear (e.g. it is manifest in the t̃ ! 1 limit (2.14)), the fact that
PSL(2,Z) fixes D1 only as a set and not pointwise is less obvious.In order to explain it, let us consider
the limit t̃ = 1 + ✏, with ✏ ⌧ 1, and take (x, y, z) = (2 + a, 2 + b, 2 + c). Then, for small values of
(a, b, c), the surface (2.10) looks like a quadric

a
2 + b

2 + c
2 � 2(ab+ bc+ ca) = 4✏2 ,

on which the generators ⌧± act as linear reparametrizations:

⌧+ : (a, b, c) 7! (a, 2a+ 2b� c, b) ,

⌧� : (a, b, c) 7! (2a+ 2b� c, b, a) .

2.2 DAHA of rank one and its spherical algebra

Now let us review a few necessary details of DAHA of rank one here. Much like the Hecke algebra
sits, loosely speaking, between the Weyl group and the braid group—in the sense that the latter
two can be obtained by either specialization or by omitting some of the relations—DAHA sits in
between the double affine Weyl group and the double affine braid group. This perspective, reviewed
in e.g. [Guk16], will be useful to us in what follows. In Cartan type A1, the double affine braid group

(a.k.a. the elliptic braid group), denoted
..
Brq=1(Z2), is simply the orbifold fundamental group of the

quotient space (T 2\p)/Z2, the quotient of a once-punctured torus by Z2. It is generated by three
generators X, Y , and T , illustrated in Figure 3:

⇡
orb
1

⇣
(T 2\p)/Z2

⌘
=

⇣
T,X, Y | TXT = X

�1
, TY

�1
T = Y, Y

�1
X

�1
Y XT

2 = 1
⌘
. (2.39)

Its central extension, denoted
..
Br(Z2), is obtained by deforming the last relation to Y

�1
X

�1
Y XT

2 =
q
�1.

Then, rank-one DAHA
..
H(Z2) is obtained by imposing one more quadratic (“Hecke”) relation:

..
H(Z2) = Cq,t

⇥
T
±1

, X
±1

, Y
±1

⇤�⇢
TXT = X

�1
, Y

�1
X

�1
Y XT

2 = q
�1

,

TY
�1

T = Y , (T � t)(T + t
�1) = 0

�
. (2.40)

This involves the second deformation parameter t. Here Cq,t is a ring of coefficients defined as follows.
Let C[q± 1

2 , t
±] be the ring of Laurent polynomials in the formal parameters q

1/2 and t, and consider
a multiplicative system M in C[q± 1

2 , t
±] generated by elements of the form (q`t � q

�`
t
�1) for any

non-negative integer ` 2 Z�0. We define the coefficient ring Cq,t to be the localization (or formal
“fraction”)4 of the ring C[q± 1

2 , t
±] at M :

Cq,t = M
�1C[q±

1
2 , t

±] . (2.41)

4In other words, Cq,t is the ring of rational functions in the formal parameters q
1
2 and t where denominators are

always elements in the multiplicative system M such as

f(X)

(t� t�1)k0(qt� q�1t�1)k1 · · · (q`t� q�`t�1)k`
, f(X) 2 C[q±

1
2 , t

±
, X

±
] .
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On the left, generators and relations are drawn on the double cover. The relations depicted are
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2 = 1.

This coefficient ring contains the two central generators of the algebra
..
H(Z2), q and t, which can

be thought of as continuous deformation parameters and start life (in any irreducible representation)
as arbitrary complex numbers. Many remarkable things happen when these two parameters assume
special values, as will be further discussed in the sequel. In a way, the behavior of the algebra and its
representations under such specializations—and the match of this behavior to the A-brane category—is
one of the most interesting aspects of the geometric/physical approach.

Another standard notation for the second deformation parameter (which is convenient for some of
the specializations) is

t = q
c
. (2.42)

where c is often called the “central charge”. In what follows, we will use the shorthand notation
..
H =

..
H(Z2) unless we wish to make a statement about DAHA of Cartan type other than A1.

For further details and properties of DAHA, we refer the reader to the fundamental book [Che05].
The representation theory of DAHA there will be introduced throughout this section, as they emerge
from physics and geometry. Also, some basics of DAHA are assembled in Appendix B.

The construction of
..
H based on the punctured torus allows us to see the action of the symmetry

group (2.27), and the symmetry plays a pivotal role in the geometric understanding of the representa-
tion theory of (spherical) DAHA in what follows. Under ⌅, the generators are transformed as

⇠1 : T 7! T, X 7! �X, Y 7! Y, q 7! q, t 7! t,

⇠2 : T 7! T, X 7! X, Y 7! �Y, q 7! q, t 7! t .
(2.43)

The mapping class group SL(2,Z) acts on the generators of
..
H as follows5:

⌧+ : (X,Y, T ) 7! (X, q
� 1

2XY, T )

⌧� : (X,Y, T ) 7! (q
1
2Y X, Y, T )

� : (X,Y, T ) 7! (Y �1
, XT

2
, T )

(2.44)

Since � essentially exchanges the canonically conjugate variables X and Y , it is sometimes called the
Fourier transform of

..
H. Also,

..
H enjoys the following (non-inner) involution,

◆̃ : T 7! �T, X 7! X, Y 7! Y, q 7! q, t 7! t
�1

. (2.45)

It is easy to check from the Hecke relation that e = (T + t
�1)/(t+ t

�1) is an idempotent element
(e2 = e) of

..
H. Then, the spherical subalgebra S

..
H is defined by the idempotent projection

S
..
H := e

..
He . (2.46)

5Although we follow the notation of [Che05] for the transformations ⌧± on the generators of DAHA here and in (B.6),
we change matrix assignments to ⌧± as in (2.34) and (B.5) from [Che05] since it is consistent with the projective action
(2.37) of SL(2,Z) on the exceptional divisors geometrically.
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from physics and geometry. Also, some basics of DAHA are assembled in Appendix B.
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Generators of spherical DAHA Relations

The generators of S
..
H can be identified with

x = (1 + t
2)eXe = (X +X

�1)e (2.47)
y = (1 + t

�2)eY e = (Y + Y
�1)e (2.48)

z = (q�
1
2Y

�1
X + q

1
2X

�1
Y )e =

[x, y]q
(q�1 � q)

, (2.49)

and they satisfy relations

[x, y]q = (q�1 � q)z

[y, z]q = (q�1 � q)x

[z, x]q = (q�1 � q)y

q
�1

x
2 + qy

2 + q
�1

z
2 � q

� 1
2xyz = (q�

1
2 t� q

1
2 t

�1)2 + (q
1
2 + q

� 1
2 )2 ,

(2.50)

where q = e
2⇡i~ and the q-commutator is defined by

[a, b]q := q
� 1

2ab� q
1
2 ba .

See e.g. [Ter13] for further details. The key point is that the spherical DAHA S
..
H is commutative at

the “classical” limit q = 1 while the DAHA
..
H is not commutative even in the q = 1 limit. Indeed, it

is easy to see that in the “classical” limit q ! 1, the Casimir relation (the last one) in (2.50) becomes
the equation for the cubic surface (2.10):

S
..
H ���!

q!1
O(Mflat(Cp, SL(2,C))) . (2.51)

Thus, S
..
H is the deformation quantization O

q(X) of the coordinate ring (2.10) of the moduli space of
flat SL(2,C)-connections X = Mflat(Cp, SL(2,C)) with respect to the Poisson bracket defined by ⌦J

[Obl04a, Obl04b].
Here, it is worth commenting on an important issue in the context of the deformation quantization

of the coordinate ring on the affine cubic hypersurface of the form (2.10). It is clear that this equation
is Weyl-group invariant, so that the monodromy parameter t̃ appears only through the symmetric
combination t̃ + t̃

�1, and that the same symmetry applies to the Poisson structure. Moreover, if we
work with a specific value of t̃, we will obtain the deformation quantization at a specific value of the
parameters, i.e. for a specific choice of the central character (at least for the formal parameter t).

Since the inputs to deformation quantization depend on t̃ only in a Z2-invariant fashion, the output
O

q(X
t̃
) will also have the corresponding symmetry. However, this clarifies that t̃ 6= t, since the

relations (2.50) do not depend symmetrically on t. The proper identification is

t̃ = tq
�1/2

, (2.52)

as will be made clear by the discussion of the formal outer automorphism ◆ below. There is no
contradiction with the statement that S

..
H is the deformation quantization of O(X), since the classical

limit of S
..
H still recovers the same commutative Poisson algebra.

It is simple to check that the two involutions (2.43) straightforwardly reduce to the symmetry of
S
..
H, which is the same as (2.29). As in the classical case, the non-trivial central element �1 2 SL(2,Z)

acts trivially on the generators of S
..
H, and the action of PSL(2,Z) is quantized from (2.36)

⌧+ : (x, y, z) 7!
⇣
x,

xy + yx

q1/2 + q�1/2
� z, y

⌘
,

⌧� : (x, y, z) 7!
⇣

xy + yx

q1/2 + q�1/2
� z, y, x

⌘
,

� : (x, y, z) 7!
⇣
y, x,

xy + yx

q1/2 + q�1/2
� z

⌘
.

(2.53)

– 15 –

The generators of S
..
H can be identified with

x = (1 + t
2)eXe = (X +X

�1)e (2.47)
y = (1 + t

�2)eY e = (Y + Y
�1)e (2.48)

z = (q�
1
2Y

�1
X + q

1
2X

�1
Y )e =

[x, y]q
(q�1 � q)

, (2.49)

and they satisfy relations

[x, y]q = (q�1 � q)z

[y, z]q = (q�1 � q)x

[z, x]q = (q�1 � q)y

q
�1

x
2 + qy

2 + q
�1

z
2 � q

� 1
2xyz = (q�

1
2 t� q

1
2 t

�1)2 + (q
1
2 + q

� 1
2 )2 ,

(2.50)

where q = e
2⇡i~ and the q-commutator is defined by

[a, b]q := q
� 1

2ab� q
1
2 ba .

See e.g. [Ter13] for further details. The key point is that the spherical DAHA S
..
H is commutative at

the “classical” limit q = 1 while the DAHA
..
H is not commutative even in the q = 1 limit. Indeed, it

is easy to see that in the “classical” limit q ! 1, the Casimir relation (the last one) in (2.50) becomes
the equation for the cubic surface (2.10):

S
..
H ���!

q!1
O(Mflat(Cp, SL(2,C))) . (2.51)

Thus, S
..
H is the deformation quantization O

q(X) of the coordinate ring (2.10) of the moduli space of
flat SL(2,C)-connections X = Mflat(Cp, SL(2,C)) with respect to the Poisson bracket defined by ⌦J

[Obl04a, Obl04b].
Here, it is worth commenting on an important issue in the context of the deformation quantization

of the coordinate ring on the affine cubic hypersurface of the form (2.10). It is clear that this equation
is Weyl-group invariant, so that the monodromy parameter t̃ appears only through the symmetric
combination t̃ + t̃

�1, and that the same symmetry applies to the Poisson structure. Moreover, if we
work with a specific value of t̃, we will obtain the deformation quantization at a specific value of the
parameters, i.e. for a specific choice of the central character (at least for the formal parameter t).

Since the inputs to deformation quantization depend on t̃ only in a Z2-invariant fashion, the output
O

q(X
t̃
) will also have the corresponding symmetry. However, this clarifies that t̃ 6= t, since the

relations (2.50) do not depend symmetrically on t. The proper identification is

t̃ = tq
�1/2

, (2.52)

as will be made clear by the discussion of the formal outer automorphism ◆ below. There is no
contradiction with the statement that S

..
H is the deformation quantization of O(X), since the classical

limit of S
..
H still recovers the same commutative Poisson algebra.

It is simple to check that the two involutions (2.43) straightforwardly reduce to the symmetry of
S
..
H, which is the same as (2.29). As in the classical case, the non-trivial central element �1 2 SL(2,Z)

acts trivially on the generators of S
..
H, and the action of PSL(2,Z) is quantized from (2.36)

⌧+ : (x, y, z) 7!
⇣
x,

xy + yx

q1/2 + q�1/2
� z, y

⌘
,

⌧� : (x, y, z) 7!
⇣

xy + yx

q1/2 + q�1/2
� z, y, x

⌘
,

� : (x, y, z) 7!
⇣
y, x,

xy + yx

q1/2 + q�1/2
� z

⌘
.

(2.53)

– 15 –

q-commutator

The generators of S
..
H can be identified with

x = (1 + t
2)eXe = (X +X

�1)e (2.47)
y = (1 + t

�2)eY e = (Y + Y
�1)e (2.48)

z = (q�
1
2Y

�1
X + q

1
2X

�1
Y )e =

[x, y]q
(q�1 � q)

, (2.49)

and they satisfy relations

[x, y]q = (q�1 � q)z

[y, z]q = (q�1 � q)x

[z, x]q = (q�1 � q)y

q
�1

x
2 + qy

2 + q
�1

z
2 � q

� 1
2xyz = (q�

1
2 t� q

1
2 t

�1)2 + (q
1
2 + q

� 1
2 )2 ,

(2.50)

where q = e
2⇡i~ and the q-commutator is defined by

[a, b]q := q
� 1

2ab� q
1
2 ba .

See e.g. [Ter13] for further details. The key point is that the spherical DAHA S
..
H is commutative at

the “classical” limit q = 1 while the DAHA
..
H is not commutative even in the q = 1 limit. Indeed, it

is easy to see that in the “classical” limit q ! 1, the Casimir relation (the last one) in (2.50) becomes
the equation for the cubic surface (2.10):

S
..
H ���!

q!1
O(Mflat(Cp, SL(2,C))) . (2.51)

Thus, S
..
H is the deformation quantization O

q(X) of the coordinate ring (2.10) of the moduli space of
flat SL(2,C)-connections X = Mflat(Cp, SL(2,C)) with respect to the Poisson bracket defined by ⌦J

[Obl04a, Obl04b].
Here, it is worth commenting on an important issue in the context of the deformation quantization

of the coordinate ring on the affine cubic hypersurface of the form (2.10). It is clear that this equation
is Weyl-group invariant, so that the monodromy parameter t̃ appears only through the symmetric
combination t̃ + t̃

�1, and that the same symmetry applies to the Poisson structure. Moreover, if we
work with a specific value of t̃, we will obtain the deformation quantization at a specific value of the
parameters, i.e. for a specific choice of the central character (at least for the formal parameter t).

Since the inputs to deformation quantization depend on t̃ only in a Z2-invariant fashion, the output
O

q(X
t̃
) will also have the corresponding symmetry. However, this clarifies that t̃ 6= t, since the

relations (2.50) do not depend symmetrically on t. The proper identification is

t̃ = tq
�1/2

, (2.52)

as will be made clear by the discussion of the formal outer automorphism ◆ below. There is no
contradiction with the statement that S

..
H is the deformation quantization of O(X), since the classical

limit of S
..
H still recovers the same commutative Poisson algebra.

It is simple to check that the two involutions (2.43) straightforwardly reduce to the symmetry of
S
..
H, which is the same as (2.29). As in the classical case, the non-trivial central element �1 2 SL(2,Z)

acts trivially on the generators of S
..
H, and the action of PSL(2,Z) is quantized from (2.36)

⌧+ : (x, y, z) 7!
⇣
x,

xy + yx

q1/2 + q�1/2
� z, y

⌘
,

⌧� : (x, y, z) 7!
⇣

xy + yx

q1/2 + q�1/2
� z, y, x

⌘
,

� : (x, y, z) 7!
⇣
y, x,

xy + yx

q1/2 + q�1/2
� z

⌘
.

(2.53)

– 15 –

`Classical’ limit

Coordinate ring of the moduli space of  flat connections on punctured torusSL(2,ℂ)
In terms of these holonomy variables, the space of SL(2,C)-representations ⇢ : ⇡1(Cp) ! SL(2,C) is a
cubic surface (see e.g. [Gol09, Guk11]):

Mflat(Cp, SL(2,C)) = {(x, y, z) 2 C3|x2 + y
2 + z

2 � xyz � 2 = Tr(⇢(c)) = t̃
2 + t̃

�2} . (2.10)

Here we used the fact that, according to (2.7), the holonomy of the complex flat connection around p

is conjugate to

⇢(c) ⇠
✓
t̃
�2 0
0 t̃

2

◆
. (2.11)

This section will be devoted to studying the deformation quantization O
q(X) of this coordinate ring

holomorphic in complex structure J , which is generated by x, y, z, and its representations geometrically.
For a complex surface defined by the zero locus of a polynomial f(x, y, z), the holomorphic sym-

plectic form (a.k.a. Atiyah-Bott-Goldman symplectic form) can be written as

⌦J =
1

2⇡i

dx ^ dy

@f/@z
=

1

2⇡i

dx ^ dy

2z � xy
. (2.12)

and the Kähler form is
!J =

i

4⇡
(dx ^ dx̄+ dy ^ dȳ + dz ^ dz̄) . (2.13)

In the special case ↵p = �p = �p = 0, the moduli space of SL(2,C) flat connections on Cp is simply
a quotient space

(C⇥ ⇥ C⇥)/Z2 (2.14)
by the Weyl group Z2. It can be understood as a moduli space of SL(2,C) flat connections on a torus
(without ramification), such that holonomy eigenvalues along A- and B-cycles each parametrize a copy
of C⇥. The “real slice” (S1 ⇥ S

1)/Z2 is the moduli space of SU(2) flat connections on the (punctured)
torus, and it is sometimes called the “pillowcase”. According to the theorem of [NS65] (resp. [MS80]),
it can be identified with the moduli space Bun(Cp, G) of stable (resp. parabolic) G-bundles on Cp. It
is easy to see that Bun(Cp, G) is a holomorphic submanifold of MH(Cp, G) in complex structure I.
Furthermore, because �' = 0 on Bun(Cp, G), it follows from (2.6) that Bun(Cp, G) is a holomorphic
Lagrangian submanifold with respect to ⌦I (in particular, Lagrangian with respect to !J and !K).
Following the notation in §2.4, we write it by V as a Lagrangian submanifold in the target (X,!X).

In addition to V, other special submanifolds of MH(Cp, G) will play a role in what follows. For
example, in complex structure I, the Hitchin moduli space is a completely integrable Hamiltonian
system [Hit87], i.e. a fibration

⇡ : MH(Cp, G) ! BH (2.15)
over an affine space, the “Hitchin base” BH , whose generic fibers are abelian varieties (sometimes
called “Liouville tori”). For G = SU(2), the map ⇡ takes a pair (E,') to Tr'2, which is holomorphic in
complex structure I. Specializing further to the case where Cp is a genus-one curve gives a particularly
simple integrable system: its generic fiber F is a torus that, just like V, is holomorphic in complex
structure I and Lagrangian with respect to !J and !K . We also note that the only singular fiber of
the Hitchin fibration ⇡ : MH(Cp, G) ! BH is the pre-image N = ⇡

�1(0) of 0 2 BH which, in the limit
↵p = �p = �p = 0, is the “pillowcase” V ⇠= (S1 ⇥ S

1)/Z2 with four orbifold points.
Now let us consider what happens when we go away from the limit ↵p = �p = �p = 0 and consider

generic values of the ramification parameters. From the viewpoint of the complex structure J , the
equation (2.10) describes the deformation of the four A1 singularities of the singular surface (2.14),
where t̃

2 (or, equivalently, �p+ i↵p) plays the role of the complex structure deformation. On the other
hand, turning on �p 6= 0 leads to a resolution of the A1-singularities. In other words, �p is the Kähler
structure parameter in complex structure J , cf. Table 1.

Recall that ↵p is the Kähler structure parameter in complex structure I. If we turn on ↵p while
keeping �p = �p = 0, then the four orbifold points are blown up in the Hitchin fibration. Consequently,
the singular fiber in the Hitchin fibration, called the global nilpotent cone N := ⇡

�1(0), now contains
five compact irreducible components (all rational) [Hau98, Guk11]:

N = V [
4[

i=1
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�2 0
0 t̃
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◆
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This section will be devoted to studying the deformation quantization O
q(X) of this coordinate ring

holomorphic in complex structure J , which is generated by x, y, z, and its representations geometrically.
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plectic form (a.k.a. Atiyah-Bott-Goldman symplectic form) can be written as
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2 (or, equivalently, �p+ i↵p) plays the role of the complex structure deformation. On the other
hand, turning on �p 6= 0 leads to a resolution of the A1-singularities. In other words, �p is the Kähler
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Let

modulo gauge transformations. We denote this moduli space MH(Cp, G), where Cp is a Riemann
surface C with the tame ramification (2.4) at p 2 C. It is a hyper-Kähler space and the corresponding
Kähler forms are

!I = � i

2⇡

Z

C

|d2z| Tr
⇣
�Az̄ ^ �Az � �'̄ ^ �'

⌘
,

!J =
1

2⇡

Z

C

|d2z| Tr
⇣
�'̄ ^ �Az + �' ^ �Az̄

⌘
,

!K =
i

2⇡

Z

C

|d2z| Tr
⇣
�'̄ ^ �Az � �' ^ �Az̄

⌘
.

(2.6)

There is also a triplet of holomorphic symplectic forms ⌦I = !J + i!K , ⌦J = !K + i!I , and ⌦K =
!I + i!J , holomorphic in complex structures I, J , and K, respectively. In the absence of ramification,
it is easy to check that !J and !K are cohomologically trivial [KW07, §4.1], whereas !I is non-trivial
and, if properly normalized, can be taken as a generator of H

2(X,Z). On the other hand, in the
presence of ramification (2.4), the cohomology classes of !J and !K are proportional to �p and �p,
respectively.

The description of MH(Cp, G) as the moduli space of Higgs bundles given above is in complex
structure I. Another useful description, in complex structure J , comes from identifying a complex
combination AC = A+ i� with a GC-valued connection, where � = '+ '̄. The Hitchin equations then
become the flatness condition FC = dAC +AC ^AC = 0 for this GC-valued connection AC. According
to (2.4), it has a non-trivial monodromy around the point p:

U = exp(2⇡(�p + i↵p)) . (2.7)

which depends holomorphically on �p + i↵p and is independent of �p. Indeed, in complex structure
J , �p is a Kähler parameter and �p + i↵p is a complex structure parameter. Another useful fact, also
explained in [GW08], is that the cohomology class of the holomorphic symplectic form ⌦J = !K + i!I

is proportional to �p + i↵p and independent of �p.
Similarly, in complex structure I the Kähler modulus is ↵p, while �p + i�p is a complex structure

parameter. The cohomology class of the holomorphic symplectic form ⌦I = !J + i!K is �p + i�p.
There is a similar story for complex structure K and all these statements are summarized in Table 1.

Complex structure Complex modulus Kähler modulus
I �p + i�p ↵p

J �p + i↵p �p

K ↵p + i�p �p

Table 1: Complex and Kähler moduli of the moduli space MH with one ramification point.

In a supersymmetric sigma-model with target X, the Kähler modulus of the target space is always
complexified. This fact plays an important role in mirror symmetry. In the present setup, too, the
Kähler moduli are all complexified by the periods of the 2-form field B. For example, in complex
structure I, the complexified Kähler modulus is ↵p + i⌘p, where ⌘p 2 T

_ = Hom(⇤_
,U(1)) and

⇤_ is the cocharacter lattice of G. Therefore, taking into account the “quantum” parameter ⌘p, the
ramification data consists of the quadruple of parameters (↵p,�p, �p, ⌘p).

All of these structures can be made completely explicit in the case when Cp is a punctured torus.
In complex structure J , where X = MH(Cp, G) is the moduli space of complex flat connections on Cp,
we can then use an explicit presentation of the fundamental group

⇡1(Cp) = hm, l, c|mlm�1l�1 = ci . (2.8)

to describe flat connections concretely, in terms of holonomies along the (1, 0)-cycle m, the (0, 1)-cycle
l, and the loop c around p:

x = Tr(⇢(m)), y = Tr(⇢(l)), and z = Tr
�
⇢(ml�1)

�
. (2.9)
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In terms of these holonomy variables, the space of SL(2,C)-representations ⇢ : ⇡1(Cp) ! SL(2,C) is a
cubic surface (see e.g. [Gol09, Guk11]):

Mflat(Cp, SL(2,C)) = {(x, y, z) 2 C3|x2 + y
2 + z

2 � xyz � 2 = Tr(⇢(c)) = t̃
2 + t̃

�2} . (2.10)

Here we used the fact that, according to (2.7), the holonomy of the complex flat connection around p

is conjugate to

⇢(c) ⇠
✓
t̃
�2 0
0 t̃

2

◆
. (2.11)

This section will be devoted to studying the deformation quantization O
q(X) of this coordinate ring

holomorphic in complex structure J , which is generated by x, y, z, and its representations geometrically.
For a complex surface defined by the zero locus of a polynomial f(x, y, z), the holomorphic sym-

plectic form (a.k.a. Atiyah-Bott-Goldman symplectic form) can be written as

⌦J =
1

2⇡i

dx ^ dy

@f/@z
=

1

2⇡i

dx ^ dy

2z � xy
. (2.12)

and the Kähler form is
!J =

i

4⇡
(dx ^ dx̄+ dy ^ dȳ + dz ^ dz̄) . (2.13)

In the special case ↵p = �p = �p = 0, the moduli space of SL(2,C) flat connections on Cp is simply
a quotient space

(C⇥ ⇥ C⇥)/Z2 (2.14)
by the Weyl group Z2. It can be understood as a moduli space of SL(2,C) flat connections on a torus
(without ramification), such that holonomy eigenvalues along A- and B-cycles each parametrize a copy
of C⇥. The “real slice” (S1 ⇥ S

1)/Z2 is the moduli space of SU(2) flat connections on the (punctured)
torus, and it is sometimes called the “pillowcase”. According to the theorem of [NS65] (resp. [MS80]),
it can be identified with the moduli space Bun(Cp, G) of stable (resp. parabolic) G-bundles on Cp. It
is easy to see that Bun(Cp, G) is a holomorphic submanifold of MH(Cp, G) in complex structure I.
Furthermore, because �' = 0 on Bun(Cp, G), it follows from (2.6) that Bun(Cp, G) is a holomorphic
Lagrangian submanifold with respect to ⌦I (in particular, Lagrangian with respect to !J and !K).
Following the notation in §2.4, we write it by V as a Lagrangian submanifold in the target (X,!X).

In addition to V, other special submanifolds of MH(Cp, G) will play a role in what follows. For
example, in complex structure I, the Hitchin moduli space is a completely integrable Hamiltonian
system [Hit87], i.e. a fibration

⇡ : MH(Cp, G) ! BH (2.15)
over an affine space, the “Hitchin base” BH , whose generic fibers are abelian varieties (sometimes
called “Liouville tori”). For G = SU(2), the map ⇡ takes a pair (E,') to Tr'2, which is holomorphic in
complex structure I. Specializing further to the case where Cp is a genus-one curve gives a particularly
simple integrable system: its generic fiber F is a torus that, just like V, is holomorphic in complex
structure I and Lagrangian with respect to !J and !K . We also note that the only singular fiber of
the Hitchin fibration ⇡ : MH(Cp, G) ! BH is the pre-image N = ⇡

�1(0) of 0 2 BH which, in the limit
↵p = �p = �p = 0, is the “pillowcase” V ⇠= (S1 ⇥ S

1)/Z2 with four orbifold points.
Now let us consider what happens when we go away from the limit ↵p = �p = �p = 0 and consider

generic values of the ramification parameters. From the viewpoint of the complex structure J , the
equation (2.10) describes the deformation of the four A1 singularities of the singular surface (2.14),
where t̃

2 (or, equivalently, �p+ i↵p) plays the role of the complex structure deformation. On the other
hand, turning on �p 6= 0 leads to a resolution of the A1-singularities. In other words, �p is the Kähler
structure parameter in complex structure J , cf. Table 1.

