
Hello and welcome to class!

Last time

We started discussing di↵erential equations. We found a complete

set of solutions to the second order linear homogenous constant

coe�cient ordinary di↵erential equation.

This time

We’ll say more about the initial value problem and discuss some

methods to approach the inhomogenous case.



The initial value problem

For a di↵erential equation, in our case ay 00 + by 0 + cy = 0,

Given some starting time t0 and constants y0 and y 00,

We want to find a function y(t) such that the di↵erential equation

is satisfied, y(t0) = y0, and y 0(t0) = y 00.



The initial value problem

Theorem

For an ordinary, linear, constant coe�cient, homogenous,
second-order di↵erential equation, the initial value problem has a
unique solution.



The initial value problem

Another way to say this: the following map is an isomorphism:

{Solutions to ay 00 + by 0 + cy = 0} ! R2

y 7! (y(t0), y
0
(t0))

More precisely, existence asserts that this map is surjective, i.e.,

that there is always a solution with specified value and first

derivative, whereas uniqueness asserts that it is injective, i.e., there

is at most one such solution.



The initial value problem

We won’t prove uniqueness in this class although I gave some ideas

last time about why it might be true. Let us just accept it.

Last time, we saw there was always a two dimensional space of

solutions to a di↵erential equation of the form ay 00 + by 0 + cy = 0.

Thus we have an injective linear map between 2-dimensional vector

spaces which is therefore an isomorphism. This settles existence.



Solving the initial value problem

Solving the initial value problem in practice uses the same ideas as

the above argument. For example, consider the equation

y 00 + y = 0

Last time, you learned (or perhaps could have guessed) that

cos(t), sin(t) give a basis for the space of solutions.

Let us now “solve the initial value problem” of finding a solution

which has y(0) = 3 and y 0(0) = 4.



Solving the initial value problem

Begin with the general solution y(t) = A cos(t) + B sin(t). We

want to determine the values of A and B for which y(0) = 3 and

y 0(0) = 4. So we compute:

3 = y(0) = A cos(0) + B sin(0) = A

4 = y 0(0) = A cos
0
(0) + B sin

0
(0) = �A sin(0) + B cos(0) = B

So the solution to this “initial value problem” is

y(t) = 3 cos(t) + 4 sin(t)



Solving the initial value problem

In general, the last step may involve more complicated linear

algebra. Suppose instead we wanted a solution with y(1) = 1 and

y 0(1) = 2. Then we would have

1 = y(0) = A cos(1) + B sin(1)

2 = y 0(0) = �A sin(1) + B cos(1)

Or in other words,


1

2

�
=


cos(1) sin(1)

� sin(1) cos(1)

� 
A
B

�



Solving the initial value problem


1

2

�
=


cos(1) sin(1)

� sin(1) cos(1)

� 
A
B

�

Fortunately, you know how to solve this. Inverting the matrix,


A
B

�
=


cos(1) � sin(1)

sin(1) cos(1)

� 
1

2

�
=


cos(1)� 2 sin(1)

sin(1) + 2 cos(1)

�

and the solution to the initial value problem is:

y(t) = (cos(1)� 2 sin(1)) cos(t) + (sin(1) + 2 cos(1)) sin(t)



Inhomogenous equations

We will now try and solve equations of the form

ay 00(t) + by 0(t) + cy(t) = f (t)

for some pre-given function f .

Let us write this as

✓
a
d2

dt2
+ b

d

dt
+ c

◆
y(t) = f (t)

This is a linear equation just like our matrix equations Ax = b.



Inhomogenous equations

Recall that Ax = b could be solved if and only if b was in the

range of A. Moreover, solving this equation was the same as taking

the given spanning set for the range, namely the columns of A, and
finding a way to write b as a linear combination of these columns.

In the finite dimensional case, we had sitting in front of us a

spanning set for the range. In this present, infinite dimensional

case, we not have such a basis, but any such would be infinite.



Inhomogenous equations

In a systematic treatment, we would try understand the range of

the linear transformation

✓
a
d2

dt2
+ b

d

dt
+ c

◆

But, this would involve infinite dimensional linear algebra in a

serious way, and is beyond the scope of this class.



