# The Diamond of Integrability 

Peter Koroteev

2312.17500

Talk at University at Buffalo 2/19/2024


## The Diamond

- I shall review the current status of integrable models of the CalogeroRuijsenaars family in the context of recent developments in algebraic geometry and representation theory. This study is strongly motivated by progress in string theory and supersymmetric quantum field theories beginning in the early 90s [Seiberg Witten, circa 1994]
- One particular theory stands out - the $\mathcal{N}=2^{*}$ theory in four dimensions. It has few parameters - the gauge coupling, the gauge group type, and SUSY breaking mass
- Relative simplicity of the parameter space provides a perfect playground for mathematicians - algebraic geometers, representation theorist, and, more recently, even number theorists.


## Legend

Type of Oper
Equation on Baxter functions

Phase Space
Many-body system
Spin chain

Algebra for $n$ particles
Algerba for $n \rightarrow \infty$

## Classical Integrability

Equations of motion

$$
\frac{d f}{d t}=\left\{H_{1}, f\right\}
$$

Integrability - family of $n$ conserved quantities which Poisson commute with each other

$$
\left\{H_{i}, H_{j}\right\}=0 \quad i, j=1, \ldots, n
$$

Liouville-Arnold Theorem Compact Lagrangians $\mathscr{L}:\left\{H_{i}=E_{i}\right\}$ are isomorphic to tori Evolution in the neighborhood of $\mathscr{L}$ is linearized in action/angle variables

Calogero in 1971 introduced a new integrable system. Moser in 1975 proved its integrability using Lax pair

$$
H_{C M}=\sum_{i=1}^{n} \frac{p_{i}^{2}}{2 m}+g^{2} \sum_{j \neq i} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}
$$



$$
\text { rational } C M \rightarrow \text { trigonometric } C M \rightarrow \text { elliptic } C M
$$

Another relativistic generalization called Ruijsenaars-Schneider (RS) family

$$
\text { rRS } \rightarrow \text { tRS } \rightarrow \text { eRS } \quad H_{C M}=\lim _{c \rightarrow \infty} H_{R S}-n m c^{2}
$$

## Symplectic Manifold

Harmonic oscillator $\quad H=\frac{p^{2}}{2}+\frac{x^{2}}{2}$


Phase space - symplectic manifold $\mathscr{M}$
Symplectic form $\omega=d p \wedge d x \quad \frac{p^{2}}{2}+\frac{x^{2}}{2}-E=0$


Lagrangian $\mathscr{L} \subset \mathscr{M}$ is a middle-dimensional submanifold and such that the restriction of the symplectic form on $\mathscr{L}$ vanishes

$$
\left.\omega\right|_{\mathcal{L}}=0
$$

Symplectic form $\omega$ is
locally exact on $\mathscr{L}$

$$
\theta=d^{-1} \omega=p d x
$$

## Quantization as Symplectic Geometry

Quantum oscillator energy states

$$
E_{n}=\hbar\left(n+\frac{1}{2}\right)
$$

## Symplectic area

$$
E_{n}=\frac{1}{2 \pi} \int d p \wedge d x \sim \oint_{\mathcal{L}} \theta
$$



## Quantization

Coordinates and momenta become operators

$$
p, x \mapsto \hat{p}, \hat{x}
$$

$\{A, B\}_{P . B .} \mapsto[A, B]$
Poisson brackets associated to $\omega$ become commutators

Replaced by operator
$\left(\frac{\hat{p}^{2}}{2}+\frac{\hat{x}^{2}}{2}-E\right) Z(x)=0$
This ODE has square integrable solutions only for special values of $E$

$$
E_{n}=\hbar\left(n+\frac{1}{2}\right)
$$

$$
\text { e.g. for } n=0 \quad Z(x) \sim e^{-\frac{1}{2 \hbar} x^{2}}
$$

Lagrangian constraint

$$
\frac{p^{2}}{2}+\frac{x^{2}}{2}-E=0
$$

$Z(x) \sim e^{2}$

Heisenberg algebra

$$
\begin{array}{r}
{[\hat{p}, \hat{x}]=-i \hbar} \\
\hat{x} f(x)=x f(x) \\
\hat{p} f(x)=-i \hbar f^{\prime}(x)
\end{array}
$$

## The Art of Quantization

Symplectic manifold $(\mathscr{M}, \omega) \longrightarrow$ Hilbert space $\mathscr{H}$

Algebra of functions on $\mathscr{M} \longrightarrow$ Algebra of operators on $\mathscr{H}$