Recall that ↵p is the Kähler structure parameter in complex structure I. If we turn on ↵p while
keeping �p = �p = 0, then the four orbifold points are blown up in the Hitchin fibration. Consequently,
the singular fiber in the Hitchin fibration, called the global nilpotent cone N := ⇡

�1(0), now contains
five compact irreducible components (all rational) [Hau98, Guk11]:

N = V [
4[

i=1

Di . (2.16)
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Markov cubic

Theorem. Spherical DAHA is a deformation quantization of the coordinate ring of the moduli space of flat  connections 
  with respect to Poisson structure  

SL(2,ℂ)
𝔛 = ℳflat(Cp, SL(2,ℂ)) ΩJ

[Oblomkov]
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          1) Representations of (spherical) DAHA —    
          2) Lagrangian submanifolds of  whose quantization yields these representations —  

Rep( ··H)
𝔛 ℱuk(𝔛, ω𝔛)

Elliptic fibration of Kodaira type I*0

<latexit sha1_base64="FzuJGuwzBieUkrmcdEa2BY7HrTM=">AAACF3icbVBNS8NAEN34WetX1aOXxSLUS0mkqMeiHjxWsB/QlLDZbtqlu0nYnYgl5F948a948aCIV735b9y0PWjrg4HHezPMzPNjwTXY9re1tLyyurZe2Chubm3v7Jb29ls6ShRlTRqJSHV8opngIWsCB8E6sWJE+oK1/dFV7rfvmdI8Cu9gHLOeJIOQB5wSMJJXqrrAHiDtc5nhlsexq7nEU60ViaziSgLDQJFRep15/MQrle2qPQFeJM6MlNEMDa/05fYjmkgWAhVE665jx9BLiQJOBcuKbqJZTOiIDFjX0JBIpnvp5K8MHxulj4NImQoBT9TfEymRWo+lbzrzM/W8l4v/ed0EgoteysM4ARbS6aIgERginIeE+1wxCmJsCKGKm1sxHRJFKJgoiyYEZ/7lRdI6rTpn1dptrVy/nMVRQIfoCFWQg85RHd2gBmoiih7RM3pFb9aT9WK9Wx/T1iVrNnOA/sD6/AGsUaA/</latexit>

dimVi ⇠ Vol(Di) Brane quantization



Brane quantization for DAHA

Let  be a punctured genus-one Riemann surface,  the moduli space of flat 

 connections with prescribed monodromy at the puncture, and  be the spherical 
subalgebra of DAHA of type . Then the above functor restricts to a derived equivalence of the 
subcategory of compact Lagrangian A-branes of  and the category of finite-dimensional 
-modules.  

Cp 𝔛 = ℳflat(Cp, SL(2,ℂ))
SL(2,ℂ) S ··H(ℤ2)

A1
𝔛 S ··H(ℤ2)

with respect to its holomorphic symplectic form. In the case of an affine variety, O(X) is just the
coordinate ring. (Although the A-model depends only on the symplectic form !X = Im⌦, the real
part of ⌦ enters the definition of the boundary condition Bcc, which is only canonically definable on
a holomorphic symplectic manifold.)

As with any category, there is an action of this algebra by precomposition (physically speaking, by
joining strings at boundary conditions) on the space of morphisms from Bcc to any other A-brane B.
In other words, brane quantization naturally proposes a functor

Hom(Bcc,�) : A-Brane(X,!X) ! Rep(Oq(X)), (1.2)

which allows us to generate a representation of this algebra from an A-brane. A category is said to
be generated by an object A if Hom(A,�) is an equivalence of categories. In fact, Kapustin [Kap05]
proposed that Bcc is a generating object of the category of A-branes, and that Rep(Oq(X)) can be taken
as a definition of the category A-Brane(X), when X is a hyper-Kähler space. We remark that there are
some subtleties here. The Fukaya category as typically studied in homological mirror symmetry [Kon95]
requires each object to carry a choice of grading, so that there is at least a family of A-branes supported
on the same Lagrangian which are shifts of one another, forming a torsor over Z. There is typically no
canonical choice of a preferred grading datum on an A-brane. One should more properly expect

RHom(Bcc,�) : Db
A-Brane(X,!X) ! D

b Rep(Oq(X)) (1.3)

to provide a derived equivalence between the category of A-branes and the derived category of O
q(X)-

modules. (From the physical perspective, this corresponds to working with the notion of equivalence
appropriate to the twist, treating A-branes as boundaries for the A-twisted theory rather than bound-
aries for the full theory that are compatible with the twist.) The relevance of derived categories to
boundary conditions in topological string theory has been understood for a long time; see [Dou01, for
example].

Returning briefly to the perspective of brane quantization, the gist now consists in the fact that
M is a Lagrangian submanifold in (X,!X), so that the original symplectic manifold itself can be used
to define an A-brane BM in (X,!X). In fact, it is shown in [GW09, Guk11] that the morphism space
Hom(Bcc,BM ) can be identified in a precise fashion with the geometric quantization of M , at least
under the assumption that M is a Kähler manifold. As such, brane quantization provides a bridge
between deformation quantization—which is guaranteed to formally produce the algebra of quantum
observables O

q(X), but gives no candidate for a natural module or Hilbert space on which it acts—and
standard geometric quantization. (For a recent study of issues in geometric quantization from this
perspective, see [GW21b].) However, as we have already argued, the functor Hom(Bcc,�) is much

more than this: assuming that it is an equivalence, it provides a natural description of the category
of O

q(X)-modules in geometric terms. Indeed, the role of M in the story is no longer distinguished:
it is just one A-brane among (at least potentially) many, each of which corresponds naturally to
an O

q(X)-module. This broader perspective was already appreciated in [GW09], where a particular
space X = T

⇤CP1 was used to generalize the orbit method and give geometric constructions for all
representations of SL(2,R). Therefore, the proposed equivalence (1.3) between A-branes and O

q(X)-
modules is the natural way to think about a geometric approach to representation theory for algebras
that deformation-quantize hyper-Kähler manifolds X.

As the definition of the A-brane category is not available yet, much of this discussion is not at
a mathematical level of rigor. Nonetheless, with an appropriate choice of (X,!X), we can provide
concrete evidence for the equivalence (1.3) if we restrict ourselves to Lagrangian objects belonging to
the Fukaya category Fuk(X,!X) of X, which forms a subcategory in A-Brane(X,!X). We will take the
target space X of the 2d sigma-model to be the moduli space of complex flat connections (or parabolic
Higgs bundles) on a once-punctured torus Cp. Then, as proved in [Obl04b], the algebra O

q(X) will be
the spherical subalgebra of double affine Hecke algebra (DAHA in short) [Che05]. One of our goals
in this paper is to explore the idea described above in this setup, presenting solid evidence for the
equivalence (1.3).1

1A related functor of a similar kind is constructed in [BZBJ18b, BZN18, BZBJ18a]. The constructions there give a
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DAHA Representations

and after setting � = 0 expressions in (2.4) become

hW i = X + X
�1

,

hT i = tX � t
�1

X
�1

X � X�1
$ +

t
�1

X � tX
�1

X � X�1
$

�1
,

hDi = X
�1 tX � t

�1
X

�1

X � X�1
$ + X

t
�1

X � tX
�1

X � X�1
$

�1
. (2.8)

Later we shall see that (X, $) represent Fenchel-Nielsen coordinates on the moduli space of
SL(2;C) flat connections on punctured torus X.

2.3 Highest Weight Vectors

Let us consider highest weight vector Z of Y with weight a 2 C
⇥

Y Z = aZ , (2.9)

Since we are interested in representations of spherical DAHA we will use

y Z = (Y + Y
�1)Z = (a + a

�1)Z (2.10)

instead. It can be shown (see [15] and references therein) that there are two formal solutions
of the above difference equation – one given by

Z(X, a, q, t) =
✓1(t�1

X, q)✓1(t X
�1

, q)

✓1(aX, q)✓1(a�1X�1, q)
· 2�1

�
t
2
, t

2
a
2; qa2; q; qt�2

X
�2

�
, (2.11)

and the other solutions is obtained by SU(2) Weyl reflection a ! a
�1. Here 2�1 is a q-

hypergeometric function, and ✓1(x, q) is theta function.
We have demonstrated above that for a generic value of weight a the eigenfunctions of

Macdonald operators are infinite hypergeometric series. However, under certain conditions
on a the above q-hypergeometric series truncate to polynomials. As discussed in [15] for one
highest weight vector (2.11) this condition reads

a
2 = q

�2`
t
�2

, ` 2 Z+ (2.12)

and correspondingly a
2 = q

2`
t
2 for the other solution. Thus when (2.12) holds series (2.11)

becomes
Z(X, a, q, t)

���
a
2
`
=q�2`t�2

= P`(X; q, t) , (2.13)

where P`(X; q, t) is the Macdonald polynomial of type A1 which is labelled by spin-` repre-
sentations

P`(X; q, t) := X
`
2�1(q

�2`
, t

2; q�2`+2
t
�2; q2; q2t�2

X
�2) . (2.14)

The eigenvalue of the Macdonald difference operator (2.10) is indeed

pl(y) · P`(X; q, t) = (q`t + q
�`

t
�1)P`(X; q, t) . (2.15)
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Highest weight representation for y

We will talk about polynomial representations of DAHA 

Bcc ⌦B�1
L . If X is a complexification of L in the sense of [GW09], then the action of End(Bcc) on the

quantization Hom(Bcc,BL) plays the role of the quantized algebra of operators.
Finally, let us mention a brief word about coefficients. In general, the Fukaya category is defined

with coefficients in the Novikov ring; this is necessary because the sums over instanton contributions
that define the differential are formal and not necessarily guaranteed to converge. Similarly, deforma-
tion quantization of a Poisson manifold [Gro46, Fed94, Kon03] is not guaranteed to produce convergent
series, but only a formal deformation in general. We will restrict ourselves to target spaces X for which
a “good A-model” is expected to exist, meaning that all the series involved should in fact converge.
The existence of a complete hyper-Kähler metric on X should be sufficient to ensure this; see [GW09]
for further discussion of this issue.

We will proceed to compare the two categories A-Brane(X,!X) and Rep(S
..
H) via the brane quanti-

zation.7 For the comparison, the symmetries play a crucial role. In fact, the symmetries of the target
space X become the group of auto-equivalences of the categories. More concretely, we will investigate
the action of ⌅⇥ PSL(2,Z) ((2.29) and (2.53)) and the Weyl group Z2 generated by ◆ (2.55) on both
categories.

Now we set up the framework so that we will start our expedition to “see” and “touch” representa-
tions of S

..
H as if they were geometric objects in the target X.

2.5 (A,B,A)-branes for polynomial representations

DAHA was introduced by Cherednik in the study of Macdonald polynomials from the viewpoint of
representation theory [Che95a] in which the distinguished infinite-dimensional representation on the
ring P := Cq,t[X±]Z2 of symmetric Laurent polynomials, called polynomial representation, plays an
important role. Here, Laurent polynomials in a single variable X over Cq,t are symmetrized under
the inversion Z2 : X 7! X

�1 so that the ring can also be expressed as P = Cq,t[X + X
�1]. This

polynomial representation of S
..
H is defined by the following formulas:

x 7! X +X
�1

,

pol : S
..
H ! End(P), y 7! tX � t

�1
X

�1

X �X�1
$ +

t
�1

X � tX
�1

X �X�1
$

�1
,

z 7! q
1
2X

tX � t
�1

X
�1

X �X�1
$ + q

1
2X

�1 t
�1

X � tX
�1

X �X�1
$

�1
,

(2.75)

where $
±(X) = q

±
X is the exponentiated degree operator, often called the q-shift operator, that

appeared in (C.15) for the quantum torus algebra. In particular, pol(y) is the so-called Macdonald

difference operator, whose eigenfunctions are symmetric Macdonald polynomials [Mac98, Che05]. The
Macdonald functions of type A1 are labeled by spin- j2 representations, and can be expressed in terms
of the basic hypergeometric series

Pj(X; q, t) := X
j
2�1(q

�2j
, t

2; q�2j+2
t
�2; q2; q2t�2

X
�2) . (2.76)

They are acted on diagonally by the Macdonald difference operator, with eigenvalues

pol(y) · Pj(X; q, t) = (qjt+ q
�j

t
�1)Pj(X; q, t) . (2.77)

Under this basis, the actions of the other generators are

pol(x) · Pj(X; q, t) =Pj+1(X; q, t) +

�
1� q

2j
� �

1� q
2j�2

t
4
�

(1� q2j�2t2) (1� q2jt2)
Pj�1(X; q, t) ,

pol(z) · Pj(X; q, t) =tq
j+ 1

2Pj+1(X; q, t) + t
�1

q
�j+ 1

2

�
1� q

2j
� �

1� q
2j�2

t
4
�

(1� q2j�2t2) (1� q2jt2)
Pj�1(X; q, t) .

(2.78)

7Note, that spherical DAHA is Morita-equivalent to DAHA (2.40), i.e the category of representations of DAHA is
equivalent to the category of representations of its spherical subalgebra [Obl04b]:

Rep(
..
H) ⇠= Rep(S

..
H) . (2.74)

See also (4.14) for the explanation from the 2d sigma-model.

– 21 –

Bcc ⌦B�1
L . If X is a complexification of L in the sense of [GW09], then the action of End(Bcc) on the

quantization Hom(Bcc,BL) plays the role of the quantized algebra of operators.
Finally, let us mention a brief word about coefficients. In general, the Fukaya category is defined

with coefficients in the Novikov ring; this is necessary because the sums over instanton contributions
that define the differential are formal and not necessarily guaranteed to converge. Similarly, deforma-
tion quantization of a Poisson manifold [Gro46, Fed94, Kon03] is not guaranteed to produce convergent
series, but only a formal deformation in general. We will restrict ourselves to target spaces X for which
a “good A-model” is expected to exist, meaning that all the series involved should in fact converge.
The existence of a complete hyper-Kähler metric on X should be sufficient to ensure this; see [GW09]
for further discussion of this issue.

We will proceed to compare the two categories A-Brane(X,!X) and Rep(S
..
H) via the brane quanti-

zation.7 For the comparison, the symmetries play a crucial role. In fact, the symmetries of the target
space X become the group of auto-equivalences of the categories. More concretely, we will investigate
the action of ⌅⇥ PSL(2,Z) ((2.29) and (2.53)) and the Weyl group Z2 generated by ◆ (2.55) on both
categories.

Now we set up the framework so that we will start our expedition to “see” and “touch” representa-
tions of S

..
H as if they were geometric objects in the target X.

2.5 (A,B,A)-branes for polynomial representations

DAHA was introduced by Cherednik in the study of Macdonald polynomials from the viewpoint of
representation theory [Che95a] in which the distinguished infinite-dimensional representation on the
ring P := Cq,t[X±]Z2 of symmetric Laurent polynomials, called polynomial representation, plays an
important role. Here, Laurent polynomials in a single variable X over Cq,t are symmetrized under
the inversion Z2 : X 7! X

�1 so that the ring can also be expressed as P = Cq,t[X + X
�1]. This

polynomial representation of S
..
H is defined by the following formulas:

x 7! X +X
�1

,

pol : S
..
H ! End(P), y 7! tX � t

�1
X

�1

X �X�1
$ +

t
�1

X � tX
�1

X �X�1
$

�1
,

z 7! q
1
2X

tX � t
�1

X
�1

X �X�1
$ + q

1
2X

�1 t
�1

X � tX
�1

X �X�1
$

�1
,

(2.75)

where $
±(X) = q

±
X is the exponentiated degree operator, often called the q-shift operator, that

appeared in (C.15) for the quantum torus algebra. In particular, pol(y) is the so-called Macdonald

difference operator, whose eigenfunctions are symmetric Macdonald polynomials [Mac98, Che05]. The
Macdonald functions of type A1 are labeled by spin- j2 representations, and can be expressed in terms
of the basic hypergeometric series

Pj(X; q, t) := X
j
2�1(q

�2j
, t

2; q�2j+2
t
�2; q2; q2t�2

X
�2) . (2.76)

They are acted on diagonally by the Macdonald difference operator, with eigenvalues

pol(y) · Pj(X; q, t) = (qjt+ q
�j

t
�1)Pj(X; q, t) . (2.77)

Under this basis, the actions of the other generators are

pol(x) · Pj(X; q, t) =Pj+1(X; q, t) +

�
1� q

2j
� �

1� q
2j�2

t
4
�

(1� q2j�2t2) (1� q2jt2)
Pj�1(X; q, t) ,

pol(z) · Pj(X; q, t) =tq
j+ 1

2Pj+1(X; q, t) + t
�1

q
�j+ 1

2

�
1� q

2j
� �

1� q
2j�2

t
4
�

(1� q2j�2t2) (1� q2jt2)
Pj�1(X; q, t) .

(2.78)

7Note, that spherical DAHA is Morita-equivalent to DAHA (2.40), i.e the category of representations of DAHA is
equivalent to the category of representations of its spherical subalgebra [Obl04b]:

Rep(
..
H) ⇠= Rep(S

..
H) . (2.74)

See also (4.14) for the explanation from the 2d sigma-model.

– 21 –

Bcc ⌦B�1
L . If X is a complexification of L in the sense of [GW09], then the action of End(Bcc) on the

quantization Hom(Bcc,BL) plays the role of the quantized algebra of operators.
Finally, let us mention a brief word about coefficients. In general, the Fukaya category is defined

with coefficients in the Novikov ring; this is necessary because the sums over instanton contributions
that define the differential are formal and not necessarily guaranteed to converge. Similarly, deforma-
tion quantization of a Poisson manifold [Gro46, Fed94, Kon03] is not guaranteed to produce convergent
series, but only a formal deformation in general. We will restrict ourselves to target spaces X for which
a “good A-model” is expected to exist, meaning that all the series involved should in fact converge.
The existence of a complete hyper-Kähler metric on X should be sufficient to ensure this; see [GW09]
for further discussion of this issue.

We will proceed to compare the two categories A-Brane(X,!X) and Rep(S
..
H) via the brane quanti-

zation.7 For the comparison, the symmetries play a crucial role. In fact, the symmetries of the target
space X become the group of auto-equivalences of the categories. More concretely, we will investigate
the action of ⌅⇥ PSL(2,Z) ((2.29) and (2.53)) and the Weyl group Z2 generated by ◆ (2.55) on both
categories.

Now we set up the framework so that we will start our expedition to “see” and “touch” representa-
tions of S

..
H as if they were geometric objects in the target X.

2.5 (A,B,A)-branes for polynomial representations

DAHA was introduced by Cherednik in the study of Macdonald polynomials from the viewpoint of
representation theory [Che95a] in which the distinguished infinite-dimensional representation on the
ring P := Cq,t[X±]Z2 of symmetric Laurent polynomials, called polynomial representation, plays an
important role. Here, Laurent polynomials in a single variable X over Cq,t are symmetrized under
the inversion Z2 : X 7! X

�1 so that the ring can also be expressed as P = Cq,t[X + X
�1]. This

polynomial representation of S
..
H is defined by the following formulas:

x 7! X +X
�1

,

pol : S
..
H ! End(P), y 7! tX � t

�1
X

�1

X �X�1
$ +

t
�1

X � tX
�1

X �X�1
$

�1
,

z 7! q
1
2X

tX � t
�1

X
�1

X �X�1
$ + q

1
2X

�1 t
�1

X � tX
�1

X �X�1
$

�1
,

(2.75)

where $
±(X) = q

±
X is the exponentiated degree operator, often called the q-shift operator, that

appeared in (C.15) for the quantum torus algebra. In particular, pol(y) is the so-called Macdonald

difference operator, whose eigenfunctions are symmetric Macdonald polynomials [Mac98, Che05]. The
Macdonald functions of type A1 are labeled by spin- j2 representations, and can be expressed in terms
of the basic hypergeometric series

Pj(X; q, t) := X
j
2�1(q

�2j
, t

2; q�2j+2
t
�2; q2; q2t�2

X
�2) . (2.76)

They are acted on diagonally by the Macdonald difference operator, with eigenvalues

pol(y) · Pj(X; q, t) = (qjt+ q
�j

t
�1)Pj(X; q, t) . (2.77)

Under this basis, the actions of the other generators are

pol(x) · Pj(X; q, t) =Pj+1(X; q, t) +

�
1� q

2j
� �

1� q
2j�2

t
4
�

(1� q2j�2t2) (1� q2jt2)
Pj�1(X; q, t) ,

pol(z) · Pj(X; q, t) =tq
j+ 1

2Pj+1(X; q, t) + t
�1

q
�j+ 1

2

�
1� q

2j
� �

1� q
2j�2

t
4
�

(1� q2j�2t2) (1� q2jt2)
Pj�1(X; q, t) .

(2.78)

7Note, that spherical DAHA is Morita-equivalent to DAHA (2.40), i.e the category of representations of DAHA is
equivalent to the category of representations of its spherical subalgebra [Obl04b]:

Rep(
..
H) ⇠= Rep(S

..
H) . (2.74)

See also (4.14) for the explanation from the 2d sigma-model.

– 21 –

For arbitrary value of  the eigenvector is a series of hypergeometric type which arises in enumerative geometry (see later)a
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Shift operator



Polynomial Representation
Macdonald Polynomials generate the ring  over 𝒫 ℂ[q±1, t±1]

Raising and lowering operators

In fact, the Macdonald polynomials Pj form a basis for the ring P over Cq,t, so that the polynomial
representation can be studied with the help of raising and lowering operators [KN98]:

Rj := x� q
j� 1

2 tz = X(qjt�1
Y � q

2j
t
2) +X

�1(qjtY �1 � q
2j
t
2) ,

Lj := x� q
�j� 1

2 t
�1

z = X(q�j
t
�3

Y � q
�2j

t
�2) +X

�1(q�j
t
�1

Y
�1 � q

�2j
t
�2) .

(2.79)

These operators relate adjacent Macdonald polynomials, respectively increasing or decreasing the value
of j:

pol(Rj) · Pj(X; q, t) = (1� q
2j
t
2)Pj+1(X; q, t) , (2.80)

pol(Lj) · Pj(X; q, t) =
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t
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q2jt2(q2(j�1)t2 � 1)
Pj�1(X; q, t) . (2.81)

See Figure 5 for a schematic diagram of this action. At t = 1, this representation reduces to the

1 P1 · · · · · · Pj�1 Pj · · ·
L1 L2 Lj�1 Lj Lj+1

R0 R1 Rj�2 Rj�1 Rj

Figure 5: The action of raising and lowering operators on Macdonald polynomials

pullback of the lift of P
y1=1 in Proposition C.6 so that Cherednik’s polynomial representation can

be understood as its deformation from the symmetrized quantum torus to DAHA. Since the classical
limit (q = 1) of the Macdonald eigenvalues (2.77) is always t + t

�1, the support of the corresponding
A-brane BP is given by

P = {y = t̃+ t̃
�1

, z = t̃
�1

x} . (2.82)

While the parameter t in S
..
H coincides with the monodromy parameter t̃ at the classical limit (q = 1)

(see (2.52)), we use t̃ to specify the position of the brane because it is the geometric parameter of X.
Since it is of type (A,B,A), it is happily a Lagrangian submanifold with respect to !X for any value
of ~ or q.

To understand the brane BP for the polynomial representation P of S
..
H better, it is illuminating

to consider its relation to the skein module. The skein module of type A1 [Tur90, Prz91] of an oriented
3-manifold M3 is defined as

Sk(M3, SU(2)) := Sk(M3) =
C[q± 1

2 ](isotopy classes of framed links in M3)
⇣

= q�1/2 + q1/2 , = �q � q�1
⌘ (2.83)

The skein algebra Sk(C) associated to an oriented closed surface C is defined as

Sk(C) := Sk(C ⇥ [0, 1], SU(2)) , (2.84)

where the multiplication Sk(C)⇥Sk(C) ! Sk(C) is given by stacking. As a result, Sk(C) is a C[q± 1
2 ]-

associative algebra [Tur91].
At the q = 1 specialization, the skein module Sk(M3) becomes a commutative algebra. Moreover,

it was shown in [Bul97, PS00] that by assigning a loop � : S1 ! M3 to Tr(⇢(�)) where ⇢ : ⇡1(M3) !
SL(2,C) is the holonomy homomorphism, the classical limit q = 1 of Sk(M3) is isomorphic to the
coordinate ring of the character variety Mflat(M3, SL(2,C)). Hence, the skein module Sk(M3) can be
understood as a BV quantization [GJS19a]

Sk(M3) ⇠= BVq(Mflat(M3, SL(2,C))) .

The skein module of a closed 3-manifold will be studied in §3.2.
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Finite-Dimensional Representations
Shortening condition

However, it can occur that a lowering operator Lj annihilates one of the Macdonald polynomials Pj

when certain conditions on the central character are satisfied. If this occurs, Pj generates a subrepresen-
tation, and a finite-dimensional representation of the spherical DAHA appears as the quotient P/(Pj).
We can therefore study finite-dimensional representations by asking that the condition pol(Lj) ·Pj = 0
be satisfied for some j, i.e. that the factor

(1� q
2j)(1� q

(j�1)
t
2)(1 + q

(j�1)
t
2)

q2jt2(q2(j�1)t2 � 1)
(2.95)

on the right hand side of (2.81) vanishes.
This amounts to the following three cases:

q
2n = 1 , (2.96a)

t
2 = �q

�k
, (2.96b)

t
2 = q

�(2`�1)
. (2.96c)

Here, the exponent in the right hand side of (2.96c) must be an odd integer in order for the denominators
of Macdonald polynomials as well as (2.95) to be non-zero; even exponents are excluded by the definition
of the coefficient ring Cq,t in (2.41). We write this odd integer as 2` � 1. Each of these separate
shortening conditions will naturally appear as an existence condition of an A-brane with compact
support in what follows; we will examine each of the resulting finite-dimensional representations and
the corresponding compact Lagrangian branes in turn.

2.6.1 Generic fibers of the Hitchin fibration

First we consider analogous A-branes in this setting; the ones supported on generic fibers in the Hitchin
fibration. As explained in §2.1, the Hitchin fibration (2.15) is completely integrable, and a generic
Hitchin fiber F is holomorphic in complex structure I while it is a complex Lagrangian submanifold
from the viewpoint of the holomorphic two-form ⌦I for a generic ramification data (2.4). Namely, it
is a Lagrangian submanifold of type (B,A,A) for any values of (↵p,�p, �p)-triple. Therefore, a generic
fiber F can be Lagrangian in a symplectic manifold (X,!X) only when the canonical coisotropic brane
Bcc obeys the condition ✓ = 0 in (2.60) so that

!X = �!K

~ , and F +B =
!I

~ . (2.97)

With ✓ 6= 0, there is no A-brane supported on F in the symplectic manifold (X,!X). Accordingly,
~ = |~| is real (i.e. |q| = 1), and the canonical coisotropic brane Bcc is an A-brane of type (B,A,A).

An analogous brane appears in the brane quantization of C⇥ ⇥C⇥ for the quantum torus algebra.
As in §C.2.1, a brane is supported on a fiber T 2 of the elliptic fibration T

⇤
T
2 ⇠= C⇥ ⇥C⇥, which gives

rise to a finite-dimensional representation, called the cyclic representation. Therefore, we can study a
brane supported on a generic fiber F of the Hitchin fibration, comparing with the case of the quantum
torus algebra.

Like in §C.2.1, the branes are indexed by a position of the Hitchin base BH . Also, the flatness
condition (2.70) of the line bundle L0 an A-brane supported BF is

F
0
F +B

��
F
= 0 .

Since F is topologically a two-torus, the flat Spinc structure L0⌦K
�1/2
L of BF can have non-trivial U(1)2

holonomy with a choice of spin structure. The branes B�

F are parametrized by � = (xm, ym) 2 C⇥⇥C⇥

where the absolute values (|xm|, |ym|) describe its position and the angular phases illustrate the U(1)2

holonomy with a choice of spin structure. Namely, the angular phase U(1) encodes the holonomy U(1)
and a choice of spin structure Z2 along a one-cycle of a Riemann surface via

1 ! Z2 ! U(1) ! U(1) ! 1 .

