
Hello and welcome to class!

Last time
We talked about higher order linear ODE.

This time
We will discuss systems of linear ODE.



Systems of linear ODE

Recall that a linear ODE was something like this:

y 00(t) + sin(t)y(t) = cos(t)

A system of linear ODE is something like this:

y 00(t) + sin(t)x(t) = et

x 0(t) + t2y(t) = 10t



Systems of linear ODE

More formally, a linear ODE was something like this:

✓
an(t)

dn

dtn
+ · · ·+ a0(t)

◆
y(t) = f (t)

A system of linear ODE is something like this:

✓
An(t)

dn

dtn
+ · · ·+ A0(t)

◆
y(t) = f(t)

I.e., exactly the same sort of thing, except now the functions are

vector-valued (i.e., they are maps R ! Rn
rather than R ! R)

and the coe�cients are matrix-valued functions.



Systems of linear ODE

For example, the linear system

y 00(t) + sin(t)x(t) = et

x 0(t) + t2y(t) = 10t

could be also written as

✓✓
0 0

0 1

◆
d2

dt2
+

✓
1 0

0 0

◆
d

dt
+

✓
0 t2

sin(t) 0

◆◆✓
x(t)
y(t)

◆
=

✓
10t
et

◆



Vector valued functions

Implicit in this discussion has been the understanding that the set

of functions f : R ! Rn
is a vector space, with componentwise

addition and scalar multiplication.

E.g., if f(t), g(t) are maps R ! R3
, we might write a linear

combination of them af(t) + bg(t) as:

a

0

@
f1(x)
f2(x)
f3(x)

1

A+ b

0

@
g1(x)
g2(x)
g3(x)

1

A =

0

@
af1(x) + bg1(x)
af2(x) + bg2(x)
af3(x) + bg3(x)

1

A



Matrix valued functions

Some, but by no means all, linear transformations on the space of

vector valued functions are given by matrix multiplication by

matrix valued functions.

For example,

✓
sin(t) t2

et 4

◆✓
f (t)
g(t)

◆
=

✓
sin(t)f (t) + t2g(t)
et f (t) + 4g(t)

◆



Why?

Systems of ODE arise when several quantities are varying

simultaneously and depend on each other.

For example, consider a planet of mass m orbiting a star of mass

M. We will take our coordinates so that the star is fixed, and

disregard the pull of the planet on the star. Then the planet has

coordinates x(t) = (x1(t), x2(t), x3(t)), and Newton’s law of

gravitation asserts

mx00(t) = �GMm

||x||3 x

That’s a system of 3 nonlinear ODE.



Why?

This system is governed by the equations

m1x
00
1 (t) = �k1x1(t) + k2(x2(t)� x1(t))

m2x
00
2 (t) = �k2(x2(t)� x1(t))� k3x2(t)



Why?

Systems of linear ODE arise in, e.g., questions involving:

I springs attached to other springs

I more generally, complicated mechanical systems

I electrical circuits with resistors, inductors, and capacitors

I chemical processes not at equilibrium

I predator-prey models

I ... and in many more situations!



All linear ODE are first order ODE

You can also turn a single n’th order linear ODE into a system of

first order linear ODE.

E.g., the second order linear ODE y 00(t)� ty(t) = 0 is equivalent

to the first order system

y 0(t) = z(t)

z 0(t) = ty(t)

which we could also write as

d

dt

✓
y(t)
z(t)

◆
=

✓
0 1

t 0

◆✓
y(t)
z(t)

◆



All linear ODE are first order ODE

For that matter, any system of linear ode can be written as a first

order system, by introducing variables which take the place of the

higher derivatives. E.g.,

x 001 (t) = x1(t) + x 01(t) + x2(t)

x 002 (t) = 2x1(t) + x2(t) + x 02(t)

can also be viewed as a first-order system by introducing functions

y1, y2 which play the roles of the x 01, x
0
2:

x 01(t) = y1(t)

x 02(t) = y2(t)

y 01(t) = x1(t) + y1(t) + x2(t)

y 02(t) = 2x1(t) + x2(t) + y2(t)



Try it yourself!

Write y 000(t) + y 00(t) + y 0(t) + y(t) = 0 as a first order system.

d

dt

0

@
y(t)
y 0(t)
y 00(t)

1

A =

0

@
0 1 0

0 0 1

�1 �1 �1

1

A

0

@
y(t)
y 0(t)
y 00(t)

1

A

I didn’t rename the derivatives of y , which is common practice.



Normal form

Thus any system of linear ODE can be written in the form

d

dt
v(t) = A(t)v(t) + f(t)

where v(t) is a vector valued indeterminate function (i.e., that we

are interested in solving for), A(t) is a matrix valued function, and

f(t) is a given function.

This is called an equation in normal form, and it is homogenous

when f(t) = 0.



Existence and uniqueness

For any continuous A(t) and f(t), any time t0, and any given

vector v0 2 Rn
, the equation v0(t) = A(t)v(t) + f(t) has a unique

solution with v(t0) = v0.

