
Hello and welcome to class!

Last time

We learned what linear equations were, and discussed how to solve
them by row reduction.

Today

We’ll start by discussing finer points of this technique, and then
discuss other ways to conceptualize systems of linear equations.



Echelon

This term originally meant a diagonal military formation

This formation has been used since antiquity for the large range of
vision it o↵ers to each member. It also o↵ers reduced drag for
airplanes, birds, and cyclists.



Echelon form for matrices

A matrix is in echelon form when every nonzero entry of every row
(other than the first) is strictly to the right of a nonzero entry in
the row above.

2

666666664

0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 0 0 0 ⌅ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3

777777775

⌅ means a nonzero entry, and ⇤ means any entry (zero or not).



Reduced echelon form

A echelon matrix is in reduced echelon form when the first nonzero
entry of every row is 1, and every other entry in its column is 0.

2

666666664

0 0 1 ⇤ ⇤ 0 ⇤ ⇤ 0 0 ⇤ ⇤ 0 ⇤ ⇤ ⇤
0 0 0 0 0 1 ⇤ ⇤ 0 0 ⇤ ⇤ 0 ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 1 0 ⇤ ⇤ 0 ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 1 ⇤ ⇤ 0 ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 0 0 0 1 ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3

777777775



Echelon versus reduced echelon

2

666666664

0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 0 0 0 ⌅ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3

777777775

2

666666664

0 0 1 ⇤ ⇤ 0 ⇤ ⇤ 0 0 ⇤ ⇤ 0 ⇤ ⇤ ⇤
0 0 0 0 0 1 ⇤ ⇤ 0 0 ⇤ ⇤ 0 ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 1 0 ⇤ ⇤ 0 ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 1 ⇤ ⇤ 0 ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 0 0 0 1 ⇤ ⇤ ⇤
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3

777777775



Row reduction algorithm

I Choose a nonzero entry in the leftmost nonzero column.

I Bring it to the top row by exchanging rows if necessary. This
entry is now said to be in a pivot position.

I Divide the row by the value of the pivot.

I Add multiples of this row to the other rows (including
“covered rows”) to zero out entries in the pivot column.

I Cover up this row and all rows above it, and repeat the
procedure on the remaining matrix.



Let’s do an example

2

664

0 0 4 10 4 14
0 1 3 5 4 11
0 1 4 7 5 14
0 2 8 17 10 31

3

775

Choose a nonzero entry in the leftmost nonzero column.

2

664

0 0 4 10 4 14
0 1 3 5 4 11
0 1 4 7 5 14
0 2 8 17 10 31

3

775



Let’s do an example

2

664

0 0 4 10 4 14
0 1 3 5 4 11
0 1 4 7 5 14
0 2 8 17 10 31

3

775

Bring it to the top row by exchanging rows if necessary.

2

664

0 1 3 5 4 11
0 0 4 10 4 14
0 1 4 7 5 14
0 2 8 17 10 31

3

775

This entry is now said to be in a pivot position.



Let’s do an example

2

664

0 1 3 5 4 11
0 0 4 10 4 14
0 1 4 7 5 14
0 2 8 17 10 31

3

775

Add multiples of this row to the other rows (including “covered
rows”) to zero out entries in the pivot column.

2

664

0 1 3 5 4 11
0 0 4 10 4 14
0 0 1 2 1 3
0 0 2 7 2 9

3

775



Let’s do an example

2

664

0 1 3 5 4 11
0 0 4 10 4 14
0 0 1 2 1 3
0 0 2 7 2 9

3

775

Cover up this row and all rows above it, and repeat the procedure
on the remaining matrix.

2

664

0 1 3 5 4 11
0 0 4 10 4 14
0 0 1 2 1 3
0 0 2 7 2 9

3

775



Let’s do an example

2

664

0 1 3 5 4 11
0 0 4 10 4 14
0 0 1 2 1 3
0 0 2 7 2 9

3

775

Choose a nonzero entry in the leftmost nonzero column.

2

664

0 1 3 5 4 11
0 0 4 10 4 14
0 0 1 2 1 3
0 0 2 7 2 9

3

775



Let’s do an example

2

664

0 1 3 5 4 11
0 0 4 10 4 14
0 0 1 2 1 3
0 0 2 7 2 9

3

775

Bring it to the top row by exchanging rows if necessary.

2

664

0 1 3 5 4 11
0 0 1 2 1 3
0 0 4 10 4 14
0 0 2 7 2 9

3

775

This entry is now said to be in a pivot position.



Let’s do an example

2

664

0 1 3 5 4 11
0 0 1 2 1 3
0 0 4 10 4 14
0 0 2 7 2 9

3

775

Add multiples of this row to the other rows (including “covered
rows”) to zero out entries in the pivot column.

