
Hello and welcome to class!

Last time
We finished talking about second order constant coe�cient linear
ordinary di↵erential equations.

This time
We discuss the generalization to the higher order case. This is
relatively straightforward at least if you completely understood the
second order case.



Warm-up

Solve the di↵erential equation

y 00(x) + 6y 0(x) + 5y(x) = e�x

subject to the initial values y(0) = 1 and y 0(0) = 2.

The auxiliary polynomial factors as z2 + 6z + 5 = (z + 1)(z + 5).

So does the di↵erential operator: the equation can be written as:



Warm-up

✓
d

dx
+ 5

◆✓
d

dx
+ 1

◆
y = e�x

Thus a basis for the solution space of the homogenous equation is
given by e�x , e�5x .

To find one solution of the inhomogenous equation, we know we
should try xex .

✓
d

dx
+ 5

◆✓
d

dx
+ 1

◆
xe�x =

✓
d

dx
+ 5

◆
e�x = 4e�x

So one solution to the inhomogenous equation is given by 1
4xe

�x .



Warm-up

Thus the general solution to the inhomogenous equation is

y(x) = Ae�x + Be�5x +
1

4
xe�x

We now want to find A and B such that

1 = y(0) = Ae�x + Be�5x +
1

4
xe�x

��
x=0

= A+ B

2 = y 0(0) = �Ae�x �5Be�5x +
1

4
e�x � 1

4
xe�x

��
x=0

= �A�5B+
1

4



Warm-up

It remains to solve the linear equation

✓
1

7/4

◆
=

✓
1 1
�1 �5

◆✓
A
B

◆

Inverting the matrix,

✓
A
B

◆
= �1

4

✓
�5 �1
1 1

◆✓
1

7/4

◆
=

✓
27/16
�11/16

◆

Thus the final answer is

y(x) =
27

16
e�x � 11

16
e�5x +

1

4
xe�x



Some linear operations on functions

Multiplying by a function is linear, by the distributive property.

a(x)· : functions ! functions

f (x) 7! a(x)f (x)

Taking a derivative is also linear:

d

dx
: di↵erentiable functions ! functions

f (x) 7! f 0(x)



Linear di↵erential operators

Definition
An n’th order linear di↵erential operator is a linear map of the form

f (x) 7! an(x)f
(n)(x)+an�1(x)f

(n�1)(x)+· · ·+a1(x)f
0(x)+a0(x)f (x)

We denote this linear map by

an(x)
dn

dxn
+ an�1(x)

dn�1

dxn�1
+ · · ·+ a1(x)

d

dx
+ a0(x)



Linear di↵erential operators

The operator f 7! d
dx (a(x)f (x)) is also a linear map.

Indeed, it is the composition of two linear maps, namely
multiplication and di↵erentiation.

However, they are placed in the opposite order as we have allowed
in the definition.

Why isn’t it allowed?



Linear di↵erential operators

The answer is that we did allow this operator.

Observe:

d

dx
(a(x)f (x)) = a0(x)f (x) + a(x)f 0(x) =

✓
a0(x) + a(x)

d

dx

◆
f (x)

In fact, any product of linear di↵erential operators is again a linear
di↵erential operator, though some work must be done to write it in
the form specified in the definition.



Linear di↵erential equations

Definition
An n’th order homogenous linear ordinary di↵erential equation is

Ly(x) = 0

where L is an n’th order linear di↵erential operator.

An n’th order inhomogenous linear ordinary di↵erential equation is
similarly

Ly(x) = f (x)



Existence and uniqueness

Consider a linear di↵erential operator

L = an(x)
dn

dxn
+ an�1(x)

dn�1

dxn�1
+ · · ·+ a1(x)

d

dx
+ a0(x)

Assume that the coe�cients an(x) are continuous on an interval
(xmin, xmax).

For any x0 2 (xmin, xmax), and specified values y0, y 00, . . . , y
(n�1)
0 ,

There exists a unique function y defined on (xmin, xmax) with

Ly = 0 and y (i)(x0) = y (i)0 .



Existence and uniqueness

Equivalently, for every x 2 (xmin, xmax), the map

evx : Kernel(L) ! Rn

y 7! (y(x), y 0(x), . . . , y (n�1)(x))

is an isomorphism.



Existence and uniqueness

Note this is saying something rather surprising. In general, for a
collection of functions, there is no reason to expect that recording
the derivatives at a point should determine an isomorphism, let
alone that this should be true at every point. That is, the existence
and uniqueness theorem is asserting that the kernel of a linear
di↵erential operator has rather special properties.

In fact, it is possible to show that this property characterizes such
kernels. That is, given a collection of n su�ciently di↵erentiable
functions such that recording their derivatives at every point in
(xmin, xmax) determines an isomorphism from their span to Rn,
there is an n’th order linear di↵erential operator such that these
functions span the kernel.



The Wronskian

Another way to express this notion: the Wronskian determinant.
Given n functions y1, . . . , yn, and a point x , one forms:

���������

y1(x) y2(x) · · · yn(x)
y 01(x) y 02(x) · · · y 0n(x)
...

...
. . .

...

y (n�1)
1 (x) y (n�1)

2 (x) · · · y (n�1)
n (x)

���������

If y1, . . . , yn solve an n’th order linear di↵erential equation, then
this determinant is zero if and only if y1(x), . . . , yn(x) are linearly
dependent as functions.