We assign the plus sign + 2 Z2 to the Ramond spin structure, and the minus sign � 2 Z2 to the
Neveu-Schwarz spin structure.
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Raising operator will never be null due to 

Note that the ◆ image ◆(P) of the polynomial representation can be obtained by changing t ! q/t in
(2.75).

The perspective from the brane quantization also sheds new light on infinite-dimensional represen-
tations. We have seen that Cherednik’s polynomial representation (2.75) corresponds to the A-brane
BP (2.82) at the particular value of y. It is natural to expect that it can be deformed in such a way
that the corresponding brane is supported on a generic point of y.

This consideration leads us to the following. Let us consider the multiplicative system fM ⇢
Cq,t[X±] generated by all elements of the form (q`X � q

�`
X

�1) for all integers ` 2 Z. Then there is a
family of representations of S

..
H on the localization 8 of the ring of Laurent polynomials by fM

P
y1 = fM�1Cq,t[X

±] , (2.93)

labeled by a parameter y1 2 C⇥ where the representations are defined by

x 7! X +X
�1

,

poly1 : S
..
H ! End(Py1), y 7! y1

tX � t
�1

X
�1

X �X�1
$ + y

�1
1

t
�1

X � tX
�1

X �X�1
$

�1
,

z 7! q
1
2 y1X

tX � t
�1

X
�1

X �X�1
$ + q

1
2 (y1X)�1 t

�1
X � tX

�1

X �X�1
$

�1
.

(2.94)

Concretely, one is free to deform Cherednik’s polynomial representation (2.75) to this larger repre-
sentation parametrized by y1, as long as we allow denominators to be elements of the multiplicative
system fM . Only at y1 = 1, it decomposes into two irreducible representations where one is Cherednik’s
polynomial representation, and the other irreducible representation is

fM�1Cq,t[X
±]Z2 .

When t = 1, the story reduces to the polynomial representations of the symmetrized quantum torus
discussed in §C.3.2. Thus, the support of the corresponding brane By1

P is expected to be

supp By1
P = {y = y1t̃+ y

�1
1 t̃

�1} .

However, we do not find eigenfunctions of y under poly1 that generalize the Macdonald polynomials.
Certainly, it is worth investing more in the generalized polynomial representation (2.94).

A geometric interpretation of the multiplicative system fM can be given by thinking about the t = 1
limit, where we are interested in the quotient map C⇥ ⇥ C⇥ ! (C⇥ ⇥ C⇥)/Z2. After deforming the
target of this covering map, no natural ramified twofold cover by C⇥ ⇥ C⇥ exists. However, such a
cover can be constructed once we extract the Z2-invariant points X = ±1. In fact, O(C⇥\{X = ±1})
admits the generator 1

X�X�1 . A related story exists in the rational limit, where the relevant geometry
is the deformation of the A1 singularity (C ⇥ C)/Z2 to the total space of T ⇤CP 1; we discuss this in
detail in Appendix B.2.4.

2.6 Branes with compact supports and finite-dimensional representations:

object matching

Cherednik’s polynomial representation is of particular significance due to the theorems of Chered-
nik [Che05, §2.8–9], which classify finite-dimensional representations of S

..
H obtained as quotients of

the polynomial representation paired with the action of outer automorphisms. Similar to the theory
of Verma modules, the polynomial representation is generically irreducible. A raising operator (2.80)
never be null since the Macdonald polynomial P2j always has a factor (1� q

2j
t
2) in the denominator.

8In other words, P
y1 is the ring of rational functions with coefficients in Cq,t where denominators are always elements

in the multiplicative system fM such as

f(X)

(q�mX � qmX�1)k�m · · · (X �X�1)k0 · · · (q`X � q�`X�1)k`
, f(X) 2 Cq,t[X

±
] .
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However, it can occur that a lowering operator Lj annihilates one of the Macdonald polynomials Pj

when certain conditions on the central character are satisfied. If this occurs, Pj generates a subrepresen-
tation, and a finite-dimensional representation of the spherical DAHA appears as the quotient P/(Pj).
We can therefore study finite-dimensional representations by asking that the condition pol(Lj) ·Pj = 0
be satisfied for some j, i.e. that the factor
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on the right hand side of (2.81) vanishes.
This amounts to the following three cases:
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�k
, (2.96b)

t
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�(2`�1)
. (2.96c)

Here, the exponent in the right hand side of (2.96c) must be an odd integer in order for the denominators
of Macdonald polynomials as well as (2.95) to be non-zero; even exponents are excluded by the definition
of the coefficient ring Cq,t in (2.41). We write this odd integer as 2` � 1. Each of these separate
shortening conditions will naturally appear as an existence condition of an A-brane with compact
support in what follows; we will examine each of the resulting finite-dimensional representations and
the corresponding compact Lagrangian branes in turn.

2.6.1 Generic fibers of the Hitchin fibration

First we consider analogous A-branes in this setting; the ones supported on generic fibers in the Hitchin
fibration. As explained in §2.1, the Hitchin fibration (2.15) is completely integrable, and a generic
Hitchin fiber F is holomorphic in complex structure I while it is a complex Lagrangian submanifold
from the viewpoint of the holomorphic two-form ⌦I for a generic ramification data (2.4). Namely, it
is a Lagrangian submanifold of type (B,A,A) for any values of (↵p,�p, �p)-triple. Therefore, a generic
fiber F can be Lagrangian in a symplectic manifold (X,!X) only when the canonical coisotropic brane
Bcc obeys the condition ✓ = 0 in (2.60) so that

!X = �!K

~ , and F +B =
!I

~ . (2.97)

With ✓ 6= 0, there is no A-brane supported on F in the symplectic manifold (X,!X). Accordingly,
~ = |~| is real (i.e. |q| = 1), and the canonical coisotropic brane Bcc is an A-brane of type (B,A,A).

An analogous brane appears in the brane quantization of C⇥ ⇥C⇥ for the quantum torus algebra.
As in §C.2.1, a brane is supported on a fiber T 2 of the elliptic fibration T

⇤
T
2 ⇠= C⇥ ⇥C⇥, which gives

rise to a finite-dimensional representation, called the cyclic representation. Therefore, we can study a
brane supported on a generic fiber F of the Hitchin fibration, comparing with the case of the quantum
torus algebra.

Like in §C.2.1, the branes are indexed by a position of the Hitchin base BH . Also, the flatness
condition (2.70) of the line bundle L0 an A-brane supported BF is

F
0
F +B

��
F
= 0 .

Since F is topologically a two-torus, the flat Spinc structure L0⌦K
�1/2
L of BF can have non-trivial U(1)2

holonomy with a choice of spin structure. The branes B�

F are parametrized by � = (xm, ym) 2 C⇥⇥C⇥

where the absolute values (|xm|, |ym|) describe its position and the angular phases illustrate the U(1)2

holonomy with a choice of spin structure. Namely, the angular phase U(1) encodes the holonomy U(1)
and a choice of spin structure Z2 along a one-cycle of a Riemann surface via

1 ! Z2 ! U(1) ! U(1) ! 1 .

We assign the plus sign + 2 Z2 to the Ramond spin structure, and the minus sign � 2 Z2 to the
Neveu-Schwarz spin structure.
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must vanish

However, it can occur that a lowering operator Lj annihilates one of the Macdonald polynomials Pj
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In fact, the Macdonald polynomials Pj form a basis for the ring P over Cq,t, so that the polynomial
representation can be studied with the help of raising and lowering operators [KN98]:
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These operators relate adjacent Macdonald polynomials, respectively increasing or decreasing the value
of j:

pol(Rj) · Pj(X; q, t) = (1� q
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See Figure 5 for a schematic diagram of this action. At t = 1, this representation reduces to the
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Figure 5: The action of raising and lowering operators on Macdonald polynomials
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While the parameter t in S
..
H coincides with the monodromy parameter t̃ at the classical limit (q = 1)

(see (2.52)), we use t̃ to specify the position of the brane because it is the geometric parameter of X.
Since it is of type (A,B,A), it is happily a Lagrangian submanifold with respect to !X for any value
of ~ or q.

To understand the brane BP for the polynomial representation P of S
..
H better, it is illuminating

to consider its relation to the skein module. The skein module of type A1 [Tur90, Prz91] of an oriented
3-manifold M3 is defined as
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The skein algebra Sk(C) associated to an oriented closed surface C is defined as
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where the multiplication Sk(C)⇥Sk(C) ! Sk(C) is given by stacking. As a result, Sk(C) is a C[q± 1
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associative algebra [Tur91].
At the q = 1 specialization, the skein module Sk(M3) becomes a commutative algebra. Moreover,

it was shown in [Bul97, PS00] that by assigning a loop � : S1 ! M3 to Tr(⇢(�)) where ⇢ : ⇡1(M3) !
SL(2,C) is the holonomy homomorphism, the classical limit q = 1 of Sk(M3) is isomorphic to the
coordinate ring of the character variety Mflat(M3, SL(2,C)). Hence, the skein module Sk(M3) can be
understood as a BV quantization [GJS19a]

Sk(M3) ⇠= BVq(Mflat(M3, SL(2,C))) .

The skein module of a closed 3-manifold will be studied in §3.2.
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Higgs Bundles
Nonabelian Hodge correspondence relates representations of the fundamental group  
of smooth projective algebraic varieties with Higgs bundles
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(E,')

Holomorphic  vector bundle over  with holomorphic section  (Higgs field)  of SU(2) Cp φ KCp
⊗ ad(E) ⊗ 𝒪(p)

Tame ramification at p

the representation theory of the quantum torus algebra is well-known, it can be a useful guide for
DAHA. Therefore, the reader can refer to Appendix C for the brane quantization of the quantum torus
algebra and symmetrized quantum torus.

The algebra
..
H(W ) is not commutative, even in the q = 1 limit. Nonetheless, it contains the

spherical subalgebra S
..
H(W ), obtained by idempotent projection, which is commutative as q = 1. In

the limit t = 1, S
..
Ht=1(W ) is isomorphic to the Weyl-invariant subalgebra of QT (P � P_

,!) (after a
lift of the Weyl group action is chosen). In the further specialization q = 1, S

..
H becomes precisely the

algebra of Weyl-invariant functions on

(tC/Q
_)⇥ (t_C/Q) = TC ⇥ TC .

Note that we take the coroot and root lattices Q_ � Q = Hom(P,Z) � Hom(P_
,Z) (namely the dual

lattice) as the quotient lattice. This space with group action is nothing other than the moduli space
of flat connections on a two-torus T

2, valued in the corresponding complex Lie group GC:

Mflat(T
2
, GC) = Hom(⇡1(T

2), GC)/GC

⇠=
TC ⇥ TC

W

(2.2)

We would like to consider an additional deformation of this moduli space to study the representation
theory of spherical DAHA geometrically. Happily, for type A, this can be achieved just by adding a
“puncture” on a two-torus T

2. Despite this rather simple “addition”, the story becomes incredibly
deeper and more interesting. This section focuses on DAHA of rank one to illustrate and highlight all
the delicate features and interesting phenomena. In rank one, we can perform concrete computations
as explicitly as possible. For that reason, we will first review some necessary background on the moduli
space of SL(2,C) flat connections on a once-punctured torus, which will play the role of the target
space X in the 2d sigma-model. Then, we will carve out A-branes in X for salient modules of the
spherical DAHA. This will give solid evidence of the functor (1.2) from the categories of A-branes in
X to the representation category of the spherical DAHA.

2.1 Higgs bundles and flat connections

Figuratively speaking, the target space of the 2d sigma-model is the stage where our main characters
(branes) will make their appearance. Thus, let us begin by setting the stage.

The target space of our system will be the moduli space of G = SU(2) Higgs bundles on a genus-one
curve Cp, ramified at one point p:

X := MH(Cp, G) (2.3)

Although the geometry of this space, also called the Hitchin moduli space, is a fairly familiar charac-
ter in mathematical physics literature, we review those aspects that will be especially important for
applications to DAHA representations.

Recall [Hit87, Sim90], that a ramified (or stable parabolic) Higgs bundle is a pair (E,') of a
holomorphic SU(2)-bundle E over a curve C and a holomorphic section ', called the Higgs field, of
the bundle KC ⌦ ad(E) ⌦ O(p). Here, KC denotes the canonical bundle of C, and O(p) is the line
bundle whose holomorphic sections are functions holomorphic away from p with a first-order pole at
p. The ramification at p — more precisely called tame ramification since we are considering first-order
pole — is described by the following conditions on the connection A on E and the Higgs field

A = ↵p d#+ · · ·

' =
1

2
(�p + i�p)

dz

z
+ · · ·

(2.4)

Here, z = re
i# is a local coordinate on a small disk centered at p, and the ramification data is a triple

of continuous parameters, (↵p,�p, �p) 2 T ⇥ t⇥ t where we denote the Cartan subgroup T ⇢ G and the
Cartan subalgebra t ⇢ g. With this prescribed behavior at p, the Hitchin moduli space is the space of
solutions to the equations

F � [','] =0

DA ' =0 ,
(2.5)
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A = A+ i('+ '̄)NAHC:

Hitchin equations equivalent to flatness condition
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Complex and Kähler Structures

modulo gauge transformations. We denote this moduli space MH(Cp, G), where Cp is a Riemann
surface C with the tame ramification (2.4) at p 2 C. It is a hyper-Kähler space and the corresponding
Kähler forms are

!I = � i

2⇡

Z

C

|d2z| Tr
⇣
�Az̄ ^ �Az � �'̄ ^ �'

⌘
,

!J =
1

2⇡

Z

C

|d2z| Tr
⇣
�'̄ ^ �Az + �' ^ �Az̄

⌘
,

!K =
i

2⇡

Z

C

|d2z| Tr
⇣
�'̄ ^ �Az � �' ^ �Az̄

⌘
.

(2.6)

There is also a triplet of holomorphic symplectic forms ⌦I = !J + i!K , ⌦J = !K + i!I , and ⌦K =
!I + i!J , holomorphic in complex structures I, J , and K, respectively. In the absence of ramification,
it is easy to check that !J and !K are cohomologically trivial [KW07, §4.1], whereas !I is non-trivial
and, if properly normalized, can be taken as a generator of H

2(X,Z). On the other hand, in the
presence of ramification (2.4), the cohomology classes of !J and !K are proportional to �p and �p,
respectively.

The description of MH(Cp, G) as the moduli space of Higgs bundles given above is in complex
structure I. Another useful description, in complex structure J , comes from identifying a complex
combination AC = A+ i� with a GC-valued connection, where � = '+ '̄. The Hitchin equations then
become the flatness condition FC = dAC +AC ^AC = 0 for this GC-valued connection AC. According
to (2.4), it has a non-trivial monodromy around the point p:

U = exp(2⇡(�p + i↵p)) . (2.7)

which depends holomorphically on �p + i↵p and is independent of �p. Indeed, in complex structure
J , �p is a Kähler parameter and �p + i↵p is a complex structure parameter. Another useful fact, also
explained in [GW08], is that the cohomology class of the holomorphic symplectic form ⌦J = !K + i!I

is proportional to �p + i↵p and independent of �p.
Similarly, in complex structure I the Kähler modulus is ↵p, while �p + i�p is a complex structure

parameter. The cohomology class of the holomorphic symplectic form ⌦I = !J + i!K is �p + i�p.
There is a similar story for complex structure K and all these statements are summarized in Table 1.

Complex structure Complex modulus Kähler modulus
I �p + i�p ↵p

J �p + i↵p �p

K ↵p + i�p �p

Table 1: Complex and Kähler moduli of the moduli space MH with one ramification point.

In a supersymmetric sigma-model with target X, the Kähler modulus of the target space is always
complexified. This fact plays an important role in mirror symmetry. In the present setup, too, the
Kähler moduli are all complexified by the periods of the 2-form field B. For example, in complex
structure I, the complexified Kähler modulus is ↵p + i⌘p, where ⌘p 2 T

_ = Hom(⇤_
,U(1)) and

⇤_ is the cocharacter lattice of G. Therefore, taking into account the “quantum” parameter ⌘p, the
ramification data consists of the quadruple of parameters (↵p,�p, �p, ⌘p).

All of these structures can be made completely explicit in the case when Cp is a punctured torus.
In complex structure J , where X = MH(Cp, G) is the moduli space of complex flat connections on Cp,
we can then use an explicit presentation of the fundamental group

⇡1(Cp) = hm, l, c|mlm�1l�1 = ci . (2.8)

to describe flat connections concretely, in terms of holonomies along the (1, 0)-cycle m, the (0, 1)-cycle
l, and the loop c around p:

x = Tr(⇢(m)), y = Tr(⇢(l)), and z = Tr
�
⇢(ml�1)

�
. (2.9)
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⌦k = !I + i!J



Geometry of 𝔛
Hitchin fibration whose fibers are Abelian varieties (Liouville tori) 

<latexit sha1_base64="948v0fNrK2aEOz8Cf5eZST59Ht4=">AAACF3icbVDLSsNAFJ34rPUVdekmWIQWJCSlqLgq7aYboaJpC00Ik+mkHTp5MDMRSuhfuPFX3LhQxK3u/BsnbUBtPTBwOOde5p7jxZRwYRhfysrq2vrGZmGruL2zu7evHhx2eJQwhC0U0Yj1PMgxJSG2BBEU92KGYeBR3PXGzczv3mPGSRTeiUmMnQAOQ+ITBIWUXFW3Y3Kl2QEUIwRpej11W+WmG5/dWuVqpWKL6MdrSM9VS4ZuzKAtEzMnJZCj7aqf9iBCSYBDgSjkvG8asXBSyARBFE+LdsJxDNEYDnFf0hAGmDvpLNdUO5XKQPMjJl8otJn6eyOFAeeTwJOT2ZF80cvE/7x+IvxLJyVhnAgcovlHfkI1GTcrSRsQhpGgE0kgYkTeqqERZBAJWWVRlmAuRl4mnapunuu1m1qp3sjrKIBjcALKwAQXoA5aoA0sgMADeAIv4FV5VJ6VN+V9Prqi5DtH4A+Uj2+pBp5h</latexit>

⇡ : MH(Cp, SU(2)) ! BH
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(E,') 7! Tr'2
Holomorphic in complex structure I

Singular fiber

In terms of these holonomy variables, the space of SL(2,C)-representations ⇢ : ⇡1(Cp) ! SL(2,C) is a
cubic surface (see e.g. [Gol09, Guk11]):

Mflat(Cp, SL(2,C)) = {(x, y, z) 2 C3|x2 + y
2 + z

2 � xyz � 2 = Tr(⇢(c)) = t̃
2 + t̃

�2} . (2.10)

Here we used the fact that, according to (2.7), the holonomy of the complex flat connection around p

is conjugate to

⇢(c) ⇠
✓
t̃
�2 0
0 t̃

2

◆
. (2.11)

This section will be devoted to studying the deformation quantization O
q(X) of this coordinate ring

holomorphic in complex structure J , which is generated by x, y, z, and its representations geometrically.
For a complex surface defined by the zero locus of a polynomial f(x, y, z), the holomorphic sym-

plectic form (a.k.a. Atiyah-Bott-Goldman symplectic form) can be written as

⌦J =
1

2⇡i

dx ^ dy

@f/@z
=

1

2⇡i

dx ^ dy

2z � xy
. (2.12)

and the Kähler form is
!J =

i

4⇡
(dx ^ dx̄+ dy ^ dȳ + dz ^ dz̄) . (2.13)

In the special case ↵p = �p = �p = 0, the moduli space of SL(2,C) flat connections on Cp is simply
a quotient space

(C⇥ ⇥ C⇥)/Z2 (2.14)
by the Weyl group Z2. It can be understood as a moduli space of SL(2,C) flat connections on a torus
(without ramification), such that holonomy eigenvalues along A- and B-cycles each parametrize a copy
of C⇥. The “real slice” (S1 ⇥ S

1)/Z2 is the moduli space of SU(2) flat connections on the (punctured)
torus, and it is sometimes called the “pillowcase”. According to the theorem of [NS65] (resp. [MS80]),
it can be identified with the moduli space Bun(Cp, G) of stable (resp. parabolic) G-bundles on Cp. It
is easy to see that Bun(Cp, G) is a holomorphic submanifold of MH(Cp, G) in complex structure I.
Furthermore, because �' = 0 on Bun(Cp, G), it follows from (2.6) that Bun(Cp, G) is a holomorphic
Lagrangian submanifold with respect to ⌦I (in particular, Lagrangian with respect to !J and !K).
Following the notation in §2.4, we write it by V as a Lagrangian submanifold in the target (X,!X).

In addition to V, other special submanifolds of MH(Cp, G) will play a role in what follows. For
example, in complex structure I, the Hitchin moduli space is a completely integrable Hamiltonian
system [Hit87], i.e. a fibration

⇡ : MH(Cp, G) ! BH (2.15)
over an affine space, the “Hitchin base” BH , whose generic fibers are abelian varieties (sometimes
called “Liouville tori”). For G = SU(2), the map ⇡ takes a pair (E,') to Tr'2, which is holomorphic in
complex structure I. Specializing further to the case where Cp is a genus-one curve gives a particularly
simple integrable system: its generic fiber F is a torus that, just like V, is holomorphic in complex
structure I and Lagrangian with respect to !J and !K . We also note that the only singular fiber of
the Hitchin fibration ⇡ : MH(Cp, G) ! BH is the pre-image N = ⇡

�1(0) of 0 2 BH which, in the limit
↵p = �p = �p = 0, is the “pillowcase” V ⇠= (S1 ⇥ S

1)/Z2 with four orbifold points.
Now let us consider what happens when we go away from the limit ↵p = �p = �p = 0 and consider

generic values of the ramification parameters. From the viewpoint of the complex structure J , the
equation (2.10) describes the deformation of the four A1 singularities of the singular surface (2.14),
where t̃

2 (or, equivalently, �p+ i↵p) plays the role of the complex structure deformation. On the other
hand, turning on �p 6= 0 leads to a resolution of the A1-singularities. In other words, �p is the Kähler
structure parameter in complex structure J , cf. Table 1.

Recall that ↵p is the Kähler structure parameter in complex structure I. If we turn on ↵p while
keeping �p = �p = 0, then the four orbifold points are blown up in the Hitchin fibration. Consequently,
the singular fiber in the Hitchin fibration, called the global nilpotent cone N := ⇡

�1(0), now contains
five compact irreducible components (all rational) [Hau98, Guk11]:

N = V [
4[

i=1

Di . (2.16)
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Figure 1: Schematic illustration of the Hitchin fibration MH(Cp, SU(2)) ! BH and global nilpotent
cone at �p = 0 = �p and a generic value of ↵p.

In fact, it is a singular fiber of Kodaira type I⇤0 [Kod64, Kod66] in the elliptic fibration ⇡. The irreducible
components V and Di of the global nilpotent cone are holomorphic Lagrangians with respect to ⌦I ,
sometimes called Lagrangians of type (B,A,A). The homology classes of V and Di provide a basis
for the second homology groups H2(MH(Cp, G),Z), and their intersection form is the affine Cartan
matrix of type bD4, as illustrated in Figure 1. The intersection form has only one null vector, which
must be identified with the class of a generic fiber F of the Hitchin fibration, resulting in the relation

[F] = 2[V] +
4X

i=1

[Di] . (2.17)

Once we move away from �p = �p = 0, we are deforming the complex structure modulus �p + i�p

of complex structure I, and so the structure of the Hitchin fibration drastically changes. For generic
values of (�p, �p), the embeddings of the two-cycles V and Di (i = 1, . . . , 4) into MH(Cp, G) are no
longer holomorphic with respect to complex structure I, and the singular fiber of type I

⇤
0 splits into

three singular fibers of type I2 [FW08, §3.4]. If we write the base genus-one curve Cp of the Hitchin
system by an algebraic equation y

2 = (x�e1)(x�e2)(x�e3) with e1+e2+e3 = 0 where the ramification
point p is located at infinity, then the singular fibers of type I2 are preimages of points

BH 3 bi := eiTr (�p + i�p)
2 (i = 1, 2, 3) , (2.18)

under the Hitchin fibration as depicted in Figure 2. In the singular fiber at bi 2 BH , two irreducible
components U2i�1 and U2i, which are topologically CP1, meet at two double points.

Hence, the two-cycles V and Di (i = 1, . . . , 4) are not projected to a point by the Hitchin fibra-
tion with a generic ramification, though they still give a basis of H2(MH(Cp, G),Z) and satisfy the
relation (2.17). An analysis by the Mayer–Vietoris sequence tells us that the homology class of each
irreducible component in a singular fiber I2 can be expressed as

[U1] = [V] + [D1] + [D2] , [U3] = [V] + [D1] + [D3] , [U5] = [V] + [D1] + [D4] ,

[U2] = [V] + [D3] + [D4] , [U4] = [V] + [D2] + [D4] , [U6] = [V] + [D2] + [D3] ,
(2.19)

and there is another two-cycle W as in Figure 2 with homology class [W] = [D1]. With respect to the
new basis

[U1], [U2], [U3], [U5], [W] 2 H2(MH(Cp, G),Z) , (2.20)
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of C⇥. The “real slice” (S1 ⇥ S
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torus, and it is sometimes called the “pillowcase”. According to the theorem of [NS65] (resp. [MS80]),
it can be identified with the moduli space Bun(Cp, G) of stable (resp. parabolic) G-bundles on Cp. It
is easy to see that Bun(Cp, G) is a holomorphic submanifold of MH(Cp, G) in complex structure I.
Furthermore, because �' = 0 on Bun(Cp, G), it follows from (2.6) that Bun(Cp, G) is a holomorphic
Lagrangian submanifold with respect to ⌦I (in particular, Lagrangian with respect to !J and !K).
Following the notation in §2.4, we write it by V as a Lagrangian submanifold in the target (X,!X).

In addition to V, other special submanifolds of MH(Cp, G) will play a role in what follows. For
example, in complex structure I, the Hitchin moduli space is a completely integrable Hamiltonian
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over an affine space, the “Hitchin base” BH , whose generic fibers are abelian varieties (sometimes
called “Liouville tori”). For G = SU(2), the map ⇡ takes a pair (E,') to Tr'2, which is holomorphic in
complex structure I. Specializing further to the case where Cp is a genus-one curve gives a particularly
simple integrable system: its generic fiber F is a torus that, just like V, is holomorphic in complex
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the Hitchin fibration ⇡ : MH(Cp, G) ! BH is the pre-image N = ⇡

�1(0) of 0 2 BH which, in the limit
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generic values of the ramification parameters. From the viewpoint of the complex structure J , the
equation (2.10) describes the deformation of the four A1 singularities of the singular surface (2.14),
where t̃

2 (or, equivalently, �p+ i↵p) plays the role of the complex structure deformation. On the other
hand, turning on �p 6= 0 leads to a resolution of the A1-singularities. In other words, �p is the Kähler
structure parameter in complex structure J , cf. Table 1.

Recall that ↵p is the Kähler structure parameter in complex structure I. If we turn on ↵p while
keeping �p = �p = 0, then the four orbifold points are blown up in the Hitchin fibration. Consequently,
the singular fiber in the Hitchin fibration, called the global nilpotent cone N := ⇡

�1(0), now contains
five compact irreducible components (all rational) [Hau98, Guk11]:
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torus, and it is sometimes called the “pillowcase”. According to the theorem of [NS65] (resp. [MS80]),
it can be identified with the moduli space Bun(Cp, G) of stable (resp. parabolic) G-bundles on Cp. It
is easy to see that Bun(Cp, G) is a holomorphic submanifold of MH(Cp, G) in complex structure I.
Furthermore, because �' = 0 on Bun(Cp, G), it follows from (2.6) that Bun(Cp, G) is a holomorphic
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example, in complex structure I, the Hitchin moduli space is a completely integrable Hamiltonian
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where t̃
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where t̃
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Figure 1: Schematic illustration of the Hitchin fibration MH(Cp, SU(2)) ! BH and global nilpotent
cone at �p = 0 = �p and a generic value of ↵p.

