From Instantons to Vortices

 via
Double Scaling

with A. Gorsky, O. Koroteeva, A. Vainshtein

[arXiv:1910.02606] [arXiv:2110.02157]

Peter Koroteev

Literature

[arXiv:2110.02157] Phys.Lett.B 826 (2022) 136919
Double Inozemtsev Limits of the Quantum DELL System
A. Gorsky, P. Koroteev, O. Koroteeva, S. Shakirov
[arXiv:1910.02606] J.Math.Phys. 61 (2020) 082302
On Dimensional Transmutation in 1+1D Quantum Hydrodynamics
A. Gorsky, P. Koroteev, O. Koroteeva, A. Vainshtein
[arXiv:1805.00986] Commun.Math.Phys. 381 (2021) 175
A-type Quiver Varieties and ADHM Moduli Spaces
P. Koroteev

Instantons vs Vortices

$$
F=\star F
$$

Moduli space $\mathscr{J}_{k, n}$ of k instantons on \mathbb{R}^{4}

$\operatorname{dim} \mathscr{J}_{k, n}=4 k n$
HyperKähler

$$
F=\nabla \phi
$$

Moduli space $\mathscr{V}_{k, n}$ of k vortices on \mathbb{R}^{2}

$$
\begin{aligned}
& \text { [Hanany Tong] } \\
& \mathscr{V}_{k, n} \subset \mathscr{J}_{k, n}
\end{aligned}
$$

$$
\operatorname{dim} \mathscr{V}_{k, n}=2 k n
$$

Kähler

Integrable Many-Body Systems

Calogero in 1971 introduced a new integrable system. Moser in 1975 proved its integrability using Lax pair

$$
H_{C M}=\sum_{i=1}^{n} \frac{p_{i}^{2}}{2 m}+g^{2} \sum_{j \neq i} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}
$$

$$
V(z) \simeq \frac{1}{z^{2}}
$$

$$
\wp\left(x_{j}-x_{i}\right)
$$

$$
\mathrm{rCM} \rightarrow \mathrm{tCM} \rightarrow \mathrm{eCM}
$$

$$
V(z) \simeq \frac{1}{\sinh z^{2}}
$$

Another relativistic generalization called Ruijsenaars-Schneider (RS) family rRS \rightarrow tRS \rightarrow eRS

Geometrically described by Hamiltonian reduction of $T^{*} G L(n)$

$$
H_{C M}=\lim _{c \rightarrow \infty} H_{R S}-n m c^{2}
$$

Algebraic Integrable Systems

- These are examples of complex algebraic integrable systems with n degrees of freedom whose phase space is a Lagrangian fibration of complex dimension $2 n$ equipped with holomorphic symplectic 2 -form
$\Omega=\sum_{i=1}^{n} d p_{i} \wedge d x_{i}$ over a smooth base whose fibers are Abelian varieties (admit group law)
- There are n Poisson commuting Hamiltonians H_{1}, \ldots, H_{n}
- In action-angle variables, Hamiltonian evolution is linearized on the fibers which serve as level sets of the Hamiltonians

Hitchin Integrable System

Seiberg-Witten solution of $\mathcal{N}=2^{*}$ gauge theory leads to Hitchin integrable system (\mathscr{E}, φ)
Holomorphic G vector bundle over C_{p} with holomorphic section φ (Higgs field) of $K_{C_{p}} \otimes \operatorname{ad}(E) \otimes \mathcal{O}(p)$

$$
\begin{aligned}
A & =\alpha_{p} d \vartheta+\cdots \\
\varphi & =\frac{1}{2}\left(\beta_{p}+i \gamma_{p}\right) \frac{d z}{z}+\cdots
\end{aligned}
$$

The n-dimensional Abelian variety is parameterized by the period matrix

$$
\tau_{i j}=\frac{\partial \mathcal{F}}{\partial a_{i} \partial a_{j}}
$$

Liouville tori can be found inside the Jacobians of the algebraic curve

$$
\operatorname{det}(z-\varphi)=0
$$

Coordinates

$$
x_{i}=\sum_{j=1}^{N-1} \int_{P_{0}}^{P_{j}} \omega_{i}
$$

The Abelian nature of Lagrangian fibers suggests that coordinates and momenta take values in

$$
\mathbb{C}, \mathbb{C}^{\times}, \mathcal{E}
$$

Seiberg-Witten Solution

Provides mass spectrum of BPS particles of $\mathfrak{N}=2$ gauge theory in $4 d$ in the infrared

In IR spectrum given by period integrals of the curve

Potential

UV vacuum

Coordinate on the moduli space

$$
V \sim \operatorname{Tr}|[\phi, \phi]|^{2}
$$

$$
\langle\phi\rangle=a \sigma_{3} / 2
$$

$$
u=\left\langle\operatorname{tr} \phi^{2}\right\rangle
$$

$\left(a, a_{D}\right) \quad a_{D}=\frac{\partial \mathcal{F}(a)}{\partial a}$
$a_{D} \sim \frac{i a}{\pi}\left(1+\ln \frac{a^{2}}{\Lambda^{2}}\right)$
$a \sim \sqrt{u}$

Monodromy around infinity

$$
M_{\infty}=\left(\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right)
$$

