
Hello and welcome to class!

Last time
We looked at the heat and wave equations and found that, at least

for initial conditions which can be decomposed into sums of sines,

we could describe a solution.

This time
We learn that all functions can be decomposed into sines and

cosines.



Periodicity

A function f : R ! R is called periodic with period T if

f (x + T ) = f (x) for all x



Periodicity

Some functions which are periodic with period 2⇡:

sin(x), cos(x), sin(x) + cos(x), sin(x + 3).

They are also periodic with period 4⇡. They are also periodic with

period 6⇡. They are also periodic with period 8⇡.

We say that 2⇡ is the fundamental period of these functions.



Periodic functions?

Often, we are interested in the behavior of some finite region of

space, e.g. [0, L]. Perhaps the most natural thing to do would be

to consider functions that are only defined on this region.



Periodic functions?

We will see it is more convenient to instead consider functions

which are defined on all of R but are periodic with period L.



Periodic functions?

That is, if we start out with a function f with domain [0, L], we
can get a function with domain R by setting

f (x) := f (x ± whatever multiple of L is required to put it in [0, L])



Periodic functions?

Note the result can be discontinuous. That’s ok, we’ll allow

ourselves functions with finitely many discontinuities.



Fourier series

Given a periodic function, let us say with period 2L,

We will try and express it as a sum of the periodic functions we

know with period 2L,

Namely, sin(
n⇡
L x) and cos(

n⇡
L x) for integers n > 0, and the

constant function.

Such an expression is called a Fourier series.



Fourier series

Intuitively, the idea is that, from very far away, the graph of a

periodic function just looks like a straight line, some constant

function. Subtracting o↵ this constant and zooming in, we see

oscillations at some characteristic frequency. The simplest such

oscillations look like sin and cos waves; we estimate the function

by these, subtract this o↵, zoom in further, and repeat the process.



Orthogonality

The above description of iteratively subtracting o↵ successive

approximations may remind you of taking orthogonal projections.

Thus our first step is finding an inner product on the space of

functions with respect to which sin(
n⇡
L x) and cos(

n⇡
L x) and the

constant function are orthogonal.

Fortunately, we do not have to look very hard.



Orthogonality

Theorem
The functions sin(n⇡L x), and cos(

n⇡
L x) (for integers n > 0), and the

constant function are orthogonal with respect to the inner product

hf , gi =
Z L

�L
f (x)g(x)dx

Their lengths-squared are

hsin(n⇡
L
x), sin(

n⇡

L
x)i =

Z L

�L
sin(

n⇡

L
x) sin(

n⇡

L
x)dx = L

hcos(n⇡
L
x), cos(

n⇡

L
x)i =

Z L

�L
cos(

n⇡

L
x) cos(

n⇡

L
x)dx = L

h1, 1i =
Z L

�L
dx = 2L



Orthogonality

Let’s check some of the assertions of this theorem.

For instance, it is saying

Z L

�L
sin

⇣n⇡
L
x
⌘
cos

⇣m⇡

L
x
⌘
dx = 0

This is true because the integrand is the product of an even

function with an odd function, hence odd and we are integrating it

over a region symmetric under x ! �x .



Orthogonality

It also is saying, when n 6= m,

Z L

�L
sin

⇣n⇡
L
x
⌘
sin

⇣m⇡

L
x
⌘
dx = 0

The identity cos(a+ b) = cos(a) cos(b)� sin(a) sin(b), converts
the above into the (more visibly true) formula

1

2

Z L

�L
cos

✓
(n �m)⇡

L
x

◆
� cos

✓
(n +m)⇡

L
x

◆
= 0

Note that when n = m, the first of the above cos is cos(0) = 1, so

the integral yields L, as asserted by the theorem.



Orthogonal projections

Recall that, in an inner product space, the orthogonal projection of

a vector v to the space spanned by the vector w was given by

✓
hv,wi
hv, vi

◆
w

And, given an orthogonal set w1,w2, . . . ,wn, the orthogonal

projection of v to the space they span is given by

✓
hv,w1i
hv, vi

◆
w1 +

✓
hv,w2i
hv, vi

◆
w2 + · · ·+

✓
hv,wni
hv, vi

◆
wn

If the wi were a basis, then this is the expression of v in that basis.