In fact, it is a singular fiber of Kodaira type I⇤0 [Kod64, Kod66] in the elliptic fibration ⇡. The irreducible
components V and Di of the global nilpotent cone are holomorphic Lagrangians with respect to ⌦I ,
sometimes called Lagrangians of type (B,A,A). The homology classes of V and Di provide a basis
for the second homology groups H2(MH(Cp, G),Z), and their intersection form is the affine Cartan
matrix of type bD4, as illustrated in Figure 1. The intersection form has only one null vector, which
must be identified with the class of a generic fiber F of the Hitchin fibration, resulting in the relation

[F] = 2[V] +
4X

i=1

[Di] . (2.17)

Once we move away from �p = �p = 0, we are deforming the complex structure modulus �p + i�p

of complex structure I, and so the structure of the Hitchin fibration drastically changes. For generic
values of (�p, �p), the embeddings of the two-cycles V and Di (i = 1, . . . , 4) into MH(Cp, G) are no
longer holomorphic with respect to complex structure I, and the singular fiber of type I

⇤
0 splits into

three singular fibers of type I2 [FW08, §3.4]. If we write the base genus-one curve Cp of the Hitchin
system by an algebraic equation y

2 = (x�e1)(x�e2)(x�e3) with e1+e2+e3 = 0 where the ramification
point p is located at infinity, then the singular fibers of type I2 are preimages of points

BH 3 bi := eiTr (�p + i�p)
2 (i = 1, 2, 3) , (2.18)

under the Hitchin fibration as depicted in Figure 2. In the singular fiber at bi 2 BH , two irreducible
components U2i�1 and U2i, which are topologically CP1, meet at two double points.

Hence, the two-cycles V and Di (i = 1, . . . , 4) are not projected to a point by the Hitchin fibra-
tion with a generic ramification, though they still give a basis of H2(MH(Cp, G),Z) and satisfy the
relation (2.17). An analysis by the Mayer–Vietoris sequence tells us that the homology class of each
irreducible component in a singular fiber I2 can be expressed as

[U1] = [V] + [D1] + [D2] , [U3] = [V] + [D1] + [D3] , [U5] = [V] + [D1] + [D4] ,

[U2] = [V] + [D3] + [D4] , [U4] = [V] + [D2] + [D4] , [U6] = [V] + [D2] + [D3] ,
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and there is another two-cycle W as in Figure 2 with homology class [W] = [D1]. With respect to the
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Figure 2: The Hitchin fibration with a generic ramification contains three singular fibers of Kodaira
type I2 at the base points bi (i = 1, 2, 3).

the intersection form becomes 0

BBBB@

2 �2 0 0 1
�2 2 0 0 �1
0 0 2 0 1
0 0 0 2 1
1 �1 1 1 2

1

CCCCA
. (2.21)

Note that the upper-left two-by-two matrix is the Cartan matrix of the affine type bA1 as the intersection
form of a singular fiber of type I2.

For our applications to branes and representations, we also need to know the type of the five
compact two-cycles V, Di (i = 1, . . . , 4) and periods of the Kähler forms over them. The integrals of
⌦J over V and over F were computed e.g. in [Guk11]. They can be expressed as the following set of
relations: Z

V

!I

2⇡
=

1

2
� |↵p| , diag(↵p,�↵p) ⇠ ↵p 2 T ,

Z

V

!J

2⇡
= ��p , diag(�p,��p) ⇠ �p 2 t ,

Z

V

!K

2⇡
= ��p , diag(�p,��p) ⇠ �p 2 t

(2.22)

and Z

F

!I

2⇡
= 1 ,

Z

F

!J

2⇡
= 0 =

Z

F

!K

2⇡
, (2.23)

where in the latter we used the fact that the Hitchin fiber F is holomorphic in complex structure I

and Lagrangian with respect to ⌦I for any (↵p,�p, �p). We assume that ↵p takes its value in the
range �1

2 < ↵p  1
2 . Although we did not compute the periods of the 2-forms (2.12) and (2.13) over
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Pillowcase Hitchin fiber

Exceptional divisorsexceptional divisors Di directly, we claim

↵p

2
=

Z

Di

!I

2⇡
,

�p

2
=

Z

Di

!J

2⇡
,

�p

2
=

Z

Di

!K

2⇡
, (2.24)

independently of i = 1, 2, 3, 4. One way to justify this claim is to compute the periods for small values
of �p+i↵p ⇡ 0, i.e. for t̃ ⇡ 1. Another way is to use (2.17) together with the symmetries of MH(Cp, G)
that we discuss next. The Weyl group symmetry of the ramification parameters amounts to an overall
sign change

(↵p,�p,�p) ! (�↵p,��p,��p) (2.25)

is equivalent to a reversal of orientations of Di.
Furthermore, the “quantum” parameter that complexifies a Kähler parameter can be understood

as the period of the B-field in a 2d sigma-model over Di

⌘p =

Z

Di

B

2⇡
, diag(⌘p,�⌘p) ⇠ ⌘p 2 T

_
. (2.26)

In the following, we often use the parameters (↵p,�p,�p,⌘p) 2 S
1 ⇥ R ⇥ R ⇥ S

1 and the quadruple
(↵p,�p, �p, ⌘p) 2 T ⇥ t⇥ t⇥ T

_ of the tame ramification (2.4) at p 2 C in the same meaning.

Symmetries The target space (2.3) of our sigma-model has the symmetry group2

⌅⇥MCG(Cp) = Z2 ⇥ Z2 ⇥ SL(2,Z) (2.27)

where ⌅ = Z2⇥Z2 is the group of “sign changes” generated by twists of a Higgs bundle E ! Cp by line
bundles of order 2. Abusing notation, this group can be identified with H

1(C,Z2) = Z2 � Z2 where
Z2 is the center of SU(2). Obviously, SL(2,Z) is the mapping class of the (punctured) torus:

MCG(Cp) ⇠= SL(2,Z) . (2.28)

Both ⌅ and MCG(Cp) are symmetries in all complex and symplectic structures. In particular, in what
follows, we will need their explicit presentations as holomorphic symplectomorphisms with respect to
⌦J .

In complex structure J , the “sign changes” ⌅ = Z2 ⇥ Z2 are holomorphic involutions, and its
generators ⇠1, ⇠2 and their combination ⇠3 := ⇠1 � ⇠2 act as

⇠1 : (x, y, z) 7! (�x, y,�z) ,

⇠2 : (x, y, z) 7! (x,�y,�z) ,

⇠3 : (x, y, z) 7! (�x,�y, z) ,

(2.29)

respectively. The “sign changes” symmetry plays a very important role to understand mirror symmetry
[Guk11] and connections to 4d physics in §4.

The symmetry group ⌅ leaves V invariant (as a set, not pointwise) and acts on the exceptional
divisors Di as follows:

⇠1 : D1 $ D2 and D3 $ D4 ,

⇠2 : D1 $ D3 and D2 $ D4 ,

⇠3 : D1 $ D4 and D2 $ D3 .

(2.30)

This symmetry, illustrated in Figure 1, provides supporting evidence to our assumption in (2.24).
In complex structure I, a point in the Hitchin base BH is invariant under ⌅ so that it acts on each

fiber as translations of order two in the Hitchin fibration MH ! BH [FW08, §3.5]. It acts freely on a
generic fiber. On the other hand, ⇠i acts on each irreducible component of the singular fiber ⇡

�1(bi),
2The symmetry of the A-model can be larger or smaller than the group of geometric symmetries. It can be larger

due to quantum symmetries not directly visible from geometry, and it can be smaller if some geometric symmetries are
Q-exact from the A-model viewpoint.
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Canonical Coisotropic Brane [Gukov Witten] 
[Kapustin Orlov]

Thus, the symmetries ⌅ ⇥ PSL(2,Z) can be seen in outer automorphisms of S
..
H. The other outer

automorphism ◆̃ in (2.45) is somewhat more complicated; it does not preserve the idempotent, but it
rather brings it into the other idempotent element

◆̃ : e =
T + t

�1

t+ t�1
7! ee =

�T + t

t+ t�1
. (2.54)

Thus, ◆̃ maps S
..
H to the other spherical subalgebra ee

..
Hee where the Casimir relations are different by

t $ t
�1. However, the involution ◆̃ on

..
H does correspond in a sense to an outer automorphism of S

..
H,

which acts simply by
◆ : t 7! qt

�1
. (2.55)

Indeed, it is easy to check that this map preserves the Casimir relation in (2.50). (Note that this
automorphism only acts nontrivially when q and t are regarded as formal elements; it does not preserve
the central character.)

In general, we are free to think of any commutative algebra as the coordinate ring of a certain affine
space. In addition to the example above, we consider the case of X = C⇥ ⇥C⇥ for the quantum torus
algebra in Appendix C, and X as 3d N = 4 Coulomb branches in Appendix D in this paper. What is
common between all of these examples are certain key properties of X: First of all, it will always be
a non-compact manifold, so that it has a large and interesting algebra O(X) of holomorphic functions
with polynomial growth at infinity. (In fact, in this paper, X will always be an affine variety over C.)
It will also be a hyper-Kähler manifold, and an algebra is obtained by the deformation quantization
of the coordinate ring of X with respect to a certain holomorphic symplectic form. These conditions
fit into the context of brane quantization [GW09] in a 2d sigma-model. It is the central idea of this
paper, and this will pave the way towards a geometric angle on the representation theory of S

..
H.

2.3 Canonical coisotropic branes in A-models

Here, we will obtain the deformation quantization of the coordinate ring of X with respect to ⌦J by
using the 2d A-model on a symplectic manifold (X,!X). The main character in our story is the canonical

coisotropic brane, denoted Bcc. Eventually, we will investigate the representation theory of S
..
H by the

2d A-model, but we begin by constructing the (presumably less familiar) canonical coisotropic brane
Bcc here. Subsequently, we will discuss standard Lagrangian branes and some methods for computing
spaces of morphisms in what follows. Our review is necessarily cursory; for more details, we refer to
the literature [GW09, Guk11].

In general, as was pointed out in [KO03], the A-model admits branes with support on coisotropic
submanifolds which are equipped with a transverse holomorphic structure. The canonical coisotropic
brane is supported on the target space X itself, which is a coisotropic submanifold of the target space X
in a rather trivial way. More precisely, there is a family of such branes, labeled by a complex parameter

~ = |~|ei✓ , (2.56)

and we will identify it with the parameter of deformation quantizations by q = e
2⇡i~. The fact that

the support involves no additional choice is (at least part of) the reason for the term “canonical.” On
a 2n-dimensional target space, coisotropic branes can therefore be supported in dimension n + 2j for
integer j; when n is even, there can be branes supported throughout the entire target. In our example,
n = 2, so that no other coisotropic branes can occur just for dimension reasons.

In complex structure I = I cos ✓�K sin ✓, the data defining the brane Bcc is simply a holomorphic
line bundle L ! X, equipped with a connection whose curvature F is of course equal to the first Chern
class:

Bcc :
L

X

c1(L) = [F/2⇡] 2 H
2(X,Z) . (2.57)

As usual, open strings ending on Bcc source the gauge-invariant combination F +B, where

B 2 H
2(X,U(1)) (2.58)
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Quantization q = e2πiℏ
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common between all of these examples are certain key properties of X: First of all, it will always be
a non-compact manifold, so that it has a large and interesting algebra O(X) of holomorphic functions
with polynomial growth at infinity. (In fact, in this paper, X will always be an affine variety over C.)
It will also be a hyper-Kähler manifold, and an algebra is obtained by the deformation quantization
of the coordinate ring of X with respect to a certain holomorphic symplectic form. These conditions
fit into the context of brane quantization [GW09] in a 2d sigma-model. It is the central idea of this
paper, and this will pave the way towards a geometric angle on the representation theory of S

..
H.

2.3 Canonical coisotropic branes in A-models

Here, we will obtain the deformation quantization of the coordinate ring of X with respect to ⌦J by
using the 2d A-model on a symplectic manifold (X,!X). The main character in our story is the canonical

coisotropic brane, denoted Bcc. Eventually, we will investigate the representation theory of S
..
H by the

2d A-model, but we begin by constructing the (presumably less familiar) canonical coisotropic brane
Bcc here. Subsequently, we will discuss standard Lagrangian branes and some methods for computing
spaces of morphisms in what follows. Our review is necessarily cursory; for more details, we refer to
the literature [GW09, Guk11].

In general, as was pointed out in [KO03], the A-model admits branes with support on coisotropic
submanifolds which are equipped with a transverse holomorphic structure. The canonical coisotropic
brane is supported on the target space X itself, which is a coisotropic submanifold of the target space X
in a rather trivial way. More precisely, there is a family of such branes, labeled by a complex parameter

~ = |~|ei✓ , (2.56)

and we will identify it with the parameter of deformation quantizations by q = e
2⇡i~. The fact that

the support involves no additional choice is (at least part of) the reason for the term “canonical.” On
a 2n-dimensional target space, coisotropic branes can therefore be supported in dimension n + 2j for
integer j; when n is even, there can be branes supported throughout the entire target. In our example,
n = 2, so that no other coisotropic branes can occur just for dimension reasons.

In complex structure I = I cos ✓�K sin ✓, the data defining the brane Bcc is simply a holomorphic
line bundle L ! X, equipped with a connection whose curvature F is of course equal to the first Chern
class:

Bcc :
L

X

c1(L) = [F/2⇡] 2 H
2(X,Z) . (2.57)

As usual, open strings ending on Bcc source the gauge-invariant combination F +B, where

B 2 H
2(X,U(1)) (2.58)
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is the 2-form B-field. For our family of the canonical coisotropic branes Bcc parametrized by ~ on
a symplectic manifold (X,!X), the values of [B/2⇡] 2 H

2(X,U(1)) and the integral class [F/2⇡] 2
H

2(X,Z) are determined by the equation

⌦ := F +B + i!X =
⌦J

i~ , (2.59)

so that at a generic value of ~ in (2.56) we can write

F +B = Re ⌦ =
1

|~|(!I cos ✓ � !K sin ✓) ,

!X = Im ⌦ = � 1

|~|(!I sin ✓ + !K cos ✓) . (2.60)

Since the hyper-Kähler conditions ensure that J = !
�1
X (F + B), we have the condition for Bcc to be

a coisotropic A-brane [KO03] �
!
�1
X (B + F )

�2
= J

2 = �1 . (2.61)

In particular, when ~ is real, !X = !K and Bcc is a brane of type (B,A,A), whereas for ~ purely
imaginary, !X = !I and Bcc is an (A,A,B)-brane. Bcc is also called “canonical” because its extra
data corresponds in this fashion to the holomorphic symplectic structure.

Now comes the key point. Under this circumstance, the space Hom(Bcc,Bcc) of open (Bcc,Bcc)
strings with both ends on the canonical coisotropic brane Bcc is a non-commutative deformation of the
Dolbeault cohomology H

0,⇤
@

(X) when X is regarded as a complex manifold with J , and we are interested
in its zeroth degree, namely the space of holomorphic functions. Moreover, for X an affine variety, a
suitable condition at infinity for a “good A-model” is to allow only functions of polynomial growth.
In the presence of non-trivial background F + B 6= 0, Hom0(Bcc,Bcc) is therefore the deformation
quantization of the coordinate ring on X, holomorphic in complex structure J [AZ05, GW09]. 6

In general, for any brane B, in either the A-model or the B-model, the space of open strings states
End(B) forms an algebra. This can be easily understood by considering the process of joining open
strings, illustrated in Figure 4 (left). However, generically, this algebra of (B,B) strings is rather simple
and not very interesting. Even if the brane B is “big enough,” the algebra End(B) can be interesting,
but may be hard to identify or relate to more familiar algebras. For example, various (B,B,B) branes
represented by hyper-holomorphic sheaves in [Guk11] lead to interesting endomorphism algebras, but
apart from some special cases it is hard to recognize them in the world of more familiar algebras. What
makes the canonical coisotropic brane special is that the algebra End(Bcc) can be identified with the
deformation quantization O

q(X) of the target manifold X [KW07].
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Bcc

Figure 4: (Left) Open strings that start and end on the same brane B form an algebra.
(Right) Joining a (Bcc,Bcc)-string with a (Bcc,B0)-string leads to another (Bcc,B0)-string.

6Since we are mainly interested in the zeroth degree of morphism spaces, we will usually omit the superscript 0,
meaning Hom = Hom

0 unless it is specified.
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quantization of the coordinate ring on X, holomorphic in complex structure J [AZ05, GW09]. 6

In general, for any brane B, in either the A-model or the B-model, the space of open strings states
End(B) forms an algebra. This can be easily understood by considering the process of joining open
strings, illustrated in Figure 4 (left). However, generically, this algebra of (B,B) strings is rather simple
and not very interesting. Even if the brane B is “big enough,” the algebra End(B) can be interesting,
but may be hard to identify or relate to more familiar algebras. For example, various (B,B,B) branes
represented by hyper-holomorphic sheaves in [Guk11] lead to interesting endomorphism algebras, but
apart from some special cases it is hard to recognize them in the world of more familiar algebras. What
makes the canonical coisotropic brane special is that the algebra End(Bcc) can be identified with the
deformation quantization O

q(X) of the target manifold X [KW07].
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brane is supported on the target space X itself, which is a coisotropic submanifold of the target space X
in a rather trivial way. More precisely, there is a family of such branes, labeled by a complex parameter

~ = |~|ei✓ , (2.56)

and we will identify it with the parameter of deformation quantizations by q = e
2⇡i~. The fact that

the support involves no additional choice is (at least part of) the reason for the term “canonical.” On
a 2n-dimensional target space, coisotropic branes can therefore be supported in dimension n + 2j for
integer j; when n is even, there can be branes supported throughout the entire target. In our example,
n = 2, so that no other coisotropic branes can occur just for dimension reasons.

In complex structure I = I cos ✓�K sin ✓, the data defining the brane Bcc is simply a holomorphic
line bundle L ! X, equipped with a connection whose curvature F is of course equal to the first Chern
class:

Bcc :
L

X

c1(L) = [F/2⇡] 2 H
2(X,Z) . (2.57)

As usual, open strings ending on Bcc source the gauge-invariant combination F +B, where

B 2 H
2(X,U(1)) (2.58)

is the 2-form B-field. For our family of the canonical coisotropic branes Bcc parametrized by ~ on
a symplectic manifold (X,!X), the values of [B/2⇡] 2 H

2(X,U(1)) and the integral class [F/2⇡] 2
H

2(X,Z) are determined by the equation

⌦ := F +B + i!X =
⌦J

i~ , (2.59)

so that at a generic value of ~ in (2.56) we can write

F +B = Re ⌦ =
1

|~|(!I cos ✓ � !K sin ✓) ,

!X = Im ⌦ = � 1

|~|(!I sin ✓ + !K cos ✓) . (2.60)

Since the hyper-Kähler conditions ensure that J = !
�1
X (F + B), we have the condition for Bcc to be

a coisotropic A-brane [KO03] �
!
�1
X (B + F )

�2
= J

2 = �1 . (2.61)

In particular, when ~ is real, !X = !K and Bcc is a brane of type (B,A,A), whereas for ~ purely
imaginary, !X = !I and Bcc is an (A,A,B)-brane. Bcc is also called “canonical” because its extra
data corresponds in this fashion to the holomorphic symplectic structure.

Now comes the key point. Under this circumstance, the space Hom(Bcc,Bcc) of open (Bcc,Bcc)
strings with both ends on the canonical coisotropic brane Bcc is a non-commutative deformation of the
Dolbeault cohomology H

0,⇤
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(X) when X is regarded as a complex manifold with J , and we are interested
in its zeroth degree, namely the space of holomorphic functions. Moreover, for X an affine variety, a
suitable condition at infinity for a “good A-model” is to allow only functions of polynomial growth.
In the presence of non-trivial background F + B 6= 0, Hom0(Bcc,Bcc) is therefore the deformation
quantization of the coordinate ring on X, holomorphic in complex structure J [AZ05, GW09]. 6

In general, for any brane B, in either the A-model or the B-model, the space of open strings states
End(B) forms an algebra. This can be easily understood by considering the process of joining open
strings, illustrated in Figure 4 (left). However, generically, this algebra of (B,B) strings is rather simple
and not very interesting. Even if the brane B is “big enough,” the algebra End(B) can be interesting,
but may be hard to identify or relate to more familiar algebras. For example, various (B,B,B) branes
represented by hyper-holomorphic sheaves in [Guk11] lead to interesting endomorphism algebras, but
apart from some special cases it is hard to recognize them in the world of more familiar algebras. What
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parameterized by  provides deformation of the space of holomorphic functions on  which is spherical DAHAℏ 𝔛
<latexit sha1_base64="E/7XmAQXKdLyO2Ks5+fzOU8RMMc=">AAAB8XicbVBNSwMxEM3Wr1q/qh69BIvgqeyKqBeh6KXHivYD26Vks9k2NJssyaxQlv4LLx4U8eq/8ea/MW33oK0PBh7vzTAzL0gEN+C6305hZXVtfaO4Wdra3tndK+8ftIxKNWVNqoTSnYAYJrhkTeAgWCfRjMSBYO1gdDv1209MG67kA4wT5sdkIHnEKQErPV7f98JQQVaf9MsVt+rOgJeJl5MKytHol796oaJpzCRQQYzpem4CfkY0cCrYpNRLDUsIHZEB61oqScyMn80unuATq4Q4UtqWBDxTf09kJDZmHAe2MyYwNIveVPzP66YQXfkZl0kKTNL5oigVGBSevo9DrhkFMbaEUM3trZgOiSYUbEglG4K3+PIyaZ1VvYvq+d15pXaTx1FER+gYnSIPXaIaqqMGaiKKJHpGr+jNMc6L8+58zFsLTj5ziP7A+fwBYbuQvg==</latexit>

= SḦ
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suitable condition at infinity for a “good A-model” is to allow only functions of polynomial growth.
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B B

B

Bcc B0

Bcc

Figure 4: (Left) Open strings that start and end on the same brane B form an algebra.
(Right) Joining a (Bcc,Bcc)-string with a (Bcc,B0)-string leads to another (Bcc,B0)-string.

6Since we are mainly interested in the zeroth degree of morphism spaces, we will usually omit the superscript 0,
meaning Hom = Hom

0 unless it is specified.
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2.3.1 Spherical DAHA as the algebra of (Bcc,Bcc)-strings

In our example, the target space X = Mflat(Cp, SL(2,C)) is the moduli space of flat SL(2,C)-
connections over a punctured torus, which is a hyper-Kähler manifold. Then, by construction, the
algebra of (Bcc,Bcc) strings is the deformation quantization O

q(X) of the coordinate ring on X with
respect to ⌦J , which is the spherical DAHA S

..
H.

The parameter q of S
..
H is identified with ~ in the data (2.59) of Bcc via q = exp(2⇡i~). It is worth

emphasizing that for a generic value of q 2 C⇥, the B-field needs to be turned on in the sigma-model.
In fact, the target admits the Hitchin fibration (2.15) where a generic fiber is a two-torus T

2. Since a
generic fiber F is Lagrangian with respect to !J and !K and it sees only !I , the evaluation of ⌦ in
(2.59) over F yields Z

F

⌦

2⇡
=

1

~ ,

where F + B is responsible for its real part. Because [F/2⇡] 2 H
2(X,Z) is an element of the second

integral cohomology class, the B-field needs to be switched on unless the real value of 1/~ is an integer.
Thus, a 2d A-model has to incorporate the B-field for a generic value of ~, and we will moreover witness
that the B-field plays a more important role in the subsequent sections.

The parameter t of S
..
H is related to the ramification parameters of the target space. In fact, the

monodromy parameter (2.11) around the puncture can be expressed by the ramification parameters
(2.7) as

t̃ = exp(�⇡(�p + i↵p)) .

Furthermore, (2.52) compares the monodromy parameter t̃ with the central character t of S
..
H. Then,

it is easy to see from (2.24) that the evaluation of (2.59) on an exceptional divisor yields

1

2⇡

Z

Di

F +B + i!X =

Z

Di

⌦J

2⇡i~ =
�p + i↵p

2i~ = �c+
1

2
. (2.62)

where c is the central charge in (2.42).
The canonical coisotropic brane enjoys the symmetries ⌅⇥PSL(2,Z) of the target space X analyzed

in §2.1, which become the outer automorphisms of S
..
H given by (2.29) and (2.53). The symmetry (2.55)

of S
..
H is indeed the Weyl group symmetry t̃ $ t̃

�1 of the monodromy matrix (2.11). In fact, the Weyl
group symmetry (2.25) of the ramification parameters preserves the target space. Since the canonical
coisotropic brane is sensitive only to (↵p,�p) or t̃, the symmetry (2.55) of S

..
H is equivalent to the fact

that the canonical coisotropic branes supported on X
t̃

and X
t̃�1 related by the Weyl group symmetry

give rise to the isomorphic algebra

End(Bcc) ⇠= S
..
H ⇠= End(◆(Bcc)) . (2.63)

2.4 Lagrangian A-branes and modules of O
q(X)

Now we lay out the approach to the representation theory of O
q(X) by the 2d A-model on (X,!X).

This subsection also serves as a lightning review about the category of A-branes.
The approach to the representation theory of O

q from the 2d A-model arises from a simple idea:
given an open string boundary condition (or an A-brane) B0, the space of (Bcc,B0) open strings forms
a vector space. As in the right of Figure 4, a joining of (Bcc,Bcc) and (Bcc,B0) string leads to another
(Bcc,B0) string. This implies that the space of (Bcc,B0) strings receives an action of the algebra of
(Bcc,Bcc) strings [GW09]. Namely, other A-branes B0 on X give rise to modules for O

q(X):

O
q(X) = Hom(Bcc,Bcc)� �

B
0 = Hom(Bcc,B0)

(2.64)

In our example, supports of other branes B0 are always Lagrangian submanifolds so that we will review
Lagrangian A-branes BL in the next subsection. If the support of B0 is a Lagrangian submanifold
contained in the fixed point set of an antiholomorphic involution ⇣ : X ! X with ⇣

⇤
J = �J , then the

corresponding representation admits unitarity.
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Lagrangian Branes

the cocycle cancels out in the transition functions gijwij of an honest vector bundle L0 ⌦K
�1/2
L ! L,

called a Spinc structure. The K
�1/2
L part in a Spinc structure arises from boundary fermions of the

open worldsheet [Hor00, §5] [HHP08, §3.2], which gives rise to a Spinc structure of the normal bundle
to the support of a brane. (This proposal is explicitly checked by Hemisphere partition functions in
[KLY14].) Thus, the canonical coisotropic brane Bcc is endowed with an ordinary line bundle whereas
a Lagrangian A-brane is equipped with a Spinc structure. Since most of the Lagrangian submanifolds
in this paper are of real two dimensions, there always exists a spin bundle of L, which is a square-
root of the canonical bundle K

±1/2
L of L, though it is not necessarily unique. Hence, both L0 and

K
�1/2
L exist as genuine line bundles in most of the examples in this paper and we treat their tensor

product L0 ⌦ K
�1/2
L as a Spinc structure. However, a subtlety arises when an A-brane degenerates

into a different spin structure, which will be considered in §2.7. Moreover, a Lagrangian A-brane is
endowed with a flat Spinc structure: if L0 exists as a line bundle, the curvature F

0
L of L0 must obey a

gauge-invariant version of the flatness condition

F
0
L + B|L = 0 , (2.70)

in the presence of a B-field. Even if L0 does not exist as a line bundle, its square (L0)2 does so that
a half of the curvature of (L0)2 is subject to (2.70). In sum, for a Lagrangian A-brane, we have a
Chan-Paton bundle

BL :
L0 ⌦K

�1/2
L

L

(2.71)

with a flat Spinc structure (2.70). We will sometimes denote a Chan-Paton bundle by BL ! L, abusing
notation. Morphisms between Lagrangian objects are defined in the usual way using the Floer–Fukaya
complex generated by intersection points between the Lagrangians; see [Aur14] for details.