Using S-duality define dual magnetic variables

One-loop correction in the semi-classical region

$$
2 u=p^{2}-\left(z+\frac{1}{z}\right) \quad \lambda=p \frac{d z}{z}
$$

Masses of BPS particles

$$
S_{j}(u)=\oint_{\gamma_{j}} \lambda
$$

Many-Body Systems of CM/RS type

The Calogero-Moser Space

Let V be an N -dimensional vector space over \mathbb{C}. Let \mathscr{M}^{\prime} be the subset of $G L(V) \times G L(V) \times V \times V^{*}$ consisting of elements (M, T, u, v) such that

$$
\hbar M T-T M=u \otimes v^{T}
$$

The group $G L(N ; \mathbb{C})=G L(V)$ acts on \mathscr{M}^{\prime} by conjugation

$$
(M, T, u, v) \mapsto\left(g M g^{-1}, g T g^{-1}, g u, v g^{-1}\right)
$$

The quotient of \mathscr{M}^{\prime} by the action of $G L(V)$ is called Calogero-Moser space \mathscr{M}

Also can be understood as moduli space of flat connections on punctured torus

$$
A B A^{-1} B^{-1}=C
$$

Integrable Hamiltonians are $\sim \operatorname{Tr} T^{k}$

$$
\mathcal{M}_{n}=\{A, B, C\} / G L(n ; \mathbb{C})
$$

$$
C=\operatorname{diag}\left(\hbar, \ldots, \hbar, \hbar^{n-1}\right)
$$

Trigonometric RS Model

Flatness condition

$$
\hbar M T-T M=u \otimes v^{T}
$$

In the basis where M is diagonal with eigenvalues ξ_{1}, \ldots, ξ_{n} matrix T

$$
T_{i j}=\frac{u_{i} v_{j}}{\hbar \xi_{i}-\xi_{j}}
$$

Define tRS momenta

$$
p_{i}=-u_{i} v_{i} \frac{\prod_{k \neq i}\left(\xi_{i}-\xi_{k}\right)}{\prod_{k}\left(\xi_{i}-\hbar \xi_{k}\right)}
$$

$$
T_{i j}=\frac{\prod_{k \neq j}\left(\xi_{i}-\hbar \xi_{k}\right)}{\prod_{k \neq i}\left(\xi_{j}-\xi_{k}\right)} p_{i}
$$

Two particles

Characteristic polynomial of T generates tRS Hamiltonians

$$
H_{1}=\frac{\hbar \xi_{1}-\xi_{2}}{\xi_{1}-\xi_{2}} p_{1}+\frac{\hbar \xi_{2}-\xi_{1}}{\xi_{2}-\xi_{1}} p_{1}
$$

Eigenproblem

$$
\sum_{\substack{\mathcal{I} \subset 1, \ldots, n \\|\mathcal{I}|=k}} \prod_{\substack{i \in \mathcal{I} \\ j \notin \mathcal{I}}} \frac{\hbar \xi_{i}-\xi_{j}}{\xi_{i}-\xi_{j}} \prod_{m \in \mathcal{I}} p_{m}=e_{k}\left(a_{i}\right)
$$

$$
H_{2}=p_{1} p_{2}
$$

Quantum tRS Spectrum

Difference operators

$$
p_{i} f\left(\xi_{i}\right)=f\left(q \xi_{i}\right)
$$

$$
p_{i} \xi_{j}=q^{\delta_{i j}} \xi_{i} p_{j}
$$

tRS eigenvalue problem

$$
H_{i}(\xi, p) V(\xi, a)=e_{i}(a) V(\xi, a)
$$

What is the geometric meaning of V ?

Answering this question will help us to understand elliptic models

Before we answer this question notice the symmetry of the flatness condition

$$
\begin{gathered}
\hbar M T-T M=u \otimes v^{T} \\
\hbar \mapsto \hbar^{-1} M \leftrightarrow T
\end{gathered}
$$

Enumerative AG/Integrable Systems

Quantum equivariant K-theory of Nakajima quiver varieties

$$
A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \circledast_{d} B z^{d}
$$

$$
\mathbf{V}^{(\tau)}(\boldsymbol{z})=\sum_{\boldsymbol{d}} \operatorname{ev}_{p_{2, *}}\left(\left.\widehat{\mathcal{O}}_{\text {vir }}^{d} \otimes \tau\right|_{p_{1}}, \mathrm{QM}_{\text {nonsing } p_{2}}^{d}\right) \boldsymbol{z}^{\boldsymbol{d}} \in K_{\mathrm{T} \times \mathbb{C}_{q}^{\times}}(X)_{l o c}[[\boldsymbol{z}]]
$$

Saddle point limit yields Bethe equations for XXZ
Quantum classes satisfy interesting difference equations in equivariant parameters and Kahler parameters

After symmetrization, they can be rewritten as eigenvalue equations for the $\boldsymbol{t R S}$ system
mirror frame

$$
T_{r}(\mathbf{a})=\sum_{\substack{\mathcal{J} \subset\{1, \ldots, n\} \\|\mathcal{J}|=r}} \prod_{\substack{i \in \mathcal{J} \\ j \notin \mathcal{J}}} \frac{t a_{i}-a_{j}}{a_{i}-a_{j}} \prod_{i \in \mathcal{J}} p_{i}
$$

$$
T_{r}(\boldsymbol{a}) \mathrm{V}(\boldsymbol{a}, \vec{\zeta})=S_{r}(\vec{\zeta}, t) \mathrm{V}(\boldsymbol{a}, \vec{\zeta})
$$

