
Hello and welcome to class!

For some time now

We have been studying linear ordinary di↵erential equations.

This time

We turn to linear partial di↵erential equations. These are
equations in which the function for which we are solving may
depend on many variables, and we may take derivatives with
respect to all of them. Rather than develop a systematic theory,
we will mostly focus on a few examples of physical importance.



The heat equation

Let us try and understand how heat flows in a substance.

We will first discuss the one dimensional case.

This means either you should imagine the substance is one
dimensional, or close to it, e.g. a very thin wire, or just that the
temperature is constant in two of the dimensions, and only varies
along the third. We will moreover imagine that the material in
question is uniform.



Temperature facts

Imagine that we add energy (heat) to the system. The
temperature will change proportionally. That is, per unit time:

change in temperature ⇠ change in heat

amount of stu↵

Also, as it turns out, having a temperature di↵erence causes heat
to flow, proportionally to the di↵erence

heat flow

per unit time
⇠ change in temperature

distance to flow



The heat equation

Let’s rewrite things in terms of symbols.

We’ll write u(x , t) for the function giving the temperature at
location x and time t, and H(x , t) for the heat flowing. Then the
first equation

change in temperature

per unit time
⇠ change in heat

(amount of stu↵)(per unit time)

says

�u(x , t)

�t
⇠ �H

�x�t



The heat equation

The second equation

heat flow

per unit time
⇠ change in temperature

distance to flow

says
�H

�t
⇠ �u

�x

Combining this with the previous equation �u
�t ⇠ �H

�x�t , and
replacing di↵erence with derivative, we get the heat equation

@u

@t
⇠ @2

u

@x2



The heat equation

We restore now the proportionality constant. It will depend on
various properties of the substance; the heat capacity, the density,
the thermal conductivity; but is a positive constant.

@u

@t
= �

@2
u

@x2

The analogue of the “initial value problem” in this setting is the
following. One should specify the temperature distribution in the
wire at some initial time t0. This is the data of a function in one
variable, u(x , t0). One should also say how the ends of the wire
will behave during the whole evolution.



Separation of variables

Recall that we understand linear vector ODE, i.e., equations like

d

dt
u = Au

Given a function of two variables like u(x , t), one can specify one
of the variables to get a function in the other. I.e., u(x , 0) and
u(x , 1) are just functions in x .

So, one way to think of a function of two variables like u(t, x) is as
a function of t valued in the vector space of functions in x .



Separation of variables

Now our equation

d

dt
u(x , t) = �

d
2

dx2
u(x , t)

looks a lot like
d

dt
u(t) = Au(t)

where now the vector space V in which u(t) takes values is
replaced by the vector space of functions in x ,

and the linear transformation A on V is replaced by the linear
transformation d

2

dx2
on the space of functions of x .



Separation of variables

We know how to solve d

dt
u(t) = Au(t): given an eigenvector v of

A with eigenvalue �, a solution is given by ve�t .

To solve d

dt
u(x , t) = � d

2

dx2
u(x , t), we want an eigenvector v(x) of

the operator � d
2

dx2
(in this context, often called an eigenfunction),

with eigenvalue �, and then a solution will be given by v(x)e�t .

Finding an eigenfunction of � d
2

dx2
of eigenvalue � means solving

�
d
2

dx2
v(x) = �v(x)



Separation of variables

The general solution of � d
2

dx2
v(x) = �v(x) is

v(x) = Ae
x

p
�/� + Be

�x

p
�/�

where we will have to replace these by sin and cos in case
�/� < 0, (i.e., since � > 0, when � < 0).

