Hello, and welcome to class!

Last time
We introduced the notion of Fourier series, and discussed how to

expand a function into one.

This time
Having developed this tool, we return to studying the heat

equation.



Heat equation review

The heat equation in one variable is:

o 2
g u(x,t) = Bﬁ u(x, t)

We saw that some solutions are given by
u(x, t) = eM(A\e*VNB 4 By e V) A>0

u(x, t) = Ax+Bxx A=0
u(x, t) = e (Ay cos(xr/—\/B)+Bysin(x/—\/B)) A<0



Heat equation review

Last week, we considered a wire of length L,

whose endpoints were kept at temperature zero.

In other words, we imposed

u(0,t) =0=u(L,t)



Heat equation review

Of our above solutions, the only ones which take this form are the

e*sin(xy/—)\/pB) when \/=\/B = Nz /L

This led to a general solution of the form

uet) = 3 eve P tsin (NL)



Initial conditions and Fourier expansion

Finally suppose we are given the initial temperature in the form of
some function u(x,0). Our job now is to express

- N
u(x,0) = ey sin <L7rx>

In other words, to find values cy making the above formula true.
Because then the solution will be given by

B(4x) 2, (Nm
Z CNe L Sln <LX>



Initial conditions and Fourier expansion

The expression

. N
u(x,0) = Z cn sin <L7rx>
N=1

looks much like a Fourier expansion.

Two differences from last time: first, the function is only defined
on the interval [0, L], and second, we want to expand it only in sin
rather than in sin and cos.



Fourier series review

The Fourier series of a function f(x) defined on [—L, L] is

oo
a nmx . nNmTXx
2(]+nglancos7z+b,,sm7z

1 L

ap = L/L f(x)cosnLLde
1 /L

b, = L/—L f(x)sin nLLde



Initial conditions and Fourier expansion

To absorb these differences, we the function f to [—L, L]
simply by defining f(—x) = —f(x).

This has the virtue of ensuring that the extension is an odd
function, which therefore has a Fourier expansion consisting only of

sin “7* waves, exactly as we wanted.

In interpreting the answer, we just ignore the value of the function
on [—L,0].



Example

Consider a wire of length L and diffusivity 8 in which the initial
temperature is described by the function

(x) X 0<x<L/2
u =
L—x L/2<x<lL

and in which the temperature at the endpoints is kept at zero.

Let us determine the temperature in the wire as a function of time.

First, we should expand out u(x) into its sin Fourier series.



Example

That is, we want to compute

2 L
b, = L/o f(x)sin (?) dx

2 /L/2 ./ nmTXx /L . /nmx
= — xsin ([ — ) dx + L — x)sin | — ) dx
([ (s 1t ()

2 L 2 nm/2 ™
= (> / usinudu—i—/ (nm — u)sinudu
L nm 0 nﬂ-/2

Noting [ usin udu = sin u — ucos u, this is

2/ LN (.
Z E SINuU — ucosu

nm/2 nm

— [sin u—ucosu

0 nm/2

— [mr cosu



Example

nm/2 nm

n7r/2>

— |:n7T cos u
nm/2

— [sinu— ucosu

0

Ge) (s

Z E SINU — ucosu
2/ L\? nm 41 nm
- (W> (2sin5) = (2 5" 2

Thus the Fourier expansion of the original function u(x) is

1 1 1
u(x) = <S|n(x)—95|n3x+255|n5x—495|n7x+~-'>



Example

And finally, having written the initial condition as

aL (. 1. 1 . 1 .
u(x):; sm(x)—§sm3x+£sm5x—Esm7x+--'

we see that the time evolution is given by

4L )2 1 )2 1 72 ‘
u(x, t) = = <eB(L) Fsin(x) — 6676(%) “sin3x + gefﬁ(ﬁ) Fsinbx — -



Example

Another sort of boundary condition we might impose is, instead of
fixing the initial and final temperatures to be zero, that the wire is
insulated, i.e., the derivatives %u(x, t) vanish identically at O, L.

Let's revisit our possible solutions.

u(x, t) = eM(Aye*V MB 4 Bye XV ’\/5) A>0
u(x,t) = Ax+Byx A=0
u(x, t) = e (Ay cos(xr/—\/B)+Bysin(xy/—\/B)) A<O0

Try it yourself: which satisfy the boundary conditions?



Example

Yet a third scenario: we could consider ask that at 0 and at L, the
temperature is fixed to be some given constants U; and U»,
possibly nonzero.

Again, we should look at our possible solutions,

u(x, t) = eM(AyeVME 4 B e VAB) A>0
u(x,t) = Ax+Bix A=0
u(x, t) = eM(Ay cos(x\/—A\/B)+Bysin(x/—\/f)) A<O0

Try it yourself: which satisfy the boundary conditions?