Vertex/Vortex Functions

After classifying fixed points of space of nonsingular quasimaps we can compute the vertex using the localization theorem

$$
\begin{array}{ll}
V_{p}^{(\tau)}(z)=\sum_{d_{i, j} \in C} z^{\mathbf{d}} q^{N(\mathbf{d}) / 2} E H G & \tau\left(x_{i, j} q^{-d_{i, j}}\right) \\
E=\prod_{i=1}^{n-1} \prod_{j, k=1}^{\mathbf{v}_{i}}\left\{x_{i, j} / x_{i, k}\right\}_{d_{i, j}-d_{i, k}}^{-1} \quad x_{i, j} \in\left\{a_{1}, \ldots a_{\mathbf{w}_{n}}\right\}
\end{array}
$$

Vertex (trivial class)

$$
V={ }_{2} \phi_{1}\left(\hbar, \hbar \frac{a_{1}}{a_{2}}, q \frac{a_{1}}{a_{2}} ; q ; z\right) \quad \mathbf{v}_{1}=1, \mathbf{w}_{1}=2
$$

Vortex (defet partition function)
$\mathcal{N}=2^{*}$ quiver gauge theory on $X_{3}=\mathbb{C}_{\epsilon_{1}} \times S_{\gamma}^{1}$
Lagrangian depends on twisted masses a_{1}, a_{2}
FI parameter z and $U(I)$ R-symmetry $\log \hbar$

Quantum tRS Spectrum

Theorem 2.10. Let $V_{p}^{(1)}$ be the coefficient for the vertex function for X Define

$$
\begin{equation*}
\mathrm{V}_{p}^{(1)}=\prod_{i=1}^{n} \frac{\theta\left(\hbar^{i-n} \zeta_{i}, q\right)}{\theta\left(a_{i} \zeta_{i}, q\right)} \cdot V_{p}^{(1)} \tag{2.9}
\end{equation*}
$$

where $\theta(x, q)=(x, q)_{\infty}\left(q x^{-1}, q\right)_{\infty}$ is basic theta-function. Then V_{p} are eigenfunctions for $t R S$ difference operators (2.8) for all fixed points \boldsymbol{p}

$$
\begin{equation*}
T_{r}(\boldsymbol{\zeta}) \mathrm{V}_{\boldsymbol{p}}^{(1)}=e_{r}(\mathbf{a}) \mathrm{V}_{\boldsymbol{p}}^{(1)}, \quad r=1, \ldots, n \tag{2.10}
\end{equation*}
$$

where e_{r} is elementary symmetric polynomial of degree r of a_{1}, \ldots, a_{n}.

Quantum multiplication by class
tRS momenta

$$
p_{i}=\frac{s_{i+1,1} \cdots \cdots s_{i+1, i+1}}{s_{i, 1} \cdots s_{i, i}}
$$

$$
\widehat{\Lambda i \mathscr{V}}_{i} \otimes{\widehat{\Lambda i+1} \mathscr{V}_{i+1}^{*}}^{\widehat{\Lambda N}^{(1)}}
$$

Macdonald Polynomials

Proposition 2.11. Consider coefficient functions for K-theory of $Q M$ to X_{n} (2.9) for all fixed points of the maximal torus. Let λ be a partition of k elements of length n and $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Let

$$
\begin{equation*}
\frac{a_{i+1}}{a_{i}}=q^{\ell_{i} \hbar} \hbar, \quad \ell_{i}=\lambda_{i+1}-\lambda_{i}, \quad i=1, \ldots, n-1 . \tag{2.18}
\end{equation*}
$$

Then there exists a fixed point \boldsymbol{q} for which

$$
\begin{equation*}
\vee_{q}=P_{\lambda}(\boldsymbol{\zeta} ; q, \hbar) \tag{2.19}
\end{equation*}
$$

$$
a_{i}=a q^{\lambda_{i}} \hbar^{i-n}, \quad i=1, \ldots, n
$$

$$
T_{1}(\boldsymbol{\zeta}) P_{\lambda}(\boldsymbol{\zeta} ; q, \hbar)=\left(\sum_{i=1}^{n} q^{\lambda_{i}} \hbar^{i-n}\right) P_{\lambda}(\boldsymbol{\zeta} ; q, \hbar)
$$

Example: $T^{*} \mathbb{P}^{1}$

ξ

$$
H_{1}=\frac{q \xi_{1}-\xi_{2}}{\xi_{1}-\xi_{2}} p_{1}+\frac{q \xi_{2}-\xi_{1}}{\xi_{2}-\xi_{1}} p_{2}
$$

$$
H_{2}=p_{1} p_{2}
$$

$$
V_{\mathbf{P}}^{(1)}=\sum_{d>0}\left(\frac{\zeta_{1}}{\zeta_{2}}\right)^{d} \prod_{i=1}^{2} \frac{\left(\frac{q}{\hbar} \frac{a_{\mathbf{p}}}{a_{i}} ; q\right)_{d}}{\left(\frac{a_{\mathbf{p}}}{a_{i}} ; q\right)_{d}}={ }_{2} \phi_{1}\left(\hbar, \hbar \frac{a_{\mathbf{p}}}{a_{\overline{\mathbf{p}}}}, q \frac{a_{\mathbf{p}}}{a_{\overline{\mathbf{p}}}} ; q ; \frac{q \zeta_{1}}{\hbar} \bar{\zeta}_{2}\right)
$$