Defining the space of morphisms between Lagrangian and coisotropic objects is a bit more subtle,
and is discussed in detail for flat targets in [AZ05]. The essential idea is that the morphism space
should be thought of as related to the space of holomorphic functions on the intersection, with respect
to the transverse holomorphic structure on coisotropic objects. For Lagrangian objects, this complex
structure obviously plays no role, but instanton corrections can appear, in the guise of the contributions
of holomorphic disks to the differential in the Floer–Fukaya complex. On the other hand, for Bcc, the
transverse holomorphic structure is just a standard complex structure and plays an essential role, but
instanton corrections are forbidden. In the case of general coisotropic branes, both phenomena can be
expected to be relevant. (For some further discussion of this fact from the worldsheet perspective, as
well as generalizations to branes of higher rank, see [Her12].)

In a hyper-Kähler manifold, we can make use of a B-model analysis as in [GW09, Guk11] to
compute the dimension of open strings. The dimension of the representation space L := Hom(Bcc,BL)
associated to a compact Lagrangian brane BL can be computed with the help of the Grothendieck–
Riemann–Roch formula:

dimL = dimH
0(L,Bcc ⌦B�1

L )

=

Z

L
ch(Bcc) ^ ch(B�1

L ) ^ Td(TL) ,
(2.72)

Here we denote, by B, a bundle for the corresponding brane including an effect of the B-field, abusing
notation.

If a Lagrangian L is of real two dimensions, then the Todd class Td(TL) = ch(K�1/2
L ) bA(TL) is

equivalent to ch(K�1/2
L ). Consequently, the formula becomes a very simple form

dimL =

Z

L
ch(Bcc) =

Z

L

F +B

2⇡
, (2.73)

for a real two-dimensional Lagrangian L.
As explained in [GW09], for a Lagrangian brane BL, the space of open strings Hom(Bcc,BL)

can be understood as a geometric quantization of L with a curvature on a “prequantum line bundle”
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Flatness condition
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notation. Morphisms between Lagrangian objects are defined in the usual way using the Floer–Fukaya
complex generated by intersection points between the Lagrangians; see [Aur14] for details.

Defining the space of morphisms between Lagrangian and coisotropic objects is a bit more subtle,
and is discussed in detail for flat targets in [AZ05]. The essential idea is that the morphism space
should be thought of as related to the space of holomorphic functions on the intersection, with respect
to the transverse holomorphic structure on coisotropic objects. For Lagrangian objects, this complex
structure obviously plays no role, but instanton corrections can appear, in the guise of the contributions
of holomorphic disks to the differential in the Floer–Fukaya complex. On the other hand, for Bcc, the
transverse holomorphic structure is just a standard complex structure and plays an essential role, but
instanton corrections are forbidden. In the case of general coisotropic branes, both phenomena can be
expected to be relevant. (For some further discussion of this fact from the worldsheet perspective, as
well as generalizations to branes of higher rank, see [Her12].)

In a hyper-Kähler manifold, we can make use of a B-model analysis as in [GW09, Guk11] to
compute the dimension of open strings. The dimension of the representation space L := Hom(Bcc,BL)
associated to a compact Lagrangian brane BL can be computed with the help of the Grothendieck–
Riemann–Roch formula:

dimL = dimH
0(L,Bcc ⌦B�1

L )

=

Z

L
ch(Bcc) ^ ch(B�1

L ) ^ Td(TL) ,
(2.72)

Here we denote, by B, a bundle for the corresponding brane including an effect of the B-field, abusing
notation.

If a Lagrangian L is of real two dimensions, then the Todd class Td(TL) = ch(K�1/2
L ) bA(TL) is

equivalent to ch(K�1/2
L ). Consequently, the formula becomes a very simple form

dimL =

Z

L
ch(Bcc) =

Z

L

F +B

2⇡
, (2.73)

for a real two-dimensional Lagrangian L.
As explained in [GW09], for a Lagrangian brane BL, the space of open strings Hom(Bcc,BL)

can be understood as a geometric quantization of L with a curvature on a “prequantum line bundle”
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Representation space
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of open strings )
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to the support of a brane. (This proposal is explicitly checked by Hemisphere partition functions in
[KLY14].) Thus, the canonical coisotropic brane Bcc is endowed with an ordinary line bundle whereas
a Lagrangian A-brane is equipped with a Spinc structure. Since most of the Lagrangian submanifolds
in this paper are of real two dimensions, there always exists a spin bundle of L, which is a square-
root of the canonical bundle K

±1/2
L of L, though it is not necessarily unique. Hence, both L0 and

K
�1/2
L exist as genuine line bundles in most of the examples in this paper and we treat their tensor

product L0 ⌦ K
�1/2
L as a Spinc structure. However, a subtlety arises when an A-brane degenerates

into a different spin structure, which will be considered in §2.7. Moreover, a Lagrangian A-brane is
endowed with a flat Spinc structure: if L0 exists as a line bundle, the curvature F
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instanton corrections are forbidden. In the case of general coisotropic branes, both phenomena can be
expected to be relevant. (For some further discussion of this fact from the worldsheet perspective, as
well as generalizations to branes of higher rank, see [Her12].)
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compute the dimension of open strings. The dimension of the representation space L := Hom(Bcc,BL)
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If a Lagrangian L is of real two dimensions, then the Todd class Td(TL) = ch(K�1/2
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L ). Consequently, the formula becomes a very simple form
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in this paper are of real two dimensions, there always exists a spin bundle of L, which is a square-
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K
�1/2
L exist as genuine line bundles in most of the examples in this paper and we treat their tensor

product L0 ⌦ K
�1/2
L as a Spinc structure. However, a subtlety arises when an A-brane degenerates

into a different spin structure, which will be considered in §2.7. Moreover, a Lagrangian A-brane is
endowed with a flat Spinc structure: if L0 exists as a line bundle, the curvature F

0
L of L0 must obey a

gauge-invariant version of the flatness condition

F
0
L + B|L = 0 , (2.70)

in the presence of a B-field. Even if L0 does not exist as a line bundle, its square (L0)2 does so that
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with a flat Spinc structure (2.70). We will sometimes denote a Chan-Paton bundle by BL ! L, abusing
notation. Morphisms between Lagrangian objects are defined in the usual way using the Floer–Fukaya
complex generated by intersection points between the Lagrangians; see [Aur14] for details.
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and is discussed in detail for flat targets in [AZ05]. The essential idea is that the morphism space
should be thought of as related to the space of holomorphic functions on the intersection, with respect
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structure obviously plays no role, but instanton corrections can appear, in the guise of the contributions
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instanton corrections are forbidden. In the case of general coisotropic branes, both phenomena can be
expected to be relevant. (For some further discussion of this fact from the worldsheet perspective, as
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compute the dimension of open strings. The dimension of the representation space L := Hom(Bcc,BL)
associated to a compact Lagrangian brane BL can be computed with the help of the Grothendieck–
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Here we denote, by B, a bundle for the corresponding brane including an effect of the B-field, abusing
notation.

If a Lagrangian L is of real two dimensions, then the Todd class Td(TL) = ch(K�1/2
L ) bA(TL) is

equivalent to ch(K�1/2
L ). Consequently, the formula becomes a very simple form
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ch(Bcc) =

Z

L

F +B

2⇡
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So the dimension reads

the cocycle cancels out in the transition functions gijwij of an honest vector bundle L0 ⌦K
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L part in a Spinc structure arises from boundary fermions of the

open worldsheet [Hor00, §5] [HHP08, §3.2], which gives rise to a Spinc structure of the normal bundle
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[KLY14].) Thus, the canonical coisotropic brane Bcc is endowed with an ordinary line bundle whereas
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structure obviously plays no role, but instanton corrections can appear, in the guise of the contributions
of holomorphic disks to the differential in the Floer–Fukaya complex. On the other hand, for Bcc, the
transverse holomorphic structure is just a standard complex structure and plays an essential role, but
instanton corrections are forbidden. In the case of general coisotropic branes, both phenomena can be
expected to be relevant. (For some further discussion of this fact from the worldsheet perspective, as
well as generalizations to branes of higher rank, see [Her12].)
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compute the dimension of open strings. The dimension of the representation space L := Hom(Bcc,BL)
associated to a compact Lagrangian brane BL can be computed with the help of the Grothendieck–
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=
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(2.72)

Here we denote, by B, a bundle for the corresponding brane including an effect of the B-field, abusing
notation.

If a Lagrangian L is of real two dimensions, then the Todd class Td(TL) = ch(K�1/2
L ) bA(TL) is

equivalent to ch(K�1/2
L ). Consequently, the formula becomes a very simple form

dimL =
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ch(Bcc) =
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F +B

2⇡
, (2.73)

for a real two-dimensional Lagrangian L.
As explained in [GW09], for a Lagrangian brane BL, the space of open strings Hom(Bcc,BL)

can be understood as a geometric quantization of L with a curvature on a “prequantum line bundle”
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Lagrangian branes are objects in Fukaya category

We now briefly recall a few standard facts about Lagrangian A-branes [Flo88, Flo89] and their
mathematical incarnation, the Fukaya category Fuk(X,!X). For more detail, the reader is referred to
the literature, which is substantial; [Aur14] is a good starting point, or [Kon95] for the fundamentals
of homological mirror symmetry.

The Lagrangian Grassmannian, denoted LGr, of a symplectic vector space parameterizes the collec-
tion of its Lagrangian subspaces. We can obtain a description of this space by thinking of the standard
symplectic vector space (R2n

,!), which can be equipped with a metric via a contractible choice. By
the two-of-three property, the group preserving both the symplectic and orthogonal structures is U(n),
which therefore acts on LGr(2n); the subgroup stabilizing a fixed Lagrangian subspace is O(n), so
that

LGr(2n) = U(n)/O(n) . (2.65)

There is furthermore an obvious map

det2 : LGr(2n) ! U(1) (2.66)

which can be shown to induce an isomorphism of fundamental groups. The Maslov index [Arn67] of
a loop in LGr(2n) is its image under this induced map in ⇡1(U(1)) ⇠= Z; it is responsible for both
obstructions and gradings in the Fukaya category. The universal cover gLGr(2n) of LGr(2n) thus has
deck group Z, and the Maslov index of a loop is simply the element of Z that connects the endpoints
of a lift to gLGr(2n).

Let (X,!X) be a symplectic manifold with zero first Chern class (as is obviously the case in our
hyper-Kähler examples). There is a bundle

LGr(X) ! X (2.67)

whose fiber over x 2 X is LGr(TxX). (We hope the reader will forgive the moderately abusive notation.)
We can furthermore define a bundle gLGr(X), which is a covering space of the total space LGr(X), such
that the covering map is a bundle map and restricts over each fiber to the universal covering map.

A Lagrangian subspace L ⇢ X comes with an obvious lift

LGr(X)

L X
⇢

(2.68)

defined by the Lagrangian subbundle TL ⇢ TX|L. Lifting this canonical map to gLGr(X) is obstructed
by the image of ⇡1(L) under the Maslov map, which is an element of H1(L,Z) called the Maslov class.
Lagrangians with zero Maslov class admit so-called graded lifts, which are maps

gLGr(X) LGr(X)

L X

·/Z

g

⇢

(2.69)

making the square commute. The set of such maps is naturally a Z-torsor under the action of deck trans-
formations, but no canonical choice of graded lift exists. Given a Lagrangian object of A-Brane(X,!X),
the set of graded lifts plays the role of its shifts.

A (rank-one) Lagrangian object of A-Brane(X,!X) is supported on a Lagrangian submanifold L ⇢ X
of zero Maslov class, which is considered up to Hamiltonian isotopy. The additional data required to
define a Lagrangian A-brane consists of a “Chan-Paton” bundle with unitary connection; a flat Spinc

structure on L; and a grade lift. A Chan-Paton bundle for a Lagrangian A-brane is generally endowed
with a flat Spinc structure [Wit98, FW99, KS03, GW09]. A Spinc structure arises if L0 does not exist
as a line bundle, but is obstructed by the same cocycle that obstructs the existence of the square root
K

�1/2
L of the canonical bundle over the Lagrangian L. Namely, putative transition functions gij and

wij of L0 and K
�1/2
L , respectively, obey gijgjkgki = �ijk = wijwjkwki where �ijk = ±1. In this case,
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Compact Lagrangians

Let us find the modular S and T matrices for this PSL(2,Z) representation. As we have seen, the
polynomial representation P captures both D

(1)
`

and D
(2)
`

so that the S-matrix (2.110) truncates a
matrix of size 2` ⇥ 2` under the shortening condition (2.96c). However, the matrix has rank ` and it
acts non-trivially only on D

(1)
`

under the change (2.118) of basis

eSjj0 := G
�1

Sjj0G(q, t = q
�(2`�1)/2)

��
D

(1)
`

, 0  j, j
0  `� 1 (2.121)

where G is a matrix of size 2`⇥2` that changes the basis according to (2.118). This gives the geometric
interpretation of the basis change in [KSY18, §4.1]. As a result, we find the following explicit forms of
the S and T matrices, and a 3d interpretation of our A-model setup in §3.1.1 will identify an intrinsic
physical meaning of the PSL(2,Z) representation:

Conjecture 2.2. The space D
(1)
`

is an `-dimensional PSL(2,Z) representation, with modular S and

T matrices given by

Tjj0
��
D

(1)
`

= e
(`�1)⇡i

6 q
� (2`�1)(`�1)

6 q
j(k�j)

2 �jj0 0  j, j
0  `� 1

Sjj0
��
D

(1)
`

= b
�1
`

gj(q, t = q
�(2`�1)/2)�1 eSjj0 .

(2.122)

The PSL(2,Z) representation comes from a modular tensor category associated to the Argyres-Douglas

theory of type (A1, A2(`�1)). These matrices coincide with those of the (2, 2` + 1) Virasoro minimal

model at q = e
�2⇡i/(2`+1)

.

Here we normalize (2.121) by the Macdonald norm (2.112) and

b` = 2
`�2Y

i=0

(q1/2+i � q
�1/2�i)

so that S
2 = 1. We also normalize (2.90) by e

(`�1)⇡i/6
q
�(2`�1)(`�1)/6 so that (ST )3 = 1.

For instance, when ` = 2, these matrices become

T
��
D

(1)
`=2

= e
⇡i
6

 
q
� 1

2 0

0 q
1
2

!
, S

��
D

(1)
`=2

=
i

q
1
2 � q

� 1
2

✓
1 �(q � 1 + q

�1)
1 �1

◆
.

When q = e
�2⇡i/5, they coincide with the modular matrices of the (2, 5) Virasoro minimal model

although an appropriate change of basis is required to bring the S-matrix into the standard form.

finite-dim rep shortening condition A-brane condition

F
(xm,ym)
m q

m = 1 m = 1
~

Un q
2n = 1 n = 1

2~

Vk+1 t
2 = �q

�k
k = 1

2~ + �p+i↵p

i~

D` t
2 = q

�`+1/2
` = �p+i↵p

2i~

Table 2: A summary of finite-dimensional representations of S
..
H with corresponding shortening and

A-brane conditions.

2.7 Bound states of branes and short exact sequences: morphism matching

We have hitherto studied generic conditions when an individual A-brane supported on a compact
irreducible Lagrangian can exist. Next, we will figure out the situation in which two distinct A-branes
are present at a singular fiber of the Hitchin fibration. When two distinct A-branes intersect at a
singular fiber, they will form a bound state. By identifying the corresponding representation of S

..
H,

we will provide evidence of the equivalent morphism structure of the two categories (1.3).
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U
(1)
n

◆(Vk+1)

D
(4)
`

D
(3)
`

D
(2)
`

D
(1)
`

q4q3

q2q1

NF

F
�

2n

BH

MH

0gen pt

⇡

⇠1

⇠2

Figure 7: This figure depicts the correspondence between compact supports of (B,A,A)-branes and
finite-dimensional modules of the spherical DAHA when ~ = 1/2n, ↵p/2~ = ` and �p = 0 = �p. Note
that n = 2`+ k + 1.

On the other hand, the ◆-image ◆(BP) intersects with V whereas it does not with exceptional
divisors Di. Consequently, there is a short exact sequence

0 �! D
(3) � D

(4) �! ◆(U (1)
n ) �! ◆(Vn�2`) �! 0 . (2.134)

Once we take ⇠2-image of this short exact sequence, we have

0 �! D
(1)
`

� D
(2)
`

g�! ⇠2 � ◆(U (1)
n ) �! ◆(Vn�2`) �! 0 . (2.135)

because ◆(Vn�2`) is ⇠2-invariant.
Now we are ready to compare the morphism structures of the two categories under the shortening

condition ~ = 1/2n and ↵p/~ = `. As Figure 7 illustrates, the supports of branes BV and BD1

intersect at one point q1 so that the morphism space between them is one-dimensional:

Hom1(BD1 ,BV) ⇠= Chq1i . (2.136)

This means that there is one bound state of BV and BD1 . Indeed, we find the corresponding repre-
sentation from (2.132):

0 �! ◆(Vk+1) �! f
�1(D (1)

`
) �! D

(1)
`

�! 0 . (2.137)

Its Poincare dual in the representation category can be obtained from (2.135)

0 �! D
(1)
`

�! ⇠2 � ◆(U (1)
n )/g(D (2)

`
) �! ◆(Vn�2`) �! 0 . (2.138)

By using the sign change group ⌅, we obtain short exact sequences analogous to (2.137), which changes
from D

(1)
`

to D
(i)
`

(i = 2, 3, 4). We can further pursue the comparison of the morphism structure. In
the A-brane category, the morphism space between BV and BD1 �BD2 is two-dimensional:

Hom1(BD1 �BD2 ,BV) ⇠= Chq1i � Chq2i . (2.139)

It is easy to find the corresponding representations

0 �! ◆(Vk+1) �! f
�1(D (1)

`
)� D

(2)
`

�! D
(1)
`

� D
(2)
`

�! 0 ,

0 �! ◆(Vk+1) �! f
�1(D (2)

`
)� D

(1)
`

�! D
(1)
`

� D
(2)
`

�! 0 .

(2.140)
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Many-Body Systems

ABA�1B�1 = C

Mn = {A,B,C}/GL(n;C)

C = diag(t, …, t, tn−1)

Coming back to flat connections on pictured T2

In the basis where  is diagonal characteristic polynomial of  yields trig. Ruijsenaars 
Hamiltonians (Macdonald operators — center of spherical DAHA)

A = diag(a1, …, an) B

<latexit sha1_base64="unfyrBYQXctdsE8R/GLMs+jMZcU="></latexit>

det(u�B) =
X

k

(�1)kHku
n�k

For n=2
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C⇥
p ⇥ C⇥

x
<latexit sha1_base64="dhPp5E4MSFQ4cCTAaHSDYKVjlxc=">AAACA3icdVDJSgNBEO1xjXGLetNLYxAihDATs+gtUQ85RjCLJCH0dDpJk57F7hoxDAEv/ooXD4p49Se8+Td2FkFFHxQ83quiqp7tC67AND+MufmFxaXlyEp0dW19YzO2tV1VXiApq1BPeLJuE8UEd1kFOAhW9yUjji1YzR6cjf3aDZOKe+4lDH3WckjP5V1OCWipHdttAruF8LxYKo7aYbNvE5m8HiXqyavDdixupo7SJ9l8Gpspc4IJyWTyOWzNlDiaodyOvTc7Hg0c5gIVRKmGZfrQCokETgUbRZuBYj6hA9JjDU1d4jDVCic/jPCBVjq460ldLuCJ+n0iJI5SQ8fWnQ6BvvrtjcW/vEYA3eNWyF0/AObS6aJuIDB4eBwI7nDJKIihJoRKrm/FtE8koaBji+oQvj7F/5NqOmXlUtmLTLxwOosjgvbQPkogC+VRAZVQGVUQRXfoAT2hZ+PeeDRejNdp65wxm9lBP2C8fQIVQ5cs</latexit>

DAHA~,q(X,Y )
<latexit sha1_base64="pflH5r1302YGzWa5hQ5O7z7Vhes=">AAACJHicdVBNa9tAEF25bZq6TeI2x16WmkIKxUjBThxyCeklxwRix2AZMVqPrMWrj+yOWozQj8klf6WXHtqGHnrJb8n6ozQN6YOBx3szzMwLcyUNue5vp/bk6bO15+sv6i9fbWxuNV6/6Zus0AJ7IlOZHoRgUMkUeyRJ4SDXCEmo8CKcfpr7F59RG5ml5zTLcZTAJJWRFEBWChqHvaD04xD0x8vKVxjRjv9FjjEGKv+SBCiONEzLiQq8qqp8LScxfQgaTbfVbXcOOvvcbbkLWNJ1O+1um3srpclWOA0aP/1xJooEUxIKjBl6bk6jEjRJobCq+4XBHMQUJji0NIUEzahcPFnx91YZ8yjTtlLiC/X+RAmJMbMktJ3ze81Dby4+5g0LirqjUqZ5QZiK5aKoUJwyPk+Mj6VGQWpmCQgt7a1cxKBBkM21bkP48yn/P+nvtry9Vues3Tw6XsWxzt6yd2yHeWyfHbETdsp6TLAr9pV9Zz+ca+ebc+P8WrbWnNXMNvsHzu0d1M6m0w==</latexit>

U~,q

✓
ccgl1

◆

<latexit sha1_base64="i1ePeu4q2pdc+1RCF9TtfuBOOrw=">AAAB+XicdVDJSgNBEO1xjXEb9eilMQheDBPJMrkFvXhMwCyQhNDTqSRNeha6a4JhyJ948aCIV//Em39jZxFU9EHB470qqup5kRQaHefDWlvf2NzaTu2kd/f2Dw7to+OGDmPFoc5DGaqWxzRIEUAdBUpoRQqY70loeuObud+cgNIiDO5wGkHXZ8NADARnaKSebddqHYR7TC71VCP4s56dcbLOAtTJ5suFkusaUiq7xbxLcysrQ1ao9uz3Tj/ksQ8Bcsm0buecCLsJUyi4hFm6E2uIGB+zIbQNDZgPupssLp/Rc6P06SBUpgKkC/X7RMJ8rae+Zzp9hiP925uLf3ntGAduNxFBFCMEfLloEEuKIZ3HQPtCAUc5NYRxJcytlI+YYhxNWGkTwten9H/SuMrmitlCLZ+pXK/iSJFTckYuSI6USIXckiqpE04m5IE8kWcrsR6tF+t12bpmrWZOyA9Yb59pmZQ1</latexit>

QQ-system5

https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://arxiv.org/abs/2002.07344
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA


-Opers (G, q)

t -OpersG

XXZ

XXX

rGaudin

tGaudin

tRS

rCM

tCMrRS

<latexit sha1_base64="FQb5k4HIb/3rEaCyXTHDMxQBrhw=">AAACFnicdVDLSgMxFM3UV62vUZdugkVwY5nWPnfFblxWsA/ojEMmzbShmQdJRixDv8KNv+LGhSJuxZ1/Y6YdoYoeSDiccy/33uOEjAppGJ9aZmV1bX0ju5nb2t7Z3dP3D7oiiDgmHRywgPcdJAijPulIKhnph5wgz2Gk50xaid+7JVzQwL+W05BYHhr51KUYSSXZ+pnpITl2nLg1s8MbU1KPiMUPl5y71LH1vFEwGpVqowYVmUORRr1SKp/DYqrkQYq2rX+YwwBHHvElZkiIQdEIpRUjLilmZJYzI0FChCdoRAaK+kgNseL5WTN4opQhdAOuni/hXF3uiJEnxNRzVGWyqvjtJeJf3iCSbt2KqR9Gkvh4MciNGJQBTDKCQ8oJlmyqCMKcql0hHiOOsFRJ5lQI35fC/0m3VChWC+Wrcr55kcaRBUfgGJyCIqiBJrgEbdABGNyDR/AMXrQH7Ul71d4WpRkt7TkEP6C9fwFM16C/</latexit>

C⇥
p ⇥ C⇥

x

<latexit sha1_base64="+dut3qUOmJDfahmz5Rb/oNvI4V8=">AAACD3icdVC7TsMwFHXKq5RXgJHFogIxVWnpc6vowlgk+pCaEDmu01p1HrIdRBX1D1j4FRYGEGJlZeNvcNogFQRHsnV0zr269x4nZFRIw/jUMiura+sb2c3c1vbO7p6+f9AVQcQx6eCABbzvIEEY9UlHUslIP+QEeQ4jPWfSSvzeLeGCBv61nIbE8tDIpy7FSCrJ1k9ND8mx48StmR3emJJ6RCx+uOTc2XreKBiNSrVRg4rMoUijXimVz2ExVfIgRdvWP8xhgCOP+BIzJMSgaITSihGXFDMyy5mRICHCEzQiA0V9pCZa8fyeGTxRyhC6AVfPl3CuLnfEyBNi6jmqMtlR/PYS8S9vEEm3bsXUDyNJfLwY5EYMygAm4cAh5QRLNlUEYU7VrhCPEUdYqghzKoTvS+H/pFsqFKuF8lU537xI48iCI3AMzkAR1EATXII26AAM7sEjeAYv2oP2pL1qb4vSjJb2HIIf0N6/AH9YnZ0=</latexit>

C⇥
p ⇥ Cx

<latexit sha1_base64="IlV8Xr3RjnGdS1EDJQmQeKAe5zI=">AAACD3icdZBLS8NAEMc39VXrK+rRy2JRPJW09nkr9uKxgn1AE8Nmu2mXbh7sbsQS+g28+FW8eFDEq1dvfhs3bYQqOjDw5zczzMzfCRkV0jA+tczK6tr6RnYzt7W9s7un7x90RRBxTDo4YAHvO0gQRn3SkVQy0g85QZ7DSM+ZtJJ675ZwQQP/Wk5DYnlo5FOXYiQVsvVT00Ny7Dhxa2aHpqQeEXAJ3d0smK3njYLRqFQbNajEPJRo1Cul8jkspiQP0mjb+oc5DHDkEV9ihoQYFI1QWjHikmJGZjkzEiREeIJGZKCkj9QSK57/M4MnigyhG3CVvoRzujwRI0+IqeeozuRU8buWwL9qg0i6dSumfhhJ4uPFIjdiUAYwMQcOKSdYsqkSCHOqboV4jDjCUlmYUyZ8fwr/F91SoVgtlK/K+eZFakcWHIFjcAaKoAaa4BK0QQdgcA8ewTN40R60J+1Ve1u0ZrR05hD8CO39C31anZ0=</latexit>

Cp ⇥ C⇥
x

<latexit sha1_base64="pjkOq7CBRf0fKrzy0LAmmTtXH9c=">AAACCHicdVDLSsNAFJ34rPUVdenCwSK4Kkntc1fsxmUF+4AmhMl00g6dPJiZiCV06cZfceNCEbd+gjv/xkkboYoeuHA4517uvceNGBXSMD61ldW19Y3N3FZ+e2d3b18/OOyKMOaYdHDIQt53kSCMBqQjqWSkH3GCfJeRnjtppX7vlnBBw+BGTiNi+2gUUI9iJJXk6CeWj+TYdZPWzIksSX0i4JJ05+gFo2g0KtVGDSoyhyKNeqVUvoBmphRAhrajf1jDEMc+CSRmSIiBaUTSThCXFDMyy1uxIBHCEzQiA0UDpDbayfyRGTxTyhB6IVcVSDhXlycS5Asx9V3Vmd4ofnup+Jc3iKVXtxMaRLEkAV4s8mIGZQjTVOCQcoIlmyqCMKfqVojHiCMsVXZ5FcL3p/B/0i0VzWqxfF0uNC+zOHLgGJyCc2CCGmiCK9AGHYDBPXgEz+BFe9CetFftbdG6omUzR+AHtPcvxEGaew==</latexit>

