
Hello and welcome to class!

Last time

We discussed the matrix-vector product and corresponding
formulation of linear equations. We also introduced the notions of
linear dependence and linear independence.

Today

We’ll see many equivalent conditions to the linear independence of
the rows or columns of a matrix. Then we’ll study linear
transformations and the matrices which represent them.



Review from last class



Matrices multiply vectors
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and thereby define functions

A : Rc ! Rr

x 7! Ax



When does Ax = b have solutions for any b?

In terms of the row reduced matrix

When every row of A has a pivot — as we saw last time, Ax = b
has a solution exactly when the augmented matrix [A|b] has no
pivots in the last column.

If there is already a pivot in every row of A, there can’t be a pivot
in the final column.



When does Ax = b have solutions for any b?

In terms of the rows

When the rows are linearly independent.

Recall this means that no nonzero linear combination of the rows
of A is zero.

Indeed, if there were such an expression, then by row operations, a
row of the form [0 0 · · · 0 |1] can be created in the augmented
matrix for some choice of b.



When does Ax = b have solutions for any b?

In terms of the columns

When the columns of A span the entire space.

Recall that solving Ax = b means expressing b as a linear
combination of the columns of A.



When does Ax = b have solutions for any b?

In terms of the associated function

When the function determined by the matrix A is onto — it hits
every point in Rr . Indeed, solving Ax = b means finding a point
which maps to b, and if every point is hit by the map, then this
can always be done.



When does Ax = b have solutions for any b?

If A has r rows and c columns, the following are equivalent

I Ax = b has solutions for any b

I The matrix A has a pivot in every row

I The rows of A are linearly independent

I The columns of A span all of Rr

I The function corresponding to A hits all of Rr .



The zero solution

Homogeneous equations always have the zero solution.

Ax = 0 is always solved by x = 0.

Inhomogenous equations do not. An inhomogenous equation need
have no solutions at all.



When does Ax = 0 have only the zero solution?

In terms of the row reduced matrix

When every column of A has a pivot

As we saw last time, this means we get to introduce zero free
parameters. Thus there is at most one solution. The zero solution
is a solution, and there are no others.



When does Ax = 0 have only the zero solution?

In terms of the columns

When the columns are linearly independent.

A solution to Ax = 0 is a way of writing 0 as a linear combination
of the columns of A. If this equations has only the zero solution
that means the only way of doing this is to have all the coe�cients
be zero which is the definition of linear independence of the
columns of A.



When does Ax = 0 have only the zero solution?

In terms of the rows

When the rows span.

I’ll let you think about this one. Hint: every column has a pivot.



When does Ax = 0 have only the zero solution?

In terms of the associated function

When the function determined by the matrix A is one-to-one — no
two distinct points in Rc are mapped to the same point in Rr .

Indeed, if two points x, y are sent to the same point, Ax = Ay,
then we have A(x� y) = 0. So if zero is the only solution, then
x� y = 0, or in other words, x = y. So the only way two points
can be sent to the same point is if they were the same point to
begin with.



When does Ax = b have solutions for any b?

If A has r rows and c columns, the following are equivalent

I Ax = 0 has only the zero solution.

I The matrix A has a pivot in every column

I The columns of A are linearly independent

I The rows of A span all of Rc

I The function corresponding to A carries distinct points to
distinct points.



A has r rows and c columns.

Ax = 0 implies x = 0

pivot in every column

columns linearly independent

rows span all of Rc

distinct points to distinct points

Ax = b has solutions for any b

pivot in every row

rows linearly independent

columns span all of Rr

hits all of Rr .

If A is square, i.e. r = c , there’s a pivot in every row if and only if
there’s a pivot in every column so these are all equivalent.



Span and linear independence

A collection of vectors v1, · · · , vk 2 Rn spans if every vector in Rn

can be written as a linear combination of the vi .

A collection of vectors v1, · · · , vk 2 Rn is linearly independent if,
whenever a1v1 + · · ·+ akvk = 0, then all the ai are zero.

A collection consisting of a single vector is linearly independent so
long as it’s not the zero vector, and two vectors are linearly
independent as long as one isn’t a multiple of the other.



Pictures of linear transformations

Shear



Pictures of linear transformations

Reflection



Pictures of linear transformations

Rotation
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Linear transformations

Geometrically, linear transformations take lines to lines. Our
definitions will also be such that they preserve the origin.

These two properties characterize linear transformations (assuming
you know what a line is), but we will prefer the following algebraic
definition.



Linear transformations

Definition

A linear transformation is a function T : Rc ! Rr such that

T (av + bw) = aT (v) + bT (w)



Reminder about functions

Given two sets X and Y , a function f : X ! Y gives some
element f (x) of Y for every element x of X .

We say that the domain of the function is X , and that the
codomain is Y .

The range is the subset of Y consisting of elements of the form
f (x) for some x in X .

The function is said to be one-to-one if no two elements of X map
to the same element of Y , and is said to be onto if every element
of Y is hit, i.e., the range and codomain are equal.



A has r rows and c columns; A : Rc ! Rr

Columns below have equivalent conditions (except in parethesis)

Ax = 0 implies x = 0

pivot in every column

columns linearly independent

rows span all of Rc

one-to-one

(can only happen if c  r)

Ax = b has solutions for any b

pivot in every row

rows linearly independent

columns span all of Rr

onto

(can only happen if r  c)

If A is square, i.e. r = c , there’s a pivot in every row if and only if
there’s a pivot in every column so these are all equivalent.



A (nonlinear) function example

We could define a function

t : this room ! R
each point ! the temperature there

The domain is this room, the codomain is R, and the range is
some subset of the interval (60�F , 110�F ). The function is not
onto or one-to-one.