2

664

0 1 0 �1 1 2
0 0 1 2 1 3
0 0 0 2 0 2
0 0 0 3 0 3

3

775



Let’s do an example

2

664

0 1 0 �1 1 2
0 0 1 2 1 3
0 0 0 2 0 2
0 0 0 3 0 3

3

775

Cover up this row and all rows above it, and repeat the procedure
on the remaining matrix.

2

664

0 1 0 �1 1 2
0 0 1 2 1 3
0 0 0 2 0 2
0 0 0 3 0 3

3

775



Let’s do an example

2

664

0 1 0 �1 1 2
0 0 1 2 1 3
0 0 0 2 0 2
0 0 0 3 0 3

3

775

Choose a nonzero entry in the leftmost nonzero column.

2

664

0 1 0 �1 1 2
0 0 1 2 1 3
0 0 0 2 0 2
0 0 0 3 0 3

3

775



Let’s do an example

2

664

0 1 0 �1 1 2
0 0 1 2 1 3
0 0 0 2 0 2
0 0 0 3 0 3

3

775

Divide the row by the value of the pivot

2

664

0 1 0 �1 1 2
0 0 1 2 1 3
0 0 0 1 0 1
0 0 0 3 0 3

3

775



Let’s do an example

2

664

0 1 0 �1 1 2
0 0 1 2 1 3
0 0 0 1 0 1
0 0 0 3 0 3

3

775

Add multiples of this row to the other rows (including “covered
rows”) to zero out entries in the pivot column.

2

664

0 1 0 0 1 3
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 0 0

3

775



Uniqueness of the result

We made choices in the algorithm, but the resulting reduced
echelon matrix will always be the same.

If we had not bothered dividing through or zeroing out entries
above pivots, the resulting echelon matrix is not uniquely
determined, but its shape is.

This shape can be encoded by the location of the pivot entries.



Try it yourself!

Consider this matrix.

2

664

0 1 0 0 1 3
0 0 1 0 1 2
0 0 0 1 0 1
0 0 0 0 0 1

3

775

Is it in echelon form? yes

Is it in reduced echelon form? no

Where are the pivots?



Try it yourself!

Consider this matrix.


4 1 0
2 3 1

�

Is it in echelon form? no

Is it in reduced echelon form? no

Where are the pivots? we have to row reduce it to find out


4 1 0
2 3 1

�
!


2 3 1
4 1 0

�
!


2 3 1
0 �5 �2

�



Row reduction for solving systems

Last time

We saw that row reduction of the augmented matrix of a system of
linear equations encodes a series of transformations of the system
into simpler, but equivalent, systems.

But what do you do at the end?



Reading o↵ the answer

Suppose you have a linear system whose augmented matrix is
already in reduced echelon form.

Like this one:

2

664

0 1 0 0 1 3
0 0 1 0 1 2
0 0 0 1 0 1
0 0 0 0 0 0

3

775

(Perhaps you arrived at this system by row reduction.)



Reading o↵ the answer

First, look for any rows like this:

⇥
0 0 0 0 0 1

⇤

The system is inconsistent if and only if you can find such a row.

In the case at hand, there are no such rows

2

664

0 1 0 0 1 3
0 0 1 0 1 2
0 0 0 1 0 1
0 0 0 0 0 0

3

775

So this system is consistent.



Reading o↵ the answer

Assuming the system was consistent

now introduce free parameters for every variable whose
corresponding column has no pivot

In this case

2

664

0 1 0 0 1 3
0 0 1 0 1 2
0 0 0 1 0 1
0 0 0 0 0 0

3

775

that’s the first and fifth column. We assign the free parameters s
and t to to x1 and x5.



Reading o↵ the answer

Express the pivot variables

In terms of the free parameters and constants.

In this case

2

664

0 1 0 0 1 3
0 0 1 0 1 2
0 0 0 1 0 1
0 0 0 0 0 0

3

775

we have taken x1 = s and x5 = t; the remaining equations say
x2 = 3� t, x3 = 2� t, and x4 = 1. Thus the solution set is

{(s, 3� t, 2� t, 1, t) | any s, t}



Number of solutions: all about the pivots

For a system with reduced echelon augmented matrix

There are no solutions

If and only if there is a pivot in the last column.

In other words, there is a row like this

⇥
0 0 0 0 0 1

⇤



Number of solutions: all about the pivots

For a system with reduced echelon augmented matrix

There is exactly one solution

If and only if there are no pivots in the last column
and a pivot in every other column.

In other words, the matrix looks like this

2

664

1 0 0 ⇤
0 1 0 ⇤
0 0 1 ⇤
0 0 0 0

3

775



Number of solutions: all about the pivots

For a system with reduced echelon augmented matrix

There are infinitely many solutions

If and only if there are no pivots in the last column,
and no pivots in at least one other column.