Cp ⇥ Cx

r -Opers G

-Opers (G, ϵ)

<latexit sha1_base64="NI6/Z6Xqze9xVB65zjk5eiu7QcM=">AAACCHicdVDLSsNAFJ3UV62vqEsXDhbBVUlLrO2uWASXFewDmhAm02k7dPJgZiKWkKUbf8WNC0Xc+gnu/BsnaQQVPXDhcM693HuPGzIqpGF8aIWl5ZXVteJ6aWNza3tH393riSDimHRxwAI+cJEgjPqkK6lkZBBygjyXkb47a6d+/4ZwQQP/Ws5DYnto4tMxxUgqydEPLQ/JKUYsvkic0JLUIyKTXDduJ86to5eNitGo1eomVCSDIs2GaTRNWM2VMsjRcfR3axTgyCO+xAwJMawaobRjxCXFjCQlKxIkRHiGJmSoqI/UQjvOHkngsVJGcBxwVb6Emfp9IkaeEHPPVZ3pjeK3l4p/ecNIjht2TP0wksTHi0XjiEEZwDQVOKKcYMnmiiDMqboV4iniCEuVXUmF8PUp/J/0apVqvXJ6ZZZb53kcRXAAjsAJqIIz0AKXoAO6AIM78ACewLN2rz1qL9rrorWg5TP74Ae0t08uLpq/</latexit>

Ep ⇥ Cx

e -OpersG

eGaudin
dual eCM

e -Opers (G, q)

XYZ
dual eRS

<latexit sha1_base64="0Nud0d/mdRLgxzwaHP6yHjyjbHM=">AAACD3icdZA7SwNBEMfnfMb4OrW0WQyKVbiEMyZdMAiWEcwDknjsbTbJkr0Hu3tiOO4b2PhVbCwUsbW189u4SU5Q0YGBP7+ZYWb+bsiZVJb1YSwsLi2vrGbWsusbm1vb5s5uUwaRILRBAh6Itosl5cynDcUUp+1QUOy5nLbccW1ab91QIVngX6lJSHseHvpswAhWGjnmUdfDakQwj88TJ+wq5lE5Q64b15LrOXBuHTNn5a1ysViykRaz0KJStq2KjQopyUEadcd87/YDEnnUV4RjKTsFK1S9GAvFCKdJthtJGmIyxkPa0dLHek0vnv2ToENN+mgQCJ2+QjP6fSLGnpQTz9Wd01Pl79oU/lXrRGpQ7sXMDyNFfTJfNIg4UgGamoP6TFCi+EQLTATTtyIywgITpS3MahO+PkX/i2YxXyjlTy7tXPUstSMD+3AAx1CAU6jCBdShAQTu4AGe4Nm4Nx6NF+N13rpgpDN78COMt0/pMZ3h</latexit>

Ep ⇥ C⇥
x

<latexit sha1_base64="5WIfndDuFflIO3gQBI9pkh91WOU=">AAACCXicdVDLSsNAFJ34rPUVdelmsAiuSlJqbXdFEVxWsA9oQphMJ+3QySTMTMQSunXjr7hxoYhb/8Cdf+OkjVBFD1w4nHMv997jx4xKZVmfxtLyyuraemGjuLm1vbNr7u13ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOuPLzK/e0uEpBG/UZOYuCEachpQjJSWPBM6IVIjjFh6OfViR9GQyEXpzjNLVtmqVyq1KtRkBk0a9arVqEI7V0ogR8szP5xBhJOQcIUZkrJvW7FyUyQUxYxMi04iSYzwGA1JX1OO9EY3nX0yhcdaGcAgErq4gjN1cSJFoZST0Ned2ZHyt5eJf3n9RAV1N6U8ThTheL4oSBhUEcxigQMqCFZsognCgupbIR4hgbDS4RV1CN+fwv9Jp1K2a+XT62qpeZ7HUQCH4AicABucgSa4Ai3QBhjcg0fwDF6MB+PJeDXe5q1LRj5zAH7AeP8CBuGbNw==</latexit>

Ep ⇥ Ex

<latexit sha1_base64="krgi1J6SwtB3GQ5+yPWjgZ642hE=">AAACD3icdVDLSgMxFL3js9bXqEs3waK4KtMy1nZXLILLCvYBbR0yadqGZh4kGbEM8wdu/BU3LhRx69adf2PajqCiB0IO59zLvfe4IWdSWdaHsbC4tLyymlnLrm9sbm2bO7tNGUSC0AYJeCDaLpaUM582FFOctkNBsedy2nLHtanfuqFCssC/UpOQ9jw89NmAEay05JhHXQ+rkevGteS6q5hHpRPO/5lBMI/PE+fWMXNW3ioXiyUbaTKDJpWybVVsVEiVHKSoO+Z7tx+QyKO+IhxL2SlYoerFWChGOE2y3UjSEJMxHtKOpj7WE3vx7J4EHWqljwaB0M9XaKZ+74ixJ+XEc3XldEn525uKf3mdSA3KvZj5YaSoT+aDBhFHKkDTcFCfCUoUn2iCiWB6V0RGWGCidIRZHcLXpeh/0izmC6X8yaWdq56lcWRgHw7gGApwClW4gDo0gMAdPMATPBv3xqPxYrzOSxeMtGcPfsB4+wTo253h</latexit>

C⇥
p ⇥ Ex

<latexit sha1_base64="Lh2BC0m+3LgjZQzIRLaY6ySd3ps=">AAACCHicdVDLSsNAFJ3UV62vqEsXDhbBVUlLrO2uWASXFewDmhAm02k7dPJgZiKWkKUbf8WNC0Xc+gnu/BsnaQQVPXDhcM693HuPGzIqpGF8aIWl5ZXVteJ6aWNza3tH393riSDimHRxwAI+cJEgjPqkK6lkZBBygjyXkb47a6d+/4ZwQQP/Ws5DYnto4tMxxUgqydEPLQ/JqevG7cQJLUk9IjIFIxZfJM6to5eNitGo1eomVCSDIs2GaTRNWM2VMsjRcfR3axTgyCO+xAwJMawaobRjxCXFjCQlKxIkRHiGJmSoqI/URjvOHkngsVJGcBxwVb6Emfp9IkaeEHPPVZ3pkeK3l4p/ecNIjht2TP0wksTHi0XjiEEZwDQVOKKcYMnmiiDMqboV4iniCEuVXUmF8PUp/J/0apVqvXJ6ZZZb53kcRXAAjsAJqIIz0AKXoAO6AIM78ACewLN2rz1qL9rrorWg5TP74Ae0t08txJq/</latexit>

Cp ⇥ Ex

?? 

???

??

??

<latexit sha1_base64="dhPp5E4MSFQ4cCTAaHSDYKVjlxc=">AAACA3icdVDJSgNBEO1xjXGLetNLYxAihDATs+gtUQ85RjCLJCH0dDpJk57F7hoxDAEv/ooXD4p49Se8+Td2FkFFHxQ83quiqp7tC67AND+MufmFxaXlyEp0dW19YzO2tV1VXiApq1BPeLJuE8UEd1kFOAhW9yUjji1YzR6cjf3aDZOKe+4lDH3WckjP5V1OCWipHdttAruF8LxYKo7aYbNvE5m8HiXqyavDdixupo7SJ9l8Gpspc4IJyWTyOWzNlDiaodyOvTc7Hg0c5gIVRKmGZfrQCokETgUbRZuBYj6hA9JjDU1d4jDVCic/jPCBVjq460ldLuCJ+n0iJI5SQ8fWnQ6BvvrtjcW/vEYA3eNWyF0/AObS6aJuIDB4eBwI7nDJKIihJoRKrm/FtE8koaBji+oQvj7F/5NqOmXlUtmLTLxwOosjgvbQPkogC+VRAZVQGVUQRXfoAT2hZ+PeeDRejNdp65wxm9lBP2C8fQIVQ5cs</latexit>

DAHA~,q(X,Y )

<latexit sha1_base64="XyJ1M/T69B2xxbnF0Th+7SaJun8=">AAACAnicdVDJSgNBEO1xjXEb9SReGoMQIYRJzKK3aC4eI5gFkhB6Op2kSc9Cd404DMGLv+LFgyJe/Qpv/o2dZAQVfVDweK+Kqnq2L7gCy/owFhaXlldWE2vJ9Y3NrW1zZ7ehvEBSVqee8GTLJooJ7rI6cBCs5UtGHFuwpj2uTv3mDZOKe+41hD7rOmTo8gGnBLTUM/c7wG4hgur5pBd1RjaRGTpJtzLhcc9MWdmT/FmxnMdW1pphRgqFcgnnYiWFYtR65nun79HAYS5QQZRq5ywfuhGRwKlgk2QnUMwndEyGrK2pSxymutHshQk+0kofDzypywU8U79PRMRRKnRs3ekQGKnf3lT8y2sHMDjtRtz1A2AunS8aBAKDh6d54D6XjIIINSFUcn0rpiMiCQWdWlKH8PUp/p808tlcKVu8KqQqF3EcCXSADlEa5VAZVdAlqqE6ougOPaAn9GzcG4/Gi/E6b10w4pk99APG2yflVpce</latexit>

tCA~,c(X, y)
<latexit sha1_base64="bEc38YRhlo5UH2zju4S1v0teIDo=">AAACAnicdVDJSgNBEO1xjXGLehIvjUGIEMIkZtFbNBePEcwiSQg9nU7SpGehu0YShuDFX/HiQRGvfoU3/8bOZAQVfVDweK+KqnqWJ7gC0/wwFhaXlldWY2vx9Y3Nre3Ezm5dub6krEZd4cqmRRQT3GE14CBY05OM2JZgDWtUmfmNWyYVd51rmHisY5OBw/ucEtBSN7HfBjaGACrn027QHlpEpuk0NU7fHHcTSTNzkjsrlHLYzJghQpLPl4o4GylJFKHaTby3ey71beYAFUSpVtb0oBMQCZwKNo23fcU8QkdkwFqaOsRmqhOEL0zxkVZ6uO9KXQ7gUP0+ERBbqYlt6U6bwFD99mbiX17Lh/5pJ+CO5wNz6HxR3xcYXDzLA/e4ZBTERBNCJde3YjokklDQqcV1CF+f4v9JPZfJFjOFq3yyfBHFEUMH6BClUBaVUBldoiqqIYru0AN6Qs/GvfFovBiv89YFI5rZQz9gvH0C5ZaXHg==</latexit>

tCA~,c(x, Y )

<latexit sha1_base64="8GGmSUOTlQ6KTTb6UtNgkrDefuw=">AAACAnicdVDJSgNBEO2JW4xb1JN4aQxChDBMYha9RXPxGMEskITQ0+kkTXoWumskYRi8+CtePCji1a/w5t/YWQQVfVDweK+Kqnq2L7gCy/owYkvLK6tr8fXExubW9k5yd6+uvEBSVqOe8GTTJooJ7rIacBCs6UtGHFuwhj2qTP3GLZOKe+4NTHzWccjA5X1OCWipmzxoAxtDKCsXUTdsD20iMzRKjzOTk24yZZmnufNCKYct05phRvL5UhFnF0oKLVDtJt/bPY8GDnOBCqJUK2v50AmJBE4FixLtQDGf0BEZsJamLnGY6oSzFyJ8rJUe7ntSlwt4pn6fCImj1MSxdadDYKh+e1PxL68VQP+sE3LXD4C5dL6oHwgMHp7mgXtcMgpiogmhkutbMR0SSSjo1BI6hK9P8f+knjOzRbNwnU+VLxdxxNEhOkJplEUlVEZXqIpqiKI79ICe0LNxbzwaL8brvDVmLGb20Q8Yb58TGZc8</latexit>

rCA~,c(x, y)

eCM

???
eRS

???
DELL

<latexit sha1_base64="12lWjKv2iiwRQiRXeq8KXi4rrSw=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmZiFj0l6MVjFLNAMoSeTk/SpGehu0cIQ/7AiwdFvPpH3vwbO5MRVPRBweO9KqrquRFnUlnWh5FbWV1b38hvFra2d3b3ivsHHRnGgtA2CXkoei6WlLOAthVTnPYiQbHvctp1p1cLv3tPhWRhcKdmEXV8PA6YxwhWWrptNIbFkmWelS+q9TKyTCtFSiqVeg3ZmVKCDK1h8X0wCkns00ARjqXs21aknAQLxQin88IgljTCZIrHtK9pgH0qnSS9dI5OtDJCXih0BQql6veJBPtSznxXd/pYTeRvbyH+5fVj5Z07CQuiWNGALBd5MUcqRIu30YgJShSfaYKJYPpWRCZYYKJ0OAUdwten6H/SKZt2zazeVErNyyyOPBzBMZyCDXVowjW0oA0EPHiAJ3g2psaj8WK8LltzRjZzCD9gvH0CXtCNRw==</latexit>

??

<latexit sha1_base64="12lWjKv2iiwRQiRXeq8KXi4rrSw=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmZiFj0l6MVjFLNAMoSeTk/SpGehu0cIQ/7AiwdFvPpH3vwbO5MRVPRBweO9KqrquRFnUlnWh5FbWV1b38hvFra2d3b3ivsHHRnGgtA2CXkoei6WlLOAthVTnPYiQbHvctp1p1cLv3tPhWRhcKdmEXV8PA6YxwhWWrptNIbFkmWelS+q9TKyTCtFSiqVeg3ZmVKCDK1h8X0wCkns00ARjqXs21aknAQLxQin88IgljTCZIrHtK9pgH0qnSS9dI5OtDJCXih0BQql6veJBPtSznxXd/pYTeRvbyH+5fVj5Z07CQuiWNGALBd5MUcqRIu30YgJShSfaYKJYPpWRCZYYKJ0OAUdwten6H/SKZt2zazeVErNyyyOPBzBMZyCDXVowjW0oA0EPHiAJ3g2psaj8WK8LltzRjZzCD9gvH0CXtCNRw==</latexit>

??

<latexit sha1_base64="9M9Q0ly4yim46ykzRr/SKX7WC7k=">AAAB+XicdVDLSgNBEJyNrxhfqx69DAbBi8tGErO5Bb14jGBUSJYwO+nokNlHZnrFsORPvHhQxKt/4s2/cRJXUNGChqKqm+6uIJFCo+u+W4W5+YXFpeJyaWV1bX3D3ty60HGqOLR5LGN1FTANUkTQRoESrhIFLAwkXAbDk6l/eQtKizg6x3ECfsiuIzEQnKGRerY9GnUR7jA70GONEE56dtl13Bmo61QbtbrnGVJveEdVj1Zyq0xytHr2W7cf8zSECLlkWncqboJ+xhQKLmFS6qYaEsaH7Bo6hkYsBO1ns8sndM8ofTqIlakI6Uz9PpGxUOtxGJjOkOGN/u1Nxb+8TooDz89ElKQIEf9cNEglxZhOY6B9oYCjHBvCuBLmVspvmGIcTVglE8LXp/R/cnHoVI6c2lm13DzO4yiSHbJL9kmF1EmTnJIWaRNObsk9eSRPVmY9WM/Wy2drwcpntskPWK8fzjmUdQ==</latexit>

qq-system

<latexit sha1_base64="pflH5r1302YGzWa5hQ5O7z7Vhes="></latexit>

U~,q

✓
ccgl1

◆

<latexit sha1_base64="KDA8G0cjV8qOzYylI0c+ZPiyMrA="></latexit>

Y~,✏
⇣
cgl1

⌘

<latexit sha1_base64="Stih5VRlIc06uLCLg5GyRAqz8/U="></latexit>

eDIM~,q,p

<latexit sha1_base64="i1ePeu4q2pdc+1RCF9TtfuBOOrw=">AAAB+XicdVDJSgNBEO1xjXEb9eilMQheDBPJMrkFvXhMwCyQhNDTqSRNeha6a4JhyJ948aCIV//Em39jZxFU9EHB470qqup5kRQaHefDWlvf2NzaTu2kd/f2Dw7to+OGDmPFoc5DGaqWxzRIEUAdBUpoRQqY70loeuObud+cgNIiDO5wGkHXZ8NADARnaKSebddqHYR7TC71VCP4s56dcbLOAtTJ5suFkusaUiq7xbxLcysrQ1ao9uz3Tj/ksQ8Bcsm0buecCLsJUyi4hFm6E2uIGB+zIbQNDZgPupssLp/Rc6P06SBUpgKkC/X7RMJ8rae+Zzp9hiP925uLf3ntGAduNxFBFCMEfLloEEuKIZ3HQPtCAUc5NYRxJcytlI+YYhxNWGkTwten9H/SuMrmitlCLZ+pXK/iSJFTckYuSI6USIXckiqpE04m5IE8kWcrsR6tF+t12bpmrWZOyA9Yb59pmZQ1</latexit>

QQ-system

<latexit sha1_base64="Hg4kSwtLOQ4prx93zRkX9ToVt5o=">AAAB+3icdVDLTgJBEJz1ifhCPHqZSEy8SHYNyHIjevGIiYAJIJkdemHi7MOZXgPZ8CtePGiMV3/Em3/jgJio0Uo6qVR1p7vLi6XQaNvv1sLi0vLKamYtu76xubWd28k3dZQoDg0eyUhdeUyDFCE0UKCEq1gBCzwJLe/mbOq37kBpEYWXOI6hG7BBKHzBGRqpl8vf3l5jB2GE6ZEea4Rg0ssV7KI9A7WLpWq54rqGVKruScmlztwqkDnqvdxbpx/xJIAQuWRatx07xm7KFAouYZLtJBpixm/YANqGhiwA3U1nt0/ogVH61I+UqRDpTP0+kbJA63Hgmc6A4VD/9qbiX147Qd/tpiKME4SQfy7yE0kxotMgaF8o4CjHhjCuhLmV8iFTjKOJK2tC+PqU/k+ax0XnpFi+KBVqp/M4MmSP7JND4pAKqZFzUicNwsmI3JNH8mRNrAfr2Xr5bF2w5jO75Aes1w9kgZVb</latexit>

qqt-system
<latexit sha1_base64="DyX3lyyGiYAqWIZY9L1V3mg0IBg=">AAAB+XicdVDLSgNBEJyNrxhfqx69DAbBi8tGotncgl48KpgYSJYwO+nokNmHM73BsORPvHhQxKt/4s2/cRJXUNGChqKqm+6uIJFCo+u+W4W5+YXFpeJyaWV1bX3D3txq6ThVHJo8lrFqB0yDFBE0UaCEdqKAhYGEq2B4OvWvRqC0iKNLHCfgh+w6EgPBGRqpZ9sXt12EO8wO9FgjhJOeXXYddwbqOtX6Uc3zDKnVveOqRyu5VSY5znv2W7cf8zSECLlkWncqboJ+xhQKLmFS6qYaEsaH7Bo6hkYsBO1ns8sndM8ofTqIlakI6Uz9PpGxUOtxGJjOkOGN/u1Nxb+8TooDz89ElKQIEf9cNEglxZhOY6B9oYCjHBvCuBLmVspvmGIcTVglE8LXp/R/0jp0KsfO0UW13DjJ4yiSHbJL9kmF1EiDnJFz0iScjMg9eSRPVmY9WM/Wy2drwcpntskPWK8fm9mUVQ==</latexit>

Qq-system

<latexit sha1_base64="4Y2XFsmFePLr59SwwsqJwhBnKx4=">AAACBHicdVA9SwNBEN3zM8avU0ubxSDYGC6SmLML2lgaMCrkjrC3mUuW7H2wOyeGI4WNf8XGQhFbf4Sd/8ZNjKCiDwYe780wMy9IpdDoOO/WzOzc/MJiYam4vLK6tm5vbF7oJFMcWjyRiboKmAYpYmihQAlXqQIWBRIug8HJ2L+8BqVFEp/jMAU/Yr1YhIIzNFLH3m56EcN+qNggb448hBvM9/VQI0Sjjl1yys4E1ClXj2p11zWkfuQeVl1amVolMsVZx37zugnPIoiRS6Z1u+Kk6OdMoeASRkUv05AyPmA9aBsaswi0n0+eGNFdo3RpmChTMdKJ+n0iZ5HWwygwneOL9W9vLP7ltTMMXT8XcZohxPxzUZhJigkdJ0K7QgFHOTSEcSXMrZT3mWIcTW5FE8LXp/R/cnFQrhyWa81qqXE8jaNAtskO2SMVUicNckrOSItwckvuySN5su6sB+vZevlsnbGmM1vkB6zXD2eZmUU=</latexit>

QQ-system

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

1

2 3

4 5 6
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8

<latexit sha1_base64="tp7pkqv4aThs3oIVQxDrxjua1gk="></latexit>

eDIM!
~,q,p

<latexit sha1_base64="92zevwm+cD8RPdv/QqYIU0YjaOs="></latexit>

el.trig.DAHA~,c,p
<latexit sha1_base64="b/uodcdtmA35ANorP3SRS07NXCc="></latexit>

trig.el.DAHA~,c,p

<latexit sha1_base64="YnnoUIcajd4HrqwRMSiExkz5eVk="></latexit>

rat.el.DAHA~,c,p

<latexit sha1_base64="gtuHXIJBq2qhkQ2aC65JNBQSNig=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgKWwka9ZbNDl4jGAesFnC7GQ2GTL7YKZXDEs+w4sHRbz6Nd78GyfJCipa0FBUddPd5cWCKzDNDyO3srq2vpHfLGxt7+zuFfcPOipKJGVtGolI9jyimOAhawMHwXqxZCTwBOt6k8bc794xqXgU3sI0Zm5ARiH3OSWgJacP7B7SZrNxORsUS2bZrloXVg2bZXMBTWzTqtpVXMmUEsrQGhTf+8OIJgELgQqilFMxY3BTIoFTwWaFfqJYTOiEjJijaUgCptx0cfIMn2hliP1I6goBL9TvEykJlJoGnu4MCIzVb28u/uU5Cfi2m/IwToCFdLnITwSGCM//x0MuGQUx1YRQyfWtmI6JJBR0SgUdwten+H/SOStXzsvWTbVUv8riyKMjdIxOUQXVUB1doxZqI4oi9ICe0LMBxqPxYrwuW3NGNnOIfsB4+wRki5Fa</latexit>

DDCA

https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
https://www.cambridge.org/core/books/double-affine-hecke-algebras/572F4DD897B067BD772964BB6D977AEA
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Enumerative AG/Representation Theory

• Yellow diagonal. The eigenfunctions of the tCM, tRS, and dual eRS models 
coincide with quasimap vertex functions of quantum equivariant 
cohomology, K-theory, and elliptic cohomology of the cotangent bundle to 
the complete flags in  respectively (also in (fin. Laumon)) 

•  Green Diagonal. The eigenfunctions of the eCM, eRS, and DELL models 
are holomorphic equivariant Euler characteristics of affine Laumon spaces 
in cohomology, K-theory, and elliptic cohomology respectively

ℂn χ

The Abelian nature of Lagrangian fibers in Hitchin system suggests  
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The DELL
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1.4. Main Results. We propose the new quantum integrable system, called DELL, which
for N � 1 degrees of freedom3 is described by Hamiltonians

(1.10) bHa = bO�1
0

bOa , a = 1, . . . , N � 1 ,

where operators O0,O1, . . . ,ON�1 are Fourier modes of the following current
(1.11)

bO(z) =
X

n2Z

bOn zn =
1X

n1,...,nN=�1
(�z)

P
ni w

P ni(ni�1)
2

Y

i<j

✓
�
tni�njbxi/bxj |p

�
bpn1
1 . . . bpnN

N .

Here the canonically conjugate position and momentum operators obeying canonical q-
commutation relation bxibpj = q�ij bpjbxj act on functions of positions as

(1.12) bxif(x1, . . . , xN ) = xif(x1, . . . , xN ), bpif(x1, . . . , xN ) = f(x1, . . . , qxi, . . . , xN ) .

We shall now formulate three conjectures about the properties of the DELL model,
which we have checked in a number of cases. We expect that these conjectures will be
proven in the near future using methods of enumerative algebraic geometry and geometric
representation theory.

Conjecture 1.1. The quantum DELL Hamiltonians H1, . . .HN�1 in (1.10) commute,

(1.13) [ bHa, bHb] = 0 , a 6= b .

We were able to check the commutativity of DELL Hamiltonians up to several orders
(w2, p2 for N = 2, 3 and w2, p1 for N = 4) in expansion in elliptic parameters p and w,
which gives us confidence that the conjecture should hold. As the reader can see the DELL
Hamiltonians are highly non-local as they involve formal infinite series of functions of shift
operators, which severely limits the computational ability to verify the conjecture. We
expect that the general proof to be found some time in the near future.

The DELL Hamiltonians provide a two-parameter (w, p) generalization of the trigono-
metric Ruijsenaars-Schneider integrable system, whose eigenfunctions are also known as
Macdonald polynomials. The common eigenfunctions of the full DELL Hamiltonians are
therefore a natural candidate to replace the Macdonald polynomials in the double-elliptic
setting, and we will call them double elliptic Macdonald functions. They depend on four
parameters – q, t and p, w. We expect them to agree with ‘a�ne Macdonald polynomials’
in representation theory [EJ], similar in the number of parameters and limiting behavior.

We have also found the formal spectrum of DELL Hamiltonians which can be formu-
lated using defect partition functions of a 6d gauge theory on R4 ⇥T 2 and is similar to the
analogous 5d version, albeit with an important di↵erence.
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1.4. Main Results. We propose the new quantum integrable system, called DELL, which
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commutation relation bxibpj = q�ij bpjbxj act on functions of positions as

(1.12) bxif(x1, . . . , xN ) = xif(x1, . . . , xN ), bpif(x1, . . . , xN ) = f(x1, . . . , qxi, . . . , xN ) .

We shall now formulate three conjectures about the properties of the DELL model,
which we have checked in a number of cases. We expect that these conjectures will be
proven in the near future using methods of enumerative algebraic geometry and geometric
representation theory.

Conjecture 1.1. The quantum DELL Hamiltonians H1, . . .HN�1 in (1.10) commute,

(1.13) [ bHa, bHb] = 0 , a 6= b .

We were able to check the commutativity of DELL Hamiltonians up to several orders
(w2, p2 for N = 2, 3 and w2, p1 for N = 4) in expansion in elliptic parameters p and w,
which gives us confidence that the conjecture should hold. As the reader can see the DELL
Hamiltonians are highly non-local as they involve formal infinite series of functions of shift
operators, which severely limits the computational ability to verify the conjecture. We
expect that the general proof to be found some time in the near future.

The DELL Hamiltonians provide a two-parameter (w, p) generalization of the trigono-
metric Ruijsenaars-Schneider integrable system, whose eigenfunctions are also known as
Macdonald polynomials. The common eigenfunctions of the full DELL Hamiltonians are
therefore a natural candidate to replace the Macdonald polynomials in the double-elliptic
setting, and we will call them double elliptic Macdonald functions. They depend on four
parameters – q, t and p, w. We expect them to agree with ‘a�ne Macdonald polynomials’
in representation theory [EJ], similar in the number of parameters and limiting behavior.

We have also found the formal spectrum of DELL Hamiltonians which can be formu-
lated using defect partition functions of a 6d gauge theory on R4 ⇥T 2 and is similar to the
analogous 5d version, albeit with an important di↵erence.

3N degrees of freedom with removed center of mass

-particle DELL HamiltoniansN

[PK Shakirov]

Eigenvalue equation
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3.2. The DELL System. Together with Shakirov, we have introduced [KS] the quantum
double elliptic or double periodic (DELL) integrable system whose Hamiltonians enjoy dou-
ble periodicity both in momenta and coordinates. This model sits in oval # 1 and is at
the top of the hierarchy of integrable many-body systems of Calogero-Ruijsenaars type.
Shortly after, the Hamiltonians were slightly modified in [GZ2, GZ] to be better fit the
dualities which are addressed here, in particular, a Lax operator has been produced.