Lagrangian submanifolds $\mathscr{L} \subset \mathscr{M} \longrightarrow$ States in Hilbert space $\mathscr{H}$ $\left\{f_{i}\right\}$

$$
\hat{f}_{i} \mathcal{Z}=0
$$

Representations

Algebra
(i.e. DAHA)

## Trigonometric-Trigonometric

All ingredients are known in the middle of the diamond

$$
\begin{array}{cc}
\begin{array}{c}
(G, q) \text {-Opers } \\
Q Q \text {-system } \\
\mathbb{C}_{p}^{\times} \times \mathbb{C}_{x}^{\times}
\end{array} & \text {tRS } \\
\mathrm{DAHA}_{\hbar, q}(X, Y) & \mathrm{xxz} \\
U_{\hbar, q}\left(\widehat{\left.\widehat{\mathfrak{g l}_{1}}\right)}\right.
\end{array}
$$

## Double Affine Hecke Algebra of Rank One

Let $\mathfrak{g}$ be Lie algebra. The (Iwahori)-Hecke algebra is defined as the deformation of the group algebra of the Weyl group of $\mathfrak{g}$

For $\mathfrak{G l}(2)$ it is generated by $T$ with relation $(T-t)\left(T+t^{-1}\right)=0$ where $t \in \mathbb{C}^{\times}$

Affine Hecke algebra (AHA) for $\mathfrak{G l}(2)$ :

$$
\frac{\mathbb{C}\left(t^{ \pm 1}\right) \otimes \mathbb{C}\left[X^{ \pm 1}, T\right]}{\left(T X T-X^{-1},(T-t)\left(T-t^{-1}\right)\right)}
$$

Double affine Hecke algebra for $\mathfrak{Z l}(2)$ - two copies of AHA $(X, T)$ and $(Y, T)$ in the presence of additional relation and parameter $q \in \mathbb{C}^{\times}$

$$
\ddot{H}\left(\mathbb{Z}_{2}\right)=\frac{\mathbb{C}\left(q^{ \pm 1}, t^{ \pm 1}\right) \otimes \mathbb{C}\left[X^{ \pm 1}, Y^{ \pm 1}, T\right]}{\left(T X T-X^{-1}, T Y T-Y^{-1}, Y^{-1} X^{-1} Y X-q^{-1},(T-t)\left(T+t^{-1}\right)\right)}
$$

## DAHA from Affine Braid Group



Orbifold fundamental group
of the torus with puncture $\left(T^{2} \backslash p\right) / \mathbb{Z}_{2}$

(a)

(b)

(c)

Generated by $X, T, Y$ modulo relations

$$
T X T=X^{-1}, T Y^{-1} T=Y, \text { and } Y^{-1} X^{-1} Y X T^{2}=1
$$

Its central extension is known as elliptic braid group is obtained
by deforming the last relation to

$$
Y^{-1} X^{-1} Y X T^{2}=q^{-1}
$$

The full $\mathfrak{s l}(2)$ DAHA is obtained by imposing Hecke relation

$$
\ddot{H}\left(\mathbb{Z}_{2}\right)=\mathbb{C}_{q, t}\left[T^{ \pm 1}, X^{ \pm 1}, Y^{ \pm 1}\right] /\left\{\begin{array}{c}
T X T=X^{-1}, \quad Y^{-1} X^{-1} Y X T^{2}=q^{-1} \\
T Y^{-1} T=Y, \quad(T-t)\left(T+t^{-1}\right)=0
\end{array}\right\}
$$

## Spherical DAHA

Idempotent element

$$
\mathbf{e}=\left(T+t^{-1}\right) /\left(t+t^{-1}\right)
$$

## q-commutator

Spherical subalgebra

$$
S \ddot{H}:=\mathbf{e} \ddot{H} \mathbf{e}
$$

$$
[a, b]_{q}:=q^{-\frac{1}{2}} a b-q^{\frac{1}{2}} b a
$$

Generators of spherical DAHA

$$
\begin{array}{r}
x=X+X^{-1} \\
y=Y+Y^{-1} \\
z=q^{-\frac{1}{2}} Y^{1} X+q^{\frac{1}{2}} X^{-1} Y
\end{array}
$$