Macdonald polynomials

$$
\mathrm{V}_{\square}=\zeta_{1}+\zeta_{2}
$$

$$
\begin{aligned}
& a_{1}=a q^{\lambda_{1}} \hbar^{-1}, a_{2}=a q^{\lambda_{2}} \mathrm{~V}_{\square} \\
&=\zeta_{1}^{2}+\zeta_{2}^{2}+\frac{(q+1)(\hbar-1)}{q \hbar-1} \zeta_{1} \zeta_{2}, \\
& \mathrm{~V}_{\square}=\zeta_{1}^{3}+\zeta_{2}^{3}+\frac{\left(q^{2}+q+1\right)(\hbar-1)}{q^{2} \hbar-1} \zeta_{2} \zeta_{1}^{2}+\frac{\left(q^{2}+q+1\right)(\hbar-1)}{q^{2} \hbar-1} \zeta_{2}^{2} \zeta_{1}
\end{aligned}
$$

Elliptic RS Model

$$
\begin{equation*}
E_{r}(\boldsymbol{\zeta})=\sum_{\substack{\mathcal{J} \subset\{1, \ldots, n\} \\|\mathcal{J}|=r}} \prod_{\substack{i \in \mathcal{J} \\ j \notin \mathcal{J}}} \frac{\theta_{1}\left(\hbar \zeta_{i} / \zeta_{j} \mid \mathfrak{p}\right)}{\theta_{1}\left(\hbar \zeta_{i} / \zeta_{j} \mid \mathfrak{p}\right)} \prod_{i \in \mathcal{J}} p_{k} \quad E_{r}(\boldsymbol{\zeta}) \mathcal{Z}=\mathscr{E}_{r} \mathcal{Z} \tag{1}
\end{equation*}
$$

Conjecture 5.1. The solution of (1) is given by the K-theoretic holomorphic equivariant Euler characteristic of the affine Laumon space

$$
z=\sum_{d} \overrightarrow{\mathfrak{q}}^{d} \int_{\mathcal{L}_{d}} 1
$$

where $\overrightarrow{\mathfrak{q}}=\left(\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}\right)$ is a string of \mathbb{C}^{\times}-valued coordinates on the maximal torus of $\mathcal{L}_{d}^{a f f}$. The eigenvalues \mathscr{E}_{r} are equivariant Chern characters of bundles $\Lambda^{r} \mathscr{W}$, where \mathscr{W} is the constant bundle of the corresponding ADHM space. In other words they have the following form

$$
\mathscr{E}_{r}=e_{r}+\sum_{l=1}^{\infty} \mathfrak{p}^{l} \mathcal{E}_{r}^{(l)}
$$

where e_{r} are symmetric functions of the equivariant parameters a_{1}, \ldots, a_{N}.

eRS Spectrum

Euler characteristic of affine Laumon space (representation space of a chain-saw quiver)

$$
z=\sum_{\vec{\mu}} \prod_{l=1}^{n} \mathfrak{q}_{l}^{k_{l}(\vec{\mu})} z_{\vec{\mu}}(\vec{a}, \hbar, q)
$$

$$
\mathfrak{p}=\mathfrak{q}_{1} \cdots \cdot \mathfrak{q}_{n}
$$

Theorem 1.1. Let $\boldsymbol{x}=\left(x_{1}, \ldots x_{N}\right)$ be the position vector of the eRS model and $\mathcal{Z}^{R S}(\boldsymbol{a}, \boldsymbol{x})=$ $\lim _{w \rightarrow 0} \mathcal{Z}_{\text {inst }}^{6 d / 4 d}(w, p, \boldsymbol{x})$ is its wavefunction. Then the following equality holds

$$
\begin{equation*}
\mathcal{H}_{k} \mathcal{Z}^{R S}(\boldsymbol{a}, \boldsymbol{x})=\lambda_{k}(\boldsymbol{a}) \mathcal{Z}^{R S}(\boldsymbol{a}, \boldsymbol{x}), \quad k=1, \ldots, N-1 \tag{1.6}
\end{equation*}
$$

where the eigenvalues read

$$
\begin{equation*}
\lambda_{k}(\boldsymbol{a})=\prod_{n=0}^{k-1} \frac{\theta\left(t^{N-n}\right)}{\theta\left(t^{n+1}\right)} \cdot \frac{\mathcal{Z}^{R S}\left(\boldsymbol{a}, t^{\vec{\rho}} q^{\overrightarrow{\omega_{k}}}\right)}{\mathcal{Z}^{R S}\left(\boldsymbol{a}, t^{\vec{\rho}}\right)}, \quad k=1, \ldots, N-1 \tag{1.7}
\end{equation*}
$$

where $\overrightarrow{\omega_{k}}$ is the k-th fundamental weight of representation of $S U(N)$ and $\vec{\rho}=((N-$ 1) $/ 2,(N-3) / 2, \ldots,(3-N) / 2,(1-N) / 2)$ is the $S U(N)$ Weyl vector.

$$
\oint_{\left|z_{2}\right|=\epsilon} A^{a}=2 \pi m^{a}, \quad a=1, \ldots, N
$$

Fock Space

Back to Macdonald polynomials
Power-symmetric variables $\quad p_{m}=\sum_{l=1}^{n} z_{l}^{m}$

Macdonald polynomials depend only on k and the partition

$$
P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right), \quad P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right)+\frac{1-q t}{(1+q)(1-t)} p_{2}
$$