The quantum DELL model for N � 1 degrees of freedom (or N degrees of freedom with
the removed center of mass) is described by the following Hamiltonians

(3.8) bHa = O�1

0
Oa , a = 1, . . . , N � 1 ,

where operators O0,O1, . . . ,ON�1 are Fourier modes of the following current
(3.9)

O(z) =
X

n2Z
On z

n =
1X

n1,...,nN=�1
(�z)

P
ni w

P ni(ni�1)
2

Y

i<j

✓p
�
~ni�njxi/xj

�
p
n1
1

. . . p
nN
N .

Here ✓p are certain modifications of ✓-functions while the canonically conjugate position
and momentum operators obeying canonical q-commutation relation xipj = q

�ijpjxj . As
one can see, the DELL Hamiltonians are highly nonlocal as they involve formal infinite
series of functions of shift operators. As of this writing, it remains to be proven that DELL
Hamiltonians (3.8) commute with each other; the commutativity has been checked up to
several orders in expansion in elliptic parameters p and w.

We have also found the formal spectrum of DELL Hamiltonians which can be formulated
using localization. The utilizes the elliptic version of a�ne Laumon space [N]

Conjecture 3.8. Let ZDELL
inst (p, x1, . . . , xN ) be an equivariant elliptic genus of the a�ne

Laumon space. Then there exists a function �(z,a, w, p) such that

(3.10) O(z)ZDELL
inst (p, x1, . . . , xN ) = �(z,a, w, p) O0Z

DELL
inst (p, x1, . . . , xN ) .

In particular, by expanding currents bO(z) as in (3.9) and �(z,a, w, p) =
P

n �n(a, w, p)zn

in z we obtain similar relations for each operator bOn(z), or, using (3.8) we obtain the

eigenvalue problem for DELL Hamiltonians

(3.11) HnZ
DELL
inst (p, x1, . . . , xN ) = �n(a, w, p)ZDELL

inst (p, x1, . . . , xN ) .

At the moment there exists a plethora of computer computational evidence that the
above conjectures hold.

The classical DELL model was introduced in [HIV, BGOR, BH] using six dimensional
gauge theories with eight supercharges compactified on a torus. It was shown how to
construct the spectral curve, or, equivalently, the Seiberg-Witten curve of the corresponding
6d theory, from M-theory. The two elliptic parameters of DELL, p and w are related to the
gauge coupling of the 6d theory and to the elliptic modulus of the compactification torus
respectively.

There has been parallel e↵orts to construct quantum DELL system based on self-duality
under 3d mirror symmetry. The summary of the up to date results in that direction as well
as references are given in [MM].

3.3. The Elliptic RS Model. The eRS model from oval # 3 can be understood as either
elliptic deformation of the tRS model or as the limit w �! 0 of the DELL system above.
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Its Hamiltonians read

(3.12) HeRS
r =

X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

✓1(~⇣i/⇣j |p)

✓1(~⇣i/⇣j |p)

Y

i2I
pk ,

where p 2 C⇥ is the parameter of elliptic deformation.
The current progress in finding the spectrum of the eRS model can summarized as the

following conjecture for the eigenfunctions and theorem of the eigenvalues

Conjecture 3.9 ([BKK]). The eigenfunctions of the elliptic Ruijsenaars-Schneider Hamil-

tonians

(3.13) HeRS
k ZRS(a,x) = �k(a)ZRS(a,x) , k = 1, . . . , N � 1 .

are given by the K-theoretic holomorphic equivariant Euler characteristic of the a�ne Lau-

mon space La↵
d

(3.14) ZRS =
X

d

qd
Z

Ld

1 ,

where q = (q1, . . . , qn) is a string of C⇥
-valued coordinates on the maximal torus of La↵

d .

Theorem 3.10 ([GKKS]). The eigenvalues �k(a) are equivariant Chern characters of bun-

dles ⇤r
W , where W is the trivial bundle of the corresponding ADHM space

(3.15) �k(a) =
k�1Y

n=0

✓(~N�n)

✓(~n+1)
· Z

RS(a, ~⇢
q
!k)

ZRS(a, ~⇢)
, k = 1, . . . , N � 1 ,

where ZRS
is defined in the previous theorem, !k is the k-th fundamental weight of repre-

sentation of SU(N), and ⇢ is the SU(N) Weyl vector.

3.4. The Calogero-Moser Systems. The Calogero-Moser systems have been shown to
be related to quantum cohomology of quiver varieties. It was also shown in [N] that Euler
characteristic of the a�ne Laumon space is the eigenfunction of the elliptic Calogero-Moser
system following conjectures of [B].

More recently, the eCM eigenvalue problem was approached [N2,N3] from the vantage
point of qq-characters and the author have found an implicit proof.

Representation-theoretically, the wavefunctions of the many-body models on the yellow
diagonal are described by Euler characteristic of the Laumon space whereas those on the
green diagonal are described by their a�ne analogs.

3.5. Spaces of Opers for Elliptic Many-Body Systems. A careful reader may find an
obvious drawback in the diamond in Fig. 2. All ovals on the yellow and white diagonals have
spaces of opers assigned to the respected integrable models. However, there are no known
oper-like structures for the elliptic (a�ne) models of the green diagonal. Presumably one
needs an additional geometric structure which reflects the elliptic/a�ne deformation, i.e.
another multiplicative/additive action on the base of the oper bundle with respect to which
one needs to work equivariantly. This represents itself an intriguing problem. Perhaps
certain ideas from the original work of Cherednik [C,C2] could be geometrized.

As far as space of opers and dual integrable systems are concerned, another interesting
direction is to extend the setup to superalgebras. Some progress in this direction has been
made in [Z,HMVY,Z2].

Euler characteristic
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3.2. The DELL System. Together with Shakirov, we have introduced [KS] the quantum
double elliptic or double periodic (DELL) integrable system whose Hamiltonians enjoy dou-
ble periodicity both in momenta and coordinates. This model sits in oval # 1 and is at
the top of the hierarchy of integrable many-body systems of Calogero-Ruijsenaars type.
Shortly after, the Hamiltonians were slightly modified in [GZ2, GZ] to be better fit the
dualities which are addressed here, in particular, a Lax operator has been produced.

The quantum DELL model for N � 1 degrees of freedom (or N degrees of freedom with
the removed center of mass) is described by the following Hamiltonians

(3.8) bHa = O�1

0
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Here ✓p are certain modifications of ✓-functions while the canonically conjugate position
and momentum operators obeying canonical q-commutation relation xipj = q

�ijpjxj . As
one can see, the DELL Hamiltonians are highly nonlocal as they involve formal infinite
series of functions of shift operators. As of this writing, it remains to be proven that DELL
Hamiltonians (3.8) commute with each other; the commutativity has been checked up to
several orders in expansion in elliptic parameters p and w.

We have also found the formal spectrum of DELL Hamiltonians which can be formulated
using localization. The utilizes the elliptic version of a�ne Laumon space [N]

Conjecture 3.8. Let ZDELL
inst (p, x1, . . . , xN ) be an equivariant elliptic genus of the a�ne

Laumon space. Then there exists a function �(z,a, w, p) such that

(3.10) O(z)ZDELL
inst (p, x1, . . . , xN ) = �(z,a, w, p) O0Z

DELL
inst (p, x1, . . . , xN ) .

In particular, by expanding currents bO(z) as in (3.9) and �(z,a, w, p) =
P

n �n(a, w, p)zn

in z we obtain similar relations for each operator bOn(z), or, using (3.8) we obtain the

eigenvalue problem for DELL Hamiltonians

(3.11) HnZ
DELL
inst (p, x1, . . . , xN ) = �n(a, w, p)ZDELL

inst (p, x1, . . . , xN ) .

At the moment there exists a plethora of computer computational evidence that the
above conjectures hold.

The classical DELL model was introduced in [HIV, BGOR, BH] using six dimensional
gauge theories with eight supercharges compactified on a torus. It was shown how to
construct the spectral curve, or, equivalently, the Seiberg-Witten curve of the corresponding
6d theory, from M-theory. The two elliptic parameters of DELL, p and w are related to the
gauge coupling of the 6d theory and to the elliptic modulus of the compactification torus
respectively.

There has been parallel e↵orts to construct quantum DELL system based on self-duality
under 3d mirror symmetry. The summary of the up to date results in that direction as well
as references are given in [MM].

3.3. The Elliptic RS Model. The eRS model from oval # 3 can be understood as either
elliptic deformation of the tRS model or as the limit w �! 0 of the DELL system above.
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Vertex functions are eigenfunctions of quantum tRS difference 
operators!

[PK Zeitlin [arXiv:1802.04463]   
Math.Res.Lett. 28 (2021) 435]
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For quantum deformation parameterized by  we study quasimaps from  to z ℙ1 X
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<latexit sha1_base64="aN4a8xqUmBrZNSoOjZnpHuIhLFc=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmqoMtiNy4r2Ae0MUymk3bo5OHMRAih/oobF4q49UPc+TdO2iy09cDA4Zx7uWeOF3MmlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRhHZIxCPR97CknIW0o5jitB8LigOP0543beV+75EKyaLwTqUxdQI8DpnPCFZacs3qMMBq4nlZa3Y/VCyg0n1wzZpVt+ZAq8QuSA0KtF3zaziKSBLQUBGOpRzYVqycDAvFCKezyjCRNMZkisd0oGmI9Rknm4efoVOtjJAfCf1Chebq740MB1Kmgacn86hy2cvF/7xBovwrJ2NhnCgaksUhP+FIRShvAo2YoETxVBNMBNNZEZlggYnSfVV0Cfbyl1dJt1G3z+uN24ta87qoowzHcAJnYMMlNOEG2tABAik8wyu8GU/Gi/FufCxGS0axU4U/MD5/ADC3lR4=</latexit>

p1 = 0, p2 = 1
<latexit sha1_base64="4jM5YqHXHjZNySnQQ6dBsCblhjQ=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCCykzVdBNoejGZQX7gM4wZNJMG5rJhCQjDKVu/BU3LhRx61+4829Mp7PQ1nO5cDjnXpJ7QsGo0o7zbS0tr6yurZc2yptb2zu79t5+WyWpxKSFE5bIbogUYZSTlqaaka6QBMUhI51wdDP1Ow9EKprwe50J4sdowGlEMdJGCuxDEbh16Jx5eUER1Ooe5ZHOArviVJ0ccJG4BamAAs3A/vL6CU5jwjVmSKme6wjtj5HUFDMyKXupIgLhERqQnqEcxUT54/yCCTwxSh9GiTTNNczV3xtjFCuVxaGZjJEeqnlvKv7n9VIdXfljykWqCcezh6KUQZ3AaRywTyXBmmWGICyp+SvEQyQR1ia0sgnBnT95kbRrVfe8Wru7qDSuizhK4Agcg1PggkvQALegCVoAg0fwDF7Bm/VkvVjv1sdsdMkqdg7AH1ifPzSHlNQ=</latexit> f X

Classical K-theory of a quiver variety  is generated by tensorial polynomials of tautological 

bundles on  and their duals

X
X

Saddle point approximation yields Bethe equations 
<latexit sha1_base64="2g+8g7G49SkhRDDZz63Lspj09bY=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAiuyoz4WhbduKxgH9AOJZNm2thMMiYZoQz9BzcuFHHr/7jzb0zbWWjrgcDhnHvJPSdMBDfW877R0vLK6tp6YaO4ubW9s1va228YlWrK6lQJpVshMUxwyeqWW8FaiWYkDgVrhsObid98YtpwJe/tKGFBTPqSR5wS66TGY8cq7HdLZa/iTYEXiZ+TMuSodUtfnZ6iacykpYIY0/a9xAYZ0ZZTwcbFTmpYQuiQ9FnbUUliZoJseu0YHzulhyOl3ZMWT9XfGxmJjRnFoZuMiR2YeW8i/ue1UxtdBRmXSWqZpLOPolRgF3ESHfe4ZtSKkSOEau5uxXRANKHWFVR0JfjzkRdJ47TiX1TO787K1eu8jgIcwhGcgA+XUIVbqEEdKDzAM7zCG1LoBb2jj9noEsp3DuAP0OcP+9GOwQ==</latexit>

q ! 1

<latexit sha1_base64="OsDIE4LQzNmUlguQ0x1NkR3st8M="></latexit>

nY

j=1

si � aj
taj � si

= z
kY

j=1

sit� sj
si � tsj

https://arxiv.org/abs/1802.04463
spires-open-journal://


The QQ-System

V

W

<latexit sha1_base64="ZtTELygndMQcbaD4R6IKL9brBoM=">AAACBHicbZC7TsMwFIadcivlFmDsYlEhMVUJqoCxgoWxSPQiNaFy3JPWqnOR7VSqog4svAoLAwix8hBsvA1OmgFajmTr03/Okf3/XsyZVJb1bZTW1jc2t8rblZ3dvf0D8/CoI6NEUGjTiEei5xEJnIXQVkxx6MUCSOBx6HqTm6zfnYKQLArv1SwGNyCjkPmMEqWlgVm1HBXhTnZ1cY4PzhQgI2tg1qy6lRdeBbuAGiqqNTC/nGFEkwBCRTmRsm9bsXJTIhSjHOYVJ5EQEzohI+hrDEkA0k1zE3N8qpUh9iOhT6hwrv7eSEkg5Szw9GRA1Fgu9zLxv14/Uf6Vm7IwThSEdPGQn3CsLWaJ4CETQBWfaSBUMP1XTMdEEKp0bhUdgr1seRU653X7ot64a9Sa10UcZVRFJ+gM2egSNdEtaqE2ougRPaNX9GY8GS/Gu/GxGC0Zxc4x+lPG5w98hpa7</latexit>

0 ! V ! W ! V _ ! 0Short exact sequence of bundles for T*Grk,n

Eigenvalues of operators  and  (generated by ) satisfy the QQ-relation Q Q̃ V∨

which is equivalent to Bethe equations

Baxter Q-operator has eigenvalue
<latexit sha1_base64="RuhVa+vImBZll1BYHAzTJ9JQTYw=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyxCu7AkUtRNoejGZQv2AW0Mk8mkHTqZCTMToYTixl9x40IRt36FO//GaZuFth64cDjnXu69x48pkcq2v43cyura+kZ+s7C1vbO7Z+4ftCVPBMItxCkXXR9KTAnDLUUUxd1YYBj5FHf80c3U7zxgIQlnd2ocYzeCA0ZCgqDSkmceNUtJudaPBQ+8lNScyf2olJxJj5Q9s2hX7BmsZeJkpAgyNDzzqx9wlESYKUShlD3HjpWbQqEIonhS6CcSxxCN4AD3NGUwwtJNZy9MrFOtBFbIhS6mrJn6eyKFkZTjyNedEVRDuehNxf+8XqLCKzclLE4UZmi+KEyopbg1zcMKiMBI0bEmEAmib7XQEAqIlE6toENwFl9eJu3zinNRqTarxfp1FkceHIMTUAIOuAR1cAsaoAUQeATP4BW8GU/Gi/FufMxbc0Y2cwj+wPj8AXvnljg=</latexit>

Q(u) =
kY

i=1

(u� si)

<latexit sha1_base64="NFV2ZNxSyXSSlBT7jeLwqrTAvCg="></latexit>

Q(u) =
kX

i=1

(�1)kuk�i(⇤iV )(z)~

Relations in the extended Grothendieck ring for finite-dimensional representations of Ut( ̂g)

Relations in equivariant cohomology/K-theory of Nakajima quiver varieties

[Frenkel, Hernandez] ….

[Pushkar, Smirnov, Zeitlin] [PK, Pushkar, Smirnov, Zeitlin] ….

Spectral determinants in the QDE/IM Correspondence

Spectral determinants in the QDE/IM correspondence
[Bazhanov, Lukyanov, Zamolodchikov] [Masoero, Raimondo, Valeri] ….

Describes (t-)oper bundles [Frenkel, PK, Zeitlin, Sage]

[Frenkel, PK, Zeitlin, to appear]

Also:

Relations between generalized minors (Jacobi-like identities)
[Fomin, Zelevinski] ….

<latexit sha1_base64="43gBQaRCnEaBEWPKdsJMVuGkt0I="></latexit>

z eQ(tu)Q(u)�Q(tu) eQ(u) =
nY

i=1

(u� ai)



(G,t)-Opers
Principal bundle  over  ℱG ℙ1

-connection  is a meromorphic section of (G, t) A Hom𝒪ℙ1
(ℱG, ℱt

G)

t-gauge transformation
<latexit sha1_base64="m/tkvcz93x1aa7aaKfB+ToDnbOM=">AAACAXicbVBNS8NAEJ3Ur1q/ol4EL4tFaC8lkaIeiz3osYJthaaUzXbbLt1swu5GKKFe/CtePCji1X/hzX/jps1BWx8MPN6bYWaeH3GmtON8W7mV1bX1jfxmYWt7Z3fP3j9oqTCWhDZJyEN572NFORO0qZnm9D6SFAc+p21/XE/99gOVioXiTk8i2g3wULABI1gbqWcfDUtx2WMCXZe8AOuR7yf1qZHKPbvoVJwZ0DJxM1KEDI2e/eX1QxIHVGjCsVId14l0N8FSM8LptODFikaYjPGQdgwVOKCqm8w+mKJTo/TRIJSmhEYz9fdEggOlJoFvOtMr1aKXiv95nVgPLrsJE1GsqSDzRYOYIx2iNA7UZ5ISzSeGYCKZuRWREZaYaBNawYTgLr68TFpnFfe8Ur2tFmtXWRx5OIYTKIELF1CDG2hAEwg8wjO8wpv1ZL1Y79bHvDVnZTOH8AfW5w9OcZWH</latexit>

g(u) 2 G(C(u))

Triple  

 is the  connection 

 is a line subbundle

(E, A, ℒ)
(E, A) (SL(2), t)
ℒ ⊂ E

The induced map    is an isomorphismĀ : ℒ → (E/ℒ)t

in a trivialization ℒ = Span(s)

(SL(2),q)-oper

[PK, Sage, Zeitlin, Commun.Math.Phys. 381 (2021) 641]

Chose trivialization of  ℒ Z = diag(⇣, ⇣�1)Twist element
<latexit sha1_base64="H3TDWQ6ULp9BR9Ovzhx7BrhJWdM=">AAACI3icbVDLSsNAFJ34rPFVdekmWIS6KYn4QhCKbly2YB/QhDKZ3LZDJ5MwM1FL6L+48VfcuFCKGxf+i9M2iLYeGDiccy5z7/FjRqWy7U9jYXFpeWU1t2aub2xubed3dusySgSBGolYJJo+lsAoh5qiikEzFoBDn0HD79+M/cY9CEkjfqcGMXgh7nLaoQQrLbXzl7KYHF25PnQpT+MQK0Efh2ZVi65rug80AEVZAGl1qCXTBR78pNr5gl2yJ7DmiZORAspQaedHbhCRJASuCMNSthw7Vl6KhaKEwdB0EwkxJn3chZamHIcgvXRy49A61EpgdSKhH1fWRP09keJQykHo66TerydnvbH4n9dKVOfCSymPEwWcTD/qJMxSkTUuzAqoAKLYQBNMBNW7WqSHBSZK12rqEpzZk+dJ/bjknJVOqyeF8nVWRw7towNURA46R2V0iyqohgh6Qi/oDb0bz8arMTI+ptEFI5vZQ39gfH0D0uykcA==</latexit>

s(u) =

✓
Q(u)
eQ(u)

◆

t-Oper condition with  — SL(2) QQ-systemA(u) = Z

<latexit sha1_base64="mmid0wNZcHt5iLIWoFUNo3wNwgE=">AAACCXicbVDLSgMxFM34rPU16tJNsAjtwjIjvpZVNy4r2Ae0Y8mkaRuaZIY8hDJ068ZfceNCEbf+gTv/xnQ6C209EDiccy8354Qxo0p73rezsLi0vLKaW8uvb2xubbs7u3UVGYlJDUcsks0QKcKoIDVNNSPNWBLEQ0Ya4fB64jceiFQ0End6FJOAo76gPYqRtlLHhZdFU2pzFCsdwX5Rm1KqWGpK98mRP+64Ba/spYDzxM9IAWSodtyvdjfChhOhMUNKtXwv1kGCpKaYkXG+bRSJER6iPmlZKhAnKkjSJGN4aJUu7EXSPqFhqv7eSBBXasRDO8mRHqhZbyL+57WM7l0ECRWx0UTg6aGeYdCmntQCu1QSrNnIEoQltX+FeIAkwtqWl7cl+LOR50n9uOyflU9vTwqVq6yOHNgHB6AIfHAOKuAGVEENYPAInsEreHOenBfn3fmYji442c4e+APn8we+F5fV</latexit>

A(u) 7! g(tu)A(u)g(u)�1

<latexit sha1_base64="I+xHLL5k0Kuoavwg7Ie4p1hKdRw=">AAACBHicbVC7TgJBFJ3FF+ILtaSZSEygIbvGV4naWGIij4TdkNnhAhNmZ9d5aAihsPFXbCw0xtaPsPNvHB6Fgie5Nyfn3JuZe8KEM6Vd99tJLS2vrK6l1zMbm1vbO9ndvZqKjaRQpTGPZSMkCjgTUNVMc2gkEkgUcqiH/auxX78HqVgsbvUggSAiXcE6jBJtpVY2pwraFP0HaHcBXxRMESvbfAF32G1l827JnQAvEm9G8miGSiv75bdjaiIQmnKiVNNzEx0MidSMchhlfKMgIbRPutC0VJAIVDCcHDHCh1Zp404sbQmNJ+rvjSGJlBpEoZ2MiO6peW8s/uc1je6cB0MmEqNB0OlDHcOxjvE4EdxmEqjmA0sIlcz+FdMekYRqm1vGhuDNn7xIakcl77R0cnOcL1/O4kijHDpABeShM1RG16iCqoiiR/SMXtGb8+S8OO/Ox3Q05cx29tEfOJ8/zSqWSA==</latexit>

s(tu) ^A(u)s(u) 6= 0

<latexit sha1_base64="43gBQaRCnEaBEWPKdsJMVuGkt0I="></latexit>

z eQ(tu)Q(u)�Q(tu) eQ(u) =
nY

i=1

(u� ai)

<latexit sha1_base64="5e6q6G8C5d9C7sPPYkuq3IH4dBw=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwVRLxhauiGzdCBfuAJobJdNIOnTyYuRFK6NaNv+LGhSJu/QN3/o2TNotaPTBw5px7ufcePxFcgWV9G6WFxaXllfJqZW19Y3PL3N5pqTiVlDVpLGLZ8YligkesCRwE6ySSkdAXrO0Pr3K//cCk4nF0B6OEuSHpRzzglICWPBPfeHCBnZDAwPezxvjediCe/Xpm1apZE+C/xC5IFRVoeOaX04tpGrIIqCBKdW0rATcjEjgVbFxxUsUSQoekz7qaRiRkys0ml4zxgVZ6OIilfhHgiTrbkZFQqVHo68p8RzXv5eJ/XjeF4NzNeJSkwCI6HRSkAkOM81hwj0tGQYw0IVRyvSumAyIJBR1eRYdgz5/8l7SOavZp7eT2uFq/LOIooz20jw6Rjc5QHV2jBmoiih7RM3pFb8aT8WK8Gx/T0pJR9OyiXzA+fwAIUZnw</latexit>

Mt : P1 ! P1

<latexit sha1_base64="hzuR9VIK04Sj7C+rmhwNRHaTAuQ=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKX8eiF48VrC10l5JNs21oshuSiVCW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMvVoIb8P1vr7Syura+Ud6sbG3v7O5V9w8eTWY1ZS2aiUx3YmKY4ClrAQfBOkozImPB2vHoduq3n5g2PEsfYKxYJMkg5QmnBJwU2lASZSDDgG2vWvPr/gx4mQQFqaECzV71K+xn1EqWAhXEmG7gK4hyooFTwSaV0BqmCB2RAes6mhLJTJTPbp7gE6f0cZJpVyngmfp7IifSmLGMXackMDSL3lT8z+taSK6jnKfKAkvpfFFiBZ4+6QLAfa4ZBTF2hFDN3a2YDokmFFxMFRdCsPjyMnk8qweX9Yv781rjpoijjI7QMTpFAbpCDXSHmqiFKFLoGb2iN896L9679zFvLXnFzCH6A+/zB8wpkYo=</latexit>

u 7! tu

<latexit sha1_base64="URdjIh4QUZyWFfoUYp6PBsUevLc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQixchonlAsoTZyWwyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB40WNBRV3XR3BYkUBl33yyksLa+srhXXSxubW9s75d29polTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdD31W49cGxGrBxwn3I/oQIlQMIpWur/tYa9ccavuDOQv8XJSgRz1Xvmz249ZGnGFTFJjOp6boJ9RjYJJPil1U8MTykZ0wDuWKhpx42ezUyfkyCp9EsbalkIyU39OZDQyZhwFtjOiODSL3lT8z+ukGF76mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTplGwI3uLLf0nzpOqdV8/uTiu1qzyOIhzAIRyDBxdQgxuoQwMYDOAJXuDVkc6z8+a8z1sLTj6zD7/gfHwDMvqNwg==</latexit>

Mt

spires-open-journal://


q-Opers, QQ-System & Bethe Ansatz
[Frenkel, PK, Sage, Zeitlin JEMS 2023]

Theorem: There is a 1-to-1 correspondence between the set of nondegenerate -twisted 
-opers on  and the set of nondegenerate polynomial solutions of the QQ-system 

based on 

Z
(G, t) ℙ1

̂L𝔤



-Opers (G, q)

t -OpersG

XXZ

XXX

rGaudin

tGaudin

tRS

rCM

tCMrRS

<latexit sha1_base64="FQb5k4HIb/3rEaCyXTHDMxQBrhw=">AAACFnicdVDLSgMxFM3UV62vUZdugkVwY5nWPnfFblxWsA/ojEMmzbShmQdJRixDv8KNv+LGhSJuxZ1/Y6YdoYoeSDiccy/33uOEjAppGJ9aZmV1bX0ju5nb2t7Z3dP3D7oiiDgmHRywgPcdJAijPulIKhnph5wgz2Gk50xaid+7JVzQwL+W05BYHhr51KUYSSXZ+pnpITl2nLg1s8MbU1KPiMUPl5y71LH1vFEwGpVqowYVmUORRr1SKp/DYqrkQYq2rX+YwwBHHvElZkiIQdEIpRUjLilmZJYzI0FChCdoRAaK+kgNseL5WTN4opQhdAOuni/hXF3uiJEnxNRzVGWyqvjtJeJf3iCSbt2KqR9Gkvh4MciNGJQBTDKCQ8oJlmyqCMKcql0hHiOOsFRJ5lQI35fC/0m3VChWC+Wrcr55kcaRBUfgGJyCIqiBJrgEbdABGNyDR/AMXrQH7Ul71d4WpRkt7TkEP6C9fwFM16C/</latexit>

C⇥
p ⇥ C⇥

x

<latexit sha1_base64="+dut3qUOmJDfahmz5Rb/oNvI4V8=">AAACD3icdVC7TsMwFHXKq5RXgJHFogIxVWnpc6vowlgk+pCaEDmu01p1HrIdRBX1D1j4FRYGEGJlZeNvcNogFQRHsnV0zr269x4nZFRIw/jUMiura+sb2c3c1vbO7p6+f9AVQcQx6eCABbzvIEEY9UlHUslIP+QEeQ4jPWfSSvzeLeGCBv61nIbE8tDIpy7FSCrJ1k9ND8mx48StmR3emJJ6RCx+uOTc2XreKBiNSrVRg4rMoUijXimVz2ExVfIgRdvWP8xhgCOP+BIzJMSgaITSihGXFDMyy5mRICHCEzQiA0V9pCZa8fyeGTxRyhC6AVfPl3CuLnfEyBNi6jmqMtlR/PYS8S9vEEm3bsXUDyNJfLwY5EYMygAm4cAh5QRLNlUEYU7VrhCPEUdYqghzKoTvS+H/pFsqFKuF8lU537xI48iCI3AMzkAR1EATXII26AAM7sEjeAYv2oP2pL1qb4vSjJb2HIIf0N6/AH9YnZ0=</latexit>