Equivalently, for any fixed number s, the following linear morphism

is an isomorphism.

evs : solutions ! Rn

v 7! v(s)



The Wronskian

So if v1, . . . , vn are a collection of n solutions to a system of n
linear ODE, then the morphism

evs : Span(v1, . . . , vn) ! Span(v1(s), . . . , vn(s))

v 7! v(s)

is an isomorphism for every s.

In particular, the vi span the solution space if and only if the vi (s)
span Rn

, which happens if and only if the determinant of the

matrix whose columns are the vi (s) is nonzero. This is called the

Wronskian determinant.



Fundamental matrix

Given a homogenous system v0(t) = A(t)v(t), we can collect a

basis v1, . . . , vn for the solution space into a matrix V (t) whose
columns are the vi .

Note that such a matrix satisfies the matrix equation

V 0
(t) = A(t)V (t)

because each of its columns does.

Conversely, any matrix satisfying the above equation has columns

which satisfy the vector equation.



Fundamental matrix

Consider a matrix V (t) satisfying V 0
(t) = A(t)V (t).

By the existence and uniqueness theorem, the following are

equivalent:

I The columns of V (t) are linearly independent as vector valued

functions

I The columns of V (t) are linearly independent as vectors for

some t

I The determinant of V (t) never vanishes

I The determinant of V (t) is nonzero for some t.

A matrix V (t) satisfying the above is called a fundamental matrix

for the system.



Example

For example, consider the system x0(t) = Ax(t), where

A =

0

@
1 �2 2

�2 1 2

2 2 1

1

A

Let us check that matrix

X (t) =

0

@
e3t �e3t �e�3t

0 e3t �e�3t

e3t 0 e�3t

1

A

is a fundamental matrix.



Example

There are two things to check. First, that the columns of X (t) are
solutions, or in other words, that X 0

(t) = AX (t). Second, that the
columns are linearly independent. Let us check the first thing:

X (t) =

0

@
e3t �e3t �e�3t

0 e3t �e�3t

e3t 0 e�3t

1

A X 0
(t) =

0

@
3e3t �3e3t 3e�3t

0 3e3t 3e�3t

3e3t 0 �3e�3t

1

A

AX (t) =

0

@
1 �2 2

�2 1 2

2 2 1

1

A

0

@
e3t �e3t �e�3t

0 e3t �e�3t

e3t 0 e�3t

1

A

=

0

@
3e3t �3e3t 3e�3t

0 3e3t 3e�3t

3e3t 0 �3e�3t

1

A



Example

Now that we know X 0
(t) = AX (t), we know that the columns of

X (t) are linearly independent if and only if this is true at some

given value of t.

t = 0 is a particularly good choice:

X (t) =

0

@
e3t �e3t �e�3t

0 e3t �e�3t

e3t 0 e�3t

1

A X (0) =

0

@
1 �1 �1

0 1 �1

1 0 1

1

A

It is easy to see that X (0) is invertible e.g. by computing its

determinant, or by row reducing. Thus we have checked that X (t)
is a fundamental matrix.



Try it yourself

Show that the equation

x0(t) =

✓
2 �1

3 �2

◆
x(t)

has a fundamental matrix

X (t) =

✓
et e�t

et 3e�t

◆



Using a fundamental matrix

Suppose you know a fundamental matrix for an equation

V 0
(t) = A(t)V (t) and now want to solve the initial value problem

v0(t) = A(t)v(t) subject to some initial values v(t0) = v0.

Because V (t) is a fundamental matrix, any solution is a linear

combination of its columns, i.e. takes the form v(t) = V (t)c for

some coe�cient vector c.

We want to find v(t) such that v(t0) = V (t0)c = v0. Thus
c = V (t0)�1v0 and so v(t) = V (t)V (t0)�1v0.



Using a fundamental matrix

For example, we saw that the equation x0(t) =

✓
2 �1

3 �2

◆
x(t)

has a fundamental matrix X (t) =

✓
et e�t

et 3e�t

◆
.

Let us solve the initial value problem for a x(t) with x(0) = (1, 2).

x(t) = X (t)X (0)
�1x(0) =

✓
et e�t

et 3e�t

◆✓
1 1

1 3

◆�1✓
1

2

◆

=
1

2

✓
et e�t

et 3e�t

◆✓
3 �1

�1 1

◆✓
1

2

◆
=

1

2

✓
et e�t

et 3e�t

◆✓
1

1

◆

=
1

2

✓
et + e�t

et + 3e�t

◆



Try it yourself

We saw that the equation x0(t) = Ax(t), where

A =

0

@
1 �2 2

�2 1 2

2 2 1

1

A

has a fundamental matrix

X (t) =

0

@
e3t �e3t �e�3t

0 e3t �e�3t

e3t 0 e�3t

1

A

Find some x(t) satisfying x0(t) = Ax(t) such that x(0) = (1, 2, 3).


