
Hello and welcome to class!

Previously

We have discussed linear algebra.

This time

We start studying di↵erential equations. We will begin with the
study of first- and then second-order linear homogenous constant
coe�cient equations.



Di↵erential equations

What is a di↵erential equation?

An equation involving a function and its derivatives.

Often we are interested in solving for the (unknown) function.



Di↵erential equations

How do they arise?

Say one has some real-world system. Its state at some given time
is modeled by a function (perhaps vector-valued) x(t). We can
reason intuitively or scientifically about the rules governing the
evolution of the system — i.e., we can describe how it is changing
at a given time t, in terms of its current state at time t.

That’s a di↵erential equation! In fact, the vast majority of models
in the sciences at least begin in this form.





Population growth

For instance, suppose you have a population of some kind, each
member of which behaves identically. Then the rate of change of
the population, whatever it is, must be proportional to the
population.

y 0(t) = ky(t)

The population might be of people or animals, in which case we
are talking about population growth in the usual sense. It could
also be a population of radioactive atoms, and we are talking
about radioactive decay, or a population of invested dollars and we
are talking about interest.



Newton’s second law

Another sort of example is given by Newton’s law of motion. This
asserts that the path y(t) of an object of mass m, subject to a
force F , satisfies

F = my 00(t)

Implicit in this formula is an assertion that the force F may depend
on t, y(t), and y 0(t), but depends on no higher derivatives of y .

I do not know any good intuitive explanation of this fact. Probably
there isn’t one: in all the history of the human race before Newton,
no-one came up with this law and many very smart people came
up with other, incorrect laws. It’s just how the world works.





Gravity near earth

Any object is subject to the force of gravity exerted by other
objects. According to Newton, this force has strength

|F | = Gm1m2

r2

Near the surface of the earth, g := �GmEarth
r2 ⇠ 9.8m/s2, the

negative sign meaning it goes in the downward direction.

Thus any other object subject to no other forces would move
according to the di↵erential equation gm = my 00(t), or just

y 00(t) = g





ceiiinosssttuv

As it turns out, a spring stretched or compressed by some length y
exerts a restorative force in the opposite direction, proportional to
the stretching.

Thus an object of mass m attached to a spring obeys the law

my 00(t) = �ky

for some constant k depending on the constitution of the spring.





The heat equation

The temperature in an object, varying over time, is recorded by a
function in space and time variables T (x , y , z , t).

The laws of thermodynamics assert that, all things being equal,
the temperature wants to equalize.

I.e., the temperature at a given point will change according as to
how di↵erent the temperature at nearby points is.
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The wave equation

Imagine a substance which has some preferred density and
everywhere locally responds to compression or expansion by
exerting a restorative force in the opposite direction.

I.e., just about any substance.

E.g. by pretending this is “an infinite collection of springs”, it’s
possible to show that the density u(x , y , z , t) obeys
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Maxwell’s equations

Everywhere space and time are permeated by electric and magnetic
vector fields E and B which moreover interact with each other and
electric and magnetic charges...

r · E =
⇢
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We won’t really discuss these in this class but they are in fact
linear equations, and can be treated by the methods we develop.





Einstein’s equations

Everywhere in space and time the very notion of distance is
variable, and is recorded at each point by a matrix g(x , y , z , t)
(the metric). The fact that the notion of distance varies from
point to point means that space is curved and these curvatures are
recorded as derivatives of the metric. Two of these are called the
scalar curvature R(g) and the Ricci curvature Ric(g).

The notion of distance itself is subject to Einstein’s law

Ric(g)� 1

2
R(g)g + ⇤g =

8⇡G

c4
T

where ⇤ is the cosmological constant, G is the gravitational
constant, c is the speed of light, and T is a thing which records
the mass, energy, etc. at each point. This is a nonlinear partial
di↵erential equation, and we certainly won’t talk about it here.



