
Hello and welcome to class!

Last time

We learned more about row reduction, and interpreted linear
equations in terms of the linear span of vectors.

Today

I’ll talk about the matrix-vector product, and how linear equations
can be formulated in these terms.

I’ll then explain more about the algebraic and geometric
description of solution sets to linear equations.

Finally, I’ll start explaining the fundamental notions of linear
dependence and independence.



A parable



Systems of linear equations

3w + 5x + 4y + 3z = 2

2w + x + y + z = 6

w + x � y + z = �3

can be abbreviated via an augmented matrix

2

4
3 5 4 3 2
2 1 1 1 6
1 1 �1 1 �3

3

5

or written in vector form as

w

2

4
3
2
1

3

5+ x

2

4
5
1
1

3

5+ y

2

4
4
1
�1

3

5+ z

2

4
3
1
1

3

5 =

2

4
2
6
�3

3

5



The matrix-vector product

There is one more way to write systems of linear equations:

3w + 5x + 4y + 3z = 2

2w + x + y + z = 6

w + x � y + z = �3

can be written as
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The matrix-vector product

In general, a column vector with c entries (in Rc) can be
multiplied on the left by a matrix with r rows and c columns —
the matrix has as many columns as the original vector has rows —
to obtain a vector with r rows (in Rr ) — the new vector will have
as many rows as the matrix.

[matrix with r rows and c columns] [vector with c rows]
=

[vector with r rows]



The matrix-vector product

The formula
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Try it yourself!
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The matrix-vector product

So the equation
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is equivalent to the equation
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An example with numbers
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Expanding the product on the left, we find
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or in other words

3w + 5x + 4y + 3z = 2

2w + x + y + z = 6

w + x � y + z = �3



Ax = b

If we write
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Then the equation
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becomes simply Ax = b. Here A is called the matrix of coe�cients.



The matrix-vector product

The product Ax can also be written as
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That is, Ax is a linear combination of the columns of A, with
coe�cients given by the entries of the vector x.

The equation Ax = b asserts that the vector b is equal to this
linear combination of the columns of A.



An example with numbers
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The product on the left means a linear combination of the columns
of the matrix, weighted by the entries of the vector.
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or in other words

3w + 5x + 4y + 3z = 2

2w + x + y + z = 6

w + x � y + z = �3



A function from R4
to R3
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This map brought to you by the matrix
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Functions from matrices

If A is a matrix with r rows and c columns, and x 2 Rc is any
vector, then Ax 2 Rr .

So the matrix A defines a function (also called A):

A : Rc ! Rr

x 7! Ax

The equation Ax = b can be read as: which vectors x have the
property that their image under the function A is the vector b?



Functions from matrices

This is similar to the way that a number a determines a function
“multiplication by a”

a : R ! R
x 7! ax

Indeed, this is the case n = m = 1.



Linearity

The matrix-vector product has the following properties:

A(x+ y) = Ax+ Ay

A(cx) = c(Ax)

Functions with these two properties are said to be linear. In fact,
every linear function from Rc to Rr is multiplication by some
matrix. We will see why this is next time.



Thinking about linear equations

We have seen that linear equations can be interpreted as

I Asking for the intersection locus of lines or planes

I Asking how to write one vector as a linear combination of
given others

I Asking for vectors mapping to a given one under the linear
function associated to the coe�cient matrix

We know how to compute the solutions (row reduction).

Now we’ll discuss qualitative properties of the solution set.



Homogenous and inhomogenous equations

If Ax1 = b and Ax2 = b, then

A(x1 � x2) = Ax1 � Ax2 = b� b = 0

That is, the di↵erence between two solutions to the inhomogenous
equation Ax = b is a solution to the homogenous equation Ax = 0.

Di↵erently said, given one solution x = x0 to the inhomogenous
equation Ax = b, all other solutions are given by the sum of x0
and a solution to the homogenous equation Ax = 0.



Try it yourself

Find all solutions to the homogenous equation x + y = 0 and to
the inhomogenous equation x + y = 1. Graph your answers. How
do they compare?



Homogenous equations and linearity

If Ax1 = 0 and Ax2 = 0, then for any scalars c1, c2,

A(c1x1 + c2x2) = c1Ax1 + c2Ax2 = 0

In other words, any linear combination of solutions to a
homogenous equation is again a solution.

This is not true for inhomogenous equations! (Try x = 1.)



Homogenous equations and linearity

The solution set to a homogenous equation can be described as a
linear span.

To do this, as always, the first step is row reducing your system.

You are all expert row reducers now, so I’ll skip that step and just
start with an already reduced one.



Homogenous equations and linearity
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Homogenous equations and linearity

We read o↵ the solution from the augmented matrix
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Inhomogenous equations

The solution set of the inhomogenous equation Ax = b, if
nonempty, is a translate of the solution set of the homogenous
equation Ax = 0. Indeed, if Ax0 = b then for any x such that
Ax = 0, we have

A(x0 + x) = Ax0 + Ax = b+ 0 = b

Symbolically,

x0 + {solutions of Ax = 0} = {solutions of Ax = b}



Try it yourself!

Solve the following three systems of equations.
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Try it yourself!
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Linear dependence and independence

A collection of vectors v1, . . . , vk is said to be linearly dependent if
one of the vi can be written as a linear combination of the others.
Otherwise, it’s said to be linearly independent.

An equivalent characterization: the vectors are linearly dependent
if there is some collection of scalars ai , not all zero, such that

a1v1 + a2v2 + · · · akvk = 0
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The zero vector

The set containing only the zero vector, {0} is linearly dependent

1⇥ 0 = 0

More generally, any collection of vectors which includes the zero
vector is linearly dependent.

0⇥ v1 + 0⇥ v2 + · · · 0⇥ vn + 1 ⇥ 0 = 0



Elementary operations do not change linear independence

Suppose v1, v2, . . . , vn are linearly dependendent. Then so too are
any re-arrangement of these vectors and also any rescaling by
nonzero vectors.

Also, so are v1, v2 + cv1, v3, . . . , vn. Indeed, if

a1v1 + a2v2 + · · ·+ anvn = 0

then so too

(a1 � ca2)v1 + a2(v2 + cv1) + a3v3 + · · ·+ anvn = 0

Moreover, a1 � ca2 and a2 are both zero if and only if a1 and a2
are both zero.



Row reduction and linear independence

The rows of a reduced echelon matrix are linearly independent if
and only if there is no zero row. This is because each pivot sits in a
column with only zeros, so any non-zero linear combination of the
rows will see one of the pivot entries. So to check if a collection of
vectors is linearly dependent or linearly independent make them the
rows of a matrix, row reduce, and then look for a zero row!.

Is this true for an echelon matrix?

Think about it!



Try it yourself!
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