Inhomogenous equations

Instead, we will just feed some (perhaps somewhat arbitrary)

functions into the linear transformation

✓
a
d2

dt2
+ b

d

dt
+ c

◆

and thereby learn some elements of the range.

Then, whenever we want to try and solve

✓
a
d2

dt2
+ b

d

dt
+ c

◆
y(t) = f (t)

we will ask whether the f (t) in question is in the span of those

elements of the range we have found.



First order inhomogenous equations

Let’s do the first-order case.

I.e., we want to study the range of
d
dt � r .

We’ll do so by just computing (
d
dt � r)f (x) for various functions.



First order inhomogenous equations: polynomials

Let’s begin with polynomials.

✓
d

dt
� r

◆
1 = �r

✓
d

dt
� r

◆
t = 1� rt

✓
d

dt
� r

◆
t2 = 2t � rt2

✓
d

dt
� r

◆
t3 = 3t2 � rt3



First order inhomogenous equations: polynomials

We see that all polynomials are in the range. More precisely,

✓
d

dt
� r

◆
Pn =

(
Pn, r 6= 0

Pn�1, r = 0



Example

Solve the di↵erential equation y 0 + y = t2.

We know that t2 is contained in
�
d
dt + 1

�
P2.

To find the elements which map to it is now a linear algebra

problem.

We could solve it by e.g. choosing a basis in P2 and writing�
d
dt + 1

�
as a matrix.



Example

Or in other words, we write

t2 =

✓
d

dt
+ 1

◆
(At2 + Bt + C ) = A(2t + t2) + B(1 + t) + C

and then solve for A,B ,C .

This is called “the method of undetermined coe�cients”.

It could also just be called linear algebra. In this case, by

inspection A = 1,B = �2,C = 2, and a solution is given by

y(t) = t2 � 2t + 2.



First order inhomogenous equations: exponentials

Now let’s try an exponential function.

✓
d

dt
� r

◆
est = sest � rest = (s � r)est

So, est is in the range, at least if s 6= r .



First order inhomogenous equations: poly times exp

Now let’s try a polynomial times an exponential function.

✓
d

dt
� r

◆
est = sest � rest = (s � r)est

✓
d

dt
� r

◆
test = est + stest � rtest = est + (s � r)test

✓
d

dt
� r

◆
t2est = 2test + st2est � rt2est = 2test + (s � r)t2est

✓
d

dt
� r

◆
t3est = 3t2est + st3est � rt3est = 3t2est + (s � r)t3est



First order inhomogenous equations: poly times exp

Thus any polynomial times est is in the range.

More precisely, writing

Pne
st
:= {(degree  n polynomial)est}

we have

✓
d

dt
� r

◆
Pne

st
=

(
Pnest , r 6= s

Pn�1est , r = s



Helpful fact

✓
d

dt
� r

◆�
f (t)ert

�
= f 0(t)ert + f (t)rert � f (t)rert = f 0(t)ert



Example

Solve the equation y 0 � 3y = te3t .

We know that te3t is in the image of P2e3t so we should try a

general element of this space.

te3t =

✓
d

dt
� 3

◆
(At2e3t + Bte3t + Ce3t) = A · 2te3t + B · e3t

so A = 1/2 and B = 0 and a solution is

y(t) =
1

2
t2e3t



Second order equations

We return now to the second order case

ay 00(t) + by 0(t) + cy(t) = f (t)

We should now study the range of the operator

a

✓
d

dt

◆2

+ b

✓
d

dt

◆
+ c



Factoring

Let r± be the roots of the equation ax2 + bx + c . Then

a

✓
d

dt

◆2

+ b

✓
d

dt

◆
+ c = a

✓
d

dt
� r+

◆✓
d

dt
� r�

◆

What does that mean?

Each of the above items are linear transformations on the space of

(su�ciently) di↵erentiable functions to itself. We are asserting

that the composition of the two on the right is the one on the left.

(Note that we could have written them in the other order.)



