Opers d Integrability (wl Frenkel, sage, Zeitlin), multiple papers in the past fow years.
This is a stary about interactions betueen varibus branclos of mabhe mathical physics

- Quantum ennureralive geometiry (colomology, K-theay, elliphr cohoudlogy) [Givental etal]
- Geametrir vepresentation thoag, in particular Geavetric Lauglands [Aganagir, Frenuel
- Integrable systems and dualities [onr wark + bunh of resuets Oronn kov) hrom string they]
Opers help us understand these connechious in a new way.
(1) (G, q)-ppers: Worles for G - simple, siuply-annebed, complex lie sroup.

Let's besin w/ $G=G L(r+1)$ (intspe A we con do wove explicit corlecubations, in particutas, connechions to integralility)
Consider automorphism $\quad M_{q}: \mathbb{P}^{\prime} \rightarrow \mathbb{P}^{\prime}$

$$
z \mapsto q z \quad, q \in \mathbb{C}^{x}
$$

Det: A meromorphic $(G L(r+1), 9)$-ger on \mathbb{P}^{\prime} is a triple $\left(A, E, \mathcal{L}_{0}\right)$, where E - vector bundle of rank $r+1$ ouer $\mathbb{P}^{\prime}, \quad \mathcal{L}^{0}$ - complebe flog of vecher sublundes

$$
\text { line }-\mathscr{L}_{r+1} \subset \mathscr{L}_{r} \subset \ldots c \mathscr{L}_{1}=E
$$

s.t. the meroworphic $(a L(r+1), q)$-connechion $A \in \operatorname{Hom}_{U}(E, E 9)$ pull bach under $M_{\text {lon }}$ satis fres:
i) $A \mathscr{R}_{i} \subset R_{i-1}$
ii) \exists open dense sleset $U \in \mathbb{P}^{\prime}$ s.t. the restriction it $A \in \operatorname{Hom}\left(\mathscr{L}_{0}, \mathscr{D}_{0}^{q}\right)$ to $V=U \cap M_{q}^{-1}(v)$ is invertilee and restrichins
$\overline{A_{i}}: \mathscr{L}_{i} / L_{i+1} \xrightarrow{\sim}\left(\mathscr{L}_{i-1} / z_{i}\right)^{q}$ is an isomevplysm on V.
If $\operatorname{det} A=1 \Rightarrow(S L(v+1), q)$-oper.
Changing trivialization on E wa $g(z) \in S \angle(r+1)(z)$ changes $A(z)$ by

$$
A(z) \longmapsto g(q z) A(z) g(z)^{-1}
$$

Iet $\mathscr{Z}_{r+1}=\operatorname{Span}(s(z))$. Consider determinants

$$
w_{i}(s)(z)=\left[\begin{array}{l}
\left.s(z) \wedge A(z) S(q z) \wedge \ldots 1 A(z) A(\xi z) \ldots A\left(\xi^{i-2} z\right) s\left(g^{i-1} z\right)\right)_{i}^{i} . \\
i=2, \ldots r+1 \tag{2}
\end{array}\right.
$$

q-Oper condition: $W_{i} \neq 0$.
Need wore solucture - singularities and twists
Det: An $(S L(r+1), 9)$-aper has regular singuberites at roots of paynomials

$$
\left\{\Lambda_{i}(z)\right\}_{i=1, r} \text { if } w_{i}(z)=\beta_{i} \Lambda_{i}(z)
$$

Def: An $(S L(r+1), q)$-oper is relled Z-tusted if $\exists g(z) \in S<(u+r)(z)$ st.
$g(q z) A(z) g(z)^{-1}=Z \epsilon H \subset H(z)$ - regular semi simple
The q-oper onnection readsi

$$
A(z)=\left(\begin{array}{ccc}
x 1_{1} & & \\
* 1_{2} & & 0 \\
> & * 1_{3} \\
x & \star & \\
x & & * 1_{r}
\end{array}\right)
$$

Dab: The Miura $(S L(r+1), a)$-oper is ($A, E, \mathcal{L}, \hat{\mathcal{L}}.)_{\text {wher }}$ (A,E, \mathcal{L}.) is $(S L(r+1), q)$-oper and flag $\hat{\mathcal{L}}$ is proserved by the q-convedibn $A(z)$. Z-tuisted Miura oper can 4 diagonolized of $u(z) \in B_{+}(z)$.
Prop: There are exaeby $\left|S_{r+1}\right|(r+1)!$ Mirura apers for a given 2 -taisted q.epor if Z is regular semisimple (char poly fure of ssuares)