First order equations

The general form of a first order linear homogenous linear
di↵erential equation is:

a(t)
dy

dt
+ b(t)y = 0

To solve this, we rearrange it into the form

dy

y
= �b(t)

a(t)
dt

and integrate to get
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First order equations

In particular, in the constant coe�cient case

ay 0 + by = 0

Integrating gives

y(t) = Ce�
b
a t

for some undetermined constant C coming from the constant of
integration. Of course, plugging in t = 0 reveals C = y(0).



General solution versus initial value problem

Given a di↵erential equation e.g., y 0 + y = 0 , there are various
things one can ask.

One possibility: ask for all functions which satisfy the di↵erential
equation. In this case, we say we want the general solution, which
for this example is y(t) = Ce�t , for an arbitrary constant C .

Another possibility: we have in mind some particular initial data;
e.g. we know that y(0) = 5. This is called solving the initial value
problem for the equation, and the solution in this case is
y(t) = 5e�t .



Existence and uniqueness

Given a di↵erential equation, there are two basic questions. First,
do solutions exist, and second, how many are there?

Existence. If you are modeling some system by a di↵erential
equation then, since the system behaves after all in some way over
time it had better be the case that your equations have solutions.
Moreover, it may happen that the solutions are defined only over
some time interval [0,T ). This necessarily means that your model
no longer makes sense after time T , and you should be somewhat
worried about times near T .



Existence and uniqueness

Uniqueness.

Maybe you are modeling some system. You have observed that it
obeys some di↵erential equation.

Now you want to know how much data about it you must measure
now in order to predict its future behavior.



Existence and uniqueness

In other words, in the space of all possible solutions to your
equation, you have to pick out one.

In the setting of linear di↵erential equations the solution space will
always be a vector space and generally a finite dimensional one.

Thus to specify which solution you have now you have to name a
vector in this space which you can do by choosing an isomorphism
to Rn.



Existence and uniqueness

Often (i.e. in the context of the initial value problem) this
isomorphism takes the following form:

Solutions 7! Rn

f 7! (f (0), f 0(0), . . . , f (n�1)(0))

E.g. for the first-order equations, we took f 7! f (0).



Solving linear, constant coe�cient, second order equations

Consider the equation ay 00 + by 0 + cy = 0.

What can we say about the space of solutions before finding any?



Linearity

The solutions form a vector space: since the derivative is linear, if
y(t) and z(t) are solutions, then

a(my(t) + nz(t))00 + b(my(t) + nz(t))0 + c(my(t) + nz(t)) =

m(ay 00 + by 0 + cy) + n(az 00 + bz 0 + cz) = 0

So ay(t) + bz(t) is also a solution.



How many solutions do we expect?

One way to read the equation ay 00 + by 0 + cy = 0 is

y 00(t) =
1

a
(by 0(t) + cy(t))

In other words: if y is a solution to this equation,

knowing the value y(t) and the first derivative of y 0(t)
tells you the second derivative y 00(t)!



How many solutions do we expect?

Taking another derivative, y 000(t) = 1
a (by

00(t) + cy 0(t)), we see that
the third derivative can be written in terms of the first and second
derivatives, which in turn can be written in terms of the first
derivative and the value of the function itself.

y 000(t) =
1

a
(by 00(t) + cy 0(t)) =
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Continuing this process...

We can recover all derivatives at t from just y(t) and y 0(t)!



How many solutions do we expect?

In other words, for a fixed number t0,

Solns of ay 00(t) + by 0(t) + cy(t) = 0 ! Rn+1

f 7! (f (t0), f
0(t0), . . . , f

(n)(t0))

always has image of dimension at most two.

Or in other words, whatever the dimension of the space of
solutions, the dimension of the space of their Taylor expansions
around a given point is at most two.



How many solutions are there actually?

The above is not actually an argument that the space of solutions
is two dimensional. This is because there exist infinitely
di↵erentiable functions Taylor series expansion at a point vanishes,
but are nonetheless nonzero, e.g.

f (x) =

(
e�1/x2 x 6= 0

0 x = 0

However, in fact there are at most two solutions to a linear second
order ODE. This is a special case of a general uniqueness theorem
which we will later state but not prove in this class.



Finding the solutions

Consider the equation ay 00 + by 0 + cy = 0.

