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Instantons vs Vortices
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In physics literature there was an independent breakthrough in understanding of the con-
nection between integrable systems and quantum geometry. In seminal papers by Nekrasov
and Shatashvili [NS2,NS3] an equivalence between the spaces of solutions of Bethe Ansatz
equations for XXX (XXZ) spin chains and quantum cohomology (K-theory) of A-type
quiver varieties was conjectured (later it was proven in [PSZ, KPSZ]). In [GK, BKK] the
so-called quantum/classical duality between XXZ spin chains and integrals of motion of the
trigonometric Ruijsenaars-Schneider (tRS) model was formulated. This lead us to a clear
understanding of quantum K-theory of the quiver varieties in question in terms of the tRS
system [KPSZ].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.
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Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal torus
of GL(n,C) ⇥ C⇥

q ⇥ C⇥
~ , where GL(wi,C) ⇥ C⇥

~ acts as automorphisms of Xn and

C⇥
~ scales the cotangent directions with character ~1, while C⇥

q acts multiplicatively
on the base curve.

1To be more precise, ~ is the class in the representation ring of the weight one representation.

Moduli space  of k instantons on ℐk,n ℝ4

Moduli space of rank-N torsion-free sheaves on  
With framing at infinity. 

ℙ2

c2(ℱ) = − k ⋅ [pt]

ADHM space
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F = r�

Moduli space  of k vortices on 𝒱k,n ℝ2

Hilbk[ℂ × ℂ]
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6.2. The Gauge/Hydrodynamics Correspondence in the ! → ∞ limit. Having
taken the ! → ∞ limit on both sides of the correspondence (4.10) and (6.1) we arrive to
our main conclusion

(6.4) lim
n→∞

!
nEToda

1

∣∣∣
λ
= EΛ

1 (λ)|λ ,

where the equivariant parameters on the left hand side for the q-Toda eigenvalues (4.10) on
the locus

(6.5) ai = aqλi , i = 1, . . . , n ,

while the ∆ILW energies (6.1) are evaluated on the solutions of scaled Bethe equations
(6.2). The instanton counting parameters from (4.10) and (6.3) are then identified as

(6.6) q = p̃
Λ .

In particular, when N = 1 we can put a1 = 1 and have p̃Λ = p
√
q! as ! → ∞ and p → 0 so

that the latter combination is finite.
One can see that !n−i in (5.20) will cancel off after plugging into (4.10). As expected,

fixed points in the vortex moduli space are parameterized by integers λi – vortex numbers.
As it was pointed out by Hanany and Tong in [HT], the vortex moduli spaceMvort

1,k (the so-

called ‘12 -ADHM’ moduli space) forms a Lagrangian submanifold inside the instanton moduli
space Minst

1,k . This submanifold is the fixed point locus of a U(1) action on Minst
1,k which

rotates the instantons in a plane. Using the language of Nekrasov’s Omega background, we
can identify this action with C

×
!
.

affine q-Toda model 5d/3d N = 2 SYM theory 3d 1
2 -ADHM theory

Coordinates zi Kähler parameters K-ring generators xi
Eigenfunctions Defect partition functions 1

2 -ADHM Coulomb branch vacua

Planck constant log q equivariant parameter q C×
q acting on C

Affine parameter q 5d dynamical scale pΛ FI coupling p̃Λ

Eigenvalues EToda
r VEVs of Wilson loop 〈WΛr 〉 Chern polynomials EΛ

r of ΛrU

Table 3. The correspondence table between the closed q-Toda model, its 5d/3d
gauge theory description and large-n 1

2
-ADHM quiver description.

1 2 . . . n− 1

n
W

V

Figure 2. Left: Quiver diagram for the complete flag variety Fln. Right: The
1

2
-ADHM quiver. Chiral multiplets are depicted with arrows.

Thus the new duality can be stated as follows. The VEV of a Wilson line in pure N = 2
SYM theory with gauge group U(n) with quantized Coulomb branch parameters (6.5) in the

1/2 ADHM space

Hilbk[ℂ]

dimℐk,n = 4kn dim𝒱k,n = 2kn
𝒱k,n ⊂ ℐk,n

Lagrangian embedding

HyperKähler Kähler

[Hanany Tong]

Ideals scheme-theoretically  
supported on ℂ ⊂ ℂ2



 Integrable Many-Body Systems
Calogero in 1971 introduced a new integrable system. Moser in 1975 proved its integrability using Lax pair

HCM =
nX

i=1

p
2
i

2m
+ g

2
X

j 6=i

1

(xi � xj)2

The Calogero-Moser (CM) system has several generalizations rCM —> tCM —> eCM

V (z) ' 1

z2

V (z) ' 1

sinh z2
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where shrieks in the superscripts above designate the absence of terms with i = j in the
corresponding sums in (2.5), and where

(2.7) ζ̃(ξ|p) = ζ(ξ|p)− 2

π
η1ξ =

π

2ω1
cot

(
πξ

2ω1

)
+

2π

ω1

∞∑

l=1

p2l

1− p2l
sin

(
lπξ

ω1

)
,

i.e., ζ̃ is the standard ζ function without the linear term. Note that if we have included

the linear term we would have had δ−1uz term in the ILW equation. Note that ζ̃ = θ′1(ζ|p)
θ1(ζ|p) ,

which was used, say in [BSTV1]. Now, if we denote ũ = u0−u1 then the following equation
holds

(2.8) ut + uuz +
i

2
βũzz = 0 ,

which is equivalent to (2.1) provided that xj’s satisfy equations of motion for the elliptic
Calogero-Moser-Sutherland model for k particles

(2.9) ẍj = −β2∂j
∑

i #=j

℘(xj − xi) , i = 1, . . . , k ,

where the Weierstrass ℘ and ζ functions are related to each other via ℘(ξ) = − ∂
∂ξ ζ(ξ).

Notice that the potential for the integrable many-body system is represented by the same
function as in the pole ansatz for particles xj and momenta yj(2.5).

2.2. Quantization. The model is also quantum integrable, this was studied in details
earlier, see [KS1] and references therein. Complex velocity field u can be expanded intro
infinitely many oscillator modes u(z, 0) =

∑
ameimz which obey canonical commutation

relations. The quantum ILW Hamiltonians which provide quantization of (2.3) have the
following form (see [KS2] for review)

Î2 =
∑

m>0

a−mam ,

Î3 =
ε+m

2

∑

m>0

m
1 + (−p̃)m

1− (−p̃)m
a−mam +

1

2

∑

m,n>0

(a−m−naman + a−ma−nam+n) ,(2.10)

where ε = log q, m = log !, and p̃ is the elliptic parameter. The operators an for negative
n create ILW solitons from the Fock vacuum |0〉 which is annihilated by all positive modes
a>0|0〉 = 0. The operators an obey the following commutation relations of the doubly-
deformed Heisenberg algebra

(2.11) [an, am] = m
1− qm

1− !m
δm,−n ,

where the deformation is a rational function of parameters q and !. In the semi-classical
regime of the ILW model, when these two variables are expanded around unity this rational
function becomes equal to ε/m, which plays the role of the Planck’s constant.

One can see how the scaling limit ! → ∞ is manifest in the ILW pole Ansatz construction
(2.5) and (2.6). Due to (2.11) we are required to rescale generators an → an!

−n
2 in this

limit. If we return back to the oscillator representation of the velocity field u we see
that this rescaling entails shift in z-variable: z → z − i ε2 , where ! = eε, in order to
keep the decomposition u(z, 0) =

∑
ameimz in place. Additionally we put β = !ν, where

ν is a nonzero constant which can be fixed later after we shall complete the quantum

Another relativistic generalization called Ruijsenaars-Schneider (RS) family rRS —> tRS —> eRS

HCM = lim
c!1

HRS � nmc
2

Geometrically described by Hamiltonian reduction of T*GL(n)
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{Hi, Hj} = 0
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i = 1, . . . , n



Algebraic Integrable Systems

• These are examples of complex algebraic integrable systems with  
degrees of freedom whose phase space is a Lagrangian fibration of 
complex dimension  equipped with holomorphic symplectic 2-form 

 over a smooth base whose fibers are Abelian varieties 

(admit group law) 

• There are n Poisson commuting Hamiltonians  

• In action-angle variables, Hamiltonian evolution is linearized on the fibers 
which serve as level sets of the Hamiltonians

n

2n

Ω =
n

∑
i=1

dpi ∧ dxi

H1, …, Hn



Hitchin Integrable System
[Donagi Witten] 

[Gorsky Nekrasov]
[Nekrasov Pestun 

Shatashvili]

Seiberg-Witten solution of  gauge theory leads to Hitchin integrable system 𝒩 = 2* (ℰ, φ)

<latexit sha1_base64="LUYULvO6MDdqMR5+UXX/pBTmnHg="></latexit>

E ! Mvac(R3 ⇥ S1)
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B = Mvac(R4)

Hyperkähler (3d Coulomb branch)

Special Kähler (4d Coulomb branch)

Holomorphic  vector bundle over  with holomorphic section  (Higgs field)  of G Cp φ KCp
⊗ ad(E) ⊗ 𝒪(p)

the representation theory of the quantum torus algebra is well-known, it can be a useful guide for
DAHA. Therefore, the reader can refer to Appendix C for the brane quantization of the quantum torus
algebra and symmetrized quantum torus.

The algebra
..
H(W ) is not commutative, even in the q = 1 limit. Nonetheless, it contains the

spherical subalgebra S
..
H(W ), obtained by idempotent projection, which is commutative as q = 1. In

the limit t = 1, S
..
Ht=1(W ) is isomorphic to the Weyl-invariant subalgebra of QT (P � P_

,!) (after a
lift of the Weyl group action is chosen). In the further specialization q = 1, S

..
H becomes precisely the

algebra of Weyl-invariant functions on

(tC/Q
_)⇥ (t_C/Q) = TC ⇥ TC .

Note that we take the coroot and root lattices Q_ � Q = Hom(P,Z) � Hom(P_
,Z) (namely the dual

lattice) as the quotient lattice. This space with group action is nothing other than the moduli space
of flat connections on a two-torus T

2, valued in the corresponding complex Lie group GC:

Mflat(T
2
, GC) = Hom(⇡1(T

2), GC)/GC

⇠=
TC ⇥ TC

W

(2.2)

We would like to consider an additional deformation of this moduli space to study the representation
theory of spherical DAHA geometrically. Happily, for type A, this can be achieved just by adding a
“puncture” on a two-torus T

2. Despite this rather simple “addition”, the story becomes incredibly
deeper and more interesting. This section focuses on DAHA of rank one to illustrate and highlight all
the delicate features and interesting phenomena. In rank one, we can perform concrete computations
as explicitly as possible. For that reason, we will first review some necessary background on the moduli
space of SL(2,C) flat connections on a once-punctured torus, which will play the role of the target
space X in the 2d sigma-model. Then, we will carve out A-branes in X for salient modules of the
spherical DAHA. This will give solid evidence of the functor (1.2) from the categories of A-branes in
X to the representation category of the spherical DAHA.

2.1 Higgs bundles and flat connections

Figuratively speaking, the target space of the 2d sigma-model is the stage where our main characters
(branes) will make their appearance. Thus, let us begin by setting the stage.

The target space of our system will be the moduli space of G = SU(2) Higgs bundles on a genus-one
curve Cp, ramified at one point p:

X := MH(Cp, G) (2.3)

Although the geometry of this space, also called the Hitchin moduli space, is a fairly familiar charac-
ter in mathematical physics literature, we review those aspects that will be especially important for
applications to DAHA representations.

Recall [Hit87, Sim90], that a ramified (or stable parabolic) Higgs bundle is a pair (E,') of a
holomorphic SU(2)-bundle E over a curve C and a holomorphic section ', called the Higgs field, of
the bundle KC ⌦ ad(E) ⌦ O(p). Here, KC denotes the canonical bundle of C, and O(p) is the line
bundle whose holomorphic sections are functions holomorphic away from p with a first-order pole at
p. The ramification at p — more precisely called tame ramification since we are considering first-order
pole — is described by the following conditions on the connection A on E and the Higgs field

A = ↵p d#+ · · ·

' =
1

2
(�p + i�p)

dz

z
+ · · ·

(2.4)

Here, z = re
i# is a local coordinate on a small disk centered at p, and the ramification data is a triple

of continuous parameters, (↵p,�p, �p) 2 T ⇥ t⇥ t where we denote the Cartan subgroup T ⇢ G and the
Cartan subalgebra t ⇢ g. With this prescribed behavior at p, the Hitchin moduli space is the space of
solutions to the equations

F � [','] =0

DA ' =0 ,
(2.5)

– 6 –
Liouville tori can be found inside the Jacobians of the algebraic curve
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det(z � ') = 0
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{a1, . . . , an}

The n-dimensional Abelian variety is parameterized by the period matrix
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⌧ij =
@F

@ai@aj

The Abelian nature of Lagrangian fibers suggests that coordinates and momenta take values in <latexit sha1_base64="ecD/OVuHu39sR2eFU9MMhltg+aI=">AAACNnicbVDLSsNAFJ3UV62vqEs3wSK4KDWRom6EYhHcCBXsA5u0TKbTduhkEmcmQgn5Kjd+h7tuXCji1k9w0kbU1gMDZ865l3vvcQNKhDTNsZZZWFxaXsmu5tbWNza39O2duvBDjnAN+dTnTRcKTAnDNUkkxc2AY+i5FDfcYSXxGw+YC+KzWzkKsOPBPiM9gqBUUke/tj0oB64bVeKCXfj5tG1JPCy+NQRpdBmfz/lH9+3oW7yL446eN4vmBMY8sVKSBymqHf3Z7voo9DCTiEIhWpYZSCeCXBJEcZyzQ4EDiIawj1uKMqhmOtHk7Ng4UErX6PlcPSaNifq7I4KeECPPVZXJimLWS8T/vFYoe2dORFgQSszQdFAvpIb0jSRDo0s4RpKOFIGIE7WrgQaQQyRV0jkVgjV78jypHxetk2LpppQvX6RxZMEe2AeHwAKnoAyuQBXUAAKPYAxewZv2pL1o79rHtDSjpT274A+0zy99ua2n</latexit>
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m = log t is the mass of the adjoint hypermultiplet and ✓ is the first theta function, see
(3.3). The holomorphic di↵erentials read

(1.6) d⇠ = !N+1 , d⇣ =
NX

i=1

!i ,

so that the integrals in the homology basis of the curve {A1, . . . AN ; B1, . . . BN} are

(1.7)

I

Ai

!j = �ij ,

I

Bi

!j = ⇧ij ,

where ⇧ij are matrix elements of a certain period matrix which obey
PN

j=1 ⇧ij = ⌧YM.
The coordinates on the phase space of the integrable system are then given by the Abel
map

(1.8) xi =
N�1X

j=1

PjZ

P0

!i ,

for N � 1 marked points P1, . . . PN�1 of the reduced Jacobian J0(⌃).

1.3. Quantization. As it was first shown in [BKK15] and later proven by Nekrasov (in the
case of the four-dimensional U(2) theory) [NS09,AT10,NPS18,Nek16,Nek17b] how to find
a formal spectrum of quantum elliptic integrable systems of Calogero or Ruijsenaars type.
The eigenfunctions of the corresponding Hamiltonians were shown to be supersymmetric
partition functions in the presence of monodromy-type defects of the Gauge/Bethe dual
4d and 5d theories with adjoint matter respectively. The eigenfunctions were represented
by vacuum expectation values of local chiral observables (in 4d) and Wilson lines (in 5d):

(1.9) HiZ(p,x) = Ei(p,a)Z(p,x) ,

where both Z(p,x) and Ei(p,a) are series expansions in the instanton counting parameter
p. As was argued in [AGG+10] and used later in [GGS13] the positions of a surface operator
in the U(N) N = 2 gauge theory are given by integrals over open paths of the corresponding
Kähler classes !i (1.8). This observation explains why insertions of defect operators should
be treated as the coordinates of the (complexified) integrable systems and the wavefunction
Z(p,x).

Mathematically the eigenfunctions of the above Hamiltonians are equivariant integrals
of certain characteristic classes over the a�ne Laumon spaces. Negut in [Neg09] has proven
that (1.9) holds for the elliptic Calogero-Moser Hamiltonians, in [Kor18] a conjecture was
made stating that the K-theoretic equivariant Euler characteristic of the a�ne Laumon
space is the eigenfunction of the elliptic Ruijsenaars-Schneider model.

Coordinates
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parameterized by u. For u 6= ⌥1 it can be checked that
(@F/@z, @F/@p) does not vanish on Eu, so each Eu is non-
singular. Then F(p, z) implicitly defines a locally holo-
morphic map p = p(z). The exceptions to this occur at
z = 0,1, z±, where

z± = �u± i

p
1� u2 (15)

are the roots of p2 = 0 (i.e. classical turning points). In
a vicinity of these four branching points p(z) behaves as

p ⇠ z
�1/2

, (z ⇠ 0) (16)

p ⇠ z
1/2

, (z ⇠ 1) (17)

p ⇠ (z � z±)
1/2

, (z ⇠ z±) (18)

respectively, i.e. p(z) is locally double-valued. (Note that
we have added a point at z = 1 to the complex plane,
thereby rendering it compact and topologically equiva-
lent to a Riemann sphere, Fig. 4). To make sense of this
double-valuedness, we first introduce two cuts between
the four branching points. For convenience we have cho-
sen to do so between 0,1 and the turning points z±.
Upon this cut domain, p(z) is locally holomorphic.

FIG. 4: (a) Complex z-plane with two cuts. (b) It
compactifies to Riemann sphere with two cuts.

We then introduce a second sheet of the z-plane and
the corresponding Riemann sphere, cut in the same way
as the first. We then analytically continue p(z) on the
first sheet across the cuts onto the second sheet. If p(z)
is analytically continued across the branch cut again, we
arrive back on the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
whose domain is a doubly-branched cover of the Riemann
sphere. Furthermore, suppose we open up the branch
cuts, keeping track where on the other branch p(z) will
be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.

FIG. 5: Construction of Riemann surface of genus 1. Two
Riemann spheres with two cuts each are deformed into
tubes to make the gluing in the final step more clear.

FIG. 6: Riemann surface of genus-1 with two basic cycles �0
and �1 on it. In the limit u ! ⌥1 the torus degenerates
into a singular surface. This coincides with the loop �0
(but not �1) becoming contractible to a point.

A. Integration and topology on torus

The action integrals can be understood as S =
H
�
�

over classical trajectories, where

�(u) = p(✓) d✓ = p(z)
dz

iz
=

(z2 + 2uz + 1)1/2

iz3/2
dz (19)

is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by

0 cycle 

vanishes

u = �1

generic 

fiber

u = 1

I

�0

� ! 0I

�1

� ! 0

u = 1
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Cauchy theorem). The two deformed cycles, shown in
Fig. 7, are hereafter called �0 and �1.

FIG. 7: The classically allowed (forbidden) region at energy
2u are shown by the solid (dashed) gray line. A classical
(instanton) periodic orbit, in the complex ✓-plane, leads to
�0(�1) cycles.

Translating these two cycles to the complex z-plane
yields the contours of Fig. 8. Notice that these are in-
deed cycles (i.e. closed contours) owing to the crossing of
branch cuts. On the Riemann surface both wind around
the torus. For this reason, the integrals Sj(u) =

H
�j

�

are known as periods of Eu with respect to �(u). One
can see that the residue of the action form (19) at infin-
ity is zero. Indeed, at large z we have � ⇠ dp. Therefore
we can safely deform the contour around infinity in the
z-plane. Let us consider cycles �0, �1 as defined in Fig. 6.
Any closed cycle on the torus (after appropriate defor-
mation) can be decomposed into a superposition of an
integer number of these two basic cycles. For example,

FIG. 8: (Color online) Cycles �0 and �1 on the complex
z-plane for u = �0.9. Notice that cycle �1 crosses twice
the two cuts from first branch (solid blue line) to second
branch (dashed red line) and back.

the cycles �0 and �1 are

�0 = �0, �1 = 2�1 � �0 . (20)

This is evident if one examines the manner in which these
cycles encircle around the torus. Formally, the basic cy-
cles generate the first homology group of the torus (since
cycles which are alike in this manner are homologous).
One can also consider the first cohomology group of the

torus, generated by two independent 1-forms on the Rie-
mann surface modulo exact 1-forms (the latter integrate
to zero for all cycles on the torus by Stokes’ theorem).
In this work we consider meromorphic 1-forms with zero
residues. Modulo exact forms they are dual to 1-cycles
on the torus by the de Rham theorem31. The duality im-
plies that there are exactly as many independent 1-forms
to integrate upon the surface as independent 1-cycles to
integrate along the surface. For the torus the cohomol-
ogy, like the homology, is two-dimensional, i.e. any three
(or more) 1-forms on the torus are linearly dependent up
to an exact form.

B. Picard-Fuchs equation

As a result, there must exist a linear combination of
1-forms {�00(u),�0(u),�(u)} which is an exact form, here
primes denote derivatives w.r.t. u. This combination
may be found by allowing for (u-dependent) coe�cients
in front of the three 1-forms and looking for an exact
form dz[P2(z)z�1/2(z2 + 2uz + 1)�1/2], where P2(z) is a
second degree polynomial with u-dependent coe�cients.
Matching coe�cients for powers of z leads to 5 equations
for 6 unknown parameters, determining the sought com-
bination up to an overall multiplicative factor. This way
one finds that the operator L = (u2

� 1)@2
u
+1/4 acts on

�(u) as

L�(u) =
d

dz


i

2

1� z
2

z1/2(z2 + 2uz + 1)1/2

�
. (21)

It follows from Stokes’ theorem and the exactness of
L�(u) that LSj(u) = 0 since �j is a cycle on the torus.
Thus Sj(u) satisfies the linear second order ODE16

(u2
� 1)S00

j
(u) +

1

4
Sj(u) = 0 . (22)

This is an example of the Picard-Fuchs equation32,33 (see
Ref. [34] for a review). Exactly this equation appears
extensively in the context of Seiberg-Witten theory.
Inspecting the coe�cient in front of the highest deriva-

tive, one notices that equation (22) has regular singular
points at u = 1 and u = ⌥1, where the torus degener-
ates into a sphere, Fig. 6. Changing variable to u

2, this
equation may be brought to the standard hypergeometric
form35. In the domain | arg(1 � u

2)| < ⇡ it admits two
linearly independent solutions of the form F0(u2) and

Provides mass spectrum of BPS particles
of N=2 gauge theory in 4d in the infrared

V ⇠ Tr|[�,�]|2
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sponding periods (possibly with a sign change). This is
achieved by having �integer/4 and �integer/(2⇤3) pow-
ers in the corresponding solutions.

VIII. CONNECTIONS TO SEIBERG-WITTEN
SOLUTION

Here we briefly review the main features of Seiberg-
Witten (SW) solution12,13, which were adopted in our
calculations17. The original SW construction gives the
spectrum of a four-dimensional supersymmetric SU(2)
Yang Mills theory (SYM). Spectrum of the infrared the-
ory appears to be given by the set of electrically and
magnetically charged particles (BPS dyons), which are
di↵erent from the fundamental particles of the initial UV
theory. The latter consists of a vectormultiplet trans-
forming in the adjoint representation of SU(2), whose
components are: one complex scalar field �, pair of Weyl
fermions (gluini) and a SU(2) gauge field (gluon). In a
classical UV vacuum � aligns along the Cartan generator
of su(2) as h�i = a�3/2, where the complex expectation
value a parameterizes the manifold of classical vacua. In
the quantum theory a more convenient coordinate is

u = htr�2
i (88)

(such that in the classical limit u ! 1 one has u ⇠ a
2),

defining the moduli space of quantum vacua of the theory
Mu.

Given the expectation value a, one defines the gen-
erating function (prepotential) F(a) as a logarithm of
the partition function of the theory, restricted by h�i =
a�3/2. It allows to introduce a canonically conjugated
complex variable

aD =
@F(a)

@a
, (89)

where one may regard (a, aD) as the coordinate and mo-
mentum on Mu. The underlying supersymmetry allows
to argue that a(u) and aD(u) are holomorphic functions
on the moduli space, safe possibly for few isolated singu-
lar points. In the UV limit u ! 1, one finds a one-loop
correction of the form

aD ⇠
ia

⇡

✓
1 + ln

a
2

⇤2

◆
, (90)

where ⇤ is a dynamical scale. Recall that a ⇠
p
u in

this region. Therefore, when the argument of u changes
by 2⇡i, a changes its sign and aD transforms as aD !

�aD + 2a. This rule can be parameterized using the
following monodromy matrix in the (aD, a) basis

M1 =

✓
�1 2
0 �1

◆
. (91)

To find the spectrum of the IR theory means to com-
pute masses of particles which are protected by super-
symmetry (so called BPS dyons). BPS mass formula

reads

Mne,nm(u) = |nea(u) + nmaD(u)| , (92)

where (ne, nm) are electric and magnetic charges of a
dyon respectively, e.g. a monopole has (ne, nm) =
(0,±1). The above relationship can be understood semi-
classically (at large u) by evaluating the energy func-
tional for the UV theory on the electrically and magneti-
cally charged configurations. The N = 2 supersymmetry
guarantees that the very same formula works at strong
coupling as well. There are special loci in the u plane
where the masses (92) vanish. One can identify these
points as singularities for a and aD.

Let us look at the point u0, where the monopole be-
comes massless aD(u0) = 0. By a conformal transforma-
tion one may always scale u0 = 1. In a vicinity of this
point aD behaves as aD / (u � 1), thus near this point
aD(u) is holomorphic, while a(u) is expected to be sin-
gular. Performing a one-loop calculation similar to the
one near u = 1, in the framework of dual theory, one
obtains a relation similar to (90)

a ⇠
iaD

⇡
ln

aD

⇤
. (93)

Recalling that aD ⇠ (u�1), one finds for the monodromy
matrix near u = 1, again in (aD, a) basis:

M1 =

✓
1 0
�2 1

◆
. (94)

From the symmetry considerations one may argue that
there should be at least one more singularity in addition
to u = 1 and u = 1. It follows from the fact that if
a singularity exists at some value of u0 there ought to
be another one at �u0. The Z2 symmetry, which flips
the sign of u, is a result of breaking of the global U(1)
symmetry (so-called R-symmetry) of IR action. The lat-
ter is a remnant of the analogous symmetry in the UV
theory which is common for gauge theories with an ex-
tended supersymmetry. It exists on the classical level,
but is broken by quantum corrections (both perturbative
and instanton) down to the Z2 for u = htr�2

i. There-
fore, there are at least three singularities in Mu, e.g. at
u = 1 and u = ±1. The third singular point u = �1 cor-
responds to a massless dyon of unit electric and magnetic
charges a(�1) + aD(�1) = 0. The monodromy matrix
around it can be computed employing completeness re-
lation M1M�1 = M1 in the complex u-plane.

The non-trivial realization of the SW construction is
that complex variables (aD(u), a(u)), with the analytic
properties deduced above, may be viewed as periods of
algebraic curves (tori) Eu, defined over the moduli space
Mu, with respect to some meromorphic di↵erential �SW .
The simplest way to parameterize such a curve is

Eu : F(y, x) = y
2
� (x� u)(x� 1)(x+ 1) = 0 , (95)

where x, y are complex. The above equation describes a
double cover of the x-plane branched over the four points

Potential

UV vacuum
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sponding periods (possibly with a sign change). This is
achieved by having �integer/4 and �integer/(2⇤3) pow-
ers in the corresponding solutions.

VIII. CONNECTIONS TO SEIBERG-WITTEN
SOLUTION

Here we briefly review the main features of Seiberg-
Witten (SW) solution12,13, which were adopted in our
calculations17. The original SW construction gives the
spectrum of a four-dimensional supersymmetric SU(2)
Yang Mills theory (SYM). Spectrum of the infrared the-
ory appears to be given by the set of electrically and
magnetically charged particles (BPS dyons), which are
di↵erent from the fundamental particles of the initial UV
theory. The latter consists of a vectormultiplet trans-
forming in the adjoint representation of SU(2), whose
components are: one complex scalar field �, pair of Weyl
fermions (gluini) and a SU(2) gauge field (gluon). In a
classical UV vacuum � aligns along the Cartan generator
of su(2) as h�i = a�3/2, where the complex expectation
value a parameterizes the manifold of classical vacua. In
the quantum theory a more convenient coordinate is

u = htr�2
i (88)

(such that in the classical limit u ! 1 one has u ⇠ a
2),

defining the moduli space of quantum vacua of the theory
Mu.

Given the expectation value a, one defines the gen-
erating function (prepotential) F(a) as a logarithm of
the partition function of the theory, restricted by h�i =
a�3/2. It allows to introduce a canonically conjugated
complex variable

aD =
@F(a)

@a
, (89)

where one may regard (a, aD) as the coordinate and mo-
mentum on Mu. The underlying supersymmetry allows
to argue that a(u) and aD(u) are holomorphic functions
on the moduli space, safe possibly for few isolated singu-
lar points. In the UV limit u ! 1, one finds a one-loop
correction of the form

aD ⇠
ia

⇡

✓
1 + ln

a
2

⇤2

◆
, (90)

where ⇤ is a dynamical scale. Recall that a ⇠
p
u in

this region. Therefore, when the argument of u changes
by 2⇡i, a changes its sign and aD transforms as aD !

�aD + 2a. This rule can be parameterized using the
following monodromy matrix in the (aD, a) basis

M1 =

✓
�1 2
0 �1

◆
. (91)

To find the spectrum of the IR theory means to com-
pute masses of particles which are protected by super-
symmetry (so called BPS dyons). BPS mass formula

reads

Mne,nm(u) = |nea(u) + nmaD(u)| , (92)

where (ne, nm) are electric and magnetic charges of a
dyon respectively, e.g. a monopole has (ne, nm) =
(0,±1). The above relationship can be understood semi-
classically (at large u) by evaluating the energy func-
tional for the UV theory on the electrically and magneti-
cally charged configurations. The N = 2 supersymmetry
guarantees that the very same formula works at strong
coupling as well. There are special loci in the u plane
where the masses (92) vanish. One can identify these
points as singularities for a and aD.

Let us look at the point u0, where the monopole be-
comes massless aD(u0) = 0. By a conformal transforma-
tion one may always scale u0 = 1. In a vicinity of this
point aD behaves as aD / (u � 1), thus near this point
aD(u) is holomorphic, while a(u) is expected to be sin-
gular. Performing a one-loop calculation similar to the
one near u = 1, in the framework of dual theory, one
obtains a relation similar to (90)

a ⇠
iaD

⇡
ln

aD

⇤
. (93)

Recalling that aD ⇠ (u�1), one finds for the monodromy
matrix near u = 1, again in (aD, a) basis:

M1 =

✓
1 0
�2 1

◆
. (94)

From the symmetry considerations one may argue that
there should be at least one more singularity in addition
to u = 1 and u = 1. It follows from the fact that if
a singularity exists at some value of u0 there ought to
be another one at �u0. The Z2 symmetry, which flips
the sign of u, is a result of breaking of the global U(1)
symmetry (so-called R-symmetry) of IR action. The lat-
ter is a remnant of the analogous symmetry in the UV
theory which is common for gauge theories with an ex-
tended supersymmetry. It exists on the classical level,
but is broken by quantum corrections (both perturbative
and instanton) down to the Z2 for u = htr�2

i. There-
fore, there are at least three singularities in Mu, e.g. at
u = 1 and u = ±1. The third singular point u = �1 cor-
responds to a massless dyon of unit electric and magnetic
charges a(�1) + aD(�1) = 0. The monodromy matrix
around it can be computed employing completeness re-
lation M1M�1 = M1 in the complex u-plane.

The non-trivial realization of the SW construction is
that complex variables (aD(u), a(u)), with the analytic
properties deduced above, may be viewed as periods of
algebraic curves (tori) Eu, defined over the moduli space
Mu, with respect to some meromorphic di↵erential �SW .
The simplest way to parameterize such a curve is

Eu : F(y, x) = y
2
� (x� u)(x� 1)(x+ 1) = 0 , (95)

where x, y are complex. The above equation describes a
double cover of the x-plane branched over the four points
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FIG. 2: (Color online) Band structure for (2, 1) gas with
↵ = 1, cf. Fig. 1b, vs. boundary charge (quasi-
momentum) q. For the complex bands the real part of
✏m(q) is shown in dashed blue.

of two real and two complex bands. For larger values of
↵ there is a sequence of entirely complex narrow bands,
cf. Fig. 1d.

Figure 3 shows normalized spectra for several di↵erent
combinations of charges on the complex energy plane of
u, Eq. (11), at large concentration ↵ = 200. One may
notice odd number n1 + n2 or n1 + n2 � 1 of spectral
sequences, consisting of order

p
↵ exponentially narrow

bands, seen as points. The central sequence goes along
the real axis terminating at the bottom of the spectrum
near u = �1. The other appear in conjugated pairs
terminating near the roots of unity u = �(1)1/(n1+n2).
Close to the termination points the band sequences align
along the lines pointing towards u = 1. Further away
from the termination points they deviate from these lines
and may coalesce.

Although thermodynamics and transport properties of
the Coulomb gases are merely determined by the lowest
band ✏0(q), below we address the wider spectral prop-
erties of Hamiltonians (8), presented in Figs. 1 – 3. To
this end we develop a semiclassical theory which is best
suited for the description of exponentially narrow bands
present at large concentration ↵ & 1.

IV. MONOVALENT (1,1) GAS

To introduce the methods, we first develop a semiclas-
sical spectral theory for the Hermitian Hamiltonian (8),
(9) with n1 = n2 = 1. To this end we look for wavefunc-

tions in the form  = e
i↵

1/2
S , where S is an action for

the classical problem with the normalized Hamiltonian

2u = p
2
� 2 cos ✓ , (12)
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FIG. 3: (Color online) Complex plane of normalized energy
u, Eq. (11), for ↵ = 200 and various valences (n1, n2). The
dotted circle is |u| = 1, the dashed lines connect spectrum
termination points u = �(1)1/(n1+n2) and u = 1,
indicating positions of narrow complex bands.

where u = ✏/(2↵), so u = ⌥1 correspond to the bottom
(top) of the cosine potential. The semiclassical calcu-
lations require knowledge of the action integrals. Our
approach to such integrals is based on complex algebraic
geometry. First, let z = e

i✓ and consider (z, p) as com-
plex variables. Since p(z) resides on the constant energy
hypersurface

2u = p
2
�

✓
z +

1

z

◆
, (13)

we have a family of complex algebraic curves

Eu : F(p, z) = p
2
z � (z2 + 2uz + 1) = 0 (14)

� = p
dz

z

In IR spectrum given by period 
integrals of the curve
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2),

defining the moduli space of quantum vacua of the theory
Mu.

Given the expectation value a, one defines the gen-
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the partition function of the theory, restricted by h�i =
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◆
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To find the spectrum of the IR theory means to com-
pute masses of particles which are protected by super-
symmetry (so called BPS dyons). BPS mass formula

reads

Mne,nm(u) = |nea(u) + nmaD(u)| , (92)

where (ne, nm) are electric and magnetic charges of a
dyon respectively, e.g. a monopole has (ne, nm) =
(0,±1). The above relationship can be understood semi-
classically (at large u) by evaluating the energy func-
tional for the UV theory on the electrically and magneti-
cally charged configurations. The N = 2 supersymmetry
guarantees that the very same formula works at strong
coupling as well. There are special loci in the u plane
where the masses (92) vanish. One can identify these
points as singularities for a and aD.

Let us look at the point u0, where the monopole be-
comes massless aD(u0) = 0. By a conformal transforma-
tion one may always scale u0 = 1. In a vicinity of this
point aD behaves as aD / (u � 1), thus near this point
aD(u) is holomorphic, while a(u) is expected to be sin-
gular. Performing a one-loop calculation similar to the
one near u = 1, in the framework of dual theory, one
obtains a relation similar to (90)
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Recalling that aD ⇠ (u�1), one finds for the monodromy
matrix near u = 1, again in (aD, a) basis:
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From the symmetry considerations one may argue that
there should be at least one more singularity in addition
to u = 1 and u = 1. It follows from the fact that if
a singularity exists at some value of u0 there ought to
be another one at �u0. The Z2 symmetry, which flips
the sign of u, is a result of breaking of the global U(1)
symmetry (so-called R-symmetry) of IR action. The lat-
ter is a remnant of the analogous symmetry in the UV
theory which is common for gauge theories with an ex-
tended supersymmetry. It exists on the classical level,
but is broken by quantum corrections (both perturbative
and instanton) down to the Z2 for u = htr�2

i. There-
fore, there are at least three singularities in Mu, e.g. at
u = 1 and u = ±1. The third singular point u = �1 cor-
responds to a massless dyon of unit electric and magnetic
charges a(�1) + aD(�1) = 0. The monodromy matrix
around it can be computed employing completeness re-
lation M1M�1 = M1 in the complex u-plane.

The non-trivial realization of the SW construction is
that complex variables (aD(u), a(u)), with the analytic
properties deduced above, may be viewed as periods of
algebraic curves (tori) Eu, defined over the moduli space
Mu, with respect to some meromorphic di↵erential �SW .
The simplest way to parameterize such a curve is

Eu : F(y, x) = y
2
� (x� u)(x� 1)(x+ 1) = 0 , (95)

where x, y are complex. The above equation describes a
double cover of the x-plane branched over the four points

16

sponding periods (possibly with a sign change). This is
achieved by having �integer/4 and �integer/(2⇤3) pow-
ers in the corresponding solutions.

VIII. CONNECTIONS TO SEIBERG-WITTEN
SOLUTION

Here we briefly review the main features of Seiberg-
Witten (SW) solution12,13, which were adopted in our
calculations17. The original SW construction gives the
spectrum of a four-dimensional supersymmetric SU(2)
Yang Mills theory (SYM). Spectrum of the infrared the-
ory appears to be given by the set of electrically and
magnetically charged particles (BPS dyons), which are
di↵erent from the fundamental particles of the initial UV
theory. The latter consists of a vectormultiplet trans-
forming in the adjoint representation of SU(2), whose
components are: one complex scalar field �, pair of Weyl
fermions (gluini) and a SU(2) gauge field (gluon). In a
classical UV vacuum � aligns along the Cartan generator
of su(2) as h�i = a�3/2, where the complex expectation
value a parameterizes the manifold of classical vacua. In
the quantum theory a more convenient coordinate is

u = htr�2
i (88)
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the partition function of the theory, restricted by h�i =
a�3/2. It allows to introduce a canonically conjugated
complex variable

aD =
@F(a)

@a
, (89)

where one may regard (a, aD) as the coordinate and mo-
mentum on Mu. The underlying supersymmetry allows
to argue that a(u) and aD(u) are holomorphic functions
on the moduli space, safe possibly for few isolated singu-
lar points. In the UV limit u ! 1, one finds a one-loop
correction of the form

aD ⇠
ia

⇡

✓
1 + ln

a
2

⇤2

◆
, (90)

where ⇤ is a dynamical scale. Recall that a ⇠
p
u in

this region. Therefore, when the argument of u changes
by 2⇡i, a changes its sign and aD transforms as aD !

�aD + 2a. This rule can be parameterized using the
following monodromy matrix in the (aD, a) basis

M1 =

✓
�1 2
0 �1

◆
. (91)

To find the spectrum of the IR theory means to com-
pute masses of particles which are protected by super-
symmetry (so called BPS dyons). BPS mass formula

reads

Mne,nm(u) = |nea(u) + nmaD(u)| , (92)

where (ne, nm) are electric and magnetic charges of a
dyon respectively, e.g. a monopole has (ne, nm) =
(0,±1). The above relationship can be understood semi-
classically (at large u) by evaluating the energy func-
tional for the UV theory on the electrically and magneti-
cally charged configurations. The N = 2 supersymmetry
guarantees that the very same formula works at strong
coupling as well. There are special loci in the u plane
where the masses (92) vanish. One can identify these
points as singularities for a and aD.

Let us look at the point u0, where the monopole be-
comes massless aD(u0) = 0. By a conformal transforma-
tion one may always scale u0 = 1. In a vicinity of this
point aD behaves as aD / (u � 1), thus near this point
aD(u) is holomorphic, while a(u) is expected to be sin-
gular. Performing a one-loop calculation similar to the
one near u = 1, in the framework of dual theory, one
obtains a relation similar to (90)

a ⇠
iaD

⇡
ln

aD

⇤
. (93)

Recalling that aD ⇠ (u�1), one finds for the monodromy
matrix near u = 1, again in (aD, a) basis:

M1 =

✓
1 0
�2 1

◆
. (94)

From the symmetry considerations one may argue that
there should be at least one more singularity in addition
to u = 1 and u = 1. It follows from the fact that if
a singularity exists at some value of u0 there ought to
be another one at �u0. The Z2 symmetry, which flips
the sign of u, is a result of breaking of the global U(1)
symmetry (so-called R-symmetry) of IR action. The lat-
ter is a remnant of the analogous symmetry in the UV
theory which is common for gauge theories with an ex-
tended supersymmetry. It exists on the classical level,
but is broken by quantum corrections (both perturbative
and instanton) down to the Z2 for u = htr�2

i. There-
fore, there are at least three singularities in Mu, e.g. at
u = 1 and u = ±1. The third singular point u = �1 cor-
responds to a massless dyon of unit electric and magnetic
charges a(�1) + aD(�1) = 0. The monodromy matrix
around it can be computed employing completeness re-
lation M1M�1 = M1 in the complex u-plane.

The non-trivial realization of the SW construction is
that complex variables (aD(u), a(u)), with the analytic
properties deduced above, may be viewed as periods of
algebraic curves (tori) Eu, defined over the moduli space
Mu, with respect to some meromorphic di↵erential �SW .
The simplest way to parameterize such a curve is

Eu : F(y, x) = y
2
� (x� u)(x� 1)(x+ 1) = 0 , (95)

where x, y are complex. The above equation describes a
double cover of the x-plane branched over the four points

16

sponding periods (possibly with a sign change). This is
achieved by having �integer/4 and �integer/(2⇤3) pow-
ers in the corresponding solutions.

VIII. CONNECTIONS TO SEIBERG-WITTEN
SOLUTION

Here we briefly review the main features of Seiberg-
Witten (SW) solution12,13, which were adopted in our
calculations17. The original SW construction gives the
spectrum of a four-dimensional supersymmetric SU(2)
Yang Mills theory (SYM). Spectrum of the infrared the-
ory appears to be given by the set of electrically and
magnetically charged particles (BPS dyons), which are
di↵erent from the fundamental particles of the initial UV
theory. The latter consists of a vectormultiplet trans-
forming in the adjoint representation of SU(2), whose
components are: one complex scalar field �, pair of Weyl
fermions (gluini) and a SU(2) gauge field (gluon). In a
classical UV vacuum � aligns along the Cartan generator
of su(2) as h�i = a�3/2, where the complex expectation
value a parameterizes the manifold of classical vacua. In
the quantum theory a more convenient coordinate is

u = htr�2
i (88)

(such that in the classical limit u ! 1 one has u ⇠ a
2),

defining the moduli space of quantum vacua of the theory
Mu.

Given the expectation value a, one defines the gen-
erating function (prepotential) F(a) as a logarithm of
the partition function of the theory, restricted by h�i =
a�3/2. It allows to introduce a canonically conjugated
complex variable

aD =
@F(a)

@a
, (89)

where one may regard (a, aD) as the coordinate and mo-
mentum on Mu. The underlying supersymmetry allows
to argue that a(u) and aD(u) are holomorphic functions
on the moduli space, safe possibly for few isolated singu-
lar points. In the UV limit u ! 1, one finds a one-loop
correction of the form

aD ⇠
ia

⇡

✓
1 + ln

a
2

⇤2

◆
, (90)

where ⇤ is a dynamical scale. Recall that a ⇠
p
u in

this region. Therefore, when the argument of u changes
by 2⇡i, a changes its sign and aD transforms as aD !

�aD + 2a. This rule can be parameterized using the
following monodromy matrix in the (aD, a) basis

M1 =

✓
�1 2
0 �1

◆
. (91)

To find the spectrum of the IR theory means to com-
pute masses of particles which are protected by super-
symmetry (so called BPS dyons). BPS mass formula

reads

Mne,nm(u) = |nea(u) + nmaD(u)| , (92)

where (ne, nm) are electric and magnetic charges of a
dyon respectively, e.g. a monopole has (ne, nm) =
(0,±1). The above relationship can be understood semi-
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points as singularities for a and aD.

Let us look at the point u0, where the monopole be-
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The Calogero-Moser Space
Let V be an N-dimensional vector space over . Let  be the subset of  consisting of elements 

 such that 
ℂ ℳ′ GL(V) × GL(V) × V × V*

(M, T, u, v)

ℏMT − TM = u ⊗ vT

The group  acts on  by conjugationGL(N; ℂ) = GL(V ) ℳ′ 

(M, T, u, v) ↦ (gMg−1, gTg−1, gu, vg−1)

The quotient of  by the action of  is called Calogero-Moser space ℳ′ GL(V ) ℳ

Also can be understood as moduli space of flat  
connections on punctured torus ABA�1B�1 = C

Mn = {A,B,C}/GL(n;C)

C = diag(ℏ, …, ℏ, ℏn−1)
Integrable Hamiltonians are ~TrTk

[Oblomkov]
[Etingof]



Trigonometric RS Model
Flatness condition

In the basis where  is diagonal with eigenvalues  matrix M ξ1, …, ξn T

Define tRS momenta

The tRS Lax matrix reads

Characteristic polynomial of  generates tRS HamiltoniansT

<latexit sha1_base64="2Ff4z33/Zn1yiF7Ql8M0vDbo1F8=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9ktRb0IRS89VrAf0C5LNs22odlsSLJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvFBypo3rfjuFjc2t7Z3ibmlv/+DwqHx80tFJqghtk4QnqhdiTTkTtG2Y4bQnFcVxyGk3nNzP/e4TVZol4tFMJfVjPBIsYgQbKw2aQQ3dIhl4MqgF5YpbdRdA68TLSQVytILy12CYkDSmwhCOte57rjR+hpVhhNNZaZBqKjGZ4BHtWypwTLWfLW6eoQurDFGUKFvCoIX6eyLDsdbTOLSdMTZjverNxf+8fmqiGz9jQqaGCrJcFKUcmQTNA0BDpigxfGoJJorZWxEZY4WJsTGVbAje6svrpFOrelfV+kO90rjL4yjCGZzDJXhwDQ1oQgvaQEDCM7zCm5M6L86787FsLTj5zCn8gfP5A+swkFI=</latexit>

H2 = p1p2

Two particles

rational trigonometric elliptic

r rational CMS trigonometric CMS elliptic CMS
quantum cohomology

t rational RS 
(dual trig. CMS) trigonometric RS elliptic RS

quantum K-theory

e dual elliptic CMS dual elliptic RS DELL
Elliptic Cohomology

✏ ! 0

✏ ! 0

R ! 0 R ! 0R ! 0

qp

p ! 0
<latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit>

p ! 0
<latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit>

p ! 0
<latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit><latexit sha1_base64="CLazckVmwSnPa0t30Cqrj3N2hF8=">AAAB7HicdVDNSgMxGMzWv1r/qh69BIvgaclWqe2t6MVjBbcttEvJptk2NpssSVYope/gxYOKVx/Im29jtl1BRQcCw8z3kW8mTDjTBqEPp7Cyura+UdwsbW3v7O6V9w/aWqaKUJ9ILlU3xJpyJqhvmOG0myiK45DTTji5yvzOPVWaSXFrpgkNYjwSLGIEGyu1k76REA3KFeQ26jWvWoXIRQtkpIbOrOLlSgXkaA3K7/2hJGlMhSEca93zUGKCGVaGEU7npX6qaYLJBI9oz1KBY6qD2eLaOTyxyhBGUtknDFyo3zdmONZ6God2MsZmrH97mfiX10tNVA9mTCSpoYIsP4pSDm3ELDocMkWJ4VNLMFHM3grJGCtMjC2oZEv4Sgr/J37VbbjezXmleZm3UQRH4BicAg9cgCa4Bi3gAwLuwAN4As+OdB6dF+d1OVpw8p1D8APO2yeeL46y</latexit>

w ! 0
<latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit>

w ! 0
<latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit>

Eigenproblem

ℏMT − TM = u ⊗ vT

<latexit sha1_base64="OPFZCZb+S4aIPJAFT2ssrIGCcAw=">AAACEXicbVC7TsMwFHV4lvIKMLJYVEhdqBJUAQtSBQtjkfqSmihyXKd16ziR7VRUUX6BhV9hYQAhVjY2/ga3zQAtR7pXR+fcK/seP2ZUKsv6NlZW19Y3Ngtbxe2d3b198+CwJaNEYNLEEYtEx0eSMMpJU1HFSCcWBIU+I21/dDv122MiJI14Q01i4oaoz2lAMVJa8sxyw0vpMLt2AoFwmngUjr1hljoDHwnoPFCPnk37MPPMklWxZoDLxM5JCeSoe+aX04twEhKuMENSdm0rVm6KhKKYkazoJJLECI9Qn3Q15Sgk0k1nF2XwVCs9GERCF1dwpv7eSFEo5ST09WSI1EAuelPxP6+bqODKTSmPE0U4nj8UJAyqCE7jgT0qCFZsognCguq/QjxAOhulQyzqEOzFk5dJ67xiX1Sq99VS7SaPowCOwQkoAxtcghq4A3XQBBg8gmfwCt6MJ+PFeDc+5qMrRr5zBP7A+PwBG0Cd1A==</latexit>

Tij =
uivj

~⇠i � ⇠j

<latexit sha1_base64="URPhb/zNZOhXFNm/mhFjNfJyhhg="></latexit>

pi = �uivi

Q
k 6=i(⇠i � ⇠k)Q
k(⇠i � ~⇠k)

<latexit sha1_base64="8QpBNi3gRLWEfRI5VXUkmGqOor8="></latexit>

Tij =

Q
k 6=j(⇠i � ~⇠k)Q
k 6=i(⇠j � ⇠k)

pi

<latexit sha1_base64="hnbmAl8AhS/BY6mSQbaXXc1Qs88="></latexit> X

I⇢1,...,n
|I|=k

Y

i2I
j 62I

~⇠i � ⇠j
⇠i � ⇠j

Y

m2I
pm = ek(ai)

<latexit sha1_base64="Xo4GpTxvcdUGwKqNqXvAUOj5U90=">AAACPnicbVDLSgMxFM34rPVVdekmWARBLJNS1I1QdNNlBactdIYhk2ba0MyDJCOWoV/mxm9w59KNC0XcujSdjlBbLySce865JPd4MWdSmeaLsbS8srq2Xtgobm5t7+yW9vZbMkoEoRaJeCQ6HpaUs5BaiilOO7GgOPA4bXvDm4nevqdCsii8U6OYOgHuh8xnBCtNuSWr4aIr2xeYpPbAwwLaD8xFZ5O7Ok5nm9hFp/PGaqahqfG30Ua3VDYrZlZwEaAclEFeTbf0bPcikgQ0VIRjKbvIjJWTYqEY4XRctBNJY0yGuE+7GoY4oNJJs/XH8FgzPehHQp9QwYydnUhxIOUo8LQzwGog57UJ+Z/WTZR/6aQsjBNFQzJ9yE84VBGcZAl7TFCi+EgDTATTf4VkgHVESide1CGg+ZUXQataQeeV2m2tXL/O4yiAQ3AETgACF6AOGqAJLEDAI3gF7+DDeDLejE/ja2pdMvKZA/CnjO8f87yuaA==</latexit>

H1 =
~⇠1 � ⇠2

⇠1 � ⇠2
p1 +

~⇠2 � ⇠1

⇠2 � ⇠1
p1



Quantum tRS Spectrum

<latexit sha1_base64="YmgFq/mVP3YrqrgV2BKfbbGBRb0=">AAACDnicbZDLSsNAFIYn9VbrLerSzWAptCAlkaJuhKKbLivYC7QhTKaTduhkEmYmYgl9Aje+ihsXirh17c63cZoG1NYfBn6+cw5nzu9FjEplWV9GbmV1bX0jv1nY2t7Z3TP3D9oyjAUmLRyyUHQ9JAmjnLQUVYx0I0FQ4DHS8cbXs3rnjghJQ36rJhFxAjTk1KcYKY1cs9Rwabl/T0+iCmynBlXgJSSaoh/imkWraqWCy8bOTBFkarrmZ38Q4jggXGGGpOzZVqScBAlFMSPTQj+WJEJ4jIakpy1HAZFOkp4zhSVNBtAPhX5cwZT+nkhQIOUk8HRngNRILtZm8L9aL1b+hZNQHsWKcDxf5McMqhDOsoEDKghWbKINwoLqv0I8QgJhpRMs6BDsxZOXTfu0ap9Vaze1Yv0qiyMPjsAxKAMbnIM6aIAmaAEMHsATeAGvxqPxbLwZ7/PWnJHNHII/Mj6+Aej2mN4=</latexit>

Hi(⇠, p)V (⇠, a) = ei(a)V (⇠, a)

Difference operators
<latexit sha1_base64="18WGXypJPSO0vN1M3Fg775fNz6A=">AAAB/3icbZDLSsNAFIZPvNZ6iwpu3AwWoW5KIkXdCEU3LivYC7QhTKaTduhkEmcmYqld+CpuXCji1tdw59s4bbPQ1h8GPv5zDufMHyScKe0439bC4tLyympuLb++sbm1be/s1lWcSkJrJOaxbAZYUc4ErWmmOW0mkuIo4LQR9K/G9cY9lYrF4lYPEupFuCtYyAjWxvLt/cRnKCy2H5jPji/C4t2UfLvglJyJ0Dy4GRQgU9W3v9qdmKQRFZpwrFTLdRLtDbHUjHA6yrdTRRNM+rhLWwYFjqjyhpP7R+jIOB0UxtI8odHE/T0xxJFSgygwnRHWPTVbG5v/1VqpDs+9IRNJqqkg00VhypGO0TgM1GGSEs0HBjCRzNyKSA9LTLSJLG9CcGe/PA/1k5J7WirflAuVyyyOHBzAIRTBhTOowDVUoQYEHuEZXuHNerJerHfrY9q6YGUze/BH1ucPXu6VDg==</latexit>

pif(⇠i) = f(q⇠i)
<latexit sha1_base64="XS/I4QEY1+h2F1YbY5UEuWUo6Tk=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4vgqiRS1I1QdOOygn1AE8NkMmmnnTycmYglZO/GX3HjQhG3/oA7/8ZJm4W2HrhwOOde7r3HjRkV0jC+tdLS8srqWnm9srG5tb2j7+51RJRwTNo4YhHvuUgQRkPSllQy0os5QYHLSNcdX+Z+955wQaPwRk5iYgdoEFKfYiSV5OjV2KHQeqDO6PzuNrU8wiRyUjrKslykMHZGjl4z6sYUcJGYBamBAi1H/7K8CCcBCSVmSIi+acTSThGXFDOSVaxEkBjhMRqQvqIhCoiw0+kvGTxUigf9iKsKJZyqvydSFAgxCVzVGSA5FPNeLv7n9RPpn9kpDeNEkhDPFvkJgzKCeTDQo5xgySaKIMypuhXiIeIISxVfRYVgzr+8SDrHdfOk3rhu1JoXRRxlcACq4AiY4BQ0wRVogTbA4BE8g1fwpj1pL9q79jFrLWnFzD74A+3zB3rCm1g=</latexit>

pi⇠j = q�ij⇠ipj

tRS eigenvalue problem

What is the geometric meaning of ?V

Answering this question will help us to understand elliptic models

Before we answer this question notice the symmetry of the flatness condition

3d mirror symmetry

ℏMT − TM = u ⊗ vT

ℏ ↦ ℏ−1 M ↔ T
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j !=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

is ([Oko15] Section 7.2). Using equivariant localization, we can thus make
the following definition.

Definition 6. The bare vertex function with descendant ⌧ inserted at p1 is
the formal power series

V(⌧)(z) =
X

d

evp2,⇤( bOd
vir ⌦ ⌧ |p1 ,QM

d
nonsing p2)z

d
2 KT⇥C⇥

q
(X)loc[[z]]

where bOd
vir is the symmetrized virtual structure sheaf on QMd

nonsing p2 .

In what follows, we will omit the superscript (⌧) in the bare vertex func-
tion when ⌧ = 1.

2.5

Definition 7. The capping operator is the formal series

 (z) =
X

d

evp1,⇤ ⌦ evp2,⇤( bOd
vir,QM

d
relative p1
nonsing p2

)zd
2 K

⌦2
T (X)loc[[z]]

where bOd
vir denotes the symmetrized virtual structure sheaf on QMd

relative p1
nonsing p2

The standard pairing on equivariant K-theory

(F ,G) = �(F ⌦ G)

allows us to interpret  (z) as a linear map

�(z) : KT(X)loc[[z]] ! KT(X)loc[[z]]

We have the following theorem:

Theorem 2. ([Oko15] Section 7.4) The capping operator satisfies the equa-
tion

V̂(⌧)(z) =  (z)V(⌧)(z)

9

Quantum classes satisfy interesting difference equations in equivariant parameters and Kahler parameters  

qKZ, Dynamical equation

After symmetrization, they can be rewritten as eigenvalue equations for the tRS system [PK, Zeitlin]

[Okounkov, Smirnov]

In terms of string/gauge theory tRS eigenproblem is Ward identity [Gaiotto, PK] [Bullimore, Kim, PK]
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and the contour Cp runs around points corresponding to chamber C and the shifted variable

z! = z(−!
1/2)det(P). Here z! =

∏n−1
i=1 z!i , so that z!i = zi(−!

1/2)v
′

i .

In [PSZ], [KPSZ] we found these formulas to be useful to study their asymptotics at
q → 1 which lead to Bethe ansatz equations, producing the relations for the quantum
K-theory ring. In this article, we however will leave parameter q intact.

4. Trigonometric RS Difference Operators

Proposition 3.2 provides integral formulas for vertex functions Vp of X which depend on
the choice of the contour Cp. In this section we study properties of integral (3.1) without
explicitly specifying the contour. In particular, we shall demonstrate that for a properly
chosen contour (3.1) solves quantum difference equations of the trigonometric Ruijsenaars-
Schneider model. In this work we shall only study difference equations in equivariant
parameters of X, see [Kor18] (Theorem 2.6).

In full generality tRS Hamiltonians read4

(4.1) Tr(a) =
∑

I⊂{1,...,n}
|I|=r

∏

i∈I
j /∈I

t ai − aj
ai − aj

∏

i∈I

pi ,

where a = {a1, . . . , awn−1}, the shift operator pif(ai) = f(qai) and we denoted t = q
! .

In order to understand how the above difference operators act on integrals of the form
(3.1) we need to study in detail how they act on the ingredients of the integrand. In what
follows we shall describe these actions for vertex functions of quiver variety X in question.
The analysis for cotangent bundles to complete flag varieties was performed in [HR12] and
in [BKK15].

Consider the following function

(4.2) Hvn,vn+1(sn, sn+1) =
vn∏

k=1

vn+1∏

j=1

ϕ
(
q
!

sn,k

sn+1,j

)

ϕ
(

sn,k

sn+1,j

) ,

were sn = {sn,1, . . . , sn,vn} and sn+1 = {sn+1,1, . . . , sn+1,vn+1}. The following lemma de-
scribes action of the difference operator pn,k

(4.3) pn,kf(sn,1, . . . , sn,k, . . . sn,vn) = f(sn,1, . . . , qsn,k, . . . sn,vn) .

on this function.

Lemma 4.1. Let H be given in (4.2) then

(4.4) pn,kHvn,vn+1(sn, sn+1) =

vn+1∏

j=1

sn+1,j − sn,k
sn+1,j −

q
!sn,k

·Hvn,vn+1(sn, sn+1) .

4In this section we use slightly different normalization of the tRS operators than in [KPSZ].
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Proof. Consider sn,k where k ∈ I from the definition of difference operators Tr (4.1).
Assuming that we do not hit any poles, we shift the contour of integration by sn,k → q−1sn,k
only for k ∈ I. This operation can be expressed via acting with the inverse shift p−1

n,k on
the integrand of the left hand side of (4.15)

(4.16)

∫

C

vn∏

i=1

dsn,i
sn,i

∑

I⊂{1,...,n}
|I|=r

[
∏

k∈I

p−1
n,k · E(sn,i)f(sn)

]

·
∏

i∈I
j /∈I

tq−1 sn,i − sn,j
q−1sn,i − sn,j

· g(sn) .

Using (4.5) and (4.14) we arrive to the right hand side of (4.15). !

4.1. tRS Difference Equations. Now we shall use the lemmas which we have just proven
to construct a solution for the quantum difference tRS equations. First, let us change
quantum parameters in K-theory as follows

z!1 =
ζ1
ζ2

,

z!i =
ζi

ζi+1
, i = 2, . . . , n− 2

z!n−1 =
ζn−1

ζn
.(4.17)

Theorem 4.8. The following function constructed for the cotangent bundle to the partial
flag variety X labelled by v1, . . . , vn−1,wn−1

(4.18)

V(a, "ζ) =
e

log ζn
∑n−1

i=1 log ai
log q

2πi

∫

C

n−1∏

m=1

vm∏

i=1

dsm,i

sm,i
E(sm,i) e

−
log ζm/ζm+1·log sm,i

log q ·

vm+1∏

j=1

Hvm,vm+1 (sm,i, sm+1,j) ,

where contour C is chosen in such a way that shifts of the contour s → q±1
s do not

encounter any poles, satisfies tRS difference relations

(4.19) Tr(a)V(a, "ζ) = Sr("ζ, t)V(a, "ζ) , r = 1, . . . ,wn−1

where function Sr is r-symmetric polynomial of the following
∑n

k=1 ksk variables

(4.20) {tv
′

1−1ζ1, . . . , t
−v

′

1+1ζ1, . . . . . . , t
v
′

n−1−1ζn, . . . , t
−v

′

n−1+1ζn} ,

where v
′
i = vi+1 − vi for i = 1, . . . n− 2 and v

′
n−1 = wn−1 − vn−1.

Proof. First, we need to justify that contour C can be always chosen in such a way that its
shifts do not result in any additional residues and that Lemma 4.7 can be applied. Indeed,
in any given complex plane sn,i poles in the integrand of (4.18) are located at sn,i = σq−dn,i

for some σ (different for each plane). The contour can be safely chosen to avoid the collision
with poles. Indeed, suppose q is real so various poles of the integrand are located on lines
which are parallel to the real axis. The contour is therefore chosen to go above and below
the above string of poles. Since the contour is parallel to the real axis it won’t be affected
by the q-shift.

[PK]

Figure 8: Di↵erent boundary conditions obtained from the A3 theory with labels (2, 3), (1, 1), (1, 1)
whose brane diagram is depicted in the center. The diagram in the lower left corner represents

T [U(8)]
⇢
_
1

⇢1 theory with ⇢1 = (3, 2, 1, 1, 1) and ⇢_1 = (3, 3, 1, 1). In the lower right corner we have

T [U(12)]
⇢
_
2

⇢2 theory with ⇢2 = (3, 3, 3, 2, 1) and ⇢_2 = (4, 4, 2, 2).

A3 component of the gauge field. These fields satisfy a set of first-order di↵erential equations
called Nahm equations, with appropriate boundary conditions at domain walls. If we only
care about the complex structure of the Higgs branch, the equations reduce to the statement
that the complex field X = X1

H
+ iX2

H
is covariantly constant.

The Nahm boundary conditions force X to live in the so-called Slodowy slice for ⇢, i.e.

X = t+
⇢
+ x⇤ (2.75)

where t+
⇢

is the raising generator of the su(2) embedding and the matrix x⇤ should be a
lowest weight for the su(2) action.

The boundary condition which is given by coupling to the triangular quiver T [U(Q)]⇢
_

forces X to coincide with the moment map for the U(Q)H flavour symmetry of T [U(Q)]⇢
_
.

The moment map parameterizes faithfully the Higgs branch of T [U(Q)]⇢
_
, and lies in a

specific nilpotent orbit of GL(Q), labelled by the transposed partition ⇢_
T
to ⇢_. Overall, the

Higgs moduli space of vacua of a general linear quiver T [U(Q)]⇢
_

⇢
is the intersection of the

Slodowy slice for ⇢ and the nilpotent orbit for ⇢_
T
. By S-duality, the Coulomb branch has

the opposite characterization.

3 BPS Boundary Conditions and S-duality

In this section we investigate moduli spaces of N = 2⇤ 3d gauge theories from a di↵erent
perspective, namely we start with the N = 4 super Yang-Mills theory in four dimensions and
study the moduli space upon compactification on a circle and N = 2⇤ mass deformation. We
then introduce BPS boundary conditions and domain walls and study their moduli space of
vacua.

29

Saddle point limit yields Bethe equations for XXZ

mirror frame



   Vertex/Vortex Functions

           quiver gauge theory on X3 = C✏1 ⇥ S1
�

Lagrangian depends on twisted masses    
FI parameter and U(1) R-symmetry

N = 2⇤

✏1 ⇥

V =2�1

✓
~, ~a1

a2
, q

a1
a2

; q; z

◆

a1, a2
z log ~

q = e✏1

Vertex (trivial class)

Vortex (defet partition function)

After classifying fixed points of space of nonsingular quasimaps we can compute the vertex using the 
localization theorem
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Vertex Functions

Recently we proved the following statement

Proposition 3.1 ([KPSZ1705]). Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi =
{xi,1, . . . xi,vi}) be a chain of subsets defining a torus fixed point p 2 X

T
. Then the coe�-

cient of the vertex function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1

viY

j=1

vi+1Y

k=1

{xi,j/xi+1,k}di,j�di+1,k
.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-
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⇣
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2.5. Macdonald Di↵erence Operators. It was also proven in [KZ] that K-theoretic
vertex functions of cotangent bundles to flag varieties satisfy tRS di↵erence equations in
equivariant parameters. In this paper we shall need the ‘mirror’ (or symplectic dual) version
of that theorem which states that properly normalized vertex functions also obey tRS
di↵erence equations in quantum parameters ⇣1, . . . , ⇣n. First let us introduce the di↵erence
operators.

Definition 2.9. The di↵erence operators of trigonometric Ruijsenaars-Schneider model are

given by

(2.8) Tr(⇣) =
X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

~ ⇣i � ⇣j

⇣i � ⇣j

Y

i2I
pk ,

where ⇣ = {⇣1, . . . , ⇣n}, the shift operator pkf(⇣k) = f(q⇣k).

Now we shall prove that the K-theory vertex function after normalization is the eigen-
function of the tRS di↵erence operators.

Theorem 2.10. Let V
(1)
p be the coe�cient for the vertex function for X given in (2.6).

Define

(2.9) V(1)
p =

nY

i=1

✓(~i�n
⇣i, q)

✓(ai⇣i, q)
· V (1)

p ,

where ✓(x, q) = (x, q)1(qx�1
, q)1 is basic theta-function. Then Vp are eigenfunctions for

tRS di↵erence operators (2.8) for all fixed points p

(2.10) Tr(⇣)V
(1)
p = er(a)V

(1)
p , r = 1, . . . , n ,

where er is elementary symmetric polynomial of degree r of a1, . . . , an .

In order to understand the proof we shall use the integral formula for the vertex function.
Using Theorem 4.8 from [KZ] we can write vertex (2.6) as follows
(2.11)

V
(1)
p =

e

log ⇣n·log a1···an
log q

2⇡i

Z

Cp

n�1Y

m=1

mY

i=1

dsm,i

sm,i
E(sm,i) e

�
log ⇣m/⇣m+1·log sm,i

log q ·
m+1Y

j=1

Hm,m+1 (sm,i, sm+1,j) ,

where contour Cp surrounds poles corresponding to the fixed point p of the maximal torus
of Xn and the functions in the integrand are given by

(2.12) Hm,m+1(sm, sm+1) =
vmY

i=1

vm+1Y

j=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

corresponding to the contribution of Hom(Vm,Vm+1) and

(2.13) E(sn) =
vnY

j,k=1

'

⇣
sn,j

sn,k

⌘

'

⇣
t
sn,j

sn,k

⌘ ,

emerging from Hom(Vm,Vm) in the localization computation, and where

(2.14) '(x) =
1Y

i=0

(1� q
i
x) .

[PK]

tRS momenta
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Proof of Theorem 2.10. The verification of (2.10) can be performed directly with the help of
certain identities which arise from shifting of the integration contour in (2.11). An example
of this calculation is given in Appendix A for T ⇤P1 and the calculation can be generalized
to T

⇤Fln.

Here, however, we would like to give a complementary proof which uses previous results
[KPSZ] and some elementary calculations.

According to [KPSZ] tRS momenta pi correspond to multiplication by class d⇤iVi ⌦
\⇤i+1V ⇤

i+1 in KT (Xn), where Vi is the i-th tautological bundle over Xn, and are given by the
following ratio of products of the corresponding Chern roots

(2.15) pi =
si+1,1 · · · · · si+1,i+1

si,1 · · · · · si,i
, i = 1, . . . , n� 1 .

Recall that sn,i = ai. Using this fact and the definition of tRS operators (2.8) we can define

new quantum classes V(Tr)
p for r = 1, . . . , n. We can refer to them as tRS classes (see [DS]

for further development).
Notice that by acting with the tRS operators on the vertex function in the integral form

(2.11) we get

(2.16) Tr(⇣)V
(1)
p = V(Tr)

p ,

where on the right we have a vertex function with descendant class Tr in which pi are
given by (2.15). In particular, consider tRS Hamiltonian Tn which according to (2.8) reads
Tn = p1 · · · pn. From (2.11) we immediately see that the corresponding tRS class is given
by

V(Tn)
p = a1 · · · anV(1)

p = en(a)V
(1)
p .

Indeed, the shift by pn of the exponential in front of the integral in (2.11) returns a1 · · · an
while all other shifts of ⇣m variables in the integrand cancel each other as they appear only
as ratios ⇣m/⇣m+1.

In other words, V(1)
p is an eigenvector of Tn. Since all tRS Hamiltonians commute with

each other [Tr, Ts] = 0, they share the set of eigenvectors; therefore, V(1)
p is an eigenvector

for all Tr(⇣), r = 1, . . . , n as well. It remains to be shown that the eigenvalues of the
Hamiltonians Tr(⇣) are precisely given by the elementary symmetric functions er(a).

In [KPSZ] (Theorem 3.4) it was proven that the eigenvalues of the multiplication operator
by a quantum class b⌧ in quantum K-theory of Xn is given by ⌧(s), where Chern roots s
of the corresponding virtual bundle solve the XXZ Bethe Ansatz equations for Xn with s
playing the role of Bethe roots. It was also proven in loc. cit. (Theorem 4.5) that these
Bethe equations are equivalent to the classical tRS equations Tr(⇣) = er(a). In other words,
the eigenvalues of the multiplication by quantum tRS classes are precisely the corresponding
elementary symmetric functions er(a).

⇤

2.6. Macdonald Polynomials. It is well known that Macdonald polynomials (see [M] for
review) are also eigenfunctions of tRS di↵erence operators (Macdonald operators) (2.10).
Indeed, for a given Young tableau � whose columns we denote by �i, i = 1, . . . , n, we
can construct symmetric Macdonald polynomials of n variables P�(⇣; q, ~). We will always
assume that � has n columns, if necessary we shall complete the diagram with empty
columns.

Quantum multiplication by class
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2 PETER KOROTEEV

In physics literature there was an independent breakthrough in understanding of the con-
nection between integrable systems and quantum geometry. In seminal papers by Nekrasov
and Shatashvili [NS2,NS3] an equivalence between the spaces of solutions of Bethe Ansatz
equations for XXX (XXZ) spin chains and quantum cohomology (K-theory) of A-type
quiver varieties was conjectured (later it was proven in [PSZ, KPSZ]). In [GK, BKK] the
so-called quantum/classical duality between XXZ spin chains and integrals of motion of the
trigonometric Ruijsenaars-Schneider (tRS) model was formulated. This lead us to a clear
understanding of quantum K-theory of the quiver varieties in question in terms of the tRS
system [KPSZ].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.

v1 v2 . . . vn�1

wn�1
W

V

Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal torus
of GL(n,C) ⇥ C⇥

q ⇥ C⇥
~ , where GL(wi,C) ⇥ C⇥

~ acts as automorphisms of Xn and

C⇥
~ scales the cotangent directions with character ~1, while C⇥

q acts multiplicatively
on the base curve.

1To be more precise, ~ is the class in the representation ring of the weight one representation.

<latexit sha1_base64="pE2py6LjSQeK6E+v7lPNMZFFYgA=">AAAB+XicbVDLSsNAFL2pr1pfUZduBosgLkoiRV0WBXFZoS9oY5lMJ+3QySTMTAol9E/cuFDErX/izr9x0mahrQcGDufcyz1z/JgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++C7z2xMqFYtEQ09j6oV4KFjACNZG6tt24+miF2I98v30fsb7Rio7FWcOtErcnJQhR71vf/UGEUlCKjThWKmu68TaS7HUjHA6K/USRWNMxnhIu4YKHFLlpfPkM3RmlAEKImme0Giu/t5IcajUNPTNZBZSLXuZ+J/XTXRw46VMxImmgiwOBQlHOkJZDWjAJCWaTw3BRDKTFZERlphoU1bJlOAuf3mVtC4r7lWl+lgt127zOopwAqdwDi5cQw0eoA5NIDCBZ3iFNyu1Xqx362MxWrDynWP4A+vzB0Vnk3E=</latexit>

T ⇤Fln

Chern roots  satisfy XXZ Bethe Ansatz equationssi,a
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In particular, we have

(2.17) T1(⇣)P�(⇣; q, ~) =
 

nX

i=1

q
�i~i�n

!
P�(⇣; q, ~) .

We shall demonstrate momentarily that P�(⇣; q, ~) can be obtained from infinite series
(2.9) by specifying equivariant parameters a1, . . . , an which take values in a discrete lattice
spanned by q and ~.
Proposition 2.11. Consider coe�cient functions for K-theory of QM to Xn (2.9) for all

fixed points of the maximal torus. Let � be a partition of k elements of length n and

�1 � · · · � �n. Let

(2.18)
ai+1

ai
= q

`i~ , `i = �i+1 � �i , i = 1, . . . , n� 1 .

Then there exists a fixed point q for which

(2.19) Vq = P�(⇣; q, ~) .
Proof. Macdonald polynomials (independent on their normalization) satisfy di↵erence equa-
tions of the form (2.10). By plugging (2.18) into the formula for the coe�cient of the vertex
function (2.6) we observe that the series in ⇣i truncate at orders �i thereby turning it into
a polynomial. This polynomial is unique up to normalization. ⇤

We can also rewrite (2.18) as

(2.20) ai = aq
�i~i�n

, i = 1, . . . , n ,

where a 2 C⇥ is an arbitrary parameter, which later will be interpreted as an evaluation
parameter for a Fock module, and �i =

Pi
j=1 `n�j+1. Note also that our normalization of

Macdonald polynomials is slightly di↵erent from [M].

Remark. Note that out n! fixed points of T acting on Xn only for single point q we
get a polynomial out of Vq. Other coe�cient functions Vp remain infinite series which we
shall further ignore. One can verify by examining (2.20) that in the n ! 1 limit these
coe�cient functions will be suppressed. A choice of fixed point q following the large-n limits
corresponds to zooming into a certain asymptotic region in which |aS(1)| � |aS(2)| � · · · �
|aS(n)|, where S 2 Sn is a permutation corresponding to the choice of fixed point q.

Remark. The above theorem has an interesting interpretation from the point of view of
enumerative geometry viewpoint and Gromov-Witten theory in particular. Formulae like
(2.6), which are closed cousins of Givental J-functions, serve as generating functions of the
equivariant gravitational descendants of Xn. Due to (2.20) the q-hypergeometric-type series
truncate to polynomials thereby implying that these equivariant gravitational descendants
vanish identically starting from some order in ⇣i’s. The parameters of the problem get
adjusted in such a way that the equivariant volume of the moduli spaces of quasimaps of
degrees (d1, . . . , dn�1) which exceed (�1, . . . ,�n�1) become zero.3.

Example. Let us look at the simplest example X2 = T
⇤P1. The corresponding vertex

function is given by the q-hypergeometric function

(2.21) V
(1)
p =

X

d>0

✓
⇣1

⇣2

◆d 2Y

i=1

⇣
q
~
ap
ai
; q
⌘

d⇣
ap
ai
; q
⌘

d

=2�1

✓
~, ~ap

ap̄
, q

ap

ap̄
; q;

q

~
⇣1

⇣2

◆
.

3I thank A. Okounkov and S. Katz for interesting discussions on these matters.
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a polynomial. This polynomial is unique up to normalization. ⇤

We can also rewrite (2.18) as

(2.20) ai = aq
�i~i�n

, i = 1, . . . , n ,

where a 2 C⇥ is an arbitrary parameter, which later will be interpreted as an evaluation
parameter for a Fock module, and �i =

Pi
j=1 `n�j+1. Note also that our normalization of

Macdonald polynomials is slightly di↵erent from [M].

Remark. Note that out n! fixed points of T acting on Xn only for single point q we
get a polynomial out of Vq. Other coe�cient functions Vp remain infinite series which we
shall further ignore. One can verify by examining (2.20) that in the n ! 1 limit these
coe�cient functions will be suppressed. A choice of fixed point q following the large-n limits
corresponds to zooming into a certain asymptotic region in which |aS(1)| � |aS(2)| � · · · �
|aS(n)|, where S 2 Sn is a permutation corresponding to the choice of fixed point q.

Remark. The above theorem has an interesting interpretation from the point of view of
enumerative geometry viewpoint and Gromov-Witten theory in particular. Formulae like
(2.6), which are closed cousins of Givental J-functions, serve as generating functions of the
equivariant gravitational descendants of Xn. Due to (2.20) the q-hypergeometric-type series
truncate to polynomials thereby implying that these equivariant gravitational descendants
vanish identically starting from some order in ⇣i’s. The parameters of the problem get
adjusted in such a way that the equivariant volume of the moduli spaces of quasimaps of
degrees (d1, . . . , dn�1) which exceed (�1, . . . ,�n�1) become zero.3.

Example. Let us look at the simplest example X2 = T
⇤P1. The corresponding vertex

function is given by the q-hypergeometric function
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In particular, we have

(2.17) T1(⇣)P�(⇣; q, ~) =
 

nX

i=1

q
�i~i�n

!
P�(⇣; q, ~) .

We shall demonstrate momentarily that P�(⇣; q, ~) can be obtained from infinite series
(2.9) by specifying equivariant parameters a1, . . . , an which take values in a discrete lattice
spanned by q and ~.
Proposition 2.11. Consider coe�cient functions for K-theory of QM to Xn (2.9) for all

fixed points of the maximal torus. Let � be a partition of k elements of length n and

�1 � · · · � �n. Let
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`i~ , `i = �i+1 � �i , i = 1, . . . , n� 1 .
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Proof. Macdonald polynomials (independent on their normalization) satisfy di↵erence equa-
tions of the form (2.10). By plugging (2.18) into the formula for the coe�cient of the vertex
function (2.6) we observe that the series in ⇣i truncate at orders �i thereby turning it into
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We can also rewrite (2.18) as

(2.20) ai = aq
�i~i�n

, i = 1, . . . , n ,

where a 2 C⇥ is an arbitrary parameter, which later will be interpreted as an evaluation
parameter for a Fock module, and �i =

Pi
j=1 `n�j+1. Note also that our normalization of

Macdonald polynomials is slightly di↵erent from [M].

Remark. Note that out n! fixed points of T acting on Xn only for single point q we
get a polynomial out of Vq. Other coe�cient functions Vp remain infinite series which we
shall further ignore. One can verify by examining (2.20) that in the n ! 1 limit these
coe�cient functions will be suppressed. A choice of fixed point q following the large-n limits
corresponds to zooming into a certain asymptotic region in which |aS(1)| � |aS(2)| � · · · �
|aS(n)|, where S 2 Sn is a permutation corresponding to the choice of fixed point q.

Remark. The above theorem has an interesting interpretation from the point of view of
enumerative geometry viewpoint and Gromov-Witten theory in particular. Formulae like
(2.6), which are closed cousins of Givental J-functions, serve as generating functions of the
equivariant gravitational descendants of Xn. Due to (2.20) the q-hypergeometric-type series
truncate to polynomials thereby implying that these equivariant gravitational descendants
vanish identically starting from some order in ⇣i’s. The parameters of the problem get
adjusted in such a way that the equivariant volume of the moduli spaces of quasimaps of
degrees (d1, . . . , dn�1) which exceed (�1, . . . ,�n�1) become zero.3.

Example. Let us look at the simplest example X2 = T
⇤P1. The corresponding vertex

function is given by the q-hypergeometric function
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Recurrent Formula pk(n) = pk�1(n � 1) + pk(n � k)

p3(9) = p2(8) + p3(6)

3

For n = 12 and n = 15 it is the other way around – partitions with odd number of distinct
parts exceed partitions with even number of distinct parts by one (see previous lecture for
diagrams), etcetera. Thus the parity pattern alternates every other pentagonal number.
This is the reason for two pluses, two minuses, two pluses, etc. in Euler formula (1).

Therefore the following statement holds. We demonstrated its validity earlier by match-
ing odd and even partitions by moving blocks from top to bottom and back.

Theorem: If n is not a pentagonal number, then the number of even distinct partitions
of n, call it qe(n) equals the number of odd distinct partitions of n, call it qo(n). So qe(n) =
qo(n) and so the total number of distinct partitions of n, call it q(n) is q(n) = 2qo(n) which
is even.

If n is a pentagonal number, say n = Pj , then qe(n) = qo(n) + (�1)j and so q(n) =
2qo(n) + (�1)j which is odd.

Problem: Show that Pn = n(3n�1)
2 . You may use the fact that a pentagonal number

is a sum of a square number Sn = n2 and a triangular number Tn�1 = n(n�1)
2 or use

induction.
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We need to match each of 7 green diagrams on the left side of the picture with a
unique diagram of the right side and vice-versa (cf. odd vs. distinct or odd&distinct vs.
symmetric earlier in the course).

Notice that p3(9) counts diagrams with one less block and one less part than p2(8).
What does it mean exactly? We need to add one single block to any of the four orange
diagrams from p2(8) so that the new diagrams will have 9 blocks in them and 3 parts
(columns). How shall we do that? The only solutions is to add this block on the bottom-
right of each orange diagram! Indeed,

+ = + = + = + =

Now we need to math the remaining 3 green diagrams of partitions of 9 with 3 blue
diagrams of partitions of 6. This goes as follows

$ $ $
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In particular, we have

(2.17) T1(⇣)P�(⇣; q, ~) =
 

nX

i=1

q
�i~i�n

!
P�(⇣; q, ~) .

We shall demonstrate momentarily that P�(⇣; q, ~) can be obtained from infinite series
(2.9) by specifying equivariant parameters a1, . . . , an which take values in a discrete lattice
spanned by q and ~.
Proposition 2.11. Consider coe�cient functions for K-theory of QM to Xn (2.9) for all

fixed points of the maximal torus. Let � be a partition of k elements of length n and

�1 � · · · � �n. Let

(2.18)
ai+1

ai
= q

`i~ , `i = �i+1 � �i , i = 1, . . . , n� 1 .

Then there exists a fixed point q for which

(2.19) Vq = P�(⇣; q, ~) .
Proof. Macdonald polynomials (independent on their normalization) satisfy di↵erence equa-
tions of the form (2.10). By plugging (2.18) into the formula for the coe�cient of the vertex
function (2.6) we observe that the series in ⇣i truncate at orders �i thereby turning it into
a polynomial. This polynomial is unique up to normalization. ⇤

We can also rewrite (2.18) as

(2.20) ai = aq
�i~i�n

, i = 1, . . . , n ,

where a 2 C⇥ is an arbitrary parameter, which later will be interpreted as an evaluation
parameter for a Fock module, and �i =

Pi
j=1 `n�j+1. Note also that our normalization of

Macdonald polynomials is slightly di↵erent from [M].

Remark. Note that out n! fixed points of T acting on Xn only for single point q we
get a polynomial out of Vq. Other coe�cient functions Vp remain infinite series which we
shall further ignore. One can verify by examining (2.20) that in the n ! 1 limit these
coe�cient functions will be suppressed. A choice of fixed point q following the large-n limits
corresponds to zooming into a certain asymptotic region in which |aS(1)| � |aS(2)| � · · · �
|aS(n)|, where S 2 Sn is a permutation corresponding to the choice of fixed point q.

Remark. The above theorem has an interesting interpretation from the point of view of
enumerative geometry viewpoint and Gromov-Witten theory in particular. Formulae like
(2.6), which are closed cousins of Givental J-functions, serve as generating functions of the
equivariant gravitational descendants of Xn. Due to (2.20) the q-hypergeometric-type series
truncate to polynomials thereby implying that these equivariant gravitational descendants
vanish identically starting from some order in ⇣i’s. The parameters of the problem get
adjusted in such a way that the equivariant volume of the moduli spaces of quasimaps of
degrees (d1, . . . , dn�1) which exceed (�1, . . . ,�n�1) become zero.3.

Example. Let us look at the simplest example X2 = T
⇤P1. The corresponding vertex

function is given by the q-hypergeometric function
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Figure 2. Asymptotic regions of the space of GL(n) equivariant parame-
ters. In the n ! 1 limit, provided that (2.20) holds, we approach the given
fixed point.

Here a1̄ = a2 and a2̄ = a1. One can easily see that Weyl reflection of sl2 interchanges V (1)
1

and V
(1)
2 . Then we have

(2.22) Vp =
✓(⇣1, q)

✓(a1⇣1, q)

✓(~⇣2, q)
✓(a2⇣2, q)

· V (1)
p .

The condition (2.18) reads a1 = aq
�1~�1

, a2 = aq
�2 . Then we have the following Macdonald

polynomials for some simple tableaux.

V = ⇣1 + ⇣2,

V = ⇣
2
1 + ⇣

2
2 +

(q + 1)(~� 1)

q~� 1
⇣1⇣2,

V = ⇣
3
1 + ⇣

3
2 +

�
q
2 + q + 1

�
(~� 1)

q2~� 1
⇣2⇣

2
1 +

�
q
2 + q + 1

�
(~� 1)

q2~� 1
⇣
2
2⇣1 .(2.23)

Here the Young tableaux at the subscripts have their heights equal to �2. Without loss
of generality we can assume �n = 0 for all formulae. In other words, for T

⇤P1 the corre-
sponding Macdonald polynomials depend only on one integer parameter (so-called Roger
polynomials4). Otherwise the resulting polynomial will simply be a product of the corre-
sponding Macdonald polynomial and a simple factor depending on �n. For instance

(2.24) V = ⇣2⇣1 + ⇣
2
2 = ⇣2V .

Thus we have shown that classes (2.9) of equivariant K-theory of the moduli space of
quasimaps from P1 to T

⇤Fln upon specification of equivariant parameters of the maximal
torus of gln according to (2.20) reduce to symmetric Macdonald polynomials of n variables.
It is well known in the literature that Macdonald polynomials appear in K-theory of Hilbert
scheme of points on C2. Our goal in the next section is to provide a precise relationship
between K-theories of these two types of Nakajima quiver varieties.

4To actually get Roger polynomials of one variable x one needs to put ⇣1 = ⇠ and ⇣1 = ⇠�1 and multiply
the resulting expression by ⇠�2
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Figure 2. Asymptotic regions of the space of GL(n) equivariant parame-
ters. In the n ! 1 limit, provided that (2.20) holds, we approach the given
fixed point.

Here a1̄ = a2 and a2̄ = a1. One can easily see that Weyl reflection of sl2 interchanges V (1)
1

and V
(1)
2 . Then we have

(2.22) Vp =
✓(⇣1, q)

✓(a1⇣1, q)

✓(~⇣2, q)
✓(a2⇣2, q)

· V (1)
p .

The condition (2.18) reads a1 = aq
�1~�1

, a2 = aq
�2 . Then we have the following Macdonald

polynomials for some simple tableaux.

V = ⇣1 + ⇣2,

V = ⇣
2
1 + ⇣

2
2 +

(q + 1)(~� 1)

q~� 1
⇣1⇣2,

V = ⇣
3
1 + ⇣

3
2 +

�
q
2 + q + 1

�
(~� 1)

q2~� 1
⇣2⇣

2
1 +

�
q
2 + q + 1

�
(~� 1)

q2~� 1
⇣
2
2⇣1 .(2.23)

Here the Young tableaux at the subscripts have their heights equal to �2. Without loss
of generality we can assume �n = 0 for all formulae. In other words, for T

⇤P1 the corre-
sponding Macdonald polynomials depend only on one integer parameter (so-called Roger
polynomials4). Otherwise the resulting polynomial will simply be a product of the corre-
sponding Macdonald polynomial and a simple factor depending on �n. For instance

(2.24) V = ⇣2⇣1 + ⇣
2
2 = ⇣2V .

Thus we have shown that classes (2.9) of equivariant K-theory of the moduli space of
quasimaps from P1 to T

⇤Fln upon specification of equivariant parameters of the maximal
torus of gln according to (2.20) reduce to symmetric Macdonald polynomials of n variables.
It is well known in the literature that Macdonald polynomials appear in K-theory of Hilbert
scheme of points on C2. Our goal in the next section is to provide a precise relationship
between K-theories of these two types of Nakajima quiver varieties.

4To actually get Roger polynomials of one variable x one needs to put ⇣1 = ⇠ and ⇣1 = ⇠�1 and multiply
the resulting expression by ⇠�2

Macdonald polynomials
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24 PETER KOROTEEV

Once the elliptic Calogero-Moser system is downgraded to the trigonometric one the
results of loc. cit. apply after reducing a�ne Laumon space La↵

d to the its finite version
Ld. Here vector d = (d1, . . . ds) shows degrees of parabolic sheaves which are used in the
construction of the Laumon space. For the purposes of our presentation the number of
components in d will always be equal to the rank of gauge group of the supersymmetric
theory which is used in the construction. In physics language the spectrum of the elliptic
Calogero-Moser model is described by instanton counting in N = 2⇤ gauge theory in the
presence of a monodromy defect of maximal Levi type [AT,N3].

The sought generalization of the above results to quantum K-theory should be formu-
lated in terms of the relativistic generalization of the Calogero-Moser system – the elliptic
Ruijsenaars-Schneider (eRS) model. Physically we will be studying five-dimensional N = 1⇤

gauge theory with defect of maximal Levi type [BKK,KS2].

5.1. Elliptic Ruijsenaars-Schneider Model. The Hamiltonians of the elliptic RS model
can be easily obtained from trigonometric RS Hamiltonians (2.8) by replacing rational
functions with elliptic theta-functions of the first kind

(5.1) Er(⇣) =
X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

✓1(~⇣i/⇣j |p)
✓1(~⇣i/⇣j |p)

Y

i2I
pk ,

where p 2 C⇥ is the new parameter which characterizes the elliptic deformation away from
the trigonometric locus, where p = 1 and we get (2.8) back.

As in the trigonometric case we shall be interested in the eigenvalues and eigenfunctions
of these operators

(5.2) Er(⇣)Z = ErZ , r = 1, . . . , n .

As a direct generalization of the results of [N5] to K-theory lead to the following

Conjecture 5.1. The solution of (5.2) is given by the K-theoretic holomorphic equivariant

Euler characteristic of the a�ne Laumon space

(5.3) Z =
X

d

~qd
Z

Ld

1 ,

where ~q = (q1, . . . , qn) is a string of C⇥
-valued coordinates on the maximal torus of La↵

d . The

eigenvalues Er are equivariant Chern characters of bundles ⇤r
W , where W is the constant

bundle of the corresponding ADHM space. In other words they have the following form

(5.4) Er = er +
1X

l=1

plE(l)
r ,

where er are symmetric functions of the equivariant parameters a1, . . . , aN .

The K-theoretic equivariant pushforward (5.3), as in say (2.3), has not been defined yet
for non-hyperKähler spaces. We hope that this will be done in the near future which will
enable us to prove the Conjecture.

The a�ne Laumon space provides a generalization for the ADHM moduli space, in fact
the former can be obtained by a certain quotient of the latter by Zn. The so-called chainsaw
quiver provides all necessary data for equivariant localization computations on La↵

d . The
fixed points of the maximal torus of La↵

d are parameterized by an n-tuple of Young tableaux
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2 PETER KOROTEEV

In physics literature there was an independent breakthrough in understanding of the con-
nection between integrable systems and quantum geometry. In seminal papers by Nekrasov
and Shatashvili [NS2,NS3] an equivalence between the spaces of solutions of Bethe Ansatz
equations for XXX (XXZ) spin chains and quantum cohomology (K-theory) of A-type
quiver varieties was conjectured (later it was proven in [PSZ, KPSZ]). In [GK, BKK] the
so-called quantum/classical duality between XXZ spin chains and integrals of motion of the
trigonometric Ruijsenaars-Schneider (tRS) model was formulated. This lead us to a clear
understanding of quantum K-theory of the quiver varieties in question in terms of the tRS
system [KPSZ].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.

v1 v2 . . . vn�1

wn�1
W

V

Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal torus
of GL(n,C) ⇥ C⇥

q ⇥ C⇥
~ , where GL(wi,C) ⇥ C⇥

~ acts as automorphisms of Xn and

C⇥
~ scales the cotangent directions with character ~1, while C⇥

q acts multiplicatively
on the base curve.

1To be more precise, ~ is the class in the representation ring of the weight one representation.
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eRS Spectrum
Euler characteristic of affine Laumon space (representation space of a chain-saw quiver)
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~µ = (µ1, . . . , µn). The integrals in (5.3) can be computed using localization and the resulting
expression is an infinite sum over all sectors labelled by kl(~µ)

(5.5) Z =
X

~µ

nY

l=1

qkl(~µ)l z~µ(~a, ~, q) .

In the limit when the parabolic structure is removed (5.3) is expected to reproduced the
well known Euler characteristic of MN (Nekrasov instanton partition function) Thus we can
impose the following

(5.6) p = q1 · · · · · qn ,

where p counts the degrees of sheaves in the standard ADHM localization computation.
We can use the above equation in order to eliminate one of qi variables. In [BKK] the
Conjecture 5.1 was verified in several orders in p.

Using the above observations we can think of (5.5) as a Laurent series in q1, . . . , qn�1.
Indeed, if we express qn in using (5.6) we shall get a series in all positive and negative
powers of q1, . . . , qn�1 and in nonnegative powers of p. In the limit p ! 0 (or constant term
in p in the above Laurent series) formula (5.5) describes holomorphic Euler characteristic
of the finite9 Laumon space, and, as we have proven above, the resulting function is the
eigenfunction of tRS Hamiltonians. It is easy to see that at p = 0 we get a Taylor series is
qi parameters. The chainsaw quiver is replaced by a handsaw quiver for the Laumon space
(see e.g. [FR1]).

We can formulate a corollary form Conjecture 5.1

Corollary 5.2. The equivariant K-theoretic Euler characteristic of the Laumon space co-

incides with the vertex function coe�cient (2.6) for trivial class in KT (Xn).

Proof. To prove one computes the equivariant character of the universal bundle over the
Laumon space in terms of variables q1, . . . , qn�1 which are then identified with quantum
parameters z1, . . . , zn in (2.4). ⇤

According to Sec. 2 once condition (2.20) is satisfied the coe�cient vertex function of Xn

truncates to the corresponding Macdonald polynomial. Based on the above discussion we
conclude that generating function (5.5) after imposing (2.20) will become a Laurent series
plus this Macdonald polynomial. Also the Laurent part is uniquely fixed by this condition.
Therefore functions Z under (2.20) for all possible Young tableau � span Hilbert space which
is isomorphic to Hn, but has a di↵erent scalar product due to the presence of additional
series in p.

5.2. eRS Eigenvalues. One can perform the localization computation to compute (5.4)
(see [BKK,KS2]). The first several terms for the eigenvalues of E1 look as follows

(5.7) E1 =
nX

i=1

ai � p(1� ~)(q � ~�1)q�1~n
nX

i=1

ai

nY

j=1
j 6=i

(ai � ~�1
aj)(~ai � qaj)

(ai � aj)(ai � qaj)
+ o(p2) .
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(5.5) Z =
X

~µ

nY

l=1

qkl(~µ)l z~µ(~a, ~, q) .
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2 ALEXANDER GORSKY, P. KOROTEEV, OLESYA KOROTEEVA, AND SHAMIL SHAKIROV

1.1. Overview of Quantum DELL System. First we review the basics of the quantum
double elliptic system which was discovered by two of the authors [KS] and further developed
in [GZ2, GZ]. (see also [BMMM, MM, AMMZ, ABM+, AMM, AMM2, FGNR, BGOR] for
di↵erent approach to double elliptic models).

The DELL Hamiltonians for N particles read

(1.1) Ha = O�1
0 Oa , a = 1, . . . , N � 1 ,

where operators O0, O1, . . . , ON�1 are Fourier modes of the following current
(1.2)

O(z) =
X

n2Z
On z

n =
1X

n1,...,nN=�1
(�z)

P
ni w

P ni(ni�1)
2

Y

i<j

✓

✓
t
ni�nj

xi

xj

���p
◆

p
n1
1 . . . p

nN
N .

In the above formula ✓(x|p) is the odd theta function1

(1.3) ✓(x|p) = (x
1
2 � x

� 1
2 )

1Y

i=1

(1 � xp
i)(1 � x

�1
p
i) ,

t is the exponentiated coupling constant, z is an auxiliary counting parameter, and the
canonically conjugate position and momentum operators obeying canonical q-commutation
relation xipj = q

�ijpjxj which act on functions of positions as follows

(1.4) xif(x1, . . . , xN ) = xif(x1, . . . , xN ), pif(x1, . . . , xN ) = f(x1, . . . , qxi, . . . , xN ) .

The eigenvalue problem, which as of this writing, is a mathematical conjecture, states
that a properly normalized equivariant elliptic genus of the a�ne Laumon space in the
Nekrasov-Shatashvili limit [NS] is the eigenfunction of the quantum DELL Hamiltonians

(1.5) bHnZ
6d/4d
inst (w, p,x) = �n(a, w, p)Z6d/4d

inst (w, p,x) .

We refer the reader to [KS] for more details and references. In this paper we discuss double
scaling limits of DELL of Inozemtsev type [I], in which the coupling t ! 1 while the elliptic
parameters p and w go to zero in the presence of additional scaling of the coordinates and
momenta.

1.2. DELL-RS-Calogero Hierarchy. The DELL system lives on top of the hierarchy
of integrable many-body systems and all other known models (without spin degrees of
freedom, we shall comment on spin-DELL later) – Calogero-Moser-Sutherland (CMS) and
Ruijsenaars-Schneider (RS) systems can be obtained by decoupling certain parameters in
DELL Hamiltonians, see Fig. 12 .

The Calogero and Ruijsenaars families (first and second rows of the table respectively)
have a well-established geometric interpretation.

1.3. Spectrum of the Elliptic RS Model. In this subsection we would like to prove one
of the conjectures of [KS].

Theorem 1.1. Let x = (x1, . . . xN ) be the position vector of the eRS model and ZRS(a,x) =

lim
w!0

Z6d/4d
inst (w, p,x) is its wavefunction. Then the following equality holds

(1.6) HkZRS(a,x) = �k(a)ZRS(a,x) , k = 1, . . . , N � 1 .

1The use of the odd theta function is more preferable to study the Inosemtsev limit; we changed our
conventions from [KS].

2In math literature (part of) this diagram is sometimes referred to as Etingof diamond.
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rational trigonometric elliptic

r rational CMS trigonometric CMS elliptic CMS
quantum cohomology

t rational RS 
(dual trig. CMS) trigonometric RS elliptic RS

quantum K-theory

e dual elliptic CMS dual elliptic RS DELL
Elliptic Cohomology

� ! 0
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R ! 0 R ! 0R ! 0

qp
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w ! 0
<latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit><latexit sha1_base64="JaQ0GXLfUCbMte+GYFs4wkE47lE=">AAAB7HicdVBNS8NAFHzxs9avqkcvi0XwVJJasbkVvXisYNpCG8pmu2nXbrJhd6OU0P/gxYOKV3+QN/+N2zaCig4sDDPvsW8mSDhT2rY/rKXlldW19cJGcXNre2e3tLffUiKVhHpEcCE7AVaUs5h6mmlOO4mkOAo4bQfjy5nfvqNSMRHf6ElC/QgPYxYygrWRWvc9LZDdL5Xtil07rbpnyJA5DHHdul2vISdXypCj2S+99waCpBGNNeFYqa5jJ9rPsNSMcDot9lJFE0zGeEi7hsY4osrP5tdO0bFRBigU0rxYo7n6fSPDkVKTKDCTEdYj9dubiX953VSHdT9jcZJqGpPFR2HKkYk4i44GTFKi+cQQTCQztyIywhITbQoqmhK+kqL/iVetuBXnulZuXORtFOAQjuAEHDiHBlxBEzwgcAsP8ATPlrAerRfrdTG6ZOU7B/AD1tsnxJmOzQ==</latexit>

Figure 1. The ITEP table [M] of integrable many body systems according
to their periodicity properties in coordinates q (columns) and momenta p

(rows) together with their geometric interpretations.

where the eigenvalues read

(1.7) �k(a) =
k�1Y

n=0

✓(tN�n)

✓(tn+1)
· ZRS(a, t

~⇢
q
~!k)

ZRS(a, t~⇢)
, k = 1, . . . , N � 1

where ~!k is the k-th fundamental weight of representation of SU(N) and ~⇢ =
�
(N �

1)/2, (N � 3)/2, . . . , (3 � N)/2, (1 � N)/2
�
is the SU(N) Weyl vector.

Proof. In the above system of di↵erence equations, the Hamiltonians have the form

(1.8) Hk =
X

I⇢{1...N}
|I|=k

Y

j /2I
i2I

✓(txi/xj)

✓(xi/xj)

Y

i2I
pi

where pi are the shift operators as defined earlier. While for generic xi this is a non-
trivial system relating values of the eigenfunctions at multiple di↵erent points, there exists
a specific value of xi at which all but one terms in the left hand side of each equation in the
above system vanish. This is the point xi = t

⇢i = t
(N+1)/2�i. Indeed it is easy to see that,

in the k-th equation of (1.6), the product of theta functions at xi = t
⇢i necessarily contains

a factor of ✓(1) because of the linear dependence of i in ⇢i, unless I = {1, 2, . . . , k}. Recall
from (1.3) that ✓(1) = 0, therefore the k-th equation of the system at xi = t

⇢i specializes to

(1.9)
kY

i=1

NY

j=k+1

✓(tj�i+1)

✓(tj�i)
ZRS(a, t

~⇢
q
~!k) = �k(a)ZRS(a, t

~⇢) , k = 1, . . . , N � 1 .

C✏1

C✏2

S1
�

orthogonal to the defect which can be described as follows
I

|z2|=✏

A
a = 2⇡m

a
, a = 1, . . . , N , (4.12)

where

m
a = (m1, · · · , m1| {z }

n1

, m2, · · · , m2| {z }
n2

, · · · , ms · · · , ms| {z }
ns

) . (4.13)

There is an additional label � which determines how L is emdedded into U(N). Each �

corresponds to permutation of the monodromy parameters m that are not simply permuta-

tions within each block, that is � 2 W/WL where WL is the Weyl group of L. The number

of such permutations is clearly N⇢ = N !/(n1! . . . ns!).

To compute the ramified instanton partition function, we quotient the standard con-

struction of the instanton moduli space we have reviewed earlier in Sec. 4.1 by a Zs -

action where s is the length of the partition ⇢. The Zs - action is embedded inside the

(C⇤)2 ⇥ GL(N, C) symmetry of the instanton moduli space. The component in (C⇤)2 acts

on the complex coordinates by (z1, z2) ! (z1, !z2) where !
s = 1. The component in

GL(N, C) acts on the vector space W such that it decomposes

W = �
s

j=1Wj , nj = dimC Wj (4.14)

into eigenspaces of the Zs - action. Our convention is that the generator of Zs acts on the

vector space Wj by Wj ! !
j
Wj . In the sector with instanton number k, we must make

an additional choice of the decomposition of the other vector space

V = �
s

j=1Vj dimC Vj = kj

sX

j=1

kj = k . (4.15)

Each of these choices corresponds to a distinct topological sector and hence to a distinct

ramified instanton moduli space M⇢,k1,...,ks . In summary, the ramified instanton moduli

space M⇢,k1,...,ks can be obtained as a Zs quotient of the standard instanton moduli space

MN,k with N =
P

s

j=1 nj and k =
P

s

j=1 kj .

Let us now explain how to compute the answer. The first statement is that each fixed

point ~� of the standard instanton moduli space MN,k is also a fixed point of one and only

one ramified instanton moduli space M⇢,k1,...,ks . The hardest part of the computation is to

identify which sector {k1, . . . , ks} a given fixed point ~� contributes to. It is clear that the

total number of boxes in ~� must add up to k =
P

s

j=1 kj . Introduce the following labels for

the Young tableaux

~� = {�j,↵} , j = 1, . . . , s , ↵ = 1, . . . , ns . (4.16)
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Fock Space
Power-symmetric variables

Macdonald polynomials depend only on k and the partition

where D(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D(r)
n,~⌧

(q, t) = tr(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j
⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D(1)
n,~⌧

is known as the first Macdonald difference
operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q�atn�a , a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D(1)
n,~⌧

(q, t)P�(~⌧ ; q, t) = E(�;n)
tRS

P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E(�;n)
tRS

=
nX

j=1

q�j tn�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2q, t1/2q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2, t�1/2q2) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =
nX

l=1

⌧m
l

, (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =
1

2
(p21 � p2) , P =

1

2
(p21 � p2) +

1� qt

(1 + q)(1� t)
p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8
See the end of Section 3 of [6].
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Starting with Fock vacuum |0i

Construct Hilbert space

in terms of the so-called reproduction kernel

Q
(q, t)(⌧, e⌧) =

Y

i,j>1

(t⌧ie⌧j ; q)1
(⌧ie⌧j ; q)1

, (a; q)1 =
Y

s>0

(1� aqs) . (3.8)

The statement holds in general: given two bases {u�}, {v�} of ⇤(q, t), they are dual under
(3.6) if and only if

P
�
u�(⌧)v�(e⌧) =

Q
(q, t)(⌧, e⌧); in this sense, the form of the inner product

is determined by the form of the kernel function. For our discussion, the most relevant basis
of symmetric functions is given by the Macdonald basis {P�(⌧ ; q, t)}, uniquely determined
by the following conditions

(1) P�(⌧ ; q, t) = m�(⌧) +
X

µ<�

u�µ(q, t)mµ(⌧) with u�µ(q, t) 2 Q(q, t) ,

(2) hP�(⌧ ; q, t), Pµ(⌧ ; q, t)iq,t = 0 for � 6= µ ,

(3.9)

where m�(⌧) are monomial symmetric functions and � > µ() |�| = |µ| with �1+. . .+�i >
µ1 + . . .+ µi for all i. From the functions P�(⌧ ; q, t) we recover the n-variables Macdonald
polynomials as P�(⌧1, . . . , ⌧n; q, t) = P�(⌧1, . . . , ⌧n, 0, 0, . . . ; q, t); these are eigenstates of the
Hamiltonians (2.6), (2.12) and satisfy (2.14).

3.1.1 Free Field Realization

We are now ready to discuss the collective coordinate (or free boson) realization of the tRS
Hamiltonian (2.6). The idea here is to introduce a (q, t)-deformed version of the Heisenberg
algebra H(q, t), with generators am (m 2 Z) and commutation relations

[am, an] = m
1� q|m|

1� t|m| �m+n,0 . (3.10)

A canonical basis in the Fock space of H(q, t) is given by the set of states a��|0i =

a��1 · · · a��l(�)
|0i depending on a partition �; a generic state will be a linear combina-

tion of the basis ones, with coefficients in Q(q, t). Let us notice that the bra-ket product
among basis states is such that

h0|0i = 1 , h0|a�a�µ|0i = ��,µz�(q, t) , (3.11)

and therefore coincides with the inner product (3.6). This is in agreement with the natural
isomorphism between this Fock space and ⇤(q, t), simply given by

a��|0i  ! p� (3.12)

for fixed partition �. Now, in order to reproduce the action of D(1)
n,~⌧

in terms of bosonic
operators, we follow [38] (see also [55–57]) and introduce the vertex operators

⌘(z) = exp

 
X

n>0

1� t�n

n
a�nz

n

!
exp

 
�
X

n>0

1� tn

n
anz

�n

!

= : exp

0

@�
X

n 6=0

1� tn

n
anz

�n

1

A : =
X

n2Z
⌘nz

�n

(3.13)
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Commutators

a��|0i = a��1 · · · a��l |0ifor each partition

pm =
nX

l=1

zml

4.3 The �ILW Spectrum from Gauge Theory

Although the procedure described above provides the bH1 eigenvalue at specified k, it turns

out that it is possible to obtain the same results from gauge theory, more precisely from

the so-called ADHM quiver gauge theory in two or three dimensions.

The relation between the ADHM gauged linear sigma model for the U(1) theory (N = 1

model) and the quantum ILW system has been discussed in terms of Bethe/Gauge cor-

respondence in [28]. There the authors explained why the equations which determine

supersymmetric vacua in the Coulomb branch of the 2d ADHM theory correspond to the

Bethe Ansatz Equations for ILW, as well as how the local gauge theory observables hTr ⌃li
evaluated at the solutions of these equations give the ILW spectrum. Here we propose a

similar correspondence to hold between the N = 1 ADHM theory on C⇥ S
1
� and quantum

�ILW. We shall provide the calculations supporting this statement below, while later in

Sec. 5.4 we shall explain how the ADHM theory arises in our construction by using string

theory dualities.

When the radius of the circle � is small the infrared description of the sigma model

is e↵ectively two-dimensional. The supersymmetric Coulomb branch vacua equations for

N = 1 will be (see Appendix A)

sin[
�

2
(⌃s � a)]

kY

t=1
t 6=s

sin[�2 (⌃st � ✏1)] sin[�2 (⌃st � ✏2)]

sin[�2 (⌃st)] sin[�2 (⌃st � ✏)]
=

ep sin[
�

2
(�⌃s + a � ✏)]

kY

t=1
t 6=s

sin[�2 (⌃st + ✏1)] sin[�2 (⌃st + ✏2)]

sin[�2 (⌃st)] sin[�2 (⌃st + ✏)]

(4.43)

because of the 1-loop contributions coming from the KK tower of chiral multiplets10. Here

✏ = ✏1 + ✏2 and ep = e
�2⇡⇠ with ⇠ Fayet-Iliopoulos parameter of the ADHM theory11. For

simplicity, from now on we will set a = 0. When ⇠ ! 1 (i.e. ep ! 0), the solutions are

labelled by partitions � of k, and are given by

⌃s = (i � 1)✏1 + (j � 1)✏2 mod 2⇡i (4.44)

✏1

✏2

Figure 4: The partition (4,3,1,1) of k = 9

10
Equations (4.43) reduce to the Bethe Ansatz Equations for quantum ILW of [28] when � ! 0.

11
As discussed in [28], the Fayet-Iliopoulos parameter ⇠ coincides with the ILW parameter � previously

introduced.
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q = e✏1

~ = e✏2
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3.1. Elliptic Hall Algebra E. Following [SV0802, SV0905] algebra E is generated by
elements Zn,m, n,m 2 Z modulo certain relations which we shall not specify here. These
generators can be conveniently positioned in integral lattice Z2 of the coordinate plane
where (n,m) will be their x and y-coordinates. By normalization Z0,0 = 1 is the identity
operator. The commutation relations of E suggest that the entire algebra can be generated
by four elements Z0,±1, Z±1,0. In the given normalization generators on the horizontal axis
Zn,0 are multiplications by x

n, whereas generators on the vertical axis Z0,l for l > 0 are
Macdonald operators written in x-basis. In (2.33) we have already used these generators
to construct An. It is known [BS] that E acts faithfully on Kq,~(Hilbn).

This following theorem by Schi↵mann and Vasserot enabled the authors to construct
(more or less by definition) E as a stable limit of spherical DAHA A1.

Theorem 3.1 ([SV0802]). There is an explicit surjective algebra homomorphism

(3.3) E ! An .

Using this theorem we can study the connection between modules of An and E.

3.2. Fock Modules of Elliptic Hall Algebra. Generators Zm,n for which m
n = s 2 Q

form a subalgebra of E which can be described as q, ~-deformed Heisenberg algebra with
commutation relations

(3.4) [am, an] = m
1� q

|m|

1� ~|m| �m,�n ,

where an, n 2 Z are the corresponding generators of E which lie on slope s [BS]. The entire
Z2 plane parameterizes by Zm,n can be sliced by lines with all possible rational slopes
passing through the origin. Each slope represents itself a Heisenberg algebra. Here we are
using slightly di↵erent normalization of generators. This normalization is more appropriate
in Ding-Iohara algebra which, as we have already mentioned, is isomorphic to E.

Given the above Heisenberg algebra we can study its Fock space representation F (a)
which is constructed in the standard way.

Proposition 3.2. Let Mn be a highest weight module of An. Then its projective limit

n ! 1 is isomorphic to the Fock module F (a) of E with evaluation parameter a (2.25).

Proof. We can map Macdonald polynomials to states in the Fock space representation of
the q, ~-Heisenberg algebra by claiming that

(3.5) xk = a�k|0i ,

where al obey (3.4). For a partition of size k and length n we can define x� = x�1 · · ·x`(�)
and theh correspondingly state in the Fock module F of E as a��1 · · · a�`(�). Now define a
homomorphism ⇢

n+1
n : ⇤n+1 ! ⇤n as

(3.6) (⇢n+1
n f)(⇣1, . . . , ⇣n) = f(⇣1, . . . , ⇣n, 0)

Back to Macdonald polynomials



Ding-Iohara-Miki algebra
Free boson representation of tRS operators

where

D
WU(n)

⇤

E
=

nX

a=1

µa � Q
(q � t)(1� t)

qtn

nX

a=1

µa

nY

b=1
b 6=a

(µa � tµb)(tµa � qµb)

(µa � µb)(µa � qµb)
+ o(Q2) , (2.11)

D
WU(1)

⇤

E
=

(Qt�1;Q)1(Qtq�1;Q)1
(Q;Q)1(Qq�1;Q)1

. (2.12)

Formula (2.10) will play an important rôle in the following discussion as well as it did in

[3]: there it was used to show that, in the limit of large n, the eRS model can be described

in terms of a quantum hydrodynamic system known as finite-di↵erence Intermediate Long

Wave system (�ILW), or finite-di↵erence Benjamin-Ono (�BO) in the trigonometric case.

This correspondence to hydrodynamic models is easy to understand at the classical level

– when a system consists of an infinite number of particles it is impossible to follow the

dynamics of every single particle, and a better description of the system can be provided by

considering it as a fluid, i.e. by studying the particles’ collective motion. This idea can be

translated at the quantum language – one now needs to expand the fluid velocity functions

in Fourier modes and then quantize these modes according to the canonical quantization

procedure. This is equivalent to consider our original eRS system in its (bosonic) free field

(or collective field) representation [41–43] (see [44–46] for the collective field description of

trigonometric and elliptic Calogero-Sutherland systems). Further details on this approach

for the case at hand can be found in [3]; in the next subsection we will merely collect some

basic facts which will be relevant for the upcoming discussion.

2.2 Free Field Realization of Ruijsenaars-Schneider Systems

The free field realization of tRS and eRS models has been discussed in great detail in [28]

(see also [29, 47, 48] for a di↵erent realization). We start by considering the (q, t)-deformed

Heisenberg algebra H(q, t), generated by the am, m 2 Z modes following the commutation

relation

[am, an] = m
1� q|m|

1� t|m| �m+n,0 . (2.13)

In order to reproduce the action of the first trigonometric Ruijsenaars-Schneider Hamilto-

nian (2.1) in terms of Heisenberg modes am we introduce vertex operators

⌘(z) = exp

 
X

n>0

1� t�n

n
a�nzn

!
exp

 
�
X

n>0

1� tn

n
anz�n

!

= : exp

0

@�
X

n 6=0

1� tn

n
anz�n

1

A : =
X

n2Z
⌘nz�n

(2.14)

and

�(z) = exp

 
X

n>0

1� tn

1� qn
a�n

zn

n

!
; (2.15)
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now, after defining �n(⌧) =
Qn

i=1
�(⌧i), one can show that [28]

O1(q, t)�n(⌧)|0i ⌘ [⌘(z)]1�n(⌧)|0i =
h
t�n + t�n+1(1� t�1)D(1)

n,~⌧ (q, t)
i
�n(⌧)|0i (2.16)

where [ ]1 means the constant term in z (i.e. [⌘(z)]1 = ⌘0). At the level of eigenvalues this
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with parameter of elliptic deformation p. Equation (2.16) gets modified into
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⇥
⌘(z; pq�1t)
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1
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"
t�n

nY
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with �n(⌧ ; p) = �(⌧1, . . . , ⌧n; p) being the elliptic generalization of �n(⌧). With p turned

on Hamiltonian O1(q, t; p) and its companions Or(q, t; p) have been proposed in [3] to map

8In the elliptic case this isomorphism will no longer be of help, since we need to consider symmetric

polynomials in the ratios ⌧i
⌧j

which cannot be written as linear combinations of pm.
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onto quantum Hamiltonians of �ILW hydrodynamic system. This observation was made

based on the results of [21] reagrding the classical system. The conjecture

lim
n!1

"
t�n

nY

i=1

⇥p(qt�1z/⌧i)

⇥p(qz/⌧i)

⇥p(tz/⌧i)

⇥p(z/⌧i)
⌘(z; pq�1t)

#

1

|0i = 0 (2.22)

of [28] reduces at the level of eigenvalues to

E(�)
1

(p) = lim
n!1


t�n+1(1� t�1)

(pt�1; p)1(ptq�1; p)1
(p; p)1(pq�1; p)1

E(�;n)
eRS (p)

�
, (2.23)

where E(�)
1

(p) is the eigenvalue of O1(q, t; p).

2.3 Bethe Ansatz Equations for �ILW from the ADHM Theory

In order to verify (2.23) one needs to know both E(�;n)
eRS (p) for generic n and E(�)

1
(p).

We already know from (2.10) that E(�;n)
eRS (p) can be computed from the gauge theory, in

particular we have

(pt�1; p)1(ptq�1; p)1
(p; p)1(pq�1; p)1

E(�;n)
eRS (p) =

D
WU(1)

⇤

E
E(�;n)

eRS (p) =
D
WU(n)

⇤

E ���
�
, (2.24)

where we identify Q = e�8⇡2�/g2Y M with p. What about E(�)
1

(p)? There are two ways of

obtaining this eigenvalue:

• The most immediate possibility is to look for eigenstates of O1(q, t; p) of the formP
i cia

li
�ni

with fixed eigenvalue k of the number operator
P1

n>1
a�nan. We shall

often refer to integer k as the soliton number. These states are in one-to-one cor-

respondence with partitions of k. This method has the advantage that provides

both eigenvalues and eigenfunctions and gives results exact in p, however, it becomes

quickly computationally cumbersome for large k.

• Alternatively we can use supersymmetric gauge theories again. As it was proposed

in [49–51] and further explored in [34, 35, 52, 53], the Coulomb branch of the Abelian

(i.e. N = 1) 2d ADHM gauge theory with gauge group U(1) and a flavor group

U(N) is related via Bethe/Gauge correspondence [54, 55] to the ILW hydrodynamic

system. Based on this observation, in [3] we proposed that the �ILW system maps

onto the 3d Abelian ADHM theory. In this setting eigenvalue E(�)
1

(p) is given by9

E(�)
1

= 1� (1� q)(1� t�1) hTr�i
���
�
, (2.25)

i.e by the equivariant Chern character of the universal U(1) bundle over the instanton

moduli space. The local observable hTr�i with Tr� =
P

s �s is evaluated at a solution

� of the Bethe Ansatz equations (A.4) (solutions to these equations are once again

labelled by partitions �). We refer the reader to Appendix A for details on the ADHM

theory.

9Here we are setting the parameter a1 of Appendix A to zero.
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DAHA Action
Vertex functions or quantum classes for X are elements of quantum K-theory of X. Equivalently 
we can view them as elements of equivariant K-theory of the space of quasimaps from to Xℙ1

6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Nakajima Varieties and Macdonald polynomials

Consider the space of quasimaps of complex projective space into the cotangent bundle
to complete n-flag. We construct the following space

(23) Hn = KT (P1 ! T
⇤Fn) ,

Here the maximal torus is T = T(U(n) ⇥ U(1)~ ⇥ U(1)q). This is an infinite-dimensional
vector space whose points are equivariant K-theoretic Givental J-functions (vertex func-
tions)

(24) J(z1, . . . , zn, a1, . . . , an, q, ~) ,
where z1, . . . , zn stand for first Chern classes of the base, a1, . . . , an are equivariant pa-
rameters for U(n) global symmetry, q is the shift parameter (equivalently the parameter
which act on P1 by C⇥), and finally, ~ acts with by C⇥ on the cotangent fibers. All the
arguments of the vertex function take values in C⇥.

It was shown in physics literature [BKK] that J obeys the following set of di↵erence
equations once it is corrected by the stable elliptic envelope

(25) HiZ = ei(a1, . . . , an)Z ,

where Hi are tRS (Macdonald) di↵erence operators and

(26) Z = Stab · J ,

where Stab is the stable envelope for T ⇤Fn. In other words, Z is a (formal) wavefunction
of the (complexified) integrable system.

At generic values of the equivariant parameters for U(n) global symmetry a1, . . . , an the
vertex function is a series of q-hypergeometric type with certain elliptic prefactors.

3.1. X = T
⇤P1

, (n = 2). The vertex function is given by the following series

(27) Z = Stab · 2�1

✓
~, ~a1

a2
; q

a1

a2
; q; q

z

~

◆
.

The hypergeometric function has the following expansion in Kähler parameter

(28) 2�1

✓
~, ~a1

a2
; q

a1

a2
; q; q

z

~

◆
=

1X

k=0

(~; q)k(~a1/a2; q)k
(q; q)k(qa1/a2; q)k

⇣
qz

~

⌘k
,

where (a; q)k =
Qk�1

l=0
(1� aq

l) is the k-th Pochhammer symbol, and in this case

(29) Stab =
✓1(~�1/2

z
�1/2

, q)✓1(~1/2 z�1/2
, q)

✓1(a1z�1/2, q)✓1(a2z�1/2, q)
.

From the above formulae we can derive the condition on equivariant parameters when the
q-hypergeometric series get truncated. For simplicity let us assume a2 = a

�1

1
= a

1/2. For
one such formal solution this condition reads

(30) a
2

` = q
�`~�1

, ` 2 Z+

V 2 with maximal torus
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(q; q)k(qa1/a2; q)k

⇣
qz

~

⌘k
,

where (a; q)k =
Qk�1

l=0
(1� aq

l) is the k-th Pochhammer symbol, and in this case

(29) Stab =
✓1(~�1/2

z
�1/2

, q)✓1(~1/2 z�1/2
, q)

✓1(a1z�1/2, q)✓1(a2z�1/2, q)
.

From the above formulae we can derive the condition on equivariant parameters when the
q-hypergeometric series get truncated. For simplicity let us assume a2 = a

�1

1
= a

1/2. For
one such formal solution this condition reads

(30) a
2

` = q
�`~�1

, ` 2 Z+

Specification                                           restricts us to the Fock space representation of (q,h)-Heisenberg 
algebra which is a DAHA module

In other words, we can define the following action
6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Nakajima Varieties and Macdonald polynomials

Consider the space of quasimaps of complex projective space into the cotangent bundle
to complete n-flag. We construct the following space

(23) Hn = KT (P1 ! T
⇤Fn) ,

Here the maximal torus is T = T(U(n) ⇥ U(1)~ ⇥ U(1)q). This is an infinite-dimensional
vector space whose points are equivariant K-theoretic Givental J-functions (vertex func-
tions)

(24) J(z1, . . . , zn, a1, . . . , an, q, ~) ,
where z1, . . . , zn stand for first Chern classes of the base, a1, . . . , an are equivariant pa-
rameters for U(n) global symmetry, q is the shift parameter (equivalently the parameter
which act on P1 by C⇥), and finally, ~ acts with by C⇥ on the cotangent fibers. All the
arguments of the vertex function take values in C⇥.

It was shown in physics literature [BKK] that J obeys the following set of di↵erence
equations once it is corrected by the stable elliptic envelope

(25) HiZ = ei(a1, . . . , an)Z ,

where Hi are tRS (Macdonald) di↵erence operators and

(26) Z = Stab · J ,

where Stab is the stable envelope for T ⇤Fn. In other words, Z is a (formal) wavefunction
of the (complexified) integrable system.

At generic values of the equivariant parameters for U(n) global symmetry a1, . . . , an the
vertex function is a series of q-hypergeometric type with certain elliptic prefactors.

3.1. X = T
⇤P1
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KT (QM(P1
, X)) Kq,~(Hilb(C2))

Kähler/quantum parameters of X z1, z2 . . . Ring generators x1, x2, . . .

Vertex function Vq at locus (2.25) Classes of (C⇥)2 fixed points [J]

C⇥
q acting on base curve C⇥

q acting on C ⇢ C2

C⇥
~ acting on cotangent fibers of X C⇥

~ acting on another C ⇢ C2

Eigenvalues er of tRS operators Tr Chern polynomials Er of ⇤rU

Table 1. The correspondence between K-theories of quasimaps to Xn and Hilb.

in the left column of the above table to obtain quantum version of the space on the right?
The answer will be formulated later in Sec. 5

3.5. Remarks. Notice that in the left column of Tab. 1 equivariant parameters q and ~
play completely di↵erent roles – the former scales the base curve, while the latter corre-
sponds to C⇥ action on the cotangent directions of Xn. In the right column they are on
completely equal footing and can be interchanged.

The above duality works only when equivariant parameters a1, a2, . . . , an in Xn obey
(2.25). It was discussed in the literature on integrable systems and gauge theories [NS09a]
and more recently in [Sci1606] that locus (2.25) should be interpreted as a set of quantiza-
tion conditions which allow for discrete spectrum of the tRS model. Thus, due to the above
duality, we can observe a symmetry in the tRS spectrum which interchanges (exponential
of) Planck constant q with coupling constant ~ of the tRS model.

4. Moduli Space of Sheaves of Rank N on C2

Let MN denote the moduli space of rank N of torsion free sheaves F of rank N on P2

with framing at infinity: � : F|1 ' O�N
1 . The framing condition forces the first Chern

class to vanish, however, the second Chern class can range over the non-positive integers
c2(F) = �k · [pt]. Therefore the moduli space can be represented as a direct sum of
disconnected components of all degrees

(4.1) MN =
G

k

MN,k .

More details can be found in multiple sources, i.e [FT0904,Neg1209].
There is an action of maximal torus TN := C⇥

q ⇥ C⇥
~ ⇥ T(GL(N)) on each component

MN,k. The first two C⇥ factors act on P2, while the rest acts on framing � with equivariant
parameters a1, . . . aN . We shall be studying TN -equivariant K-theory of MN,k which is
formed by virtual equivariant vector bundles on MN,k. The space Kq,~(MN,k) is a module
over C[q±1

, ~±1
, a±1

1 , . . . a±1
N ].

Eigenvalues of elliptic 
RS model at large n

Eigenvalues of quantum 
multiplication by
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of E.

Thus states in the highest weight module MnN can be matched to vectors in the tensor
Fock module and the generalized Macdonald polynomials are mapped onto ideals (4.2) in
the K-ring of MN .

4.3. Matching Spectra of Macdonald Operators. Analogously with the Hilbert scheme
on C2 we can study K-theory of MN,k, which is generated by the classes of fixed points [~�]
of maximal torus TN .

Lemma 4.2. The eigenvalues of the operator of multiplication by the universal bundle

(4.12) U = W + (1� q)(1� ~)V |J~�
over MN,k, where W is a constant bundle of degree N and tautological bundle V |J~� arise

from the universal quotient sheaf on MN,k ⇥ C2
in K-theory of MN,k is given by

E1(⇤) =
NX

c=1

aa � (1� ~)(1� q)
NX

l=1

X

(i,j)2�(l)

kcX

d=1

s
(l)
d

=
NX

c=1

aa � (1� ~)(1� q)
X

(i,j)2⇤

kX

c=1

s(l)c ,(4.13)

where
PN

l=1 |�l| =
PN

l=1 kl = k and s
(l)
1 , . . . , s

(l)
kl

are in one-to-one correspondence with the

content of tableaux �
(l)

of size kl

(4.14) s
(l)
i,j = q

i�1~j�1
,

for i, j ranging through the arm length and leg lengths of tableaux �
(l)
. Variables s(l)1 , . . . , s(l)k

are in one-to-one correspondence with the content of the asymptotic partition ⇤, where si,j
ranges over the content of ⇤. In (4.13) e1(a1, . . . , aN ) are characters of TW .

Using the above result we can compute eigenvalues Er(⇤) of the operator of multiplica-
tion by the r-th skew-power of the universal bundle ⇤r

U .

Now we can compare these eigenvalues with the tRS eigenvalues.

Proposition 4.3. The eigenvalues of the nN -particle tRS model er and the eigenvalues of

multiplication by r-th skew symmetric power of the universal bundle ⇤r
U over MN,k are

in one-to-one correspondence. In particular

(4.15) E1(⇤) = ~n
NX

l=1

al + ~n�1(1� ~)e1 .

Proof. Let us put r = 1 in (4.13). Then we get

(4.16) E1(⇤) = ~n
NX

l=1

al + ~n(1� ~)e1 =
NX

l=1

al + (1� ~)
NX

l=1

nX

a=1

al(q
�
(l)
a � 1)~a�1

.
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space which is isomorphic to Hn, but has a di↵erent scalar product due to the presence of
additional series in p.

5.2. eRS Eigenvalues. One can perform the localization computation to compute (5.4)
(see [BKK15,KS18]). The first several terms for the eigenvalues of E1 look as follows

(5.7) E1 =
nX

i=1

ai � p(1� ~)(q � ~�1)q�1~n
nX

i=1

ai

nY

j=1
j 6=i

(ai � ~�1
aj)(~ai � qaj)

(ai � aj)(ai � qaj)
+ o(p2) .

5.3. Quantum Multiplication in Kq,~(Hilb). Okounkov and Smirnov [OS1602] studied
the operator of quantum multiplication ML by line bundle L for an arbitrary Nakajima
quiver variety X. This operator enters the quantum di↵erence equation of the form

(5.8)  (qL z) = ML (z) (z) ,

which is solved by a flat q-di↵erence connection on functions of quantum parameter z
with values in KT(X). The authors study stable envelopes which can be represented as real
slopes inside the second cohomology s 2 H

2(X,R). They experience a jump when s crosses
a rational wall in H

2(X,R). One considers all alcoves with respect to a�ne hyperplane
reflections for quantum Weyl group acting on KT (X). Then one can take a path from the
base alcove to another one and each time we cross a wall labelled by rational slope w↵ and
define

(5.9) ML = O(1)M↵1 · · ·M↵L .

It can be shown that the answer is path independent. In the example of Hilbk the H2(X,R)
lattice is one-dimensional.

Operator ML corresponds to the quantum multiplication by ⇤k
V in Kq,~(Hilb

k). In
order to find multiplications by ⇤l

V , 1  l < k one needs to make certain generalizations
to [OS1602].

Using results of [PSZ1612] and [Smi1612], we can formulate the following statement.

Proposition 5.3. The eigenvalues of quantum multiplication operators by bundles ⇤l
V , 1 

l  k in quantum K-theory of MN,k are given by symmetric polynomials el(s1, . . . sk) of

Bethe roots which satisfy the following Bethe equations

(5.10)
NY

l=1

sa � al
sa � q�1~�1al

·
kY

b=1
b 6=a

sa � qsb

sa � q�1sb

sa � ~sb
sa � ~�1sb

sa � q
�1~�1

sb

sa � q~sb
= z , a = 1, . . . , k ,

where al are parameters from (4.4).

The above equations can be obtained from studying saddle point behavior of the vertex
function of Kq,~(MN,k).

In particular, the eigenvalue of the multiplication by M in [OS1602] is given by s1 · · · sk,
where the Bethe roots solve the above equations and are thus functions of all equivariant
parameters and quantum parameter p.
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integrals of motion of the trigonometric Ruijsenaars-Schneider (tRS) model was formu-
lated. This lead us to a clear understanding of quantum K-theory of the quiver varieties
in question in terms of the tRS system [KPSZ1705].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.

v1 v2 . . . vn�1

wn�1
W

V

Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal
torus of GL(n,C)⇥C⇥

q ⇥C⇥
~ , where GL(wi,C)⇥C⇥

~ acts as automorphisms of Xn

and C⇥
~ scales the cotangent directions with weight ~, while C⇥

q acts multiplicatively
on the base curve.

• C⇥
q ⇥ C⇥

~ -equivariant K-theory of the ADHM moduli space

kM

l=0

Kq,~(MADHM) .
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quantum deformation:
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Once the elliptic Calogero-Moser system is downgraded to the trigonometric one the
results of loc. cit. apply after reducing a�ne Laumon space La↵

d to the its finite version
Ld. Here vector d = (d1, . . . ds) shows degrees of parabolic sheaves which are used in the
construction of the Laumon space. For the purposes of our presentation the number of
components in d will always be equal to the rank of gauge group of the supersymmetric
theory which is used in the construction. In physics language the spectrum of the elliptic
Calogero-Moser model is described by instanton counting in N = 2⇤ gauge theory in the
presence of a monodromy defect of maximal Levi type [AT10,Naw14].

The sought generalization of the above results to quantum K-theory should be formu-
lated in terms of the relativistic generalization of the Calogero-Moser system – the elliptic
Ruijsenaars-Schneider (eRS) model. Physically we will be studying five-dimensional N = 1⇤

gauge theory with defect of maximal Levi type [BKK15,KS18].

5.1. Elliptic Ruijsenaars-Schneider Model. The Hamiltonians of the elliptic RS model
can be easily obtained from trigonometric RS Hamiltonians (2.12) by replacing rational
functions with elliptic theta-functions of the first kind

(5.1) Er(~⇣) =
X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

✓1(~⇣i/⇣j |p)
✓1(~⇣i/⇣j |p)

Y

i2I
pk ,

where p 2 C⇥ is the new parameter which characterizes the elliptic deformation away from
the trigonometric locus, where p = 1 and we get (2.12) back.

As in the trigonometric case we shall be interested in the eigenvalues and eigenfunctions
of these operators

(5.2) Er(~⇣)Z = ErZ , r = 1, . . . , n .

As a direct generalization of the results of [Neg1112] to K-theory lead to the following

Conjecture 5.1. The solution of (5.2) is given by the K-theoretic holomorphic equivariant

Euler characteristic of the a�ne Laumon space

(5.3) Z =
X

d

~qd
Z

Ld

1 ,

where ~q = (q1, . . . , qn) is a string of C⇥
-valued coordinates on the maximal torus of La↵

d .

The eigenvalues Er are equivariant Chern characters of bundles ⇤r
W , where W is the

constant bundle of the corresponding ADHM space. In other words they have the following

form

(5.4) Er = er +
1X

l=1

plE(l)
r ,

where er are symmetric functions of the equivariant parameters a1, . . . , aN .

Chern roots obey

[PK]



M-theory Description
Hilb

k
[C2

] = Minst
1,k

Starting with M-theory on
n M5 branes wrapping S1 ⇥ Cq ⇥ S3 ⇢

Upon compactification on three sphere 
will get 3d quiver gauge theory on T*Fln

When n becomes large the background undergoes through the conifold transition and the 
resolved conifold becomes a deformed conifold Y:

S1 ⇥ Cq ⇥ Ct ⇥ Y

Reduction on Y leads us to a 5d U(1) theory with 8 supercharges

Recall that How did U(1) 5d SYM appear?

S1 ⇥ Cq ⇥ C~ ⇥ T ⇤S3
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.



Spectrum 
eRS Hamiltonian eigenvalues coincide with eigenvalues of the quantum multiplication operator in 
quantum K-theory ring of the instanton moduli space (Hilbert Scheme of points).

This connection can be translated in gauge theoretical terms. While the �ILW sys-
tem corresponds to the ADHM quiver on C ⇥ S1

� , the n-particle eRS system, as we have
mentioned earlier, has a gauge theory realization as a 5d N = 1⇤ U(n) theory in Omega
background (1.2) coupled to a 3d T [U(n)] defect on C✏1 ⇥ S1

� [6]. One may think of U(n)

global symmetry of the 3d theory as being gauged. The eigenfunctions and eigenvalues of
the eRS model correspond to the coupled 5d/3d instanton partition function Z inst

5d/3d and
to the vacuum expectation values of the Wilson loop in the fundamental representation of
U(n) hWU(n)

⇤ i respectively, in the so-called Nekrasov-Shatashvili limit [39] when ✏2 ! 0.
In this work we will show that in the n ! 1 limit the Wilson loop VEV hWU(n)

⇤ i coming
from this coupled 5d/3d theory reduces to the hTr�i observable of the twisted chiral ring
of the 3d ADHM quiver, thus providing a remarkable connection between these two very
different supersymmetric gauge theories.

Line operators Tk act on instanton/vortex partition functions Z of the 5d/3d theory
by quantum shifts of the 3d Fayet-Iliopoulos parameters3

TkZ =
D
WU(n)

k

E
Z , (1.3)

where k = 1, . . . , n is the rank of the antisymmetrization of the fundamental representation
of U(n). Thanks to integrability it will be sufficient to look at the fundamental representa-
tion. The partition functions are vectors in some (rather large) Hilbert space of states. In
order to take the large-n limit of (1.3), we need to understand separately large-n behavior
of Wilson operator VEVs hWU(n)

⇤ i and the states.
Let us start with the space of states. In the beginning we count (ramified) instantons

of the 5d U(n) theory. As we will shortly see, the presence of the U(1) factor in the gauge
group will play a crucial role in taking the limit. It will be demonstrated by an explicit
calculation in Sec. 4, as well as using string theory dualities in Sec. 5.4, that at large n

the 5d U(n) theory effectively transforms into a U(1) theory, therefore we expect that the
instanton calculus should be reinterpreted accordingly in terms of Abelian noncommutative
instantons. One of the noncommutativity parameters will be related to the adjoint mass
of the N = 1⇤ theory, while the other parameter will be the remaining Omega background
velocity ✏1. In five dimensions any instanton solution can wrap S1

� arbitrary many times, so
one needs to include the entire Kaluza-Klein tower of those solutions. Given a topological
sector k the moduli space of instantons is the Hilbert scheme of k points on C2 [40–42]. The
complete moduli space is therefore the union of those Hilbert schemes over all topological
sectors.

The localization formula for a fundamental Wilson loop in the five-dimensional theory
in (1.2) wrapping S1

� contains an equivariant character �~�
of the universal bundle over the

instanton moduli space, which accounts for the propagation of a heavy particle along the
circle. We expect the expression for character �~�

to remain finite after the transition and
to depend on the Abelian instanton data. We will be able to prove that as n ! 1 the
Wilson loop VEV, up to a certain normalization, becomes

D
WU(n)

⇤

E ���
�

⇠ E(�)
1 = 1� (1� q)(1� t�1)

X

s

�s
���
�

(1.4)

3
The details will follow in the next section.

– 4 –

sigmas are determined by Bethe Ansatz equations for ADHM quiver

Elliptic deformation — Quantization
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where p̃ is the Kähler parameter of the ADHM quiver and is related to the 5d instanton
counting parameter p as follows [KS1]

(5.18) p̃(−q1/2!1/2)N = pqN!
N .

The equations (5.17) describe the Coulomb branch of the 3d N = 2∗ U(k) theory with
N hypermultiplets (see the right picture in Fig. 1). In more details the matter content of
the ADHM quiver gauge theory is summarized in the table below

Fields χ B1 B2 I J

gauge group U(k) Adj Adj Adj k k̄

flavor U(N)× U(1)2 1(−1,−1) 1(1,0) 1(0,1) N̄(0,0) N(1,1)

flavor parameters (q!)−1 q ! aj a−1
j q!

R-charge 2 0 0 0 0

Table 1. Matter content of the ADHM 3d quiver theory.

Additionally there is a superpotential which is given by W = Trk {χ ([B1, B2] + IJ)}.
Notice that the product of the flavor fugacities of fields χ, B1 and B2 is equal to one
(equivalently, the sum of their twisted masses vanishes). This property arises from the
Calabi-Yau compactification of the underlying string geometry [BSTV1].

5.3. The Gauge/Hydrodynamics Correspondence. It was show in [KS1, KS2] that
large-n limit of the VEV of the Wilson loops in 5d N = 1∗ theory are proportional to
characters of the universal bundle on the tangent bundle to the moduli space of U(1)
instantons evaluated on the locus (5.20), in particular, in case of the fundamental Wilson
loop we get

(5.19) lim
n→∞

[
!
n−1(1− !)

〈
WU(n)

〉] ∣∣∣
λ
= a− (1− q)(1− !)e1(s1, . . . , sk)|λ .

In other words, the ILW energies (5.16) evaluated at the solutions of Bethe equations (5.17)
are equal to the eRS energies (3.14) on the locus

(5.20) ai = aqλi!
i−n , i = 1, . . . , n ,

where |λ| = k in the limit when n → ∞. The summary of the correspondence is given in
Tab. 2.

1 2 . . . n− 1

n
W

V

Figure 1. Left: Quiver diagram for the cotangent bundle to the complete flag
variety Xn = T ∗Fln. Right: The ADHM quiver. Undirected links between nodes
depict 3d N = 4 hypermultiplets.

A-TYPE QUIVER VARIETIES AND ADHM MODULI SPACES 3

integrals of motion of the trigonometric Ruijsenaars-Schneider (tRS) model was formu-
lated. This lead us to a clear understanding of quantum K-theory of the quiver varieties
in question in terms of the tRS system [KPSZ1705].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.

v1 v2 . . . vn�1

wn�1
W

V

Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal
torus of GL(n,C)⇥C⇥

q ⇥C⇥
~ , where GL(wi,C)⇥C⇥

~ acts as automorphisms of Xn

and C⇥
~ scales the cotangent directions with weight ~, while C⇥

q acts multiplicatively
on the base curve.

• C⇥
q ⇥ C⇥

~ -equivariant K-theory of the ADHM moduli space

kM

l=0

Kq,~(MADHM) .



Inozemtsev Limit — Trigonometric Case
Consider tRS difference operators

ON DIMENSIONAL TRANSMUTATION IN 1+1D QUANTUM HYDRODYNAMICS 9

providing a direct mapping between the parameters of both systems. Geometrically the
∆ILWN Hamiltonians describe quantum multiplication in equivariant K-theory of Mk,N .

3. The Elliptic Ruijsenaars-Schneider Model

In this section we review the formal solution of the elliptic RS model using quantum
Seiberg-Witten geometry of the N = 1∗ 5d U(n) theory with monodromy defect developed
in [BKK]. Then we shall discuss in details the scaling (Inozemtsev) limit from eRS to closed
qToda. We begin with the trigonometric RS model which describes physics on the 3d defect
theory as well as its geometric meaning [K].

3.1. Macdonald Difference Operators. The difference operators of trigonometric Ruijsenaars-
Schneider model with n particles ζ1, . . . , ζn are given by

(3.1) Tr("ζ) =
∑

I⊂{1,...,n}
|I|=r

∏

i∈I
j /∈I

!−1/2 ζi − !1/2ζj
ζi − ζj

∏

i∈I

pk ,

where "ζ = {ζ1, . . . , ζn}, the shift operator pkf(ζk) = f(qζk).
It was proven in [K] that the vertex functions of the equivariant K-theory of the cotangent

bundle to the complete flag variety, after proper normalization, is the eigenfunction of the
tRS difference operators

(3.2) Vp =
n∏

i=1

θ(!n−iζi, q)

θ(aiζi, q)
· V (1)

p ,

where

θ(x, q) = (x, q)∞(qx−1, q)∞ =
∞∏

l=0

(1− qlx)
∞∏

l=0

(
1− ql+1

x

)

is basic theta-function, while the vertex functions, which are labelled by the fixed points p
of the action of the maximal torus of GL(n;C)

(3.3) V (1)
p (z) =

∑

di,j∈C

n−1∏

i=1

(
t
ζi
ζi+1

)di i∏

j,k=1

(
q xi,j

xi,k
, q
)

di,j−di,k(
!
xi,j

xi,k
, q
)

di,j−di,k

·
i∏

j=1

i+1∏

k=1

(
!
xi+1,k

xi,j
, q
)

di,j−di+1,k(
q
xi+1,k

xi,j
, q
)

di,j−di+1,k

,

where xn,k = ak and t = q
!
, i = di,1 + · · · + di,i and chamber C is determined via stability

conditions of the quasimap. In other words, for each i = 1, . . . , n − 2 there should exist a
subset in {di+1,1, . . . di+1,i+1} of cardinality isuch that di,k ≥ di+1,jk . In the above formulae

(x, q)d =
(x, q)∞

(qdx, q)∞ , (x, q)∞ =
∞∏

l=0

(1− qlx) .

Vertex functions V (τ) can be regarded as classes in equivariant K-theory of the moduli
space of quasimaps

(3.4) Hn := KT(QM(P1,Xn))

for extended maximal torus T.
Then Vp are eigenfunctions for tRS difference operators (3.1) for all fixed points p

(3.5) Tr("ζ)Vp = er(a)Vp , r = 1, . . . , n ,
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providing a direct mapping between the parameters of both systems. Geometrically the
∆ILWN Hamiltonians describe quantum multiplication in equivariant K-theory of Mk,N .

3. The Elliptic Ruijsenaars-Schneider Model

In this section we review the formal solution of the elliptic RS model using quantum
Seiberg-Witten geometry of the N = 1∗ 5d U(n) theory with monodromy defect developed
in [BKK]. Then we shall discuss in details the scaling (Inozemtsev) limit from eRS to closed
qToda. We begin with the trigonometric RS model which describes physics on the 3d defect
theory as well as its geometric meaning [K].

3.1. Macdonald Difference Operators. The difference operators of trigonometric Ruijsenaars-
Schneider model with n particles ζ1, . . . , ζn are given by

(3.1) Tr("ζ) =
∑

I⊂{1,...,n}
|I|=r

∏

i∈I
j /∈I

!−1/2 ζi − !1/2ζj
ζi − ζj

∏

i∈I

pk ,

where "ζ = {ζ1, . . . , ζn}, the shift operator pkf(ζk) = f(qζk).
It was proven in [K] that the vertex functions of the equivariant K-theory of the cotangent

bundle to the complete flag variety, after proper normalization, is the eigenfunction of the
tRS difference operators

(3.2) Vp =
n∏

i=1

θ(!n−iζi, q)

θ(aiζi, q)
· V (1)

p ,

where

θ(x, q) = (x, q)∞(qx−1, q)∞ =
∞∏

l=0

(1− qlx)
∞∏

l=0

(
1− ql+1

x

)

is basic theta-function, while the vertex functions, which are labelled by the fixed points p
of the action of the maximal torus of GL(n;C)

(3.3) V (1)
p (z) =

∑

di,j∈C

n−1∏

i=1

(
t
ζi
ζi+1

)di i∏

j,k=1

(
q xi,j

xi,k
, q
)

di,j−di,k(
!
xi,j

xi,k
, q
)

di,j−di,k

·
i∏

j=1

i+1∏

k=1

(
!
xi+1,k

xi,j
, q
)

di,j−di+1,k(
q
xi+1,k

xi,j
, q
)

di,j−di+1,k

,

where xn,k = ak and t = q
!
, i = di,1 + · · · + di,i and chamber C is determined via stability

conditions of the quasimap. In other words, for each i = 1, . . . , n − 2 there should exist a
subset in {di+1,1, . . . di+1,i+1} of cardinality isuch that di,k ≥ di+1,jk . In the above formulae

(x, q)d =
(x, q)∞

(qdx, q)∞ , (x, q)∞ =
∞∏

l=0

(1− qlx) .

Vertex functions V (τ) can be regarded as classes in equivariant K-theory of the moduli
space of quasimaps

(3.4) Hn := KT(QM(P1,Xn))

for extended maximal torus T.
Then Vp are eigenfunctions for tRS difference operators (3.1) for all fixed points p

(3.5) Tr("ζ)Vp = er(a)Vp , r = 1, . . . , n ,
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In the limit when the parabolic structure is removed (3.10) is expected to reproduced
the well known Euler characteristic of MN (Nekrasov instanton partition function) Thus
we can impose the following

(3.13) p = q1 · · · · · qn ,

where p counts the degrees of sheaves in the standard ADHM localization computation.
The first several terms for the eigenvalues of E1 look as follows

(3.14) E1 =
n∑

i=1

ai−p!nq−1(1−!
−1)(q−!

−1)
n∑

i=1

ai

n∏

j=1
j "=i

(ai − !−1aj)(!−1ai − qaj)

(ai − aj)(ai − qaj)
+o(p2) .

4. Inozemtsev Limit in Ruijsenaars-Schneider Models

Let us now discuss the scaling limit of the tRS and eRS models and their spectra.

4.1. Quantum q-Toda System. In [BKK] (Section 5.2) it was shown that the eigenfunc-
tion of n-body q-Toda Hamiltonians is given by a partition function ZYM of pure N = 1
supersymmetric U(n) Yang-Mills gauge theory on Cq ×C× S1 in the presence of the mon-
odromy defect of maximal type wrapping Cq × S1.

This was established by studying limit ! → ∞ in (3.5) after certain rescaling also known
as Inozemtsev limit [I]. First we rescale tRS coordinates, momenta (3.1) and equivariant
parameters ai as follows

(4.1) zi = !
−iζi , pi = !

−i+1/2pi , ai = !
−n

2 αi = ai .

After taking ! → ∞ limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(4.2) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(4.3) Hq-Toda
r =

∑

I={i1<···<ir}
I⊂{1,...,n}

r∏

!=1

(
1− zi!−1

zi!

)1−δi!−i!−1,1 ∏

k∈I

pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(4.4) Hopen
1 = p1 +

n∑

i=2

pi

(
1− zi−1

zi

)
.

4.2. Inozemtsev Limit to Closed qToda. For the elliptic RS model the Inozemtsev
limit works as follows. The theta function has the following expansion near p = 0

(4.5) θ1(e
iz|p) = 2p

1
4

+∞∑

k=0

(−1)kpk(k+1) sin((k + 1/2)z) ,

Double Scaling
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In the limit when the parabolic structure is removed (3.10) is expected to reproduced
the well known Euler characteristic of MN (Nekrasov instanton partition function) Thus
we can impose the following

(3.13) p = q1 · · · · · qn ,

where p counts the degrees of sheaves in the standard ADHM localization computation.
The first several terms for the eigenvalues of E1 look as follows

(3.14) E1 =
n∑

i=1

ai−p!nq−1(1−!
−1)(q−!

−1)
n∑

i=1

ai

n∏

j=1
j "=i

(ai − !−1aj)(!−1ai − qaj)

(ai − aj)(ai − qaj)
+o(p2) .

4. Inozemtsev Limit in Ruijsenaars-Schneider Models

Let us now discuss the scaling limit of the tRS and eRS models and their spectra.

4.1. Quantum q-Toda System. In [BKK] (Section 5.2) it was shown that the eigenfunc-
tion of n-body q-Toda Hamiltonians is given by a partition function ZYM of pure N = 1
supersymmetric U(n) Yang-Mills gauge theory on Cq ×C× S1 in the presence of the mon-
odromy defect of maximal type wrapping Cq × S1.

This was established by studying limit ! → ∞ in (3.5) after certain rescaling also known
as Inozemtsev limit [I]. First we rescale tRS coordinates, momenta (3.1) and equivariant
parameters ai as follows

(4.1) zi = !
−iζi , pi = !

−i+1/2pi , ai = !
−n

2 αi = ai .

After taking ! → ∞ limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(4.2) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(4.3) Hq-Toda
r =

∑

I={i1<···<ir}
I⊂{1,...,n}

r∏

!=1

(
1− zi!−1

zi!

)1−δi!−i!−1,1 ∏

k∈I

pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(4.4) Hopen
1 = p1 +

n∑

i=2

pi

(
1− zi−1

zi

)
.

4.2. Inozemtsev Limit to Closed qToda. For the elliptic RS model the Inozemtsev
limit works as follows. The theta function has the following expansion near p = 0

(4.5) θ1(e
iz|p) = 2p

1
4

+∞∑

k=0

(−1)kpk(k+1) sin((k + 1/2)z) ,

Obtain q-Toda Hamiltonians

ON DIMENSIONAL TRANSMUTATION IN 1+1D QUANTUM HYDRODYNAMICS 11

In the limit when the parabolic structure is removed (3.10) is expected to reproduced
the well known Euler characteristic of MN (Nekrasov instanton partition function) Thus
we can impose the following

(3.13) p = q1 · · · · · qn ,

where p counts the degrees of sheaves in the standard ADHM localization computation.
The first several terms for the eigenvalues of E1 look as follows

(3.14) E1 =
n∑

i=1

ai−p!nq−1(1−!
−1)(q−!

−1)
n∑

i=1

ai

n∏

j=1
j "=i

(ai − !−1aj)(!−1ai − qaj)

(ai − aj)(ai − qaj)
+o(p2) .

4. Inozemtsev Limit in Ruijsenaars-Schneider Models

Let us now discuss the scaling limit of the tRS and eRS models and their spectra.

4.1. Quantum q-Toda System. In [BKK] (Section 5.2) it was shown that the eigenfunc-
tion of n-body q-Toda Hamiltonians is given by a partition function ZYM of pure N = 1
supersymmetric U(n) Yang-Mills gauge theory on Cq ×C× S1 in the presence of the mon-
odromy defect of maximal type wrapping Cq × S1.

This was established by studying limit ! → ∞ in (3.5) after certain rescaling also known
as Inozemtsev limit [I]. First we rescale tRS coordinates, momenta (3.1) and equivariant
parameters ai as follows

(4.1) zi = !
−iζi , pi = !

−i+1/2pi , ai = !
−n

2 αi = ai .

After taking ! → ∞ limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(4.2) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(4.3) Hq-Toda
r =

∑

I={i1<···<ir}
I⊂{1,...,n}

r∏

!=1

(
1− zi!−1

zi!

)1−δi!−i!−1,1 ∏

k∈I

pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(4.4) Hopen
1 = p1 +

n∑

i=2

pi

(
1− zi−1

zi

)
.

4.2. Inozemtsev Limit to Closed qToda. For the elliptic RS model the Inozemtsev
limit works as follows. The theta function has the following expansion near p = 0

(4.5) θ1(e
iz|p) = 2p

1
4

+∞∑

k=0

(−1)kpk(k+1) sin((k + 1/2)z) ,
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In the limit when the parabolic structure is removed (3.10) is expected to reproduced
the well known Euler characteristic of MN (Nekrasov instanton partition function) Thus
we can impose the following

(3.13) p = q1 · · · · · qn ,

where p counts the degrees of sheaves in the standard ADHM localization computation.
The first several terms for the eigenvalues of E1 look as follows

(3.14) E1 =
n∑

i=1

ai−p!nq−1(1−!
−1)(q−!

−1)
n∑

i=1

ai

n∏

j=1
j "=i

(ai − !−1aj)(!−1ai − qaj)

(ai − aj)(ai − qaj)
+o(p2) .

4. Inozemtsev Limit in Ruijsenaars-Schneider Models

Let us now discuss the scaling limit of the tRS and eRS models and their spectra.

4.1. Quantum q-Toda System. In [BKK] (Section 5.2) it was shown that the eigenfunc-
tion of n-body q-Toda Hamiltonians is given by a partition function ZYM of pure N = 1
supersymmetric U(n) Yang-Mills gauge theory on Cq ×C× S1 in the presence of the mon-
odromy defect of maximal type wrapping Cq × S1.

This was established by studying limit ! → ∞ in (3.5) after certain rescaling also known
as Inozemtsev limit [I]. First we rescale tRS coordinates, momenta (3.1) and equivariant
parameters ai as follows

(4.1) zi = !
−iζi , pi = !

−i+1/2pi , ai = !
−n

2 αi = ai .

After taking ! → ∞ limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(4.2) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(4.3) Hq-Toda
r =

∑

I={i1<···<ir}
I⊂{1,...,n}

r∏

!=1

(
1− zi!−1

zi!

)1−δi!−i!−1,1 ∏

k∈I

pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(4.4) Hopen
1 = p1 +

n∑

i=2

pi

(
1− zi−1

zi

)
.

4.2. Inozemtsev Limit to Closed qToda. For the elliptic RS model the Inozemtsev
limit works as follows. The theta function has the following expansion near p = 0

(4.5) θ1(e
iz|p) = 2p

1
4

+∞∑

k=0

(−1)kpk(k+1) sin((k + 1/2)z) ,

The first Hamiltonian
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In the limit when the parabolic structure is removed (3.10) is expected to reproduced
the well known Euler characteristic of MN (Nekrasov instanton partition function) Thus
we can impose the following

(3.13) p = q1 · · · · · qn ,

where p counts the degrees of sheaves in the standard ADHM localization computation.
The first several terms for the eigenvalues of E1 look as follows

(3.14) E1 =
n∑

i=1

ai−p!nq−1(1−!
−1)(q−!

−1)
n∑

i=1

ai

n∏

j=1
j "=i

(ai − !−1aj)(!−1ai − qaj)

(ai − aj)(ai − qaj)
+o(p2) .

4. Inozemtsev Limit in Ruijsenaars-Schneider Models

Let us now discuss the scaling limit of the tRS and eRS models and their spectra.

4.1. Quantum q-Toda System. In [BKK] (Section 5.2) it was shown that the eigenfunc-
tion of n-body q-Toda Hamiltonians is given by a partition function ZYM of pure N = 1
supersymmetric U(n) Yang-Mills gauge theory on Cq ×C× S1 in the presence of the mon-
odromy defect of maximal type wrapping Cq × S1.

This was established by studying limit ! → ∞ in (3.5) after certain rescaling also known
as Inozemtsev limit [I]. First we rescale tRS coordinates, momenta (3.1) and equivariant
parameters ai as follows

(4.1) zi = !
−iζi , pi = !

−i+1/2pi , ai = !
−n

2 αi = ai .

After taking ! → ∞ limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(4.2) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(4.3) Hq-Toda
r =

∑

I={i1<···<ir}
I⊂{1,...,n}

r∏

!=1

(
1− zi!−1

zi!

)1−δi!−i!−1,1 ∏

k∈I

pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(4.4) Hopen
1 = p1 +

n∑

i=2

pi

(
1− zi−1

zi

)
.

4.2. Inozemtsev Limit to Closed qToda. For the elliptic RS model the Inozemtsev
limit works as follows. The theta function has the following expansion near p = 0

(4.5) θ1(e
iz|p) = 2p

1
4

+∞∑

k=0

(−1)kpk(k+1) sin((k + 1/2)z) ,



Inozemtsev Limit — Elliptic Case
Theta function
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In the limit when the parabolic structure is removed (3.10) is expected to reproduced
the well known Euler characteristic of MN (Nekrasov instanton partition function) Thus
we can impose the following

(3.13) p = q1 · · · · · qn ,

where p counts the degrees of sheaves in the standard ADHM localization computation.
The first several terms for the eigenvalues of E1 look as follows

(3.14) E1 =
n∑

i=1

ai−p!nq−1(1−!
−1)(q−!

−1)
n∑

i=1

ai

n∏

j=1
j "=i

(ai − !−1aj)(!−1ai − qaj)

(ai − aj)(ai − qaj)
+o(p2) .

4. Inozemtsev Limit in Ruijsenaars-Schneider Models

Let us now discuss the scaling limit of the tRS and eRS models and their spectra.

4.1. Quantum q-Toda System. In [BKK] (Section 5.2) it was shown that the eigenfunc-
tion of n-body q-Toda Hamiltonians is given by a partition function ZYM of pure N = 1
supersymmetric U(n) Yang-Mills gauge theory on Cq ×C× S1 in the presence of the mon-
odromy defect of maximal type wrapping Cq × S1.

This was established by studying limit ! → ∞ in (3.5) after certain rescaling also known
as Inozemtsev limit [I]. First we rescale tRS coordinates, momenta (3.1) and equivariant
parameters ai as follows
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symmetric polynomials of ai
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where the Hamiltonians are

(4.3) Hq-Toda
r =

∑

I={i1<···<ir}
I⊂{1,...,n}

r∏

!=1

(
1− zi!−1

zi!

)1−δi!−i!−1,1 ∏

k∈I

pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(4.4) Hopen
1 = p1 +

n∑

i=2

pi

(
1− zi−1

zi

)
.

4.2. Inozemtsev Limit to Closed qToda. For the elliptic RS model the Inozemtsev
limit works as follows. The theta function has the following expansion near p = 0

(4.5) θ1(e
iz|p) = 2p

1
4

+∞∑

k=0
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The eRS Hamiltonians (3.8) contain the following ratio of theta-functions which have the
following expansion around p = 0

(4.6)
θ1
(

ζ1
!ζ2

|p
)

θ1
(
ζ1
ζ2
|p
) =

√

ζ1
ζ2√
!

−
√
!

√

ζ1
ζ2

+ p2

(
(

ζ1
ζ2

)

3/2

!3/2
− !3/2

(

ζ1
ζ2

)

3/2

)

√
ζ1
ζ2

− 1
√

ζ1
ζ2

+ p2

(
1

(

ζ1
ζ2

)

3/2
−
(
ζ1
ζ2

)
3/2

) +O(p5)

After taking the limit ! → ∞ the above formula after applying scaling (4.1) the two-body
eRS Hamiltonian reads

(4.7)
θ1
(

ζ1
!ζ2

|p
)

θ1
(
ζ1
ζ2
|p
) p1 +

θ1
(

ζ2
!ζ1

|p
)

θ1
(
ζ1
ζ2
|p
) p2 → p1

(
1− q

z2

z1

)
+ p2

(
1− z1

z2

)
,

where we assumed q = −p2!2 is finite. The new term proportional to q arises which ensures
periodicity. For an n-body eRS model we get the following formula for the first affine q-Toda
Hamiltonian

(4.8) Haff q-Toda
1 = p1

(
1− q

zn

z1

)
+

n∑

i=2

pi

(
1− zi−1

zi

)
,

4.3. Spectrum of Closed qToda. One gets the following equations for the spectrum of
quantum closed q-Toda

(4.9) Haff q-Toda
r ("ζ)ZYM = EToda

r ZYM , r = 1, . . . , n ,

and EToda
r is given by the ! → ∞, p → 0 limit of the eRS energies Er

(4.10) EToda
1 =

n∑

i=1

ai + q

n∑

i=1

ai

n∏

j=1
j #=i

1(
1− aj

ai

)(
1− ai

qaj

) +O(q2) ,

where q = p!n.

5. Quantum ∆ILW Spectrum

Let us first describe the Hilbert space of the quantum ILW. The cohomological version
was studied in [OP], here work in equivariant K-theory.

We can map Macdonald polynomials to states in the Fock space representation of the
q, !-Heisenberg algebra (2.11) by claiming that

(5.1) xk = a−k|0〉 ,

where xk =
∑n

l=1 ζ
k
l . In this symmetric basis polynomials Pλ only depend on the number

of boxes of tableau λ – k do not explicitly depend on n. Such Macdonald polynomials form
a basis in the equivariant K-theory of Hilbert schemes of k points on C2. See [ST2,S1, S2]
for more details.

The identification (5.1) allows us to make the following matching

Ratio of thetas

Two-body Hamiltonian becomes in the limit ℏ → ∞
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We send  such that 𝔭 → 0 Is finite 

Two-body Hamiltonian
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Vortex Moduli Space

After taking the  limit one getsn → ∞
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Elliptic RS model 5d/3d N = 2∗ theory 3d ADHM theory

Coordinates zi Kähler parameters K-ring generators xi
Eigenstates λ Defect partition functions ADHM Coulomb branch vacua

Planck constant log q equivariant parameter q C×
q acting on C ⊂ C2

Coupling constant ! C
×
!
acting on cotangent fibers of X C

×
!
acting on another C ⊂ C2

Elliptic parameter p 5d gauge coupling e
− 8π2

g2
YM FI coupling −p/

√
q!

Eigenvalues Er VEVs of Wilson loop 〈WΛr 〉 Chern polynomials Er of ΛrU

Table 2. The correspondence table between the elliptic RS model, its 5d/3d gauge
theory description and large-n ADHM quiver description.

For the correspondence which involves ∆ILWN model we start with U(nN) N = 2∗

gauge theory, proceed similar to the above and replace the locus (5.20) with

(5.21) aα = ãα q
Λα !

α−nN , α = 1, . . . , nN ,

where

(5.22) {ãα} = {a1, . . . a1, a2, . . . , a2, . . . , aN , . . . , aN}

and Young tableau Λ is blended from N diagrams Λ = λ1! . . .!λN . We refer the interested
reader to Sec. 4.1 of [K] for details.

6. From Instantons to Vortices

Now we shall describe how the Inozemtsev limit is implemented on the resolved side of
the duality. In summary, under the ! → ∞ limit the instanton moduli space Minst

1,k will get

retracted to the vortex moduli space Mvort
1,k .

6.1. Scaling Limit. We can take ! → ∞ limit of the above formulae in the ADHM con-
struction. We get the following for r = 1

(6.1) EΛ
1 (λ) = a− (1− q)e1(s1, . . . , sk) ,

where Bethe roots now solve the equations arising from the vortex moduli space (N chirals
and one chiral loop)

(6.2)
N∏

l=1

(sa − al) ·
k∏

b=1
b$=a

qsa − sb
sa − qsb

= p̃Λ , a = 1, . . . , k ,

where

(6.3) p̃
Λ = p̃ q1/2!1/2

N∏

l=1

(−q!al)

is the dynamically generated scale and the quantum parameter. The above equations (6.2)
describe the Coulomb branch of the 3d N = 2 U(k) theory with N chiral multiplets (see
right figure in Fig. 2).
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6.2. The Gauge/Hydrodynamics Correspondence in the ! → ∞ limit. Having
taken the ! → ∞ limit on both sides of the correspondence (4.10) and (6.1) we arrive to
our main conclusion

(6.4) lim
n→∞

!
nEToda

1

∣∣∣
λ
= EΛ

1 (λ)|λ ,

where the equivariant parameters on the left hand side for the q-Toda eigenvalues (4.10) on
the locus

(6.5) ai = aqλi , i = 1, . . . , n ,

while the ∆ILW energies (6.1) are evaluated on the solutions of scaled Bethe equations
(6.2). The instanton counting parameters from (4.10) and (6.3) are then identified as

(6.6) q = p̃
Λ .

In particular, when N = 1 we can put a1 = 1 and have p̃Λ = p
√
q! as ! → ∞ and p → 0 so

that the latter combination is finite.
One can see that !n−i in (5.20) will cancel off after plugging into (4.10). As expected,

fixed points in the vortex moduli space are parameterized by integers λi – vortex numbers.
As it was pointed out by Hanany and Tong in [HT], the vortex moduli spaceMvort

1,k (the so-

called ‘12 -ADHM’ moduli space) forms a Lagrangian submanifold inside the instanton moduli
space Minst

1,k . This submanifold is the fixed point locus of a U(1) action on Minst
1,k which

rotates the instantons in a plane. Using the language of Nekrasov’s Omega background, we
can identify this action with C

×
!
.

affine q-Toda model 5d/3d N = 2 SYM theory 3d 1
2 -ADHM theory

Coordinates zi Kähler parameters K-ring generators xi
Eigenfunctions Defect partition functions 1

2 -ADHM Coulomb branch vacua

Planck constant log q equivariant parameter q C×
q acting on C

Affine parameter q 5d dynamical scale pΛ FI coupling p̃Λ

Eigenvalues EToda
r VEVs of Wilson loop 〈WΛr 〉 Chern polynomials EΛ

r of ΛrU

Table 3. The correspondence table between the closed q-Toda model, its 5d/3d
gauge theory description and large-n 1

2
-ADHM quiver description.

1 2 . . . n− 1

n
W

V

Figure 2. Left: Quiver diagram for the complete flag variety Fln. Right: The
1

2
-ADHM quiver. Chiral multiplets are depicted with arrows.

Thus the new duality can be stated as follows. The VEV of a Wilson line in pure N = 2
SYM theory with gauge group U(n) with quantized Coulomb branch parameters (6.5) in the
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gauge theory description and large-n 1

2
-ADHM quiver description.

1 2 . . . n− 1

n
W

V

Figure 2. Left: Quiver diagram for the complete flag variety Fln. Right: The
1

2
-ADHM quiver. Chiral multiplets are depicted with arrows.

Thus the new duality can be stated as follows. The VEV of a Wilson line in pure N = 2
SYM theory with gauge group U(n) with quantized Coulomb branch parameters (6.5) in the
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Elliptic RS model 5d/3d N = 2∗ theory 3d ADHM theory

Coordinates zi Kähler parameters K-ring generators xi
Eigenstates λ Defect partition functions ADHM Coulomb branch vacua

Planck constant log q equivariant parameter q C×
q acting on C ⊂ C2

Coupling constant ! C
×
!
acting on cotangent fibers of X C

×
!
acting on another C ⊂ C2

Elliptic parameter p 5d gauge coupling e
− 8π2

g2
YM FI coupling −p/

√
q!

Eigenvalues Er VEVs of Wilson loop 〈WΛr 〉 Chern polynomials Er of ΛrU

Table 2. The correspondence table between the elliptic RS model, its 5d/3d gauge
theory description and large-n ADHM quiver description.

For the correspondence which involves ∆ILWN model we start with U(nN) N = 2∗

gauge theory, proceed similar to the above and replace the locus (5.20) with

(5.21) aα = ãα q
Λα !

α−nN , α = 1, . . . , nN ,

where

(5.22) {ãα} = {a1, . . . a1, a2, . . . , a2, . . . , aN , . . . , aN}

and Young tableau Λ is blended from N diagrams Λ = λ1! . . .!λN . We refer the interested
reader to Sec. 4.1 of [K] for details.

6. From Instantons to Vortices

Now we shall describe how the Inozemtsev limit is implemented on the resolved side of
the duality. In summary, under the ! → ∞ limit the instanton moduli space Minst

1,k will get

retracted to the vortex moduli space Mvort
1,k .

6.1. Scaling Limit. We can take ! → ∞ limit of the above formulae in the ADHM con-
struction. We get the following for r = 1

(6.1) EΛ
1 (λ) = a− (1− q)e1(s1, . . . , sk) ,

where Bethe roots now solve the equations arising from the vortex moduli space (N chirals
and one chiral loop)

(6.2)
N∏

l=1

(sa − al) ·
k∏

b=1
b$=a

qsa − sb
sa − qsb

= p̃Λ , a = 1, . . . , k ,

where

(6.3) p̃
Λ = p̃ q1/2!1/2

N∏

l=1

(−q!al)

is the dynamically generated scale and the quantum parameter. The above equations (6.2)
describe the Coulomb branch of the 3d N = 2 U(k) theory with N chiral multiplets (see
right figure in Fig. 2).

Bethe equations
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(5.22) {ãα} = {a1, . . . a1, a2, . . . , a2, . . . , aN , . . . , aN}

and Young tableau Λ is blended from N diagrams Λ = λ1! . . .!λN . We refer the interested
reader to Sec. 4.1 of [K] for details.

6. From Instantons to Vortices

Now we shall describe how the Inozemtsev limit is implemented on the resolved side of
the duality. In summary, under the ! → ∞ limit the instanton moduli space Minst

1,k will get

retracted to the vortex moduli space Mvort
1,k .

6.1. Scaling Limit. We can take ! → ∞ limit of the above formulae in the ADHM con-
struction. We get the following for r = 1

(6.1) EΛ
1 (λ) = a− (1− q)e1(s1, . . . , sk) ,

where Bethe roots now solve the equations arising from the vortex moduli space (N chirals
and one chiral loop)

(6.2)
N∏

l=1

(sa − al) ·
k∏

b=1
b$=a

qsa − sb
sa − qsb

= p̃Λ , a = 1, . . . , k ,

where

(6.3) p̃
Λ = p̃ q1/2!1/2

N∏

l=1

(−q!al)

is the dynamically generated scale and the quantum parameter. The above equations (6.2)
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6.2. The Gauge/Hydrodynamics Correspondence in the ! → ∞ limit. Having
taken the ! → ∞ limit on both sides of the correspondence (4.10) and (6.1) we arrive to
our main conclusion

(6.4) lim
n→∞

!
nEToda

1

∣∣∣
λ
= EΛ

1 (λ)|λ ,

where the equivariant parameters on the left hand side for the q-Toda eigenvalues (4.10) on
the locus

(6.5) ai = aqλi , i = 1, . . . , n ,

while the ∆ILW energies (6.1) are evaluated on the solutions of scaled Bethe equations
(6.2). The instanton counting parameters from (4.10) and (6.3) are then identified as

(6.6) q = p̃
Λ .

In particular, when N = 1 we can put a1 = 1 and have p̃Λ = p
√
q! as ! → ∞ and p → 0 so

that the latter combination is finite.
One can see that !n−i in (5.20) will cancel off after plugging into (4.10). As expected,

fixed points in the vortex moduli space are parameterized by integers λi – vortex numbers.
As it was pointed out by Hanany and Tong in [HT], the vortex moduli spaceMvort

1,k (the so-

called ‘12 -ADHM’ moduli space) forms a Lagrangian submanifold inside the instanton moduli
space Minst

1,k . This submanifold is the fixed point locus of a U(1) action on Minst
1,k which

rotates the instantons in a plane. Using the language of Nekrasov’s Omega background, we
can identify this action with C

×
!
.
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2 -ADHM theory
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SYM theory with gauge group U(n) with quantized Coulomb branch parameters (6.5) in the



From ADHM to 1/2 ADHM
K~(T

⇤Fln) ADHM (instanton moduli space)

Claim: ~ ! 1

[PK Koroteeva
Gorsky Vainshtein]

K(Fln) 1/2 ADHM (vortex moduli space)

ONE-DIMENSIONAL QUANTUM HYDRODYNAMICS AT STRONG COUPLING 5

where p⇤ = p~n.

3.4. Free Boson Representation of qToda. The �ILW energies are given by the op-
erator of quantum multiplication by the r-th skew-power ⇤rU of the universal bundle

(25) U = W � (1� ~)(1� q)V

in quantum equivariant K-theory Kq,~(Hilbk(C2)) is given by (for r = 1)

(26) E1(�) = 1� (1� ~)(1� q)e1(s1, . . . , sk) ,

where e1(s1, . . . , sk) = s1+ · · ·+sk is the 1st elementary symmetric polynomial of s1, . . . sk
which solve the following Bethe equations (N for ILWN )

(27)
NY

l=1

sa � al
sa � q~al

·
kY

b=1
b 6=a

sa � q�1sb
sa � qsb

sa � ~�1sb
sa � ~sb

sa � q~sb
sa � q~�1sb

= ep , a = 1, . . . , k ,

where ep = �p/
p
q~ is the Kähler parameter of the ADHM quiver. It was shown in [KS18]

that ILW energies (26) are equal to eRS energies (15) on the locus

(28) ai = aq�i~i�n , i = 1, . . . , n ,

where |�| = k in the limit when n ! 1.

3.5. The Gauge/Hydrodynamics Correspondence. It was show in [KS16,KS18] that
large-n limit of the VEV of the Wilson loops in 5d N = 1⇤ theory are proportional to
characters of the universal bundle on the tangent bundle to the moduli space of U(1)
instantons evaluated on the locus (28), in particular, in case of the fundamental Wilson
loop we get

(29) lim
n!1

h
~n�1(1� ~)

D
WU(n)

Ei ���
�

= a� (1� q)(1� ~)e1(s1, . . . , sk)|� .

4. From Instantons to Vortices

4.1. Scaling Limit. We can take ~ ! 11 limit of the above formulae in the ADHM
construction. We get the following for r = 1

(30) E⇤
1 (�) = a� (1� q)e1(s1, . . . , sk) ,

where Bethe roots now solve the equations arising from the vortex moduli space (N chirals
and one chiral loop)

(31)
NY

l=1

(sa � al) ·
kY

b=1
b 6=a

qsa � sb
sa � qsb

= ep⇤ , a = 1, . . . , k ,

where ep⇤ = ep
Q

N

l=1(�q~al) is the dynamically generated scale and the quantum parameter.
In particular, when N = 1 we have ep⇤ = p

p
q~.

1One needs to be carful with mirror frames – in one of the frames the limit is ~ ! 0

Eigenvalues of affine 
qToda lattice at large n

Eigenvalues of quantum 
multiplication by
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3.1. Inosemtsev Limit to Open qToda. This was established by studying limit ~ ! 1
in (23) after certain rescaling also known as Inosemtsev limit [Ino89]. First we rescale tRS
coordinates, momenta (6) and equivariant parameters ai as follows

(16) zi = ~�i⇣i , pi = ~�i+1/2pi , ai = ~�
n
2 ↵i = ai .

After taking ~ ! 1 limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(17) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(18) Hq-Toda
r =

X

I={i1<···<ir}
I⇢{1,...,n}

rY

`=1

✓
1� zi`�1

zi`

◆1��i`�i`�1,1 Y

k2I
pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(19) Hopen
1 = p1 +

nX

i=2

pi

✓
1� zi�1

zi

◆
.

3.2. Inosemtsev Limit to Closed qToda. For the elliptic RS model the Inosemtsev
limit works as follows. The theta function has the following expansion near p = 0

(20) ✓1(z|p) = 2p
1
4

+1X

k=0

(�1)kpk(k+1) sin((2k + 1)z) ,

The eRS Hamiltonians contain the following ratio of theta-functions which have the fol-
lowing expansion

(21)
✓1(⇣k/⇣m~|p)
✓1(⇣k/⇣m|p) =

⇣k/⇣m~� p2() +O(p2)

⇣k/⇣m � p2() +O(p2)
. . .
After taking the limit we obtain

(22) Ha↵
1 = p1

✓
1� p⇤

zn
z1

◆
+

nX

i=2

pi

✓
1� zi�1

zi

◆
,

where we assumed p⇤ = p~ 1
2 .

3.3. Spectrum of Closed qToda. One gets the following equations for the spectrum of
quantum closed q-Toda

(23) Hq-Toda
r (~⇣)ZYM = E Toda

r ZYM , r = 1, . . . , n ,

and E Toda
r is given by the ~ ! 1 limit of the eRS energies Er

(24) E Toda
1 =

nX

i=1

ai + p⇤
nX

i=1

ai

nY

j=1
j 6=i

1⇣
1� aj

ai

⌘⇣
1� ai

qaj

⌘ + o((p⇤)2) ,

retracting the fibers,  dimensional transmutation
[Hanany Tong]

Zk ⇢ Hilb
k
[C2

]Subscheme
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Thus we expect that q-Toda eigenvalues (24) on the locus

(32) ai = aq�i , i = 1, . . . , n ,

will reproduce the �ILW energies (30). One can see that ~n�i in (28) will cancel o↵ after
plugging into (24). As expected, fixed points in the vortex moduli space are parameterized
by integers �i – vortex numbers.

Therefore we conclude that the spectrum of �ILW Hamiltonians is in one-to-one cor-
respondence with the operators of quantum multiplication in QKq(Hilb

k(C)) by the sym-
metric powers of the universal bundles.

4.2. Geometric Meaning. One can think of a subscheme Zk of Hilbk[C2] parametrizing
ideals scheme-theoretically supported on C ⇢ C2 (i.e. where the y matrix is identically
0) is the same as the 1/2 ADHM quiver variety. The complete Hall algebra which acts
on �kKq,~(Hilb

k) does not preserve the K-theory of this subscheme Zk, but there is a
one-parameter Heisenberg subalgebra inside it that preserves �kKq(Zk). This Heisenberg
subalgebra is the natural analogue of Nakajima’s construction.

5. Difference BO Equation and its Limit

Consider the periodic Benjamin-Ono equation [Ben67, Ono75] with discrete Laplacian
[TS12] written in terms of exponentiated variables

(33) @tu(X, t) = �u(X, t) v.p.

+1Z

�1

u(Y, t)K(X,Y,�)
dY

Y
,

where the kernel is equal to

(34) K(X,Y,�) =
X2Y 2

�
X2 + Y 2

� �
�2 � 1

�2

(X2 � Y 2) (�2X2 � Y 2) (X2 � �2Y 2)

Here X = ex, Y = ey,� = e� in term of the original notations of [TS12], and � is related
to the radius of the circle on which the 3d theory is compactified.

Now we can take the limit � ! 1 the kernel reduces to

(35) lim
�!1

K(X,Y,�) =
X2 + Y 2

X2 � Y 2
= coth(x� y) ,

which appears in the ordinary BO equation (some Gallelian transformation on u(x, t) is
needed).
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Nekrasov-Shatashvili limit at large n becomes the VEV of the corresponding flavor-Wilson
line of the U(1) 3d N = 2 quiver theory whose Coulomb branch describes the vortex moduli
space.

By examining Tab. 1 we conclude that in the ! → ∞ limit adjoint chiral field B1 and
anti-chital field J decouple leaving us with only B1 and I (χ becomes constant due the
F-term constraint). This illustrates on the level of the 3d gauge theories how the ADHM
model becomes the 1

2 -ADHM model.

6.3. Generating Function of the ΛILW Model. Using the [KS1, KS2] description of
the quantum ILW model we can derive a generating function for the new system, which we
call ΛILW, by studying the Inozemtsev limit of (5.8).

From (5.9) we can see that provided the scaling (6.3) takes place the new (q, pΛ)-deformed
Heisenberg generators have the following form

(6.7) [bm, bn] = − 1

m

1− qm

1− (pΛ)m
δm+n,0 .

where we absorbed a divergent factor proportional to (1− !m)1/2 into the definition of bm.
Equivalently, this factor can be absorbed into generating parameter ξ.

Thus we can construct a generating function for ΛILW Hamiltonians

(6.8) µ(ξ) = exp

(
∑

n>0

b−nξ
n

)

exp

(
∑

n<0

bnξ
−n

)

,

so that

(6.9) HΛILW = [µ(ξ)]1 .

Notice the similarity between (6.7) and (2.11). It is not accidental as both tRS operators
and, as we have just concluded, the qToda operators at large n act naturally on the K-theory
of the vortex moduli space Mvort.

6.4. Geometric Applications. Therefore we conclude that the spectrum of ∆ILW Hamil-
tonians is in one-to-one correspondence with the operators of quantum multiplication in
QKq(Hilb

k(C)) by the symmetric powers of the universal bundles.
One can think of a subscheme Zk of Hilbk[C2] parametrizing ideals scheme-theoretically

supported on C ⊂ C2 (i.e. where the y matrix is identically 0) is the same as the 1/2 ADHM
quiver variety. The complete Hall algebra which acts on ⊕kKq,!(Hilb

k) does not preserve
the K-theory of this subscheme Zk, but there is a one-parameter Heisenberg subalgebra
inside it that preserves ⊕kKq(Zk). This Heisenberg subalgebra is the natural analogue of
Nakajima’s construction.

Our calculations lead to the new results on equivariant K-theory. First, we remind the
reader about the following theorem

Theorem 6.1 ([KPSZ]). The quantum equivariant K-theory of the complete n-dimensional
flag variety is given by

(6.10) QKT ′(Fln) =
C[z±1

1 , . . . , z±1
n ; a±1

1 , . . . , a±1
n ; p±1

1 , . . . , p±1
n ](

Hq-Toda
r (zi, pi) = er(a1, . . . , an)

) ,

where Hq-Toda
r are given by (4.3) and T ′ is the maximal torus of GL(n) with equivariant

parameters a1, . . . , an .
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Inspired by this result we can prove a theorem about the projective n → ∞ limit of the
above ring similar to Theorem 6.2 when we further specialize the values of ais as in (6.5).

Similarly to Hn we can define the moduli space of quasimaps to complete n-flags (as
opposed to the cotangent bundles to those flags earlier in the paper)

(6.11) Pn := KT(QM(P1,Fln))

for extended maximal torus T′ = T ′ × C×
q .

As it was discussed in [KZ] the vertex functions (quantum classes) of Pn, under proper
normalization, be directly obtained from the vertex functions of Hn. Thus, for a fixed point
q of the maximal torus

(6.12) Iq = lim
!→∞

Vq .

Then the following statement follows:

Theorem 6.2. For n > k there is the following embedding of Hilbert spaces

k⊕

l=0

Kq(Hilb
l(C)) ↪→ Pn(6.13)

[λ] $→ Iq ,

where Iq is the K-theory vertex function for some fixed point q of maximal torus T ′. The
statement also holds in the limit n → ∞

(6.14)
∞⊕

l=0

Kq(Hilb
l(C)) ↪→ P∞ ,

where P∞ is defined as a stable limit of Pn as n → ∞.

7. Towards the Physical Picture

In the past sections we have mainly considered formal geometrical ways to perform the
Inozemtsev-like scaling limit. Let us attempt to develop more physical interpretation of the
dimensional transmutation phenomena in hydrodynamics. In QFT a scale anomaly can be
thought of as a gravitational phenomenon, when the cutoff in the theory depends on the
external metric. The IR non-perturbative scale enters into the VEV of the trace of the
stress-energy tensor in the ground state 〈θµµ〉 '= 0 resulting in the gap in the spectrum. The
dimensional transmutation phenomenon is observed in asymptotically free theories in the
presence of such scaling anomaly.

7.1. Vortex Fluid and Scale Anomaly. Can we recognize these two ingredients of the
dimensional transmutation in hydrodynamics? First let us look for the hydrodynamical
theory with the scale anomaly. The proper pattern has been recently found in [W2], namely
that is the quantum vortex fluid which describes FQHE and the rotating superfluid. The
fluid is described by the macroscopic density of vortices of the same chirality which supports
the chiral flow. It was found that several nontrivial phenomena occur at the quantum level.
The origin of these effects is the UV cutoff introduced by the effective finite sizes of the
vortex cores or, equivalently, the minimal distance between the vortices. The cutoff is scale
dependent which results in the scale anomaly in the quantum vortex fluid.
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Figure 1. The ITEP table [M] of integrable many body systems according
to their periodicity properties in coordinates q (columns) and momenta p

(rows) together with their geometric interpretations.

where the eigenvalues read
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where ~!k is the k-th fundamental weight of representation of SU(N) and ~⇢ =
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is the SU(N) Weyl vector.
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where pi are the shift operators as defined earlier. While for generic xi this is a non-
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1.1. Overview of Quantum DELL System. First we review the basics of the quantum
double elliptic system which was discovered by two of the authors [KS] and further developed
in [GZ2, GZ]. (see also [BMMM, MM, AMMZ, ABM+, AMM, AMM2, FGNR, BGOR] for
di↵erent approach to double elliptic models).

The DELL Hamiltonians for N particles read

(1.1) Ha = O�1
0 Oa , a = 1, . . . , N � 1 ,

where operators O0, O1, . . . , ON�1 are Fourier modes of the following current
(1.2)

O(z) =
X

n2Z
On z

n =
1X

n1,...,nN=�1
(�z)

P
ni w

P ni(ni�1)
2

Y

i<j

✓

✓
t
ni�nj

xi

xj

���p
◆

p
n1
1 . . . p

nN
N .

In the above formula ✓(x|p) is the odd theta function1

(1.3) ✓(x|p) = (x
1
2 � x

� 1
2 )

1Y

i=1

(1 � xp
i)(1 � x

�1
p
i) ,

t is the exponentiated coupling constant, z is an auxiliary counting parameter, and the
canonically conjugate position and momentum operators obeying canonical q-commutation
relation xipj = q

�ijpjxj which act on functions of positions as follows

(1.4) xif(x1, . . . , xN ) = xif(x1, . . . , xN ), pif(x1, . . . , xN ) = f(x1, . . . , qxi, . . . , xN ) .

The eigenvalue problem, which as of this writing, is a mathematical conjecture, states
that a properly normalized equivariant elliptic genus of the a�ne Laumon space in the
Nekrasov-Shatashvili limit [NS] is the eigenfunction of the quantum DELL Hamiltonians

(1.5) bHnZ
6d/4d
inst (w, p,x) = �n(a, w, p)Z6d/4d

inst (w, p,x) .

We refer the reader to [KS] for more details and references. In this paper we discuss double
scaling limits of DELL of Inozemtsev type [I], in which the coupling t ! 1 while the elliptic
parameters p and w go to zero in the presence of additional scaling of the coordinates and
momenta.

1.2. DELL-RS-Calogero Hierarchy. The DELL system lives on top of the hierarchy
of integrable many-body systems and all other known models (without spin degrees of
freedom, we shall comment on spin-DELL later) – Calogero-Moser-Sutherland (CMS) and
Ruijsenaars-Schneider (RS) systems can be obtained by decoupling certain parameters in
DELL Hamiltonians, see Fig. 12 .

The Calogero and Ruijsenaars families (first and second rows of the table respectively)
have a well-established geometric interpretation.

1.3. Spectrum of the Elliptic RS Model. In this subsection we would like to prove one
of the conjectures of [KS].

Theorem 1.1. Let x = (x1, . . . xN ) be the position vector of the eRS model and ZRS(a,x) =

lim
w!0

Z6d/4d
inst (w, p,x) is its wavefunction. Then the following equality holds

(1.6) HkZRS(a,x) = �k(a)ZRS(a,x) , k = 1, . . . , N � 1 .

1The use of the odd theta function is more preferable to study the Inosemtsev limit; we changed our
conventions from [KS].

2In math literature (part of) this diagram is sometimes referred to as Etingof diamond.
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where ~!k =
�
1, . . . , 1| {z }

k

, 0, . . . , 0| {z }
N�k

�
. Simplifying the product in the l.h.s. and dividing by the

value of the eigenfunction in the r.h.s., we obtain the desired expression for the eigenvalues.
⇤

2. Double Inozemtsev Limits of DELL

The usual Inozemtsev limit [I] describes a transition from elliptic integrable systems –
Calogero or Ruijsenaars (respectively the first and the second rows of the ITEP table)
– into Toda and q-Toda models correspondingly. More precisely, trigonometric models
(second column of the table) are sent to open (q)Toda chains, while elliptic models (third
column) become a�ne (q)Toda chains after applying Inozemtsev (see [GKKV] for review).

Upon the Inozemtsev limit on first scales the coordinates of Calogero or Ruijsenaars par-
ticles by a factor which is proportional to the order number of each particle and proportional
to the coupling constant. The the coupling constant of the integrable system in question is
sent to infinity while the elliptic modulus is sent to zero provided that a certain combination
thereof remains finite (see below).

Since we are dealing with the double elliptic model which two elliptic parameters p and w

one may try to build a more complex limit which involves scaling of the form t ! 1, p, w !
0 such that certain combination of the above three parameters F (t, p, w) remains constant.
We refer to such limits as double Inozemtsev limits.

More presicely the double Inozemtsev limit consists of the following rescaling

(2.1) xa 7! t
�a

xa, pa 7! t
�a�1/2

pa, p = t
↵⇤, w = t

�
M ,

and taking the limit t ! 0. Here ⇤ and M are nonzero constants. We study this limit for
di↵erent values of ↵ and �.

2.1. ↵ = N , � > 1. In this case, due to the quadratic dependence of the Hamiltonians
on w, higher elliptic corrections vanish and the model becomes equivalent to the ellip-
tic Ruijsenaars-Schneider model. Thus its Inozemtsev limit is the quantum a�ne q-Toda
system [GKKV]. Its first Hamiltonian reads

(2.2) H
a↵ q-Toda
1 =

NX

i=2

✓
1 � xi�1

xi

◆
pi +

✓
1 � ⇤

xN

x1

◆
p1 ,

Upon this limit O0 = 1.

2.2. ↵ = N , � = 1. This is a new limit which at first glance yields a new elliptic model.
The normal ordered DELL operators Ok in this limit read as follows

(2.3) eOk = cN :
X

i1<···<ik

Y

a<b

✓

✓
M

b�a+mb�ma
xa

xb

pb

pa

���ep
◆

: pi1 · · · pik ,

where ep = ⇤M
N and ma = �a2I , and cN is a certain constant. However, the above

Hamiltonians can undergo the following chain of transformations. First, let xa 7! M
�a

xa,
then we perform the SL(2;Z) T -transformation which in the multiplicative form reads

(2.4) xa 7! xapa, pa 7! pa .
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where ep = ⇤M
N and ma = �a2I , and cN is a certain constant. However, the above

Hamiltonians can undergo the following chain of transformations. First, let xa 7! M
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xa,
then we perform the SL(2;Z) T -transformation which in the multiplicative form reads

(2.4) xa 7! xapa, pa 7! pa .
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This transformation is none other than conjugation of the operators by the Gaussian term
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@). After that (2.3) becomes
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According to [KS] the above Hamiltonians lead to the elliptic Ruijsenaars-Schneider model
HeRS
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eOk with coupling constant M and elliptic parameter ep.

The above limit can be illustrated using the following brane description (see Fig. 2.2).
Here vertically we have NS5 branes and horizontally we find D5 branes. The starting point
is the little string theory with periodic NS5 direction which can be then scaled to the field
theory limit by sending the vacuum expectation of the dilaton to infinity. The left figure
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Figure 2. Brane description of the 6d theory whose infrared regime is de-
scribed by the DELL model with coupling t (left) and the 5d theory whose
Seiberg-Witten solution gives rise to the eRS model with coupling M (right).

describes 6d N = (1, 0)⇤ theory on R4⇥S
1
R⇥S

1
R0 which can be viewed as a 5d N = 1⇤ theory

on R4 ⇥ S
1
R0 whose Yang-Mills coupling depends on the compactification radius g

�2
YM = 1/R

along the sixth direction. The complexified 5d gauge coupling is equal to p ⇠ e
�4⇡R0/R

while the elliptic modulus of the compactification torus is w. The N = 2⇤ supersymmetry
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