Fourier series

Now we apply that to the orthogonal set we have just found. If f
is a function with domain [�L, L], then its Fourier series is:

 R L
�L f (x)dx

2L

!
· 1 +

1X

n=1

 R L
�L f (x) cos

�
n⇡
L x
�
dx

L

!
cos

⇣n⇡
L
x
⌘

+

1X

n=1

 R L
�L f (x) sin

�
n⇡
L x
�
dx

L

!
sin

⇣n⇡
L
x
⌘

Note the complicated expressions in parenthesis are just numbers,

and are the analogues of the

⇣
hv,wi i
hv,vi

⌘
.



Fourier series

Said with less symbols on each line, the Fourier series of a function

is an expression of the form

a0
2

+

1X

n=1

an cos
n⇡x

L
+ bn sin

n⇡x

L

where

an =
1

L

Z L

�L
f (x) cos

n⇡x

L
dx

bn =
1

L

Z L

�L
f (x) sin

n⇡x

L
dx



Fourier series

If we had been working in a finite dimensional vector space, and if

it had been true that the functions sin
n⇡x
L , cos

n⇡x
L , plus the

constant function gave a basis, then, by orthogonality, the Fourier

series would be the expansion in this basis.

In particular, a function would be equal to its Fourier series.

In fact, this is true here as well, in a certain sense and under

appropriate conditions.



Fourier series

Theorem
If f is piecewise continuous on [�L, L], then

R x
�L f (x)dx can be

computed termwise from the Fourier series.

If in addition f 0 is piecewise continuous, then the Fourier series
converges pointwise to f away from the discontinuities.

If in fact f is continuous (and takes the same value at ±L), and f 0

is piecewise continuous, then the convergence is uniform.

Finally, if f is continuous (and takes the same value at ±L), and f 0

and f 00 are both piecewise continuous, then the Fourier series for f
can be di↵erentiated term-by-term to get the Fourier series of f 0.



Computing the Fourier coe�cients

Consider the “square wave” function f (x) with period 2⇡ which

takes value �1 on [0,�⇡] and value 1 on [0,⇡]. Let us determine

its Fourier series.

We should compute the coe�cients

an =
1

⇡

Z ⇡

�⇡
f (x) cos(nx)dx

bn =
1

⇡

Z ⇡

�⇡
f (x) sin(nx)dx

First note the coe�cients an all vanish: f (x) is odd, hence
cos(x)f (x) is odd, hence its integral from �⇡ to ⇡ is zero.



Computing the Fourier coe�cients

As for the bn, we have

1

⇡

Z ⇡

�⇡
f (x) sin(nx)dx =

2

⇡

Z ⇡

0
sin(nx)dx

= � 2

n⇡
cos(nx)

��⇡
0

= � 2

n⇡
((�1)

n � 1)

Thus the Fourier series is given by

f (x) =
4

⇡

✓
sin(x) +

1

3
sin 3x +

1

5
sin 5x + · · ·

◆



Computing the Fourier coe�cients

Consider the periodic function with period 2⇡ given by |x | in
[�⇡,⇡]. Let us determine its Fourier series.

We should compute the coe�cients

an =
1

⇡

Z ⇡

�⇡
f (x) cos(nx)dx

bn =
1

⇡

Z ⇡

�⇡
f (x) sin(nx)dx

First note the coe�cients bn all vanish: f (x) is even, hence
sin(x)f (x) is odd, hence its integral from �⇡ to ⇡ is zero.



Computing the Fourier coe�cients

We have a0 =
1
⇡

R ⇡
�⇡ |x |dx = ⇡2

; the other an are:

1

⇡

Z ⇡

�⇡
|x | cos(nx)dx =

2

⇡

Z ⇡

0
x cos(nx)dx

=
2

⇡

✓
x
sin(nx)

n

����
⇡

0

�
Z ⇡

0

sin(nx)

n
dx

◆

=
2

⇡n2
[cos(nx)|⇡0

=
2

⇡n2
((�1)

n � 1))

Thus the Fourier series is given by

f (x) =
⇡2

2
� 4

⇡

✓
cos(x) +

1

9
cos(3x) +

1

25
cos(5x) + · · ·

◆