Factoring

We already saw

✓
d

dt
� r

◆
Pne

st
=

(
Pnest , r 6= s

Pn�1est , r = s

Doing it twice,

✓
d

dt
� r+

◆✓
d

dt
� r�

◆
Pne

st
=

8
><

>:

Pnest , s /2 {r+, r�}
Pn�1est , s = r+ orr�, not both

Pn�2est , s = r+ = r�



Factoring

Let’s just rewrite that:

 
a

✓
d

dt

◆2

+ b

✓
d

dt

◆
+ c

!
Pne

st
=

8
><

>:

Pnest , s /2 {r+, r�}
Pn�1est , s = r+ orr�, not both

Pn�2est , s = r+ = r�

where r± are the roots of ax2 + bx + c .



Example

Solve the equation y 00 � 4y 0 + 4 = e2t .

Let’s rewrite that as

✓
d

dt
� 2

◆2

y(t) = e2t

We know that e2t is in the image of P2e2t . So we should try the

general element of this space.



Example

e2t =

✓
d

dt
� 2

◆2 �
(At2 + Bt + C )e2t

�
= 2Ae2t

So a solution is given by

y(t) =
1

2
t2e2t



Example

Solve the equation y 00 � 4y 0 + 4 = e2t + e3t .

Observe that if we solve, separately, the equations

y 00 � 4y 0 + 4 = e2t and y 00 � 4y 0 + 4 = e3t then we can add the

solutions to get a solution to the equation above, by linearity.

In the context of di↵erential equations, linearity is sometimes

called “the superposition principle”.



Example

We already found a solution to y 00 � 4y 0 + 4 = e2t , namely

y(t) = 1
2 t

2e2t .

Let us now solve y 00 � 4y 0 + 4 = e3t . This time, 3 is not a root of

the auxilliary equation, so we know e3t 2
�
d
dt � 2

�2 P0e3t . So we

try the general element of this space. Since

✓
d

dt
� 2

◆2

Ae3t = Ae3t

a solution is given by y(t) = e3t .



Example

Finally, adding the formulas

✓
d

dt
� 2

◆2✓
1

2
t2e2t

◆
= e2t

✓
d

dt
� 2

◆2

e3t = e3t

we find ✓
d

dt
� 2

◆2✓
1

2
t2e2t + e3t

◆
= e2t + e3t

or in other words, y(t) = 1
2 t

2e2t + e3t solves the equation

y 00 � 4y 0 + 4y = e2t + e3t .



The general solution to an inhomogenous equation

For the equation Ax = b, we observed on the one hand that

Ax0 = b & Ay = 0 =) A(x0 + y) = b

and on the other hand that

Ax0 = b & Ax1 = b =) A(x1 � x0) = 0



The general solution to an inhomogenous equation

In other words: given one solution to the inhomogenous equation,

all other solutions can be found by adding to it a solution of the

homogenous equation.

The same is true in the context of linear di↵erential equations, and

for exactly the same reason.



Existence and uniqueness: inhomogenous case

Theorem

Assume ay 00 + by 0 + cy = f (t) has a solution ỹ(t). Then for any t0
and specified values y0, y 00, there exists a unique solution to the
initial value problem, i.e., a unique y(t) satisfying the di↵erential
equation such that y(t0) = y0 and y 0(t0) = y 00.

Proof.

The desired y is the sum of ỹ and the unique yh satisfying the

homogenous equation ay 00 + by 0 + cy = 0 subject to the initial

value condition yh(t0) = y0 � ỹ(t0) and y 0h(t0) = y 00 � ỹ 0(t0).



Example

Find a solution to y 00 � 4y 0 + 4y = e2t + e3t satisfying the

conditions y(0) = 1 and y 0(0) = 2.

We already found one solution to the inhomogenous equation,

namely
1
2 t

2e2t + e3t .

From last time, we know how to find solutions to the homogenous

equation, a basis is given by e2t , te2t



Example

So our desired solution takes the form

1

2
t2e2t + e3t + Ae2t + Bte2t

This has derivative

te2t + t2e2t + 3e3t + 2Ae2t + Be2t + 2tBe2t

Plugging in t = 0 and comparing to our desired values:

1 = y(0) = 1 + A

2 = y 0(0) = 3 + 2A+ B

hence A = 0 and B = �1 and the solution to the initial value

problem is given by

y(t) =
1

2
t2e2t + e3t � te2t