Linear transformations

Definition

A linear transformation is a function T : Rc ! Rr such that

T (av + bw) = aT (v) + bT (w)

Note that Rc is the domain and Rr is the codomain.

The range and in particular if the function is onto, and whether
the function is one-to-one, depend on the details of T .



Example

Consider the following matrix
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The columns are linearly independent, so the linear transformation
is one-to-one. The columns don’t span, so it’s not onto.



Linear transformations

Definition

A linear transformation is a function T : Rc ! Rr such that

T (av + bw) = aT (v) + bT (w)

Example

The zero function T (x) = 0 for all x is linear, since

T (av + bw) = 0 = 0+ 0 = a0+ b0 = aT (v) + bT (w)



Linear transformations

Definition

A linear transformation is a function T : Rc ! Rr such that

T (av + bw) = aT (v) + bT (w)

Example

If A is a matrix with r rows and c columns, then we saw last time
that the following function is linear.

A : Rc ! Rr

x 7! Ax



Linear transformations

Definition

A linear transformation is a function T : Rc ! Rr such that

T (av + bw) = aT (v) + bT (w)

Nonexample

The function f (x) = x2 is not linear. Indeed

f (1 + 1) = (1 + 1)2 = 4 6= 2 = 12 + 12 = f (1) + f (1)



Try it yourself

Is it a linear transformation?

f (x) = 0 yes

f (x) = 2 no

f (x , y) = (x + 2y , y + 3x) yes

f (x , y) = xy no

f (x , y , z) = x + y + z yes



Rotation is a linear transformation

Because the sum of the rotated vectors is the rotation of the sum
of the vectors, i.e.,

Rotate(a+ b) = Rotate(a) + Rotate(b)

Geometrically, rotation preserves the rule for adding vectors.



Reflection is a linear transformation

Because the sum of the rotated vectors is the rotation of the sum
of the vectors, i.e.,

Reflect(a+ b) = Reflect(a) + Reflect(b)

Geometrically, reflection preserves the rule for adding vectors.



Shear is a linear transformation

Because the sum of the sheared vectors is the shear of the sum of
the vectors, i.e.,

Shear(a+ b) = Shear(a) + Shear(b)

Geometrically, shearing preserves the rule for adding vectors.



Rescaling is a linear transformation

Because the sum of the scaled vectors is the scaling of the sum of
the vectors, i.e.,

Scale(a+ b) = Scale(a) + Scale(b)

Geometrically, scaling preserves the rule for adding vectors.



The matrix of rotation

Consider rotation of the plane by the angle ✓

It takes (1, 0) to (cos ✓, sin ✓) and (0, 1) to (� sin ✓, cos ✓). A
matrix which does the same is


cos ✓ � sin ✓
sin ✓ cos ✓

�

Are these the same linear transformation?



Classifying linear transformations

Warmup

Describe all linear transformations from R to R.

Suppose T : R ! R is a linear transformation. Then T (1) has
some value t (in R). If you want to know what T (c) is for any
other c , you can write

T (c) = T (c · 1) = cT (1) = ct

Moreover the function defined by T (c) = ct is linear, since

T (cv + dw) = (cv + dw)t = cvt + dwt = c(vt) + d(wt)
= cT (v) + dT (w)

Thus, the linear functions from R ! R are exactly those functions
of the form T (c) = ct for some t 2 R.



Classifying linear transformations

Warmup, II

Describe all linear transformations from R to Rn.

Suppose T : R ! Rn is a linear transformation. Then T (1) has
some value t (in Rn). If you want to know what T (c) is for any
other c , you can write

T (c) = T (c · 1) = cT (1) = ct

Moreover the function defined by T (c) = ct is linear, since

T (cv+dw) = (cv+dw)t = cvt+dwt = c(vt)+d(wt) = cT (v)+dT (w)

Thus, the linear functions from R ! Rn are exactly those
functions of the form T (c) = ct for some t 2 Rn.



The matrix of a linear transformation

For linear maps T : Rm ! Rn, we can’t do the same thing, since
it’s no longer true that every vector in Rm is a scalar multiple of
some given vector.

But, every vector is a linear combination of the ei .
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The matrix of a linear transformation
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The matrix of a linear transformation

Thus the linear transformation T : Rm ! Rn is the linear
transformation associated to the matrix

⇥
T (e1) T (e2) · · · T (em)

⇤

whose columns are the T (ei ).



Example

The matrix of the linear transformation

f (x , y) = (3x + 5y , 2x + 4y , x + 2y)

We are supposed to evaluate f (e1) and f (e2) and stick them in as
the columns of the matrix. We have f (1, 0) = (3, 2, 1) and
f (0, 1) = (5, 4, 2), so the matrix is
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The matrix of rotation

Consider rotation of the plane by the angle ✓

It takes (1, 0) to (cos ✓, sin ✓) and (0, 1) to (� sin ✓, cos ✓). The
matrix which does the same is


cos ✓ � sin ✓
sin ✓ cos ✓

�



Try it yourself!

Find the matrix which performs the reflection in the x axis in 2
dimensions. 

1 0
0 �1

�



Composing linear transformations.

If S : Ra ! Rb and T : Rb ! Rc are linear transformations, then
so is their composition T � S : Ra ! Rc .

Indeed,

(T � S)(cv + dw) = T (S(cv + dw))

= T (cS(v) + dS(w))

= cT (S(v)) + dT (S(w))

= c(T � S)(v) + d(T � S)(w)

The transformations S ,T , and T � S are each determined by a
matrix. What’s the relation between these matrices?


