
Hello, and welcome to class!

Last time

We introduced the notion of Fourier series, and discussed how to
expand a function into one.

This time

Having developed this tool, we return to studying the heat
equation.



Heat equation review

The heat equation in one variable is:
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We saw that some solutions are given by
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Heat equation review

Last week, we considered a wire of length L,

whose endpoints were kept at temperature zero.

In other words, we imposed boundary conditions

u(0, t) = 0 = u(L, t)



Heat equation review

Of our above solutions, the only ones which take this form are the

e�t sin(x
p
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This led to a general solution of the form
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Initial conditions and Fourier expansion

Finally suppose we are given the initial temperature in the form of
some function u(x , 0). Our job now is to express
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In other words, to find values cN making the above formula true.
Because then the solution will be given by
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Initial conditions and Fourier expansion

The expression

u(x , 0) =
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looks much like a Fourier expansion.

Two di↵erences from last time: first, the function is only defined
on the interval [0, L], and second, we want to expand it only in sin
rather than in sin and cos.



Fourier series review

The Fourier series of a function f (x) defined on [�L, L] is
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Initial conditions and Fourier expansion

To absorb these di↵erences, we extend the function f to [�L, L]
simply by defining f (�x) = �f (x).

This has the virtue of ensuring that the extension is an odd
function, which therefore has a Fourier expansion consisting only of
sin n⇡x

L waves, exactly as we wanted.

In interpreting the answer, we just ignore the value of the function
on [�L, 0].



Example

Consider a wire of length L and di↵usivity � in which the initial
temperature is described by the function

u(x) =

(
x 0  x  L/2

L� x L/2  x  L

and in which the temperature at the endpoints is kept at zero.

Let us determine the temperature in the wire as a function of time.

First, we should expand out u(x) into its sin Fourier series.



Example

That is, we want to compute
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Noting
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Example
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Thus the Fourier expansion of the original function u(x) is
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Example

And finally, having written the initial condition as
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we see that the time evolution is given by
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Example

Another sort of boundary condition we might impose is, instead of
fixing the initial and final temperatures to be zero, that the wire is
insulated, i.e., the derivatives @

@x u(x , t) vanish identically at 0, L.

Let’s revisit our possible solutions.

u(x , t) = e�t(A�e
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Try it yourself: which satisfy the boundary conditions?



Example

Yet a third scenario: we could consider ask that at 0 and at L, the
temperature is fixed to be some given constants U1 and U2,
possibly nonzero.

Again, we should look at our possible solutions,
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Try it yourself: which satisfy the boundary conditions?