In other words, the matrix looks like this

2

664

1 ⇤ 0 0 ⇤ ⇤
0 0 1 0 ⇤ ⇤
0 0 0 1 ⇤ ⇤
0 0 0 0 0 0

3

775



Vectors

A column vector is a matrix with just one column.

Some column vectors:

⇥
1
⇤
,


1
2

�
,

2

4
1
2
3

3

5 ,

2

664

1
2
3
4

3

775

We write Rn for the set of column vectors with n rows. The above
vectors are in R, R2, R3, and R4, respectively.



Adding vectors

You add vectors term by term.

2

4
a
b
c

3

5+

2

4
x
y
z

3

5 =

2

4
a+ x
b + y
c + z

3

5

This only makes sense if they have the same number of entries.



Try it yourself!

Add these vectors.

1
2

�
+


2
3

�
=


3
5

�

2

4
1
3
2

3

5+

2

4
2
1
4

3

5 =

2

4
3
4
6

3

5


1
3

�
+

2

4
0
1
�2

3

5

Those vectors are not the same size, you can’t add them.



Multiplying vectors by scalars

To multiply a vector by a constant, multiply each entry.

c ·

2

4
x
y
z

3

5 =

2

4
cx
cy
cz

3

5

The constants are also called scalars. They scale the vectors.



Try it yourself!

Multiply the vector by the scalar

3 ⇤

1
2

�
=


3
6

�

11 ⇤

2

4
1
3
2

3

5 =

2

4
11
33
22

3

5


1
3

�
⇤

2

4
0
1
�2

3

5

Neither one of those is a scalar.



Vectors

We will use boldface type to denote vectors:

v =

2

664

v1
v2
v3
v4

3

775



Vector arithmetic

Vector addition and scalar multiplication satisfy the usual
commutative, associative, and distributive properties, just because
the same is true entry by entry.

v +w = w + v

u+ (v +w) = (u+ v) + w

c(v +w) = cv + cw

(c + d)v = cv + dv



Geometrically

You can visualize a vector as an arrow

This works in R, R2, R3. You could do the same for Rn if you
could visualize higher dimensional spaces.



Addition, geometrically

Vector addition looks like this:

You move one vector to the end of the other to add them.
If this confuses you, think about the case of R1.



Scalar multiplication, geometrically

Scalar multiplication means keeping the direction of the arrow, but
changing its length.

For instance, 2v = v + v is a vector in the same direction as v, but
twice as long.



Linear combinations and linear span

Definition

Given a collection of vectors v1, v2, . . . , vn in Rn, and scalars
a1, a2, . . . , an 2 R, an expression of the form

a1v1 + a2v2 + · · ·+ anvn

is said to be a linear combination of the vectors. The set of all
such expressions is called the linear span of the vi .



Linear span

Example

The linear span of the vectors

2

4
1
0
0

3

5 ,

2

4
0
1
0

3

5

is the set of all vectors of the form
2

4
a
b
0

3

5



Try it yourself

What is the linear span of


1
2

�
? All vectors


t
2t

�
.

What is the linear span of


1
2

�
,


3
4

�
?

Probably some of you wrote “all vectors of the form


t + 3s
2t + 4s

�
”

This is in some sense correct, but a better answer is: all of R2.



Linear span and linear equations

Is

2

4
2
3
5

3

5 in the linear span of

2

4
1
1
2

3

5 and

2

4
1
3
7

3

5?

I.e., do there exist x , y with x

2

4
1
1
2

3

5+ y

2

4
1
3
7

3

5 =

2

4
2
3
5

3

5?

I.e., do there exist x , y with

2

4
x + y
x + 3y
2x + 7y

3

5 =

2

4
2
3
5

3

5?



Linear span and linear equations

I.e., does the system of linear equations with the following
augmented matrix have any solutions:

2

4
1 1 2
1 3 3
2 7 5

3

5 !

2

4
1 1 2
0 2 1
0 5 1

3

5

We do a little row reduction, and then see that the bottom two
lines say respectively 2y = 1 and 5y = 1; there is no solution.

So,

2

4
2
3
5

3

5 in not in the linear span of

2

4
1
1
2

3

5 and

2

4
1
3
7

3

5.



Linear combinations and linear equations

The equations

5x + 4y + 3z = 2

x + y + z = 6

x � y + z = �3

are equivalent to the vector equation

x

2

4
5
1
1

3

5+ y

2

4
4
1
�1

3

5+ z

2

4
3
1
1

3

5 =

2

4
2
6
�3

3

5



Linear combinations and linear equations

Finding all solutions to

5x + 4y + 3z = 2

x + y + z = 6

x � y + z = �3

is the same as finding all ways to express

2

4
2
6
�3

3

5 as a linear combination of

2

4
5
1
1

3

5 ,

2

4
4
1
�1

3

5 ,

2

4
3
1
1

3

5

the necessary coe�cients are the x , y , z .