Relations

$$
\begin{aligned}
{[x, y]_{q} } & =\left(q^{-1}-q\right) z \\
{[y, z]_{q} } & =\left(q^{-1}-q\right) x \\
{[z, x]_{q} } & =\left(q^{-1}-q\right) y
\end{aligned}
$$

$$
q^{-1} x^{2}+q y^{2}+q^{-1} z^{2}-q^{-\frac{1}{2}} x y z=\left(q^{-\frac{1}{2}} t-q^{\frac{1}{2}} t^{-1}\right)^{2}+\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right)^{2}
$$

`Classical' limit

$$
S \ddot{H} \underset{q \rightarrow 1}{\longrightarrow} \mathscr{O}\left(\mathcal{M}_{\mathrm{flat}}\left(C_{p}, \mathrm{SL}(2, \mathbb{C})\right)\right)
$$

Coordinate ring of the moduli space of $\operatorname{SL}(2, \mathbb{C})$ flat connections on punctured torus

$$
\mathcal{M}_{\text {flat }}\left(C_{p}, \mathrm{SL}(2, \mathbb{C})\right)=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{2}+z^{2}-x y z-2=\operatorname{Tr}(\rho(\mathfrak{c}))=\tilde{t}^{2}+\tilde{t}^{-2}\right\}
$$

## SL(2,C) Flat Connection on Punctured Torus



$$
\begin{aligned}
& \text { Fundamental group } \quad \pi_{1}\left(C_{p}\right)=\left\langle\mathfrak{m}, \mathfrak{l}, \mathfrak{c} \mid \mathfrak{m l m}^{-1} \mathfrak{l}^{-1}=\mathfrak{c}\right\rangle \\
& \text { Let } \quad \rho: \pi_{1}\left(C_{p}\right) \rightarrow \operatorname{SL}(2, \mathbb{C}) \\
& x=\operatorname{Tr}(\rho(\mathfrak{m})), y=\operatorname{Tr}(\rho(\mathfrak{l})), \text { and } z=\operatorname{Tr}\left(\rho\left(\mathfrak{m l}^{-1}\right)\right)
\end{aligned}
$$

Markov cubic

$$
\mathcal{M}_{\text {flat }}\left(C_{p}, \mathrm{SL}(2, \mathbb{C})\right)=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{2}+z^{2}-x y z-2=\operatorname{Tr}(\rho(\mathfrak{c}))=\tilde{t}^{2}+\tilde{t}^{-2}\right\}
$$

Elliptic fibration of Kodaira type $I_{0}^{*}$

Theorem. Spherical DAHA is a deformation quantization of the coordinate ring of the moduli space of flat $\operatorname{SL}(2, \mathbb{C})$ connections $\mathfrak{X}=\mathscr{M}_{\text {flat }}\left(C_{p}, S L(2, \mathbb{C})\right)$ with respect to Poisson structure $\Omega_{J}$

$$
\Omega_{J}=\frac{1}{2 \pi i} \frac{d x \wedge d y}{\partial f / \partial z}=\frac{1}{2 \pi i} \frac{d x \wedge d y}{2 z-x y}
$$

1) Representations of (spherical) DAHA $-\operatorname{Rep}(\ddot{H})$

$$
\operatorname{dim} V_{i} \sim \operatorname{Vol}\left(\mathfrak{D}_{i}\right)
$$

2) Lagrangian submanifolds of $\mathfrak{X}$ whose quantization yields these representations $-\mathscr{F} u k\left(\mathfrak{X}, \omega_{\mathfrak{X}}\right)$

## Brane quantization for DAHA

Derived Equivalence
[2206.03565 SpringerBriefs Monograph with S. Gukov, S. Nawata, D. Pei, and I. Saberi]

$$
\boldsymbol{R H o m}\left(\mathfrak{B}_{\mathrm{cc}},-\right): D^{b} A-\operatorname{Brane}\left(\mathfrak{X}, \omega_{\mathfrak{X}}\right) \rightarrow D^{b} \operatorname{Rep}\left(\mathscr{O}^{q}(\mathfrak{X})\right)
$$

Let $C_{p}$ be a punctured genus-one Riemann surface, $\mathfrak{X}=\mathscr{M}_{\text {flat }}\left(C_{p}, S L(2, \mathbb{C})\right)$ the moduli space of flat $S L(2, \mathbb{C})$ connections with prescribed monodromy at the puncture, and $\operatorname{SH}\left(\mathbb{Z}_{2}\right)$ be the spherical subalgebra of DAHA of type $A_{1}$. Then the above functor restricts to a derived equivalence of the subcategory of compact Lagrangian A-branes of $\mathfrak{X}$ and the category of finite-dimensional $S \ddot{H}\left(\mathbb{Z}_{2}\right)$ -modules.