Starting with Fock vacuum |0〉

Construct Hilbert space
for each partition
Commutators

$$
\begin{aligned}
& a_{-\lambda}|0\rangle \longleftrightarrow p_{\lambda} \\
& a_{-\lambda}|0\rangle=a_{-\lambda_{1}} \cdots a_{-\lambda_{l}}|0\rangle
\end{aligned}
$$

$$
\left[a_{m}, a_{n}\right]=m \frac{1-q^{|m|}}{1-\hbar^{|m|}} \delta_{m,-n}
$$

Ding-lohara-Miki algebra

Free boson representation of tRS operators

$(p ; p)_{\infty}\left(p q^{-1} ; p\right)_{\infty} E_{e R S}(p)=\left\langle W_{\square}\right\rangle E_{e R S}(p)=\left.\left\langle W_{\square}\right\rangle\right|_{\lambda}$
Define

$$
\begin{aligned}
& \phi_{n}(\tau)=\prod_{i=1}^{n} \phi\left(\tau_{i}\right) \quad \text { then }\left(\mathrm{t}=\hbar^{-1}\right) \\
& {[\eta(z)]_{1} \phi_{n}(\tau)|0\rangle=\left[t^{-n}+t^{-n+1}\left(1-t^{-1}\right) D_{n, \vec{\tau}}^{(1)}(q, t)\right] \phi_{n}(\tau)|0\rangle}
\end{aligned}
$$

Assuming $|\mathrm{t}|<1$

$$
\begin{gathered}
\mathcal{E}_{1}^{(\lambda)}=\lim _{n \rightarrow \infty}\left[t^{-n+1}\left(1-t^{-1}\right) E_{t R S}^{(\lambda ; n)}\right] \\
\mathcal{E}_{1}^{(\lambda)}(p)=\lim _{n \rightarrow \infty}\left[t^{-n+1}\left(1-t^{-1}\right) \frac{\left.\left(p t^{-1} ; p\right)_{\infty}\left(p t q^{t} ; p\right)\right)_{\infty}}{(p ; p)_{\infty}\left(p q^{-1} ; p\right)_{\infty}} E_{e R S}^{(\lambda ; n)}(p)\right]
\end{gathered}
$$

For elliptic model replace

$$
\eta\left(z ; p q^{-1} t\right)=\exp \left(\sum_{n>0} \frac{1-t^{-n}}{n} \frac{1-\left(p q^{-1} t\right)^{n}}{1-p^{n}} a_{-n} z^{n}\right) \exp \left(-\sum_{n>0} \frac{1-t^{n}}{n} a_{n} z^{-n}\right)
$$

DAHA Action

Vertex functions or quantum classes for X are elements of quantum K-theory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from \mathbb{P}^{1} to X

$$
V \in K_{T}\left(\mathbb{P}^{1} \rightarrow T^{*} \mathbb{F}_{n}\right) \quad \text { with maximal torus } \quad T=\mathbb{T}\left(U(n) \times U(1)_{\hbar} \times U(1)_{q}\right) .
$$

Specification $a_{k}=q^{\lambda_{k}} \hbar^{n-k}$ restricts us to the Fock space representation of (q,h)-Heisenberg algebra which is a DAHA module

In other words, we can define the following action

Flags vs ADHM

$K_{T}\left(\mathbf{Q M}\left(\mathbb{P}^{1}, X\right)\right)$	$K_{q, \hbar}\left(\operatorname{Hilb}\left(\mathbb{C}^{2}\right)\right)$
Kähler/quantum parameters of $X z_{1}, z_{2} \ldots$	Ring generators x_{1}, x_{2}, \ldots
Vertex function $\mathrm{V}_{\mathbf{q}}$	Classes of $\left(\mathbb{C}^{\times}\right)^{2}$ fixed points $[\mathfrak{\jmath}]$
\mathbb{C}_{q}^{\times}acting on base curve	\mathbb{C}_{q}^{\times}acting on $\mathbb{C} \subset \mathbb{C}^{2}$
$\mathbb{C}_{\hbar}^{\times}$acting on cotangent fibers of X	$\mathbb{C}_{\hbar}^{\times}$acting on another $\mathbb{C} \subset \mathbb{C}^{2}$
Eigenvalues e_{r} of tRS operators T_{r}	Chern polynomials \mathcal{E}_{r} of $\Lambda^{r} \mathcal{U}$

quantum deformation:

Eigenvalues of elliptic

RS model at large n

$$
E_{r}(\vec{\zeta})=\sum_{\substack{\mathcal{J} \subset\{1, \ldots, n\} \\|\mathcal{J}|=r}} \prod_{\substack{i \in \mathcal{J} \\ j \notin \mathcal{J}}} \frac{\theta_{1}\left(\hbar \zeta_{i} / \zeta_{j} \mid \mathfrak{p}\right)}{\theta_{1}\left(\hbar \zeta_{i} / \zeta_{j} \mid \mathfrak{p}\right)} \prod_{i \in \mathcal{J}} p_{k}
$$

Eigenvalues of quantum multiplication by

$$
\mathscr{U}=\mathscr{W}+\left.(1-q)(1-\hbar) \mathscr{V}\right|_{\mathscr{J}_{\vec{\lambda}}}
$$