C⇥
p ⇥ Cx

<latexit sha1_base64="IlV8Xr3RjnGdS1EDJQmQeKAe5zI=">AAACD3icdZBLS8NAEMc39VXrK+rRy2JRPJW09nkr9uKxgn1AE8Nmu2mXbh7sbsQS+g28+FW8eFDEq1dvfhs3bYQqOjDw5zczzMzfCRkV0jA+tczK6tr6RnYzt7W9s7un7x90RRBxTDo4YAHvO0gQRn3SkVQy0g85QZ7DSM+ZtJJ675ZwQQP/Wk5DYnlo5FOXYiQVsvVT00Ny7Dhxa2aHpqQeEXAJ3d0smK3njYLRqFQbNajEPJRo1Cul8jkspiQP0mjb+oc5DHDkEV9ihoQYFI1QWjHikmJGZjkzEiREeIJGZKCkj9QSK57/M4MnigyhG3CVvoRzujwRI0+IqeeozuRU8buWwL9qg0i6dSumfhhJ4uPFIjdiUAYwMQcOKSdYsqkSCHOqboV4jDjCUlmYUyZ8fwr/F91SoVgtlK/K+eZFakcWHIFjcAaKoAaa4BK0QQdgcA8ewTN40R60J+1Ve1u0ZrR05hD8CO39C31anZ0=</latexit>

Cp ⇥ C⇥
x

<latexit sha1_base64="pjkOq7CBRf0fKrzy0LAmmTtXH9c=">AAACCHicdVDLSsNAFJ34rPUVdenCwSK4Kkntc1fsxmUF+4AmhMl00g6dPJiZiCV06cZfceNCEbd+gjv/xkkboYoeuHA4517uvceNGBXSMD61ldW19Y3N3FZ+e2d3b18/OOyKMOaYdHDIQt53kSCMBqQjqWSkH3GCfJeRnjtppX7vlnBBw+BGTiNi+2gUUI9iJJXk6CeWj+TYdZPWzIksSX0i4JJ05+gFo2g0KtVGDSoyhyKNeqVUvoBmphRAhrajf1jDEMc+CSRmSIiBaUTSThCXFDMyy1uxIBHCEzQiA0UDpDbayfyRGTxTyhB6IVcVSDhXlycS5Asx9V3Vmd4ofnup+Jc3iKVXtxMaRLEkAV4s8mIGZQjTVOCQcoIlmyqCMKfqVojHiCMsVXZ5FcL3p/B/0i0VzWqxfF0uNC+zOHLgGJyCc2CCGmiCK9AGHYDBPXgEz+BFe9CetFftbdG6omUzR+AHtPcvxEGaew==</latexit>

Cp ⇥ Cx

r -Opers G

-Opers (G, ϵ)

<latexit sha1_base64="NI6/Z6Xqze9xVB65zjk5eiu7QcM=">AAACCHicdVDLSsNAFJ3UV62vqEsXDhbBVUlLrO2uWASXFewDmhAm02k7dPJgZiKWkKUbf8WNC0Xc+gnu/BsnaQQVPXDhcM693HuPGzIqpGF8aIWl5ZXVteJ6aWNza3tH393riSDimHRxwAI+cJEgjPqkK6lkZBBygjyXkb47a6d+/4ZwQQP/Ws5DYnto4tMxxUgqydEPLQ/JKUYsvkic0JLUIyKTXDduJ86to5eNitGo1eomVCSDIs2GaTRNWM2VMsjRcfR3axTgyCO+xAwJMawaobRjxCXFjCQlKxIkRHiGJmSoqI/UQjvOHkngsVJGcBxwVb6Emfp9IkaeEHPPVZ3pjeK3l4p/ecNIjht2TP0wksTHi0XjiEEZwDQVOKKcYMnmiiDMqboV4iniCEuVXUmF8PUp/J/0apVqvXJ6ZZZb53kcRXAAjsAJqIIz0AKXoAO6AIM78ACewLN2rz1qL9rrorWg5TP74Ae0t08uLpq/</latexit>

Ep ⇥ Cx

e -OpersG

eGaudin
dual eCM

e -Opers (G, q)

XYZ
dual eRS

<latexit sha1_base64="0Nud0d/mdRLgxzwaHP6yHjyjbHM=">AAACD3icdZA7SwNBEMfnfMb4OrW0WQyKVbiEMyZdMAiWEcwDknjsbTbJkr0Hu3tiOO4b2PhVbCwUsbW189u4SU5Q0YGBP7+ZYWb+bsiZVJb1YSwsLi2vrGbWsusbm1vb5s5uUwaRILRBAh6Itosl5cynDcUUp+1QUOy5nLbccW1ab91QIVngX6lJSHseHvpswAhWGjnmUdfDakQwj88TJ+wq5lE5Q64b15LrOXBuHTNn5a1ysViykRaz0KJStq2KjQopyUEadcd87/YDEnnUV4RjKTsFK1S9GAvFCKdJthtJGmIyxkPa0dLHek0vnv2ToENN+mgQCJ2+QjP6fSLGnpQTz9Wd01Pl79oU/lXrRGpQ7sXMDyNFfTJfNIg4UgGamoP6TFCi+EQLTATTtyIywgITpS3MahO+PkX/i2YxXyjlTy7tXPUstSMD+3AAx1CAU6jCBdShAQTu4AGe4Nm4Nx6NF+N13rpgpDN78COMt0/pMZ3h</latexit>

Ep ⇥ C⇥
x

<latexit sha1_base64="5WIfndDuFflIO3gQBI9pkh91WOU=">AAACCXicdVDLSsNAFJ34rPUVdelmsAiuSlJqbXdFEVxWsA9oQphMJ+3QySTMTMQSunXjr7hxoYhb/8Cdf+OkjVBFD1w4nHMv997jx4xKZVmfxtLyyuraemGjuLm1vbNr7u13ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOuPLzK/e0uEpBG/UZOYuCEachpQjJSWPBM6IVIjjFh6OfViR9GQyEXpzjNLVtmqVyq1KtRkBk0a9arVqEI7V0ogR8szP5xBhJOQcIUZkrJvW7FyUyQUxYxMi04iSYzwGA1JX1OO9EY3nX0yhcdaGcAgErq4gjN1cSJFoZST0Ned2ZHyt5eJf3n9RAV1N6U8ThTheL4oSBhUEcxigQMqCFZsognCgupbIR4hgbDS4RV1CN+fwv9Jp1K2a+XT62qpeZ7HUQCH4AicABucgSa4Ai3QBhjcg0fwDF6MB+PJeDXe5q1LRj5zAH7AeP8CBuGbNw==</latexit>

Ep ⇥ Ex

<latexit sha1_base64="krgi1J6SwtB3GQ5+yPWjgZ642hE=">AAACD3icdVDLSgMxFL3js9bXqEs3waK4KtMy1nZXLILLCvYBbR0yadqGZh4kGbEM8wdu/BU3LhRx69adf2PajqCiB0IO59zLvfe4IWdSWdaHsbC4tLyymlnLrm9sbm2bO7tNGUSC0AYJeCDaLpaUM582FFOctkNBsedy2nLHtanfuqFCssC/UpOQ9jw89NmAEay05JhHXQ+rkevGteS6q5hHpRPO/5lBMI/PE+fWMXNW3ioXiyUbaTKDJpWybVVsVEiVHKSoO+Z7tx+QyKO+IhxL2SlYoerFWChGOE2y3UjSEJMxHtKOpj7WE3vx7J4EHWqljwaB0M9XaKZ+74ixJ+XEc3XldEn525uKf3mdSA3KvZj5YaSoT+aDBhFHKkDTcFCfCUoUn2iCiWB6V0RGWGCidIRZHcLXpeh/0izmC6X8yaWdq56lcWRgHw7gGApwClW4gDo0gMAdPMATPBv3xqPxYrzOSxeMtGcPfsB4+wTo253h</latexit>

C⇥
p ⇥ Ex

<latexit sha1_base64="Lh2BC0m+3LgjZQzIRLaY6ySd3ps=">AAACCHicdVDLSsNAFJ3UV62vqEsXDhbBVUlLrO2uWASXFewDmhAm02k7dPJgZiKWkKUbf8WNC0Xc+gnu/BsnaQQVPXDhcM693HuPGzIqpGF8aIWl5ZXVteJ6aWNza3tH393riSDimHRxwAI+cJEgjPqkK6lkZBBygjyXkb47a6d+/4ZwQQP/Ws5DYnto4tMxxUgqydEPLQ/JqevG7cQJLUk9IjIFIxZfJM6to5eNitGo1eomVCSDIs2GaTRNWM2VMsjRcfR3axTgyCO+xAwJMawaobRjxCXFjCQlKxIkRHiGJmSoqI/URjvOHkngsVJGcBxwVb6Emfp9IkaeEHPPVZ3pkeK3l4p/ecNIjht2TP0wksTHi0XjiEEZwDQVOKKcYMnmiiDMqboV4iniCEuVXUmF8PUp/J/0apVqvXJ6ZZZb53kcRXAAjsAJqIIz0AKXoAO6AIM78ACewLN2rz1qL9rrorWg5TP74Ae0t08txJq/</latexit>

Cp ⇥ Ex

?? 

???

??

??

<latexit sha1_base64="dhPp5E4MSFQ4cCTAaHSDYKVjlxc=">AAACA3icdVDJSgNBEO1xjXGLetNLYxAihDATs+gtUQ85RjCLJCH0dDpJk57F7hoxDAEv/ooXD4p49Se8+Td2FkFFHxQ83quiqp7tC67AND+MufmFxaXlyEp0dW19YzO2tV1VXiApq1BPeLJuE8UEd1kFOAhW9yUjji1YzR6cjf3aDZOKe+4lDH3WckjP5V1OCWipHdttAruF8LxYKo7aYbNvE5m8HiXqyavDdixupo7SJ9l8Gpspc4IJyWTyOWzNlDiaodyOvTc7Hg0c5gIVRKmGZfrQCokETgUbRZuBYj6hA9JjDU1d4jDVCic/jPCBVjq460ldLuCJ+n0iJI5SQ8fWnQ6BvvrtjcW/vEYA3eNWyF0/AObS6aJuIDB4eBwI7nDJKIihJoRKrm/FtE8koaBji+oQvj7F/5NqOmXlUtmLTLxwOosjgvbQPkogC+VRAZVQGVUQRXfoAT2hZ+PeeDRejNdp65wxm9lBP2C8fQIVQ5cs</latexit>

DAHA~,q(X,Y )

<latexit sha1_base64="XyJ1M/T69B2xxbnF0Th+7SaJun8=">AAACAnicdVDJSgNBEO1xjXEb9SReGoMQIYRJzKK3aC4eI5gFkhB6Op2kSc9Cd404DMGLv+LFgyJe/Qpv/o2dZAQVfVDweK+Kqnq2L7gCy/owFhaXlldWE2vJ9Y3NrW1zZ7ehvEBSVqee8GTLJooJ7rI6cBCs5UtGHFuwpj2uTv3mDZOKe+41hD7rOmTo8gGnBLTUM/c7wG4hgur5pBd1RjaRGTpJtzLhcc9MWdmT/FmxnMdW1pphRgqFcgnnYiWFYtR65nun79HAYS5QQZRq5ywfuhGRwKlgk2QnUMwndEyGrK2pSxymutHshQk+0kofDzypywU8U79PRMRRKnRs3ekQGKnf3lT8y2sHMDjtRtz1A2AunS8aBAKDh6d54D6XjIIINSFUcn0rpiMiCQWdWlKH8PUp/p808tlcKVu8KqQqF3EcCXSADlEa5VAZVdAlqqE6ougOPaAn9GzcG4/Gi/E6b10w4pk99APG2yflVpce</latexit>

tCA~,c(X, y)
<latexit sha1_base64="bEc38YRhlo5UH2zju4S1v0teIDo=">AAACAnicdVDJSgNBEO1xjXGLehIvjUGIEMIkZtFbNBePEcwiSQg9nU7SpGehu0YShuDFX/HiQRGvfoU3/8bOZAQVfVDweK+KqnqWJ7gC0/wwFhaXlldWY2vx9Y3Nre3Ezm5dub6krEZd4cqmRRQT3GE14CBY05OM2JZgDWtUmfmNWyYVd51rmHisY5OBw/ucEtBSN7HfBjaGACrn027QHlpEpuk0NU7fHHcTSTNzkjsrlHLYzJghQpLPl4o4GylJFKHaTby3ey71beYAFUSpVtb0oBMQCZwKNo23fcU8QkdkwFqaOsRmqhOEL0zxkVZ6uO9KXQ7gUP0+ERBbqYlt6U6bwFD99mbiX17Lh/5pJ+CO5wNz6HxR3xcYXDzLA/e4ZBTERBNCJde3YjokklDQqcV1CF+f4v9JPZfJFjOFq3yyfBHFEUMH6BClUBaVUBldoiqqIYru0AN6Qs/GvfFovBiv89YFI5rZQz9gvH0C5ZaXHg==</latexit>

tCA~,c(x, Y )

<latexit sha1_base64="8GGmSUOTlQ6KTTb6UtNgkrDefuw=">AAACAnicdVDJSgNBEO2JW4xb1JN4aQxChDBMYha9RXPxGMEskITQ0+kkTXoWumskYRi8+CtePCji1a/w5t/YWQQVfVDweK+Kqnq2L7gCy/owYkvLK6tr8fXExubW9k5yd6+uvEBSVqOe8GTTJooJ7rIacBCs6UtGHFuwhj2qTP3GLZOKe+4NTHzWccjA5X1OCWipmzxoAxtDKCsXUTdsD20iMzRKjzOTk24yZZmnufNCKYct05phRvL5UhFnF0oKLVDtJt/bPY8GDnOBCqJUK2v50AmJBE4FixLtQDGf0BEZsJamLnGY6oSzFyJ8rJUe7ntSlwt4pn6fCImj1MSxdadDYKh+e1PxL68VQP+sE3LXD4C5dL6oHwgMHp7mgXtcMgpiogmhkutbMR0SSSjo1BI6hK9P8f+knjOzRbNwnU+VLxdxxNEhOkJplEUlVEZXqIpqiKI79ICe0LNxbzwaL8brvDVmLGb20Q8Yb58TGZc8</latexit>

rCA~,c(x, y)

eCM

???
eRS

???
DELL

<latexit sha1_base64="12lWjKv2iiwRQiRXeq8KXi4rrSw=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmZiFj0l6MVjFLNAMoSeTk/SpGehu0cIQ/7AiwdFvPpH3vwbO5MRVPRBweO9KqrquRFnUlnWh5FbWV1b38hvFra2d3b3ivsHHRnGgtA2CXkoei6WlLOAthVTnPYiQbHvctp1p1cLv3tPhWRhcKdmEXV8PA6YxwhWWrptNIbFkmWelS+q9TKyTCtFSiqVeg3ZmVKCDK1h8X0wCkns00ARjqXs21aknAQLxQin88IgljTCZIrHtK9pgH0qnSS9dI5OtDJCXih0BQql6veJBPtSznxXd/pYTeRvbyH+5fVj5Z07CQuiWNGALBd5MUcqRIu30YgJShSfaYKJYPpWRCZYYKJ0OAUdwten6H/SKZt2zazeVErNyyyOPBzBMZyCDXVowjW0oA0EPHiAJ3g2psaj8WK8LltzRjZzCD9gvH0CXtCNRw==</latexit>

??

<latexit sha1_base64="12lWjKv2iiwRQiRXeq8KXi4rrSw=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmZiFj0l6MVjFLNAMoSeTk/SpGehu0cIQ/7AiwdFvPpH3vwbO5MRVPRBweO9KqrquRFnUlnWh5FbWV1b38hvFra2d3b3ivsHHRnGgtA2CXkoei6WlLOAthVTnPYiQbHvctp1p1cLv3tPhWRhcKdmEXV8PA6YxwhWWrptNIbFkmWelS+q9TKyTCtFSiqVeg3ZmVKCDK1h8X0wCkns00ARjqXs21aknAQLxQin88IgljTCZIrHtK9pgH0qnSS9dI5OtDJCXih0BQql6veJBPtSznxXd/pYTeRvbyH+5fVj5Z07CQuiWNGALBd5MUcqRIu30YgJShSfaYKJYPpWRCZYYKJ0OAUdwten6H/SKZt2zazeVErNyyyOPBzBMZyCDXVowjW0oA0EPHiAJ3g2psaj8WK8LltzRjZzCD9gvH0CXtCNRw==</latexit>

??

<latexit sha1_base64="9M9Q0ly4yim46ykzRr/SKX7WC7k=">AAAB+XicdVDLSgNBEJyNrxhfqx69DAbBi8tGErO5Bb14jGBUSJYwO+nokNlHZnrFsORPvHhQxKt/4s2/cRJXUNGChqKqm+6uIJFCo+u+W4W5+YXFpeJyaWV1bX3D3ty60HGqOLR5LGN1FTANUkTQRoESrhIFLAwkXAbDk6l/eQtKizg6x3ECfsiuIzEQnKGRerY9GnUR7jA70GONEE56dtl13Bmo61QbtbrnGVJveEdVj1Zyq0xytHr2W7cf8zSECLlkWncqboJ+xhQKLmFS6qYaEsaH7Bo6hkYsBO1ns8sndM8ofTqIlakI6Uz9PpGxUOtxGJjOkOGN/u1Nxb+8TooDz89ElKQIEf9cNEglxZhOY6B9oYCjHBvCuBLmVspvmGIcTVglE8LXp/R/cnHoVI6c2lm13DzO4yiSHbJL9kmF1EmTnJIWaRNObsk9eSRPVmY9WM/Wy2drwcpntskPWK8fzjmUdQ==</latexit>

qq-system

<latexit sha1_base64="pflH5r1302YGzWa5hQ5O7z7Vhes="></latexit>

U~,q

✓
ccgl1

◆

<latexit sha1_base64="KDA8G0cjV8qOzYylI0c+ZPiyMrA="></latexit>

Y~,✏
⇣
cgl1

⌘

<latexit sha1_base64="Stih5VRlIc06uLCLg5GyRAqz8/U="></latexit>

eDIM~,q,p

<latexit sha1_base64="i1ePeu4q2pdc+1RCF9TtfuBOOrw=">AAAB+XicdVDJSgNBEO1xjXEb9eilMQheDBPJMrkFvXhMwCyQhNDTqSRNeha6a4JhyJ948aCIV//Em39jZxFU9EHB470qqup5kRQaHefDWlvf2NzaTu2kd/f2Dw7to+OGDmPFoc5DGaqWxzRIEUAdBUpoRQqY70loeuObud+cgNIiDO5wGkHXZ8NADARnaKSebddqHYR7TC71VCP4s56dcbLOAtTJ5suFkusaUiq7xbxLcysrQ1ao9uz3Tj/ksQ8Bcsm0buecCLsJUyi4hFm6E2uIGB+zIbQNDZgPupssLp/Rc6P06SBUpgKkC/X7RMJ8rae+Zzp9hiP925uLf3ntGAduNxFBFCMEfLloEEuKIZ3HQPtCAUc5NYRxJcytlI+YYhxNWGkTwten9H/SuMrmitlCLZ+pXK/iSJFTckYuSI6USIXckiqpE04m5IE8kWcrsR6tF+t12bpmrWZOyA9Yb59pmZQ1</latexit>

QQ-system

<latexit sha1_base64="Hg4kSwtLOQ4prx93zRkX9ToVt5o=">AAAB+3icdVDLTgJBEJz1ifhCPHqZSEy8SHYNyHIjevGIiYAJIJkdemHi7MOZXgPZ8CtePGiMV3/Em3/jgJio0Uo6qVR1p7vLi6XQaNvv1sLi0vLKamYtu76xubWd28k3dZQoDg0eyUhdeUyDFCE0UKCEq1gBCzwJLe/mbOq37kBpEYWXOI6hG7BBKHzBGRqpl8vf3l5jB2GE6ZEea4Rg0ssV7KI9A7WLpWq54rqGVKruScmlztwqkDnqvdxbpx/xJIAQuWRatx07xm7KFAouYZLtJBpixm/YANqGhiwA3U1nt0/ogVH61I+UqRDpTP0+kbJA63Hgmc6A4VD/9qbiX147Qd/tpiKME4SQfy7yE0kxotMgaF8o4CjHhjCuhLmV8iFTjKOJK2tC+PqU/k+ax0XnpFi+KBVqp/M4MmSP7JND4pAKqZFzUicNwsmI3JNH8mRNrAfr2Xr5bF2w5jO75Aes1w9kgZVb</latexit>

qqt-system
<latexit sha1_base64="DyX3lyyGiYAqWIZY9L1V3mg0IBg=">AAAB+XicdVDLSgNBEJyNrxhfqx69DAbBi8tGotncgl48KpgYSJYwO+nokNmHM73BsORPvHhQxKt/4s2/cRJXUNGChqKqm+6uIJFCo+u+W4W5+YXFpeJyaWV1bX3D3txq6ThVHJo8lrFqB0yDFBE0UaCEdqKAhYGEq2B4OvWvRqC0iKNLHCfgh+w6EgPBGRqpZ9sXt12EO8wO9FgjhJOeXXYddwbqOtX6Uc3zDKnVveOqRyu5VSY5znv2W7cf8zSECLlkWncqboJ+xhQKLmFS6qYaEsaH7Bo6hkYsBO1ns8sndM8ofTqIlakI6Uz9PpGxUOtxGJjOkOGN/u1Nxb+8TooDz89ElKQIEf9cNEglxZhOY6B9oYCjHBvCuBLmVspvmGIcTVglE8LXp/R/0jp0KsfO0UW13DjJ4yiSHbJL9kmF1EiDnJFz0iScjMg9eSRPVmY9WM/Wy2drwcpntskPWK8fm9mUVQ==</latexit>

Qq-system

<latexit sha1_base64="4Y2XFsmFePLr59SwwsqJwhBnKx4=">AAACBHicdVA9SwNBEN3zM8avU0ubxSDYGC6SmLML2lgaMCrkjrC3mUuW7H2wOyeGI4WNf8XGQhFbf4Sd/8ZNjKCiDwYe780wMy9IpdDoOO/WzOzc/MJiYam4vLK6tm5vbF7oJFMcWjyRiboKmAYpYmihQAlXqQIWBRIug8HJ2L+8BqVFEp/jMAU/Yr1YhIIzNFLH3m56EcN+qNggb448hBvM9/VQI0Sjjl1yys4E1ClXj2p11zWkfuQeVl1amVolMsVZx37zugnPIoiRS6Z1u+Kk6OdMoeASRkUv05AyPmA9aBsaswi0n0+eGNFdo3RpmChTMdKJ+n0iZ5HWwygwneOL9W9vLP7ltTMMXT8XcZohxPxzUZhJigkdJ0K7QgFHOTSEcSXMrZT3mWIcTW5FE8LXp/R/cnFQrhyWa81qqXE8jaNAtskO2SMVUicNckrOSItwckvuySN5su6sB+vZevlsnbGmM1vkB6zXD2eZmUU=</latexit>

QQ-system

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="nPN6/RcoBiMl5Au13L0VCYMShpA=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTS2Lhq0Y3LKvYBbSiT6aQdOnkwMxFK6B+4caGIW//InX/jtI2gogcuHM65l3vv8RPOpLKsD6Owsrq2vlHcLG1t7+zulfcP2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT67mfueeCsni6E5NE+qFeBSxgBGstHRbrw/KFct0q86FU0OWaS2giWs5VbeK7FypQI7moPzeH8YkDWmkCMdS9mwrUV6GhWKE01mpn0qaYDLBI9rTNMIhlV62uHSGTrQyREEsdEUKLdTvExkOpZyGvu4MsRrL395c/MvrpSpwvYxFSapoRJaLgpQjFaP522jIBCWKTzXBRDB9KyJjLDBROpySDuHrU/Q/aZ+Z9rnp3FQrjcs8jiIcwTGcgg01aMA1NKEFBAJ4gCd4NibGo/FivC5bC0Y+cwg/YLx9AnkJjVk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??

<latexit sha1_base64="cu9duFMDZz6c1Y+K7W0tltKCVf8=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYky+SUoBePUcwCyRB6Oj1Jk56F7h4hDPkDLx4U8eofefNv7CQjqOiDgsd7VVTV82LOpLKsDyO3tr6xuZXfLuzs7u0fFA+POjJKBKFtEvFI9DwsKWchbSumOO3FguLA47TrTa8WfveeCsmi8E7NYuoGeBwynxGstHTbaAyLJcu0lkCWWa5Xao6jSa3uVMsOsjOrBBlaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp8tI5OtPKCPmR0BUqtFS/T6Q4kHIWeLozwGoif3sL8S+vnyjfcVMWxomiIVkt8hOOVIQWb6MRE5QoPtMEE8H0rYhMsMBE6XAKOoSvT9H/pHNh2lWzclMuNS+zOPJwAqdwDjbUoAnX0II2EPDhAZ7g2Zgaj8aL8bpqzRnZzDH8gPH2CY5ljWk=</latexit>

??
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DAHA as n → ∞
Vertex functions or quantum classes for X are elements of quantum K-theory 
of X. Equivalently we can view them as elements of equivariant K-theory of the 
space of quasimaps from  to Xℙ1

               restricts us to the Fock space representation of -Heisenberg 
algebra which is a DAHA module

(q, t)
6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Nakajima Varieties and Macdonald polynomials

Consider the space of quasimaps of complex projective space into the cotangent bundle
to complete n-flag. We construct the following space

(23) Hn = KT (P1 ! T
⇤Fn) ,

Here the maximal torus is T = T(U(n) ⇥ U(1)~ ⇥ U(1)q). This is an infinite-dimensional
vector space whose points are equivariant K-theoretic Givental J-functions (vertex func-
tions)

(24) J(z1, . . . , zn, a1, . . . , an, q, ~) ,
where z1, . . . , zn stand for first Chern classes of the base, a1, . . . , an are equivariant pa-
rameters for U(n) global symmetry, q is the shift parameter (equivalently the parameter
which act on P1 by C⇥), and finally, ~ acts with by C⇥ on the cotangent fibers. All the
arguments of the vertex function take values in C⇥.

It was shown in physics literature [BKK] that J obeys the following set of di↵erence
equations once it is corrected by the stable elliptic envelope

(25) HiZ = ei(a1, . . . , an)Z ,

where Hi are tRS (Macdonald) di↵erence operators and

(26) Z = Stab · J ,

where Stab is the stable envelope for T ⇤Fn. In other words, Z is a (formal) wavefunction
of the (complexified) integrable system.

At generic values of the equivariant parameters for U(n) global symmetry a1, . . . , an the
vertex function is a series of q-hypergeometric type with certain elliptic prefactors.

3.1. X = T
⇤P1

, (n = 2). The vertex function is given by the following series

(27) Z = Stab · 2�1
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The hypergeometric function has the following expansion in Kähler parameter

(28) 2�1
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where (a; q)k =
Qk�1

l=0
(1� aq

l) is the k-th Pochhammer symbol, and in this case

(29) Stab =
✓1(~�1/2

z
�1/2

, q)✓1(~1/2 z�1/2
, q)

✓1(a1z�1/2, q)✓1(a2z�1/2, q)
.

From the above formulae we can derive the condition on equivariant parameters when the
q-hypergeometric series get truncated. For simplicity let us assume a2 = a

�1

1
= a

1/2. For
one such formal solution this condition reads

(30) a
2

` = q
�`~�1

, ` 2 Z+

|
not more than n columns�
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Macdonald polynomials
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