## DAHA Representations

We will talk about polynomial representations of DAHA

$$
\mathscr{P}:=\mathbb{C}_{q, t}\left[X^{ \pm}\right]^{\overleftarrow{Z}_{2}}
$$

$$
\begin{array}{rlr}
x & \mapsto X+X^{-1}, \\
\operatorname{pol}: S \ddot{H} \rightarrow \operatorname{End}(\mathscr{P}),, & y \mapsto \frac{t X-t^{-1} X^{-1}}{X-X^{-1}} \varpi+\frac{t^{-1} X-t X^{-1}}{X-X^{-1}} \varpi^{-1}, & \begin{array}{c}
\text { Shift operator } \\
\pm \\
\\
\\
\\
z
\end{array}>q^{\frac{1}{2}} X \frac{t X-t^{-1} X^{-1}}{X-X^{-1}} \varpi+q^{\frac{1}{2}} X^{-1} \frac{t^{-1} X-t X^{-1}}{X-X^{-1}} \varpi^{-1}
\end{array}
$$

Highest weight representation for $y$

$$
y \mathcal{Z}=\left(Y+Y^{-1}\right) \mathcal{Z}=\left(a+a^{-1}\right) \mathcal{Z}
$$

For arbitrary value of $a$ the eigenvector is a series of hypergeometric type which arises in enumerative geometry (see later)
When $a=q^{j} t$ we get Macdonald polynomials of type $A_{1}$ labelled spin- $j / 2$ representation

$$
P_{j}(X ; q, t):=X^{j}{ }_{2} \phi_{1}\left(q^{-2 j}, t^{2} ; q^{-2 j+2} t^{-2} ; q^{2} ; q^{2} t^{-2} X^{-2}\right)
$$

## Polynomial Representation

Macdonald Polynomials generate the ring $\mathscr{P}$ over $\mathbb{C}\left[q^{ \pm 1}, t^{ \pm 1}\right]$

Raising and lowering operators


Action

$$
\begin{aligned}
& \operatorname{pol}\left(\mathrm{R}_{j}\right) \cdot P_{j}(X ; q, t)=\left(1-q^{2 j} t^{2}\right) P_{j+1}(X ; q, t), \\
& \operatorname{pol}\left(\mathrm{L}_{j}\right) \cdot P_{j}(X ; q, t)=\frac{\left(1-q^{2 j}\right)\left(1-q^{2(j-1)} t^{4}\right)}{q^{2 j} t^{2}\left(q^{2(j-1)} t^{2}-1\right)} P_{j-1}(X ; q, t)
\end{aligned}
$$

## Finite-Dimensional Representations

Shortening condition $\quad \operatorname{pol}\left(\mathrm{L}_{j}\right) \cdot P_{j}=0$

Raising operator will never be null due to
$\left(1-q^{2 j} t^{2}\right)$

$$
\begin{aligned}
q^{2 n} & =1 \\
t^{2} & =-q^{-k} \\
t^{2} & =q^{-(2 \ell-1)}
\end{aligned}
$$




Short exact sequence of modules

$$
0 \rightarrow S \rightarrow V \rightarrow V / S \rightarrow 0
$$

## Higgs Bundles

Nonabelian Hodge correspondence relates representations of the fundamental group of smooth projective algebraic varieties with Higgs bundles $(E, \varphi)$

$$
\mathfrak{X} \simeq \mathcal{M}_{H}\left(C_{p}, S U(2)\right)
$$

Hitchin moduli space is hyperKahler
Holomorphic $S U(2)$ vector bundle over $C_{p}$ with holomorphic section $\varphi$ (Higgs field) of $K_{C_{p}} \otimes \operatorname{ad}(E) \otimes \mathcal{O}(p)$

Tame ramification at $p$

$$
\begin{aligned}
A & =\alpha_{p} d \vartheta+\cdots \\
\varphi & =\frac{1}{2}\left(\beta_{p}+i \gamma_{p}\right) \frac{d z}{z}+\cdots
\end{aligned}
$$

Hitchin moduli space is the space of solutions of Hitchin equations modulo gauge transformations

$$
\begin{aligned}
F-[\varphi, \bar{\varphi}] & =0 \\
\bar{D}_{A} \varphi & =0
\end{aligned}
$$