Minra conditions in detail:
In the standard basistor $\hat{L}_{0}, e_{1}, e_{2}, \ldots, e_{r+1}$ in the spane of sections relebive position at $\mathcal{L}_{\text {a }}$ and $\hat{\mathcal{L}}_{\text {. an }}$ berpressed as filbus:

$$
D_{u}(s)=e_{1} \wedge \ldots e_{r+1-u} \wedge s(z) \wedge \sum s\left(\mu_{9} z\right) \wedge \ldots 2^{4-1} s\left(\mu_{g}^{4-1} z\right)
$$

Du have a subset of zeros coingident w) that of $W_{w}(s)(z)$. The rest of zeoos

Minra ouditions:

$$
\underset{i, j}{\operatorname{det}}\left[\xi_{i}^{j-1} S_{r+1-k+i}^{(j-1)}(z)\right]=\beta_{k} W_{u} \cdot V_{k}, \quad S_{i(z)}^{(m)}=S_{i}\left(M_{q}^{m} z\right)
$$

(2) QR- System:

$$
V_{k}(z)=\prod_{a=1}^{v_{1}}\left(z-v_{k, a}\right)
$$

Thavem: Polyromials $\left\{V_{k}(z)\right\}, n=1, \ldots, r$ give to soletion to the Q4-system.
[KSZ]

$$
\xi_{i+1} Q_{i}^{+}\left(\mu_{q} z\right) Q_{i}^{-}(z)-\xi_{i} Q_{i}^{y}(z) Q_{i}^{-}\left(\mu_{q} z\right)=\left(\xi_{i+1}-\xi_{i}\right) \Lambda_{i}(z) Q_{i-1}\left(\mu_{q} z\right) Q_{i+1}(z)
$$

s.t. $U_{i}=Q_{i}^{+}(z)$. Neseaver

$$
Q_{j}^{+}(z)=\frac{1}{M_{a}^{i+r} W_{r-i}}(z) \frac{\operatorname{det} M_{1}, j}{\operatorname{det} V_{1 \ldots j}}, \quad Q_{j}(z)=\frac{1}{M_{q}^{i-r} W_{r i i}(z)} \frac{\operatorname{det} M_{1 \ldots j-1+1}}{\operatorname{det} V_{1 \ldots j-1, j+1}}
$$

Where

Lewis-Carroll identity: a partiontor example.

Difference operator

$$
v(z)=\left(\begin{array}{cc}
Q_{+}(z) & \frac{Q_{-}(z)}{Q_{(z)}} \\
0 & Q_{+}(z)^{-1}
\end{array}\right) \quad \begin{array}{ll}
D_{q}(s)=A s & \left(D_{q}^{2}-T(q z) D_{q}-\frac{1(q z)}{\Lambda(z)}\right)_{1}=0
\end{array}
$$

Z-twisted Miura ope can 4 diagonalized of $v(z) \in B_{+}(z)$.
(3) Generalized Minors:

For (G, q)-opes the LC identity is severalized as follows Gangs decomposition

$$
\begin{array}{rrr}
G=N_{-} H N_{+} & v_{i}^{+}-\text {irrep of } G \quad w h \\
g=n_{-} h \eta_{+} & h v_{w_{i}}^{+}=[h]^{u_{i}} v_{w_{i}}^{+}
\end{array}
$$

Principal minors [Fomin-Zelainski]

$$
\begin{aligned}
& \Delta: G \rightarrow \mathbb{C}^{x} \\
& \Delta^{w_{i}}(g)=[h]^{w_{i}}, \quad i=1, \ldots, r
\end{aligned}
$$

Generalized minors for $u, v \in W_{a}$ - Weal group

$$
\Delta \Delta_{u \omega_{i}, \sigma \omega_{i}}(g)=\Delta^{\omega_{i}}\left(\tilde{u}^{-1} g \tilde{v}\right)
$$