So some solutions to d

dt
u(x , t) = � d

2

dx2
u(x , t) are given by

u(x , t) = e
�t(A�e

x

p
�/� + B�e

�x

p
�/�) � > 0

u(x , t) = e
�t(A�+B�x) � = 0

u(x , t) = e
�t(A� cos(x

p
��/�)+B� sin(x

p
��/�)) � < 0



Separation of variables

As for the equation d

dt
u(t) = Au(t), we can get more solutions by

taking linear combinations of these solutions:

u(x , t) =
X

�>0

e
�t(A�e

x

p
�/� + B�e

�x

p
�/�)

+ A0 + B0x

+
X

�<0

e
�t(A� cos(x

p
��/�) + B� sin(x

p
��/�))



Boundary values

Suppose our system system is a wire of length L in which the
temperature at the ends is fixed at zero. Let us coordinatize our
wire to run from 0 to L.

This constrains which functions in the previous expression are
allowed.

One can think of it as restricting saying that we are considering
solving the equations inside the vector space of functions with the
above properties.



Boundary values

So, let us see which of the expressions A�e
x

p
�/� + B�e

�x

p
�/�

and A� cos(x
p
��/�) + B� sin(x

p
��/�) can possibly vanish at

x = 0 and x = L.

A�e
x

p
�/� + B�e

�x

p
�/� evaluates to

A� + B� = 0

A�e
L

p
�/� + B�e

�L

p
�/� = 0

Hence A� = B� = 0, since otherwise e
L

p
�/� = e

�L

p
�/� , which

can never happen (take a log).



Boundary values

Trying A0 + B0x , we find this says A0 = 0 and A0 + B0L = 0,
hence A0 = B0 = 0.

Finally, we consider A� cos(x
p

��/�) + B� sin(x
p

��/�). The
vanishing at x = 0 implies that A� = 0. The vanishing at x = L

implies that L
p

��/� must be some integer multiple of ⇡, let us
say N⇡. In other words,

p
��/� = N⇡/L

� = ��

✓
N⇡

L

◆2



Boundary values

In sum, the solutions which obey the boundary value conditions
are:

u(x , t) =
1X

N=1

cNe
��(N⇡

L
)2t sin

✓
N⇡

L
x

◆



An initial-boundary value problem

Consider a wire of length ⇡ (from x = 0 to x = ⇡), di↵usivity
� = 1, and with initial temperature (t = 0) distributed as

u(x , 0) = sin(x) + 3 sin(2x) + 5 sin(3x)

What is the temperature distribution at time t = 1?

Setting � = 1 and L = ⇡ in our general solutions gives

u(x , t) =
1X

N=1

cNe
�N

2
t sin (Nx)

Asking for this to agree with the initial condition means that
c1 = 1, c2 = 3, c3 = 5 and all other coe�cients vanish. So,

u(x , 1) = e
�1 sin(x) + 3e�4 sin(2x) + 5e�9 sin(3x)



The wave equation

Consider a string stretched horizontally between two points, but
free to vibrate up and down. We will write y(x , t) for the height at
horizontal position x and time t.

It turns out that the vibration of the string is governed by the
equation

@2

@t2
y(x , t) = ↵2 @2

@x2
y(x , t)

In fact, one can derive this equation by imagining that the string is
made up of infinitely many tiny springs, but I won’t do this here.



The wave equation

To solve this equation, let’s again compare it to the ODE

d
2

dt2
y(t) = Ay(t)

Given an eigenvector v for A with eigenvalue �, we would get
solutions of the form Ae

p
�t + Be

�
p
�t for � > 0, or solutions

A cos(t
p
��) + B sin(t

p
��) for � < 0.

For the vibrating string with endpoints fixed at say 0, L, the
operator A above is replaced with the operator ↵2 d

2

dx2
on the vector

space of functions in x which vanish at 0, L.



The wave equation

We saw that the eigenfunctions for ↵2 d
2

dx2
with these boundary

conditions are given by sin
�
n⇡x
L

�
, which has eigenvalue �↵2

�
n⇡
L

�2

The corresponding solution to the wave equation will be

y(x , t) =
⇣
A cos

⇣
n⇡↵t

L

⌘
+ B sin

⇣
n⇡↵t

L

⌘⌘
sin

⇣
n⇡x

L

⌘

More general solutions will be given as linear combinations of these.