NAHC:

$$
\mathcal{A}=A+i(\varphi+\bar{\varphi})
$$

Hitchin equations equivalent to flatness condition

$$
F_{\mathcal{A}}=0
$$

## Complex and Kähler Structures

The space $\mathscr{M}_{H}\left(C_{p}, S U(2)\right)$ is hyperKähler

$$
\begin{aligned}
\omega_{I} & =-\frac{i}{2 \pi} \int_{C}\left|d^{2} z\right| \operatorname{Tr}\left(\delta A_{\bar{z}} \wedge \delta A_{z}-\delta \bar{\varphi} \wedge \delta \varphi\right) \\
\omega_{J} & =\frac{1}{2 \pi} \int_{C}\left|d^{2} z\right| \operatorname{Tr}\left(\delta \bar{\varphi} \wedge \delta A_{z}+\delta \varphi \wedge \delta A_{\bar{z}}\right) \\
\omega_{K} & =\frac{i}{2 \pi} \int_{C}\left|d^{2} z\right| \operatorname{Tr}\left(\delta \bar{\varphi} \wedge \delta A_{z}-\delta \varphi \wedge \delta A_{\bar{z}}\right)
\end{aligned}
$$

Triplet of holomorphic symplectic forms

$$
\Omega_{I}=\omega_{J}+i \omega_{K}, \Omega_{J}=\omega_{K}+i \omega_{I}: \quad \Omega_{k}=\omega_{I}+i \omega_{J}
$$

| Complex structure | Complex modulus | Kähler modulus |
| :---: | :---: | :---: |
| $I$ | $\beta_{p}+i \gamma_{p}$ | $\alpha_{p}$ |
| $J$ | $\gamma_{p}+i \alpha_{p}$ | $\beta_{p}$ |
| $K$ | $\alpha_{p}+i \beta_{p}$ | $\gamma_{p}$ |

## Geometry of $\mathfrak{X}$

$$
\text { Hitchin fibration } \quad \pi: \mathcal{M}_{H}\left(C_{p}, S U(2)\right) \rightarrow \mathcal{B}_{H}
$$

$$
(E, \varphi) \mapsto \operatorname{Tr} \varphi^{2}
$$

whose fibers are Abelian varieties (Liouville tori)
Holomorphic in complex structure $I$

$$
\text { Singular fiber } \quad \mathbf{N}=\pi^{-1}(0)
$$

'Pillowcase' for $\quad \alpha_{p}=\beta_{p}=\gamma_{p}=0$

$$
\mathbf{V} \cong\left(S^{1} \times S^{1}\right) / \mathbb{Z}_{2}
$$

Away from $\beta_{p}=0$ locus resolution of $A_{1}$ singularities (exceptional divisors).
$\beta_{p}-$ Kahler structure parameter in $J$
$\widehat{D}_{4}$ Dynkin diagram

## Cycles



Pillowcase

$$
\begin{aligned}
& \int_{\mathbf{V}} \frac{\omega_{I}}{2 \pi}=\frac{1}{2}-\left|\alpha_{p}\right| \\
& \int_{\mathbf{V}} \frac{\omega_{J}}{2 \pi}=-\beta_{p} \\
& \int_{\mathbf{V}} \frac{\omega_{K}}{2 \pi}=-\gamma_{p}
\end{aligned}
$$

Hitchin fiber

$$
\int_{\mathbf{F}} \frac{\omega_{I}}{2 \pi}=1, \quad \int_{\mathbf{F}} \frac{\omega_{J}}{2 \pi}=0=\int_{\mathbf{F}} \frac{\omega_{K}}{2 \pi}
$$

## Exceptional divisors

$$
\frac{\alpha_{p}}{2}=\int_{\mathbf{D}_{i}} \frac{\omega_{I}}{2 \pi}, \quad \frac{\beta_{p}}{2}=\int_{\mathbf{D}_{i}} \frac{\omega_{J}}{2 \pi}, \quad \frac{\gamma_{p}}{2}=\int_{\mathbf{D}_{i}} \frac{\omega_{K}}{2 \pi}
$$

$$
i=1,2,3,4
$$

Symmetries

$$
\begin{array}{llll}
\xi_{1}: \mathbf{D}_{1} \leftrightarrow \mathbf{D}_{2} & \text { and } & \mathbf{D}_{3} \leftrightarrow \mathbf{D}_{4} \\
\xi_{2}: \mathbf{D}_{1} \leftrightarrow \mathbf{D}_{3} & \text { and } & \mathbf{D}_{2} \leftrightarrow \mathbf{D}_{4} \\
\xi_{3}: \mathbf{D}_{1} \leftrightarrow \mathbf{D}_{4} & \text { and } & \mathbf{D}_{2} \leftrightarrow \mathbf{D}_{3}
\end{array}
$$