~ left to the Plop gray
Proposition: Lt $A(z)=v(q z) \sum v(z)^{-1}, \quad v(z) \in B_{+}(z)$

$$
\begin{aligned}
& \sum v(z)^{-1}, \quad v(z) \in B_{+}(z) \\
& \Delta_{w \cdot w_{i}, w_{i}}\left(v^{-1}(z)\right)=Q_{+}^{w, i}(z) \quad\left(=s^{i}(z) \text { for } G=S((M))\right.
\end{aligned}
$$

The $Q Q$-system is equibdent to the folloury quadratic idouting of Fonin and 2decinsti:

$$
\Delta_{u \omega_{i}, \sigma \omega_{i}} \Delta_{u w_{i} \omega_{j}, v w_{i} \omega_{i}}-\Delta_{u w_{i} w_{i}, v \omega_{i}} \Delta u \cdot \omega_{1}, v w_{i} \omega_{i}=\prod_{j \neq i} \Delta_{u \omega_{c}, v \omega_{j}}^{-a_{j}}
$$

Extended $Q Q$-system:
q- connection can be expressed as follows: $\quad A(z)=\prod g(z)^{\alpha_{i}} e^{\frac{1_{i}(z)}{g_{i}(z)} e_{i}}$

$$
g_{i}(z)=\xi_{i} \frac{Q_{i}^{+}(q z)}{Q_{i}^{+}(z)}
$$

Bäclend trausformations.
Prop: $A \leftrightarrow A^{(i)}=e^{\mu_{i}(q z) f_{i}} A(z) e^{-\mu_{i}(z) f_{i}}, \quad \mu_{i}(z)=\frac{Q_{i-1}^{+}(z) Q_{i+1}^{+}(z)}{Q_{+}^{i}(z) Q_{-}^{i}(z)}$
then $A^{(i)}$ is obtained from A by substitution

$$
\begin{aligned}
& Q_{+}^{j}(z) \mapsto Q_{t}^{j}(z), j \neq i \\
& Q_{t}^{i}(z) \mapsto Q_{-}^{j}(z), \quad 2 \backsim s_{i}(2)
\end{aligned}
$$

One an keep ctearaing
(4) (G, q)-opers:
(G, g)-qeer on \mathbb{P}^{\prime} is $\left(F_{G}, A, F_{B_{+}}\right)$, where A - meroworphic conncetion
$F_{B_{e}}$ - reduction of F_{G} to B_{T} s.t. restricion of $A: F_{G} \rightarrow F_{a}{ }^{q}$ on V takes values in $B_{+}(\mathbb{C}[v\}) \subset B_{+}(\mathbb{C}\{v\})$
c - Coxetor element $C=$? s.
Locally $\quad A(z)=n^{\prime}(z) \prod_{i}\left(p_{i}(z)^{\alpha} s_{i}\right) n(z), \quad n, n^{\prime}(z) \in N_{+}(z)$
$\operatorname{Minuan}(G, 9)$-oper $\left(F_{G}, A, F_{B}, F_{B_{+}}\right)$
Th: Every Minuak (G, q) - oper wh reguler singcteritigs can le witton as

$$
A(z)=\prod_{i} g_{i}(z)^{-\alpha_{i}} e^{\frac{1_{i}(z)^{\nu}}{g_{i}(z)^{\prime}}}, \quad g_{i}(z) \in \mathbb{C}(z)^{x}
$$

Minra-Plincher ($C, 9)$-opers:

- $\left.J_{w_{i}}\right\} W_{i} \quad \partial_{u_{i}}$-highest weisht vedor of $L_{i} \subset V_{i}$ —irrer of a
$\left.f_{i} v_{w_{i}}\right\} w_{i}-2 d$ surpac spanacd by $\left\{D_{w_{i}}, f_{i} \cdot v_{w_{i}}\right\}-B_{+}$intaint Associded vector andle $V_{i}=F_{B_{+}} \times V_{i}$
contains rank-2 siblundte $W_{\Gamma}=B_{+} F_{B_{+}} \times W_{+}$

Assocanel to every $i=1 . \ldots \mathrm{r}$ an ($S L(2)$ y oper)
line subunda $\mathcal{L}_{i}=F_{B_{+}} \times C_{B_{+}} \times L_{i}$
Def: $\exists v(z) \in B_{+}(z)=s t$

$$
A_{i}(z)=\left.v(q z) 2 v(z)^{-1}\right|_{w_{i}}
$$

When. MPOP $\leqslant M O_{P}$?