Chern roots obey

$$
\prod_{l=1}^{N} \frac{s_{a}-\mathrm{a}_{l}}{s_{a}-q^{-1} \hbar^{-1} \mathrm{a}_{l}} \cdot \prod_{\substack{b=1 \\ b \neq a}}^{k} \frac{s_{a}-q s_{b}}{s_{a}-q^{-1} s_{b}} \frac{s_{a}-\hbar s_{b}}{s_{a}-\hbar^{-1} s_{b}} \frac{s_{a}-q^{-1} \hbar^{-1} s_{b}}{s_{a}-q \hbar s_{b}}=\mathfrak{z}
$$

M-theory Description

Recall that $\quad \operatorname{Hilb}^{k}\left[\mathbb{C}^{2}\right]=\mathcal{M}_{1, k}^{\text {inst }}$
How did U(I) 5d SYM appear?
Starting with M-theory on
n M5 branes wrapping

$$
\begin{aligned}
S^{1} & \times \mathbb{C}_{q} \times \mathbb{C}_{\hbar} \times T^{*} S^{3} \\
S^{1} & \times \mathbb{C}_{q} \times S^{3}
\end{aligned}
$$

Upon compactification on three sphere will get 3d quiver gauge theory on ${ }^{*}$ FFIn

When n becomes large the background undergoes through the conifold transition and the resolved conifold becomes a deformed conifoldY:

$$
S^{1} \times \mathbb{C}_{q} \times \mathbb{C}_{t} \times Y
$$

Reduction on Y leads us to a $5 \mathrm{~d} \mathrm{U}(\mathrm{I})$ theory with 8 supercharges

Spectrum

eRS Hamiltonian eigenvalues coincide with eigenvalues of the quantum multiplication operator in quantum K-theory ring of the instanton moduli space (Hilbert Scheme of points).

$$
\left.\left\langle W_{\square}^{U(n)}\right\rangle\right|_{\lambda} \sim \mathcal{E}_{1}^{(\lambda)}=1-\left.(1-q)\left(1-t^{-1}\right) \sum_{s} \sigma_{s}\right|_{\lambda}
$$

sigmas are determined by Bethe Ansatz equations for ADHM quiver
Elliptic deformation - Quantization

Fields	χ	B_{1}	B_{2}	I	J
gauge group $U(k)$	Adj	Adj	Adj	\mathbf{k}	$\overline{\mathbf{k}}$
flavor $U(N) \times U(1)^{2}$	$\mathbf{1}_{(-1,-1)}$	$\mathbf{1}_{(1,0)}$	$\mathbf{1}_{(0,1)}$	$\mathbf{N}_{(0,0)}$	$\mathbf{N}_{(1,1)}$
flavor parameters	$(q \hbar)^{-1}$	q	\hbar	a_{j}	$\mathrm{a}_{j}^{-1} q \hbar$
R-charge	2	0	0	0	0

Inozemtsev Limit - Trigonometric Case

Consider tRS difference operators

$$
T_{r}(\vec{\zeta})=\sum_{\substack{\mathcal{I} \subset\{1, \ldots, n\} \\|\mathcal{I}|=r}} \prod_{\substack{i \in \mathcal{I} \\ j \notin \mathcal{I}}} \frac{\hbar^{-1 / 2} \zeta_{i}-\hbar^{1 / 2} \zeta_{j}}{\zeta_{i}-\zeta_{j}} \prod_{i \in \mathcal{I}} p_{k}
$$

$$
T_{r}(\vec{\zeta}) \mathrm{V}_{\mathbf{p}}=e_{r}(\mathbf{a}) \mathrm{V}_{\mathbf{p}}, \quad r=1, \ldots, n
$$

Double Scaling

$$
\mathfrak{z}_{i}=\hbar^{-i} \zeta_{i}, \quad \mathfrak{p}_{i}=\hbar^{-i+1 / 2} p_{i}, \quad \mathfrak{a}_{i}=\hbar^{-\frac{n}{2}} \alpha_{i}=a_{i}
$$

$$
\hbar \rightarrow \infty
$$

Obtain q-Toda Hamiltonians

$$
H_{r}^{\mathrm{q}-\text { Toda }}=\sum_{\substack{\mathcal{I}=\left\{i_{1}<\cdots<i_{r}\right\} \\ \mathcal{I} \subset\{1, \ldots, n\}}} \prod_{\ell=1}^{r}\left(1-\frac{\mathfrak{z}_{i_{\ell}-1}}{\mathfrak{z}_{i_{\ell}}}\right)^{1-\delta_{i_{\ell}-i_{\ell-1}, 1}} \prod_{k \in \mathcal{I}} \mathfrak{p}_{k} \quad H_{r}^{\mathrm{q}-\operatorname{Toda}}\left(\mathfrak{z}_{1}, \ldots \mathfrak{z}_{n} ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)=e_{r}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right)
$$

The first Hamiltonian $\quad H_{1}^{\text {open }}=\mathfrak{p}_{1}+\sum_{i=2}^{n} \mathfrak{p}_{i}\left(1-\frac{\mathfrak{z} i-1}{\mathfrak{z} i}\right)$

Inozemtsev Limit - Elliptic Case

Theta function

$$
\theta_{1}\left(e^{i z} \mid \mathfrak{p}\right)=2 \mathfrak{p}^{\frac{1}{4}} \sum_{k=0}^{+\infty}(-1)^{k} \mathfrak{p}^{k(k+1)} \sin ((k+1 / 2) z)
$$