## Canonical Coisotropic Brane

$$
c_{1}(\mathcal{L})=[F / 2 \pi] \in H^{2}(\mathfrak{X}, \mathbb{Z})
$$

2d sigma model into $\mathfrak{X}$

$$
\hbar=|\hbar| e^{i \theta}
$$

Quantization $q=e^{2 \pi i \hbar}$

Values of the B-field are determined by equation

$$
\Omega:=F+B+i \omega_{\mathfrak{X}}=\frac{\Omega_{J}}{i \hbar}
$$

$$
B \in H^{2}(\mathfrak{X}, \mathrm{U}(1))
$$

Needed for generic $\hbar$

$$
\begin{aligned}
F+B & =\operatorname{Re} \Omega
\end{aligned}=\frac{1}{|\hbar|}\left(\omega_{I} \cos \theta-\omega_{K} \sin \theta\right), ~ 子 \omega_{\mathfrak{X}}=\operatorname{Im} \Omega=-\frac{1}{|\hbar|}\left(\omega_{I} \sin \theta+\omega_{K} \cos \theta\right) .
$$

$$
\text { HyperKähler condition } \quad F+B=\omega_{\mathfrak{X}} J
$$

$$
\left(\omega_{\mathfrak{X}}^{-1}(B+F)\right)^{2}=J^{2}=-1
$$

E.g. for real $\hbar$ we have $\omega_{\mathfrak{X}}=\omega_{K}$ and $\mathfrak{B}_{c c}$ brane is of type $(B, A, A)$, for purely imaginary of type $(A, A, B)$

## Branes and Quantization

$\operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\text {cc }}\right)$ parameterized by $\hbar$ provides deformation of the space of holomorphic functions on $\mathfrak{X}$ which is spherical DAHA $=S \ddot{H}$

$$
\left(\omega_{\mathfrak{X}}^{-1}(B+F)\right)^{2}=J^{2}=-1 \quad \quad \int_{\mathbf{F}} \frac{\Omega}{2 \pi}=\frac{1}{\hbar} \quad \frac{1}{2 \pi} \int_{\mathbf{D}_{i}} F+B+i \omega_{\mathfrak{X}}=\int_{\mathbf{D}_{i}} \frac{\Omega_{J}}{2 \pi i \hbar}=\frac{\gamma_{p}+i \alpha_{p}}{2 i \hbar}=-c+\frac{1}{2}
$$



$$
\begin{array}{ccc}
\mathscr{O}^{q}(\mathfrak{X}) & = & \operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\mathrm{cc}}\right) \\
Q & Q^{2} \\
\mathscr{B}^{\prime} & = & \operatorname{Hom}\left(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}^{\prime}\right)
\end{array}
$$

$\operatorname{End}\left(\mathfrak{B}_{\mathrm{cc}}\right) \cong S \ddot{H}$

## Lagrangian Branes

Lagrangian A brane - unitary bundle, flat Spin ${ }^{c}$-structure on L and grade lift


Hirzebruch-Riemann-Roch formula
(B-model analysis to compute dimension of open strings )

$$
\begin{aligned}
\operatorname{dim} \mathscr{L} & =\operatorname{dim} H^{0}\left(\mathbf{L}, \mathfrak{B}_{\mathrm{cc}} \otimes \mathfrak{B}_{\mathbf{L}}^{-1}\right) \\
& =\int_{\mathbf{L}} \operatorname{ch}\left(\mathfrak{B}_{\mathrm{cc}}\right) \wedge \operatorname{ch}\left(\mathfrak{B}_{\mathbf{L}}^{-1}\right) \wedge \operatorname{Td}(T \mathbf{L})
\end{aligned}
$$

For a Lagrangian in two dimensions

$$
\operatorname{Td}(T \mathbf{L})=\operatorname{ch}\left(K_{\mathbf{L}}^{-1 / 2}\right) \widehat{A}(T \mathbf{L})
$$

So the dimension reads

$$
\operatorname{dim} \mathscr{L}=\int_{\mathbf{L}} \operatorname{ch}\left(\mathfrak{B}_{\mathrm{cc}}\right)=\int_{\mathbf{L}} \frac{F+B}{2 \pi}
$$

