
Hello and welcome to class!

Last time

We studied the formal properties of determinants, and how to

compute them by row reduction.

Today

We’ll see some more formulas involving the determinant — minor

expansion and Cramer’s rule — and discuss the interpretation of

the determinant as a signed volume.



Review: computing determinants by row reduction

To compute the determinant of a matrix, row reduce it, and keep

track of any row switches or rescalings of rows.

At the end, multiply together:

I the inverses of the row rescaling factors

I the diagonal entries of the final echelon matrix

I (�1)
#rowswaps

That’s the determinant of the original matrix.

This method is much much faster than summing all the terms.



Example

Let’s compute the determinant of this matrix

2

664

1 2 3 �1

2 0 3 1

0 1 �1 2

3 7 8 �2

3

775

First, we row reduce, keeping track of rescalings and row switches



Example

2

664

1 2 3 �1

2 0 3 1

0 1 �1 2

3 7 8 �2

3

775 !

2

664

1 2 3 �1

0 �4 �3 3

0 1 �1 2

0 1 �1 1

3

775
�1��!

2

664

1 2 3 �1

0 1 �1 1

0 1 �1 2

0 �4 �3 3

3

775 !

2

664

1 2 3 �1

0 1 �1 1

0 0 0 1

0 0 �7 7

3

775
�1��!

2

664

1 2 3 �1

0 1 �1 1

0 0 �7 7

0 0 0 1

3

775
�1/7���!

2

664

1 2 3 �1

0 1 �1 1

0 0 1 1

0 0 0 1

3

775

So the determinant is (�1)
2 · (�7) · (1 · 1 · 1 · 1) = �7.



Try it yourself!

Compute the determinant of this matrix:

2

664

3 1 2 1

1 �1 0 2

2 3 1 2

0 1 2 3

3

775

Row reduce, keeping track of rescalings and row switches:



Try it yourself!

2

664

3 1 2 1

1 �1 0 2

2 3 1 2

0 1 2 3

3

775
�1��!

2

664

1 �1 0 2

3 1 2 1

2 3 1 2

0 1 2 3

3

775 !

2

664

1 �1 0 2

0 4 2 �5

0 5 1 �2

0 1 2 3

3

775
�1��!

2

664

1 �1 0 2

0 1 2 3

0 5 1 �2

0 4 2 �5

3

775 !

2

664

1 �1 0 2

0 1 2 3

0 0 �9 �17

0 0 �6 �17

3

775

The determinant is 51.



Review: terms in the determinant

In the 2x2 case:


a b
c d

�

+ad


a b
c d

�

�bc



Review: terms in the determinant

In the 3x3 case:

2

4
a b c
d e f
g h i

3

5

+aei

2

4
a b c
d e f
g h i

3

5

+bfg

2

4
a b c
d e f
g h i

3

5

+cdh

2

4
a b c
d e f
g h i

3

5

�afh

2

4
a b c
d e f
g h i

3

5

�bdi

2

4
a b c
d e f
g h i

3

5

�ceg



Another perspective

2

4
a b c
d e f
g h i

3

5

+aei � afh

+a

����
e f
h i

����

no orange-green

inversions

2

4
a b c
d e f
g h i

3

5

�bdi + bfg

�b

����
d f
g i

����

one orange-green

inversions

2

4
a b c
d e f
g h i

3

5

+cdh � ceg

+c

����
d e
g h

����

two orange-green

inversions



Minor expansion

For a matrix A, I’ll write A 6 i 6 j for the matrix formed by omitting

row i and column j . For example, if

A =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

We have:

|A| = a11

����
a22 a23
a32 a33

����� a12

����
a21 a23
a31 a33

����+ a13

����
a21 a22
a31 a32

����

= a11|A 61 61|� a12|A 61 62|+ a13|A 61 63|



Minor expansion

More generally, by the same argument, for a square n⇥ n matrix A
with entry ai ,j in row i and column j ,

for any k in 1, . . . , n, there is a minor expansion along the k ’th row

|A| =
nX

j=1

(�1)
j+kakj |A 6k 6 j |

and a minor expansion along the k ’th column

|A| =
nX

j=1

(�1)
j+kajk |A 6 j 6k |



The sign (�1)
row+column

2

6666664

+ � + � + �
� + � + � +

+ � + � + �
� + � + � +

+ � + � + �
� + � + � +

3

7777775



Example

Compute by minor expansion along the second row:

��������

1 2 3 �1

2 0 3 1

0 1 �1 2

3 7 8 �2

��������



Example

��������

1 2 3 �1

2 0 3 1

0 1 �1 2

3 7 8 �2

��������
= �2

��������

1 2 3 �1

2 0 3 1

0 1 �1 2

3 7 8 �2

��������
+ 0

��������

1 2 3 �1

2 0 3 1

0 1 �1 2

3 7 8 �2

��������

�3

��������

1 2 3 �1

2 0 3 1

0 1 �1 2

3 7 8 �2

��������
+ 1

��������

1 2 3 � 1

2 0 3 1

0 1 �1 2

3 7 8 �2

��������



Example

�2

������

2 3 �1

1 �1 2

7 8 �2

������
+0

������

1 3 �1

0 �1 2

3 8 �2

������
�3

������

1 2 �1

0 1 2

3 7 �2

������
+1

������

1 2 3

0 1 �1

3 7 8

������

Now we minor-expand each of these 3⇥ 3 determinants.

We’ll use the second row for each (to catch the zero).



Example

������

2 3 �1

1 �1 2

7 8 �2

������
= �1

����
3 �1

8 �2

����+ (�1)

����
2 �1

7 �2

����� 2

����
2 3

7 8

����

= �2� 3 + 10 = 5

������

1 2 �1

0 1 2

3 7 �2

������
= �0

����
2 �1

7 �2

����+ 1

����
1 �1

3 �2

����� 2

����
1 2

3 7

����

= 0 + 1� 2 = �1

������

1 2 3

0 1 �1

3 7 8

������
= �0

����
2 3

7 8

����+ 1

����
1 3

3 8

����� (�1)

����
1 2

3 7

����

= 0� 1 + 1 = 0



Example

�2

������

2 3 �1

1 �1 2

7 8 �2

������
+0

������

1 3 �1

0 �1 2

3 8 �2

������
�3

������

1 2 �1

0 1 2

3 7 �2

������
+1

������

1 2 3

0 1 �1

3 7 8

������

(�2⇥ 5) + (0⇥ ?) + (�3⇥�1) + (1⇥ 0) = �7

That’s the same as we got doing this the other way.

Which was easier?



Try it yourself!

Compute by minor expansion the determinant of the matrix.

2

664

3 1 2 1

1 �1 0 2

2 3 1 2

0 1 2 3

3

775



A formula for the inverse

A =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5 Adj(A) =

2

4
A 61 61 �A 62 61 A 63 61
�A 61 62 A 62 62 �A 63 62
A 61 63 �A 62 63 A 63 63

3

5

A ·Adj(A) =

2

4
a11A 61 61 � a12A 61 62 + a13A 61 63 �a11A 62 61 + a12A 62 62 � a13A 62 63 a11A 63 61 � a12A 63 62 + a13A 63 63
a21A 61 61 � a22A 61 62 + a23A 61 63 �a21A 62 61 + a22A 62 62 � a23A 62 63 a21A 63 61 � a22A 63 62 + a23A 63 63
a31A 61 61 � a32A 61 62 + a33A 61 63 �a31A 62 61 + a32A 62 62 � a33A 62 63 a31A 63 61 � a32A 63 62 + a33A 63 63

3

5

The diagonal terms, e.g., a11A 61 61 � a12A 61 62 + a13A 61 63, are minor

expansions of det(A).



A formula for the inverse

A =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5 Adj(A) =

2

4
A 61 61 �A 62 61 A 63 61
�A 61 62 A 62 62 �A 63 62
A 61 63 �A 62 63 A 63 63

3

5

Let’s look at an o↵-diagonal term of A · Adj(A), say

a21A 61 61 � a22A 61 62 + a23A 61 63

Expanding this out from the definition,

a21

����
a22 a23
a32 a33

����� a22

����
a21 a23
a31 a33

����+ a23

����
a22 a23
a32 a33

����



A formula for the inverse

The quantity

a21

����
a22 a23
a32 a33

����� a22

����
a21 a23
a31 a33

����+ a23

����
a22 a23
a32 a33

����

is the minor expansion of the determinant

������

a21 a22 a23
a21 a22 a23
a31 a32 a33

������

The matrix has a repeated row, so the determinant is zero! The

same is true for all the o↵ diagonal terms.



A formula for the inverse

A =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5 Adj(A) =

2

4
A 61 61 �A 62 61 A 63 61
�A 61 62 A 62 62 �A 63 62
A 61 63 �A 62 63 A 63 63

3

5

A · Adj(A) = det(A) · I = Adj(A) · A

This holds for any square matrix A, where

Adj(A)ij = (�1)
i+j |A 6 j 6 i |

The entry in row i , column j of Adj(A) is the determinant of the

matrix formed by removing column i and row j of A, times (�1)
i+j

.



Try it yourself!

For the 2⇥ 2 matrix


a b
c d

�
, determine Adj(A), and verify

A · Adj(A) = det(A) · I = Adj(A) · A

Adj(A) =


d �b
�c a

�


a b
c d

�
·


d �b
�c a

�
=


ad � bc �ab + ba
cd � dc �cb + da

�
= (ad�bc)


1 0

0 1

�



Cramer’s rule

Consider a matrix equation Ax = b where A is square. Then

det(A) · x = (Adj(A) · A)x = Adj(A) · b

Take the i ’th row of the column vector on both sides:

det(A) · xi =
X

j

Adj(A)ijbj =
X

j

(�1)
i+j |A 6 j 6 i |bj

I.e., the minor expansion along the i ’th column of the determinant

of the matrix formed by replacing the i ’th column of A by b.



Cramer’s rule

Consider a matrix equation Ax = b where A is square.

Then if det(A) 6= 0,

xi =
det(replace column i of A by b)

det(A)



Never use these formulas to compute

As we saw, taking the determinant of a 4⇥ 4 matrix by minor

expansion was more di�cult than by row reduction.

It only gets worse as the size of the matrix grows.

Likewise, row reduction beats computing Adj for inverting
matrices, and beats Cramer’s rule for solving systems.



Why learn these formulas at all?

It’s conceptually satisfying to know that, not only is there a

procedure for solving systems or inverting matrices,

there’s in fact a closed form formula.

The properties of the formula reveal facts about the solutions.



Integer inverses and solutions

Say you have an invertible matrix M with integer entries.

Does its inverse also have integer entries?

It does, if and only det(M) = ±1.

Observe det(M) det(M�1
) = det(MM�1

) = 1. The determinant of

an integer matrix is always an integer — it’s made by additions

and multiplications. If M�1
has integer entries, then det(M) and

det(M�1
) are two integers which multiply to 1, hence both ±1.

Similarly, the Adj of an integer matrix is an integer: it’s made by

additions and multiplications. So, if detM = ±1, then

M�1
= Adj(M)/ detM is an integer matrix as well.



Integer inverses and solutions

Similarly, consider the equation Ax = b.

Assume

I A is square and has integer entries

I b has integer entries

I det(A) = ±1

We saw that A�1
has integer entries, so the (unique) solution

x = A�1b also has integer entries.



Volumes

You probably have an intuitive notion of what volume means: the

amount of stu↵ that can fit inside something. For our purposes,

the stu↵ is going to be cubes of a fixed side length:

Volume(S) ⇠ number of cubes that fit inside S

To be more precise,

Volume(S) = lim
✏!0

✏�dim ·

0

@
number of cubes

of side length ✏
that fit inside S

1

A

By this we mean: for S ⇢ Rn
, we overlay the ✏-mesh grid on S ,

and count the number of cubes which fall completely inside.



Linear transformations and volumes

Let T : Rn ! Rn
be a linear transformation. Given a set X , we

want to think about how the volumes of X and T (X ) compare.

The key observation is that the number of cubes in X is the same

as the number of T -transformed such cubes in T (X ).



Linear transformations and volumes

Filling the transformed cubes with yet smaller regular cubes, and

observing that the failure of these to pack correctly at the

boundary is washed out as ✏ ! 0, we conclude:

Volume(X )

Volume(cube)
=

Volume(T (X ))

Volume(T (cube))

Rearranging,

Volume(T (X )) = Volume(T (cube)) ·Volume(X )

But what’s Volume(T (cube))?



Linear transformations and volumes

Suppose now given two linear transformations, T , S : Rn ! Rn
.

We apply the formula

Volume(T (X )) = Volume(T (cube)) ·Volume(X )

to the set X = S(cube):

Volume(T (S(cube))) = Volume(T (cube)) ·Volume(S(cube))



Linear transformations and volumes

In other words, the function

V : linear transformations ! R
T 7! Volume(T (unit cube))

respects multiplication in the sense that

V (T � S) = V (T )V (S)

Note also that V (Identity) = 1, and V (non invertible matrix) = 0.



Linear transformations and volumes

Now consider any linear transformation T .

If it’s not invertible, V (T ) = 0.

If it is invertible, then by row reduction we can expand it as a

product of elementary matrices,

T = En · · ·E1

Since volume scaling is multiplicative,

V (T ) = V (En) · · ·V (E1)



Linear transformations and volumes

It remains to understand volume scaling of elementary matrices.

Rescaling a row — stretching a coordinate — rescales volume by

the same factor: the volume of a box is the product of its side

lengths, and we rescaled one of them.

Switching two rows doesn’t change volume at all — we’re just

renaming the sides of the box.

Adding a multiple of one row to another takes a box to a

parallelopiped with the same base and the same height, so again

doesn’t change volume.



Determinants and volumes

So for an elementary linear transformation,

Volume(T (unit cube)) = |det(T )|

Volume scaling is multiplicative, so this holds for any linear

transformation.

Collecting these observations, for any linear transformation

T : Rn ! Rn
and any set X ⇢ Rn

,

Volume(T (X )) = |det(T )| ·Volume(X )