Ratio of thetas

Two-body Hamiltonian becomes in the limit $\hbar \rightarrow \infty$

$$
\frac{\theta_{1}\left(\frac{\zeta_{1}}{\hbar \zeta_{2}} \mathfrak{p}\right)}{\theta_{1}\left(\frac{\zeta_{1}}{\zeta_{2}} \mathfrak{p}\right)} p_{1}+\frac{\theta_{1}\left(\frac{\zeta_{2}}{\hbar \zeta_{1}} \mathfrak{p}\right)}{\theta_{1}\left(\frac{\zeta_{1}}{\zeta_{2}} \mathfrak{p}\right)} p_{2} \rightarrow \mathfrak{p}_{1}\left(1-\mathfrak{q} \frac{\mathfrak{z}_{2}}{\mathfrak{z}_{1}}\right)+\mathfrak{p}_{2}\left(1-\frac{\mathfrak{z}_{1}}{\mathfrak{z}_{2}}\right)
$$

$$
\text { We send } \mathfrak{p} \rightarrow 0 \text { such that } \quad \mathfrak{q}=\mathfrak{p} \hbar^{n} \quad \text { Is finite }
$$

Two-body Hamiltonian

$$
H_{1}^{\text {aff q-Toda }}=\mathfrak{p}_{1}\left(1-\mathfrak{q}^{\mathfrak{z} n} \mathfrak{z}_{1}\right)+\sum_{i=2}^{n} \mathfrak{p}_{i}\left(1-\frac{\mathfrak{z} i-1}{\mathfrak{z}_{i}}\right)
$$

Vortex Moduli Space

After taking the $n \rightarrow \infty$ limit one gets
$\left.\lim _{n \rightarrow \infty} \hbar^{n} \mathscr{E}_{1}^{\text {Toda }}\right|_{\lambda}=\left.\mathcal{E}_{1}^{\Lambda}(\lambda)\right|_{\lambda}$
$\mathfrak{a}_{i}=a q^{\lambda_{i}}, \quad i=1, \ldots, n$

$$
\mathcal{E}_{1}^{\Lambda}(\lambda)=a-(1-q) e_{1}\left(s_{1}, \ldots, s_{k}\right)
$$

Bethe equations

$$
\prod_{l=1}^{N}\left(s_{a}-\mathrm{a}_{l}\right) \cdot \prod_{\substack{b=1 \\ b \neq a}}^{k} \frac{q s_{a}-s_{b}}{s_{a}-q s_{b}}=\widetilde{\mathfrak{p}}^{\Lambda}, \quad a=1, \ldots, k
$$

Dimensional coupling

$$
\widetilde{\mathfrak{p}}^{\Lambda}=\widetilde{\mathfrak{p}} q^{1 / 2} \hbar^{1 / 2} \prod_{l=1}^{N}\left(-q \hbar a_{l}\right)
$$

affine q-Toda model	$5 \mathrm{~d} / 3 \mathrm{~d} \mathcal{N}=2$ SYM theory	$3 \mathrm{~d} \frac{1}{2}$-ADHM theory
Coordinates z_{i}	Kähler parameters	K-ring generators x_{i}
Eigenfunctions	Defect partition functions	$\frac{1}{2}$-ADHM Coulomb branch vacua
Planck constant $\log q$	equivariant parameter q	\mathbb{C}_{q}^{\times}acting on \mathbb{C}
Affine parameter \mathfrak{q}	5 d dynamical scale \mathfrak{p}^{Λ}	FI coupling $\widetilde{\mathfrak{p}}^{\Lambda}$
Eigenvalues $\mathscr{E}_{r}^{\text {Toda }}$	VEVs of Wilson loop $\left\langle W_{\Lambda^{r}} \square\right.$	Chern polynomials $\mathcal{E}_{r}^{\Lambda}$ of $\Lambda^{r} \mathcal{U}$

From ADHM to $1 / 2$ ADHM

$$
\begin{aligned}
& K_{\hbar}\left(T^{*} \mathbb{F} l_{n}\right) \longleftrightarrow \text { ADHM (instanton moduli space) } \\
& \left.\lim _{n \rightarrow \infty}\left[\hbar^{n-1}(1-\hbar)\left\langle W_{\square}^{U(n)}\right\rangle\right]\right|_{\lambda}=a-\left.(1-q)(1-\hbar) e_{1}\left(s_{1}, \ldots, s_{k}\right)\right|_{\lambda}
\end{aligned}
$$

Claim: $\quad \hbar \rightarrow \infty \quad$ retracting the fibers, dimensional transmutation

$$
K\left(\mathbb{F} l_{n}\right) \longleftrightarrow 1 / 2 \text { ADHM (vortex moduli space) }
$$

Eigenvalues of affine qToda lattice at large n

$$
H_{1}^{\text {aff }}=\mathfrak{p}_{1}\left(1-\mathfrak{p}^{\Lambda} \frac{\mathfrak{z} n}{\mathfrak{z}_{1}}\right)+\sum_{i=2}^{n} \mathfrak{p}_{i}\left(1-\frac{\mathfrak{\mathfrak { z }} i-1}{\mathfrak{z}_{i}}\right)
$$

Subscheme $\quad \mathcal{Z}_{k} \subset \operatorname{Hilb}^{k}\left[\mathbb{C}^{2}\right]$
q-Heisenberg algebra preserving $\bigoplus_{k} K_{q}\left(\mathscr{Z}_{k}\right)$