Lagrangian branes are objects in Fukaya category

## Compact Lagrangians



| finite-dim rep | shortening condition | $A$-brane condition |
| :---: | :---: | :---: |
| $\mathscr{F}_{m}^{\left(x_{m}, y_{m}\right)}$ | $q^{m}=1$ | $m=\frac{1}{\hbar}$ |
| $\mathscr{U}_{n}$ | $q^{2 n}=1$ | $n=\frac{1}{2 \hbar}$ |
| $\mathscr{V}_{k+1}$ | $t^{2}=-q^{-k}$ | $k=\frac{1}{2 \hbar}+\frac{\gamma_{p}+i \alpha_{p}}{i \hbar}$ |
| $\mathscr{D}_{\ell}$ | $t^{2}=q^{-\ell+1 / 2}$ | $\ell=\frac{\gamma_{p}+i \alpha_{p}}{2 i \hbar}$ |

## Many-Body Systems

Coming back to flat connections on pictured $T^{2}$
$\mathrm{DAHA}_{\hbar, q}(X, Y)$


$$
\begin{aligned}
& \mathcal{M}_{n}=\{A, B, C\} / G L(n ; \mathbb{C}) \\
& A B A^{-1} B^{-1}=C \\
& C=\operatorname{diag}\left(t, \ldots, t, t^{n-1}\right)
\end{aligned}
$$

In the basis where $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is diagonal characteristic polynomial of $B$ yields trig. Ruijsenaars Hamiltonians (Macdonald operators - center of spherical DAHA)

$$
\operatorname{det}(u-B)=\sum_{k}(-1)^{k} H_{k} u^{n-k}
$$

For $n=2$

$$
H_{1}=\frac{a_{1}-t a_{2}}{a_{1}-a_{2}} p_{1}+\frac{a_{2}-t a_{1}}{a_{2}-a_{1}} p_{2}
$$



## Enumerative AG/Representation Theory

- Yellow diagonal. The eigenfunctions of the $t C M, t R S$, and dual eRS models coincide with quasimap vertex functions of quantum equivariant cohomology, K-theory, and elliptic cohomology of the cotangent bundle to the complete flags in $\mathbb{C}^{n}$ respectively (also in $\chi$ (fin. Laumon))
- Green Diagonal. The eigenfunctions of the eCM, eRS, and DELL models are holomorphic equivariant Euler characteristics of affine Laumon spaces in cohomology, K-theory, and elliptic cohomology respectively

The Abelian nature of Lagrangian fibers in Hitchin system suggests that coordinates and momenta take values in

$$
\mathbb{C}, \mathbb{C}^{\times}, \mathcal{E}=\mathbb{C}^{\times} / q^{\mathbb{Z}}
$$

## The DELL

$N$-particle DELL Hamiltonians $\quad \widehat{\mathcal{H}}_{a}=\widehat{\mathcal{O}}_{0}^{-1} \widehat{\mathcal{O}}_{a}$

$$
\widehat{\mathcal{O}}(z)=\sum_{n \in \mathbb{Z}} \widehat{\mathcal{O}}_{n} z^{n}=\sum_{n_{1}, \ldots, n_{N}=-\infty}^{\infty}(-z)^{\sum n_{i}} w^{\sum \frac{n_{i}\left(n_{i}-1\right)}{2}} \prod_{i<j} \theta\left(t^{n_{i}-n_{j}} \widehat{x}_{i} / \widehat{x}_{j} \mid p\right) \widehat{p}_{1}^{n_{1}} \ldots \widehat{p}_{N}^{n_{N}}
$$

Eigenvalue equation

$$
\mathcal{O}(z) z_{i n s t}^{D E L L}\left(p, x_{1}, \ldots, x_{N}\right)=\lambda(z, \boldsymbol{a}, w, p) \mathcal{O}_{0} z_{i n s t}^{D E L L}\left(p, x_{1}, \ldots, x_{N}\right)
$$

Euler characteristic

$$
z_{i n s t}^{D E L L}\left(p, x_{1}, \ldots, x_{N}\right)=\sum_{d} \mathfrak{q}^{d} \int_{\mathcal{L}_{d}} 1
$$

## Quantum K-theory

Classical K-theory of a quiver variety $X$ is generated by tensorial polynomials of tautological bundles on $X$ and their duals

For quantum deformation parameterized by $z$ we study quasimaps from $\mathbb{P}^{1}$ to $X$

$$
p_{1}=0, p_{2}=\infty
$$



Vertex functions are eigenfunctions of quantum $t R S$ difference operators!

$$
T_{i}(a) V(z, a)=e_{i}(z) V(z, a) \quad \text { 3d Mirror symmetry } \quad T_{i}(z) V(z, a)=e_{i}(a) V(z, a)
$$

[PK Zeitlin [arXiv:1802.04463]

Saddle point approximation yields Bethe equations

$$
q \rightarrow 1
$$

$$
\prod_{j=1}^{n} \frac{s_{i}-a_{j}}{t a_{j}-s_{i}}=z \prod_{j=1}^{k} \frac{s_{i} t-s_{j}}{s_{i}-t s_{j}}
$$

## The QQ-System

Baxter Q-operator $\quad Q(u)=\sum_{i=1}^{k}(-1)^{k} u^{k-i}\left(\Lambda^{i} V\right)(z) \circledast \quad$ has eigenvalue $\quad Q(u)=\prod_{i=1}^{k}\left(u-s_{i}\right)$
Short exact sequence of bundles for $T^{*} G r_{k, n} \quad 0 \rightarrow V \rightarrow W \rightarrow V^{\vee} \rightarrow 0$
Eigenvalues of operators $Q$ and $\widetilde{Q}$ (generated by $V^{\vee}$ ) satisfy the $Q Q$-relation

$$
z \widetilde{Q}(t u) Q(u)-Q(t u) \widetilde{Q}(u)=\prod_{i=1}^{n}\left(u-a_{i}\right) \quad \text { which is equivalent to Bethe equations }
$$ Also:

Relations in equivariant cohomology/K-theory of Nakajima quiver varieties
[Pushkar, Smirnov, Zeitlin] [PK, Pushkar, Smirnov, Zeitlin]
Relations between generalized minors (Jacobi-like identities)
[Fomin, Zelevinski] ....
Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{t}(\hat{g})$
[Frenkel, Hernandez] ...
Spectral determinants in the QDE/IM correspondence
[Frenkel, PK, Zeitlin, to appear][Bazhanov, Lukyanov, Zamolodchikov] [Masoero, Raimondo, Valeri]
Describes ( $\dagger$-)oper bundles

## (G,t)-Opers

$$
\begin{aligned}
M_{t}: \mathbb{P}^{1} & \rightarrow \mathbb{P}^{1} \\
u & \mapsto t u
\end{aligned}
$$

Principal bundle $\mathscr{F}_{G}$ over $\mathbb{P}^{1}$
$(G, t)$-connection $A$ is a meromorphic section of $\operatorname{Hom}_{\mathcal{O}_{\mathbb{P} 1}}\left(\mathscr{F}_{G}, \mathscr{F}_{G}^{t}\right)$
t-gauge transformation
$A(u) \mapsto g(t u) A(u) g(u)^{-1}$ $g(u) \in G(\mathbb{C}(u))$
(SL(2),q)-oper
Triple $(E, A, \mathscr{L})$
$(E, A)$ is the $(S L(2), t)$ connection $\mathscr{L} \subset E$ is a line subbundle

The induced map $\bar{A}: \mathscr{L} \rightarrow(E / \mathscr{L})^{t}$ is an isomorphism in a trivialization $\mathscr{L}=\operatorname{Span}(s) \quad s(t u) \wedge A(u) s(u) \neq 0$

Chose trivialization of $\mathscr{L} \quad s(u)=\binom{Q(u)}{\widetilde{Q}(u)} \quad$ Twist element $\quad Z=\operatorname{diag}\left(\zeta, \zeta^{-1}\right)$
t-Oper condition with $A(u)=Z-\mathrm{SL}(2) \mathrm{QQ}$-system

$$
z \widetilde{Q}(t u) Q(u)-Q(t u) \widetilde{Q}(u)=\prod_{i=1}^{n}\left(u-a_{i}\right)
$$

## q-Opers, QQ-System \& Bethe Ansatz

Theorem: There is a 1-to-1 correspondence between the set of nondegenerate $Z$-twisted $(G, t)$-opers on $\mathbb{P}^{1}$ and the set of nondegenerate polynomial solutions of the $Q Q$-system based on $\widehat{L_{\mathfrak{g}}}$


## DAHA as $n \rightarrow \infty$

Vertex functions or quantum classes for $X$ are elements of quantum K-theory of $X$. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from $\mathbb{P}^{1}$ to $X$
$a_{k}=q^{k} t^{n-k}$ restricts us to the Fock space representation of $(q, t)$-Heisenberg algebra which is a DAHA module