Exponential functions worked for solving the first-order equation,
maybe let’s try them again.

Some people would say we are making an exponential ansatz.



Solving second order equations

So suppose y = ert . When is ay 00 + by 0 + cy = 0?

0 = a(ert)00+b(ert)0+cert = ar2ert+brert+cert = ert(ar2+br+c)

Since ert 6= 0, this is true if and only if

ar2 + br + c = 0

This is called the auxilliary equation.



Solving second order equations

Taking r± to be the roots of ar2 + br + c = 0, i.e.,

r± =
�b ±

p
b2 � 4ac

2a

We have found solutions er+t and er�t . Since the equations are
linear, any linear combination Aer+t +Ber�t is again a solution. So
we have a two dimensional solution space which therefore must be
all the solutions.

... unless r+ = r� or the r± not real numbers!



Linear independence of exponentials

Recall that the functions eat for di↵ering a are linearly independent
e.g., because they are eigenvectors of d

dt with di↵erent eigenvalues.



Solving second order equations

There are three possibilities.

I (b2 � 4ac > 0) The numbers r+ and r� are real and distinct.
The solution space is spanned by er+t and er�t .

I (b2� 4ac = 0) We have r+ = r�, and a one dimensional space
of solutions, spanned by er+t . Maybe there are other solutions.

I (b2 � 4ac < 0) The numbers r± are complex, non-real
numbers. The functions er±t are solutions in the sense that
they formally satisfy the di↵erential equation but we have yet
to find a real solution.



Repeated roots: b2 � 4ac = 0, i.e. r+ = r�

Consider what happens to Span(er+t , er�t) as r+ � r� ! 0.

Or equivalently, to Span(ert , e(r+✏)t) as ✏ ! 0.

In particular, consider the function 1
✏ (e

(r+✏)t � ert).

lim✏!0
e(r+✏)t�ert

✏ = d
dr e

rt = tert



Repeated roots: b2 � 4ac = 0, i.e. r+ = r�

More generally, in a sense we will not make precise here,

Span(ert , e(r+✏)t) ! Span(ert , tert)

While the above argument could be made into rigorous
mathematics it is much easier to just check!



Repeated roots: b2 � 4ac = 0, i.e. r+ = r�

Thus let us consider also the function tert , where r = r+ = r�.

Note (tert)0 = ert + rtert and (tert)00 = 2rert + r2tert

Plugging it back into the original equation

a(tert)00+b(tert)0+ ctert = a(2rert + r2tert)+b(ert + rtert)+ ctert

= (ar2 + br + c)tert + (2ar + b)ert



Repeated roots: b2 � 4ac = 0, i.e. r+ = r�

Thus for tert to be a solution, we should have

(ar2 + br + c)tert + (2ar + b)ert = 0

But by assumption ar2 + br + c = 0 and, since b2 = 4ac

r =
�b ±

p
b2 � 4ac

2a
= � b
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we have 2ar + b = 0.

So it’s a solution.



Solving second order equations

There are three possibilities.

I (b2 � 4ac > 0) The numbers r+ and r� are real and distinct.
The solution space is spanned by er+t and er�t .

I (b2 � 4ac = 0) We have r+ = r� = � b
2a . The solution space

is spanned by e�
b
2a t and te�

b
2a t .

I (b2 � 4ac < 0) The numbers r± are complex, non-real
numbers. The functions er±t are solutions in the sense that
they formally satisfy the di↵erential equation but we have yet
to find a real solution.



Complex roots: b2 � 4ac < 0

In some sense, er±t are solutions to ay 00 + by 0 + cy = 0. However,
if we want a real valued function, these do not qualify.

However, we can just take the real and imaginary parts. That is
because, in order for ay 00 + by 0 + cy = 0, both the real and
imaginary parts must vanish.



Complex roots: b2 � 4ac < 0

Observe er±t = e
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Taking real and imaginary parts gives
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Complex roots: b2 � 4ac < 0

As a sanity check, let’s look at the case b = 0 and a = c = 1:

y 00 + y = 0

Then our formula
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just gives
cos(t) sin(t)