Th: $\forall w_{0}$ - - eneric Minra - Plicher q-oper is Miarraq-oper.
$\angle G Q Q$ system $\Leftrightarrow(G, q)$ opers
(5) Inte grability \& Dualities:

Consider (SL(2), q)-oper
$s(z) \wedge Z s(q z)=\beta \wedge(z)$
Let $s(z)=\binom{Q_{+}(z)}{Q_{-}(z)}, \quad Z_{i}=\left(\begin{array}{cc}\xi & 0 \\ 0 & \xi v\end{array}\right), 1(z)=\prod_{n=1}^{4} \prod_{l=0}^{k_{n}-1}\left(z-q^{e} z_{n}\right)$

$$
M(z)=\left(\begin{array}{ll}
Q_{+}(z) & \xi Q_{+}(q z) \\
Q_{-}(z) & \xi^{-1} Q_{-}(q z)
\end{array}\right) \quad \text { det } M=\beta \cdot \Lambda(z)
$$

1) Calewate the determinant - $Q a$-sistem (is egaivent to $A(z) \sim Z$)

$$
\xi^{-1} Q_{+}(z) Q_{-}(q z)-\xi Q_{+}(q z) Q_{-}(z)=\left(\xi^{-1}-\xi\right) 1(z)
$$

XXZ Bethe equetions: $\quad Q_{+}=\prod_{u=1}^{m}\left(z-w_{k}\right)$

$$
\prod_{n=1}^{L} \frac{w_{k}-q z_{n}}{w_{k}-z_{n}}=\xi^{2} \prod_{j=1}^{m} \frac{q w_{m}-w_{j}}{w_{k}-q w_{j}}, \quad u=1 \ldots m
$$

2) Let: We call 2 -tuisted Miara $(S L(r+1), 9)$-pper cavovical if
3) 2-regular semisimple
4) $\operatorname{deg} O_{k}=k$
5) No other singularities exapt for the roots of $1(z)=D_{r+1}(z)$ which are distinot.

$$
\begin{aligned}
& Q_{1}(2)=z-p_{1} \quad \Lambda_{2}(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \\
& Q_{-}(z)=z-p_{2}, \\
& M(z)=\left(\begin{array}{ll}
z-p_{1} & \xi\left(z q-p_{1}\right. \\
z-p_{2} & \xi\left(z q_{9}-p_{2}\right.
\end{array}\right)=z\left(\begin{array}{ll}
1 & q \xi \\
1 & q \xi^{-1}
\end{array}\right)-\left(\begin{array}{ll}
p_{1} & p_{1} \xi \\
p_{2} & p_{2} \xi^{-1}
\end{array}\right) \\
& =z \cdot V+M(0) \\
& \operatorname{det} M(z)=\operatorname{det} V \cdot \Lambda(z)
\end{aligned}
$$

det $\left(z+M(0) \cdot v^{-1}\right)=1(z) \leftarrow$ spectral carve for $t R S$!
Claim $L=-M(0) V^{-1}=\left(\frac{\xi-q \xi^{-1}}{\xi-\xi^{-1}} p_{1} \quad \frac{(q-1) \xi}{q(\xi-\xi-1)} p_{1}\right)$
is the Lax matrix for the HRS model
Works for SL(N).

$$
\begin{aligned}
& \operatorname{Fun}\left(q \theta_{2}^{1}\right) \cong \frac{\mathbb{C}\left(a_{2} \xi_{i}, p_{r}, a_{r}\right)}{\left\{\left(H_{k}^{+R s}=e_{k}\left(a_{1} \ldots a_{r+1}\right)\right)\right.} \cong \frac{\mathbb{C}\left(a, \xi_{i}, s_{\mu}, e_{1} a_{1}\right)}{\text { Bethe }} \\
& \cong \frac{\mathbb{C}\left(q, \xi_{i}, p_{i} a_{i}\right)}{q W_{r}} \\
& \text { Diamond: } \\
& \text { Twisted } \\
& (4, g) \text {-overs }
\end{aligned}
$$

$\binom{t R S}{x x z}$

Elliptic generalizations:

