Hello and welcome to class!

Last time
We studied the formal properties of , and how to
compute them by row reduction.

Today

We'll see some more formulas involving the determinant — minor
expansion and Cramer’s rule — and discuss the interpretation of
the determinant as a signed volume.



Review: computing determinants by row reduction
To compute the determinant of a matrix, row reduce it, and keep
track of any row switches or rescalings of rows.

At the end, multiply together:
» the inverses of the row rescaling factors
» the diagonal entries of the final echelon matrix
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That's the determinant of the original matrix.

This method is much much faster than summing all the terms.



Example

Let's compute the determinant of this matrix

12 3 -1
2 0 3 1
01 -1 2
37 8 =2

First, we row reduce, keeping track of rescalings and row switches



Example

12 3 -1 1 2
20 3 1|
01 -1 2 0 1
37 8 -2

1 02 3 -1 12
0 1 -1 1 01
01 -1 2 |~

|0 -4 -3 3

(12 3 -1 12
01 -1 1 -1/7 0 1
00 —7 7 00
(00 0 1 00

So the determinant is
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Try it yourself!

Compute the determinant of this matrix:

31 21
1 -1 0 2
2 3 12
0 1 23

Row reduce, keeping track of rescalings and row switches:



Try it yourself!

1

3

—17

-9

The determinant is 51.



Review: terms in the determinant

In the 2x2 case:
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Review: terms in the determinant

In the 3x3 case:
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Another perspective
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Minor expansion

For a matrix A, I'll write Aj; for the matrix formed by omitting

row i and column j. For example, if

d11 412 413
A= | ax ax» ax
a31 432 ass

We have:

daz1 a3
as1 ass

axx  azs

Al = an
d32 as3

= an|Awl — a2 Ay + a13| Azl

dz1 a2
d31 432



Minor expansion

More generally, by the same argument, for a square n X n matrix A
with entry a;; in row i and column j,

for any k in 1,..., n, there is a minor expansion along the k'th row

n

Al = (1Y a4 Ayjl

Jj=1

and a minor expansion along the k'th column

n

Al = (—1Y  ai Ayl
j=1



The Sign (_1)row+cohlmn




Example

Compute by minor expansion along the second row:

12 3 -1
2 0 3 1
01 -1 2
37 8 -2



Example

-1

01



Example

2 3 -1 1 3 -1 1 2 -1 1 2 3
-2{1 -1 2 |+0j0 -1 2 |-3/0 1 2 |+1|0 1 -1
7 8 =2 3 8 =2 37 =2 3 7 8

Now we minor-expand each of these 3 x 3 determinants.

We'll use the second row for each (to catch the zero).
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Example

2 3 -1 1 3 -1 1 2 -1 1 2 3
-2{1 -1 2 |+0|0 -1 2 |-3]0 1 2 |+1|0 1 -1
7 8 =2 3 8 =2 37 =2 3 7 8

(—2x5)4+(0x?)+(-3x-1)+(1x0)=-7

That's the same as we got doing this the other way.

Which was easier?



Try it yourself!

Compute by minor expansion the determinant of the matrix.
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A formula for the inverse

a1l a2 a3 Ay —Ayw Ay
A= dp1 do2 azs Ad_j(A) = —Ayz A;}Q/ —Aﬂ
a3l a3 ass Ay —Ay Ay

annAyy — anAyy+ a13Ayy —antAyy+ anAyy — a13hy  an1Asy — anAsyy + ai3Ayy
A-Adj(A) = a1 Ay — anAyy+ asAyy —an Ay + anAy — anhy  axAsy — anAyy+ aAyy
1Ay — anAyy+ a3Ayy  —as1Ay+ anAyy — a33Ayy  a31Agy — anAgy+ aszAzy

The diagonal terms, e.g., a11Ayy — a12Ayy + a13Ayz, are minor
expansions of det(A).



A formula for the inverse

ail ae a3 Ay  —Ayw Ay
A= do1 4d2 a3 Adj(A) = _AW A;y;/ _AW
a1 asx as3 Ay —Ay Ay

Let's look at an off-diagonal term of A - Adj(A), say
a2 Ay — anAyy + a3Ap
Expanding this out from the definition,

ax  azs
d3z2 ds3

daz1  axs
as] ass

ax  azs
d32  ds3

a1 + a3




A formula for the inverse

The quantity

azy azs
d32 4as3

a1 azs
da31 433

ax ax
ari — an + ao3
da32 4d33

is the minor expansion of the determinant

dz1 a2 axg
az1 adx» a3
a31 432 ass

The matrix has a repeated row, so the determinant is zero! The
same is true for all the off diagonal terms.



A formula for the inverse

d11 a2 413 Ay Ay Ay
A= do1 dp2 a3 Ad_/(A) == *Ayz A;g *Aw
431 432 as3 Ay Ay Ay

A-Adj(A) =det(A)- I = Adj(A)- A
This holds for any square matrix A, where
Adj(A)ij = (1) Az

The entry in row i, column j of Adj(A) is the determinant of the
matrix formed by removing column i and row j of A, times (—1)"*.



Try it yourself!

For the 2 x 2 matrix [ i 3 ] determine Adj(A), and verify

A- Adj(A) = det(A) - | = Adj(A) - A

—C a

Adj(A) = [ @ b ]

a b ' d —b| | ad—bc —ab+ba _ (ad—bc) 1 0
c d —c a | | cd—dc —cb+da | 01



Cramer's rule

Consider a matrix equation Ax = b where . Then
det(A) - x = (Adj(A) - A)x = Adj(A) - b

Take the i'th row of the column vector on both sides:

det(A Z Adj(A)jbj =Y (=1)"|Ab;
J

l.e., the minor expansion along the i'th column of the determinant
of the matrix formed by replacing the i'th column of A by b.



Cramer's rule

Consider a matrix equation Ax = b where

Then if det(A) # 0,

_ det(replace column i of A by b)

= det(A)



Never use these formulas to compute

As we saw, taking the determinant of a 4 x 4 matrix by minor
expansion was more difficult than by row reduction.

It only gets worse as the size of the matrix grows.

Likewise, row reduction beats computing Adj for inverting
matrices, and beats Cramer’s rule for solving systems.



Why learn these formulas at all?

It's to know that, not only is there a
procedure for solving systems or inverting matrices,

there's in fact a closed form formula.

The properties of the formula reveal facts about the solutions.



Integer inverses and solutions

Say you have an invertible matrix M with integer entries.
Does its inverse also have integer entries?
It does, if and only det(M) = +1.

Observe det(M)det(M~1) = det(MM~1) = 1. The determinant of
an integer matrix is always an integer —

. If M~1 has integer entries, then det(M) and
det(M~1) are two integers which multiply to 1, hence both +1.

Similarly, the Adj of an integer matrix is an integer:
. So, if det M = £1, then
M~! = Adj(M)/ det M is an integer matrix as well.



Integer inverses and solutions

Similarly, consider the equation Ax = b.

Assume

» A is square and has integer entries
> b has integer entries
> det(A) = £1

We saw that A~ has integer entries, so the (unique) solution
x = A !b also has integer entries.



Volumes

You probably have an intuitive notion of what volume means: the
that can fit inside something. For our purposes,
the is going to be cubes of a fixed side length:

Volume(S) ~ number of cubes that fit inside S

To be more precise,

_ number of cubes
Volume(S) = lim e 4™ . [ of side length €
0 that fit inside S

By this we mean: for S C R”, we overlay the e-mesh grid on S,
and count the number of cubes which fall completely inside.



Linear transformations and volumes

Let T : R" — R" be a linear transformation. Given a set X, we
want to think about how the volumes of X and T(X) compare.

The key observation is that the number of cubes in X is the same
as the number of T-transformed such cubes in T(X).
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Linear transformations and volumes

Filling the transformed cubes with yet smaller regular cubes, and
observing that the failure of these to pack correctly at the
boundary is washed out as ¢ — 0, we conclude:

Volume(X)  Volume(T (X))
Volume(cube) — Volume( T (cube))

Rearranging,

Volume( T(X)) = Volume( T (cube)) - Volume(X)

But what's Volume( T (cube))?



Linear transformations and volumes

Suppose now given two linear transformations, 7,5 : R" — R”.

We apply the

Volume( T (X)) = Volume( T (cube)) - Volume(X)

to the set X = S(cube):

Volume( T(S(cube))) = Volume( T (cube)) - Volume(S(cube))



Linear transformations and volumes

In other words, the function

V : linear transformations — R
T — Volume(T (unit cube))

respects multiplication in the sense that

V(T 0 S) = V(T)V(S)

Note also that V/(Identity) = 1, and V/(non invertible matrix) = 0.



Linear transformations and volumes

Now consider any linear transformation T.
If it's not invertible, V(T) = 0.

If it is invertible, then by row reduction we can expand it as a
product of elementary matrices,

T=E,---F
Since volume scaling is multiplicative,

V(T) = V(En)--- V(E1)



Linear transformations and volumes

It remains to understand volume scaling of elementary matrices.

Rescaling a row — stretching a coordinate — rescales volume by
the same factor: the volume of a box is the product of its side
lengths, and we rescaled one of them.

Switching two rows doesn’t change volume at all —
Adding a multiple of one row to another takes a box to a

parallelopiped with the same base and the same height, so again
doesn't change volume.



Determinants and volumes

So for an linear transformation,

Volume( T (unit cube)) = |det(T)|

Volume scaling is multiplicative, so this holds for any linear
transformation.

Collecting these observations, for any linear transformation
T :R" — R" and any set X C R”",

Volume( T (X)) = |det(T)| - Volume(X)