Wrong Wronskians

Consider the functions x , x2. Their Wronskian at 0 is

����
x x2

1 2x

���� =
����
0 0
1 0

���� = 0

But x and x2 are linearly independent as functions!

What happened?

The Wronskian only works to detect linear dependence of n
functions when they are solutions to some n’th order linear
di↵erential equation.



Constant coe�cient equations

We now restrict ourselves to the study of operators of the form

L = an
dn

dxn
+ an�1

dn�1

dxn�1
+ · · ·+ a1

d

dx
+ a0

We will construct the complete set of solutions to the homogenous
equation Ly = 0.



Constant coe�cient equations

We begin by factoring L into linear operators. To do this, first
form the auxiliary polynomial

anx
n + an�1x

n�1 + · · ·+ a1x + a0

Let ri be the roots, and let mi be the multiplicity of the root ri .
I.e., suppose

anx
n + an�1x

n�1 + · · ·+ a1x + a0 =
Y

i

(x � ri )
mi

The fundamental theorem of algebra assures us such a factorization
exists, at least if we allow the ri to be complex numbers.



Constant coe�cient equations

The operator L factors in the same way as its auxiliary polynomial:

L =
Y

i

✓
d

dx
� ri

◆mi

This factorization holds because composing derivatives behaves,
formally, just like multiplying polynomials, and in particular
commutes with scalar multiplication.

The factors commute and so any function in the kernel of some
collection of factors will also be in the kernel of L.



Constant coe�cient equations

We know that the kernel of
�

d
dx � r

�
is spanned by erx .

In our study of order 2 equations, we saw that the kernel of�
d
dx � r

�2
is spanned by erx and xerx

More generally,
�

d
dx � r

�n
(f (x)erx) = f (n)(x)erx , so all of Pn�1erx

is annihilated by this operator.



Constant coe�cient equations

Let us return to the operator

L =
Y

i

✓
d

dx
� ri

◆mi

We have just seen that

{er1x , xer1x , . . . , xm1�1er1x , er2t , xer2x , . . . , xm2�1er2x , . . .}

are in the kernel.

There are
P

mi = order(L) of these, so to see that we have a
basis for the space of solutions, it remains only to see that these
are linearly independent.



Constant coe�cient equations

Indeed, suppose there were some linear dependence

X

i ,j

ci ,jx
ierj x = 0

Some coe�cient must be nonzero; without loss of generality it may
as well be the coe�cient ck,1 of xker1x for some k .

In fact we choose k such that it is the largest number such that
ck,1 does not vanish.



Constant coe�cient equations

Now we study
 
Y

i>1

✓
d

dx
� ri

◆mi
!✓

d

dx
� r1

◆kX

i ,j

ci ,jx
ierj x

The di↵erential operator annihilates all terms x ierj x for j > 1.

It also annihilates terms x ier1x for i < k .

And, the coe�cients of terms x ier1x for i > k are zero, because of
how we chose k .

The only remaining term comes from ck,1xker1x .



Constant coe�cient equations

 
Y

i>1

✓
d

dx
� ri

◆mi
!✓

d

dx
� r1

◆k

ck,1x
ker1x

=

 
Y

i>1

✓
d

dx
� ri

◆mi
!
k!ck,1e

r1x

=

 
Y

i>1

(r1 � ri )
mi

!
k!ck,1e

r1x

On the one hand, this has to be zero, since we got it by applying a
linear operator to an expression which witnessed a linear
dependence — by being zero. On the other hand, this can only
happen if ck,1 is zero which is a contradiction. Thus there is no
linear dependence among the functions.



Systems of linear ODE

Recall that a linear ODE was something like this:

y 00(t) + sin(t)y(t) = cos(t)

A system of linear ODE is something like this:

y 00(t) + sin(t)x(t) = et

x 0(t) + t2y(t) = 10t



Systems of linear ODE

More formally, a linear ODE was something like this:
✓
an(t)

dn

dtn
+ · · ·+ a0(t)

◆
y(t) = f (t)

A system of linear ODE is something like this:
✓
An(t)

dn

dtn
+ · · ·+ A0(t)

◆
y(t) = f(t)

I.e., exactly the same sort of thing, except now the functions are
vector-valued (i.e., they are maps R ! Rn rather than R ! R)
and the coe�cients are matrix-valued functions.



Systems of linear ODE

For example, the linear system

y 00(t) + sin(t)x(t) = et

x 0(t) + t2y(t) = 10t

could be also written as
✓✓

0 0
0 1

◆
d2

dt2
+

✓
1 0
0 0

◆
d

dt
+

✓
0 t2

sin(t) 0

◆◆✓
x(t)
y(t)

◆
=

✓
10t
et

◆



All linear ODE are first order ODE

You can also turn a single n’th order linear ODE into a system of
first order linear ODE.

E.g., the second order linear ODE y 00(t)� ty(t) = 0 is equivalent
to the first order system

y 0(t) = z(t)

z 0(t) = ty(t)

which we could also write as

d

dt

✓
y(t)
z(t)

◆
=

✓
0 1
t 0

◆✓
y(t)
z(t)

◆