Eigenvalues of quantum
multiplication by

$$
\mathcal{E}_{1}^{\Lambda}(\lambda)=a-(1-q) e_{1}\left(s_{1}, \ldots, s_{k}\right)
$$

Chern roots obey

$$
\prod_{l=1}^{N}\left(s_{a}-\mathrm{a}_{l}\right) \cdot \prod_{\substack{b=1 \\ b \neq a}}^{k} \frac{q s_{a}-s_{b}}{s_{a}-q s_{b}}=\widetilde{\mathfrak{p}}^{\Lambda}
$$

Quantum K-theory

Theorem 6.1 ([KPSZ]). The quantum equivariant K-theory of the complete n-dimensional flag variety is given by

$$
\begin{equation*}
Q K_{T^{\prime}}\left(\mathbb{F} l_{n}\right)=\frac{\mathbb{C}\left[\mathfrak{z}_{1}^{ \pm 1}, \ldots, \mathfrak{z}_{n}^{ \pm 1} ; \mathfrak{a}_{1}^{ \pm 1}, \ldots, \mathfrak{a}_{n}^{ \pm 1} ; \mathfrak{p}_{1}^{ \pm 1}, \ldots, \mathfrak{p}_{n}^{ \pm 1}\right]}{\left(H_{r}^{q-\operatorname{Toda}}\left(\mathfrak{z}_{i}, \mathfrak{p}_{i}\right)=e_{r}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right)\right)} \tag{6.10}
\end{equation*}
$$

where $H_{r}^{q-T o d a}$ are given by (4.3) and T^{\prime} is the maximal torus of $G L(n)$ with equivariant parameters $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$.

Theorem 6.2. For $n>k$ there is the following embedding of Hilbert spaces

$$
\begin{array}{r}
\bigoplus_{l=0}^{k} K_{q}\left(\operatorname{Hilb}^{l}(\mathbb{C})\right) \tag{6.13}\\
{[\lambda] \mathcal{P}_{n}} \\
{[\lambda}
\end{array} \mathrm{I}_{q},
$$

$$
\mathcal{P}_{n}:=K_{\mathrm{\top}}\left(\mathbf{Q M}\left(\mathbb{P}^{1}, \mathbb{F} l_{n}\right)\right)
$$

$$
\mathrm{I}_{\mathbf{q}}=\lim _{\hbar \rightarrow \infty} \mathrm{V}_{\mathbf{q}}
$$

where $\mathbf{I}_{\boldsymbol{q}}$ is the K-theory vertex function for some fixed point \boldsymbol{q} of maximal torus T^{\prime}. The statement also holds in the limit $n \rightarrow \infty$

$$
\begin{equation*}
\bigoplus_{l=0}^{\infty} K_{q}\left(\operatorname{Hilb}^{l}(\mathbb{C})\right) \hookrightarrow \mathcal{P}_{\infty} \tag{6.14}
\end{equation*}
$$

where \mathcal{P}_{∞} is defined as a stable limit of \mathcal{P}_{n} as $n \rightarrow \infty$.

Inosemtsev Limit from DELL

The DELL

$\mathcal{O}(z)=\sum_{n \in \mathbb{Z}} \mathcal{O}_{n} z^{n}=\sum_{n_{1}, \ldots, n_{N}=-\infty}^{\infty}(-z)^{\sum n_{i}} w^{\sum \frac{n_{i}\left(n_{i}-1\right)}{2}} \prod_{i<j} \theta\left(\left.t^{n_{i}-n_{j}} \frac{x_{i}}{x_{j}} \right\rvert\, p\right) p_{1}^{n_{1}} \ldots p_{N}^{n_{N}}$

N-particle DELL Hamiltonians

$$
\mathcal{H}_{a}=\mathcal{O}_{0}^{-1} \mathcal{O}_{a}, \quad a=1, \ldots, N-1
$$

Double Inosemtsev limit from DELL

$$
x_{a} \mapsto t^{-a} x_{a}, \quad p_{a} \mapsto t^{-a-1 / 2} p_{a}, \quad p=t^{\alpha} \Lambda, \quad w=t^{\beta} M
$$

$\alpha=N, \beta=1$

$$
\widetilde{\mathcal{O}}_{k}=c_{N}: \sum_{i_{1}<\cdots<i_{k}} \prod_{a<b} \theta\left(\left.M^{b-a+m_{b}-m_{a}} \frac{x_{a}}{x_{b}} \frac{p_{b}}{p_{a}} \right\rvert\, \widetilde{p}\right): p_{i_{1}} \cdots p_{i_{k}} \quad \widetilde{p}=\Lambda M^{N} \text { and } m_{a}=\delta_{a \in I}
$$

Act with T-transform

$$
x_{a} \mapsto x_{a} p_{a}, \quad \quad p_{a} \mapsto p_{a}
$$

and rescale
$x_{a} \mapsto M^{-a} x_{a}$

Yield eRS model after a conjugation by a Gaussian

$$
\widetilde{\mathcal{O}}_{k}=c_{N} \sum_{i_{1}<\cdots<i_{k}} \prod_{a<b} \theta\left(\left.M^{m_{b}-m_{a}} \frac{x_{a}}{x_{b}} \right\rvert\, \widetilde{p}\right) p_{i_{1}} \cdots p_{i_{k}}
$$

