
STANDARD t-STRUCTURES

PETER J. HAINE, MAURO PORTA, AND JEAN-BAPTISTE TEYSSIER

Abstract. We provide a general construction of induced t-structures, that generalizes standard
t-structures for ∞-categories of sheaves. More precisely, given a presentable ∞-category X and
a presentable stable ∞-category E equipped with an accessible t-structure τ = (E>0, E60), we
show that X ⊗ E is equipped with a canonical t-structure whose coconnective part is given in
X ⊗ E60. When X is an ∞-topos, we give a more explicit description of the connective part as
well.
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1. Introduction

Let X be a topological space and let A be a connective E1-ring spectrum. Then the ∞-
categories Sh(X; ModA) and Shhyp(X; ModA) of sheaves and hypersheaves of A-modules on
X inherit an induced t-structure, called the standard t-structure. See [Lur18, §1.3.2]. In this
short note, using properties of the tensor product of presentable ∞-categories, we revisit this
construction in greater generality. Given a presentable stable ∞-category E equipped with a
t-structure (E>0, E60), we show that under very mild conditions, the ∞-categories Sh(X; E) and
Shhyp(X; E) of E-valued sheaves and hypersheaves inherit an induced t-structure, that generalizes
the case E = ModA. Along the way, we establish a certain exactness property of this operation
that seems interesting on its own right, and that we briefly describe now.

Given a presentable stable ∞-category E equipped with an accessible t-structure (E>0, E60),
both E>0 and E6−1 are presentable, and the square

E>0 E

0 E6n−1

i>n

τ6−1
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is both a pullback and a pushout square in PrL (see Recollection 2.4). Tensoring with a second
presentable ∞-category X , we obtain a pushout square

(1.1)
X ⊗ E>0 X ⊗ E

0 X ⊗ E6−1 .

X⊗i>0

X⊗τ6−1

However, in general this square is not a pullback. Nevertheless, X ⊗ τ6−1 is a localization functor
(see Lemma 2.1) and we can therefore identify X ⊗ E6−1 with a full subcategory of X ⊗ E . We
have:

Theorem 1.2 (Propositions 2.8 and 3.8). Let X be a presentable ∞-category and let E be a
presentable stable ∞-category equipped with an accessible t-structure (E>0, E60).

(1) The presentable stable ∞-category X ⊗ E admits a t-structure of the form(
(X ⊗ E)>0,X ⊗ E60

)
,

where (X ⊗ E)>0 is the full subcategory of X ⊗ E generated under colimits and extensions
by the essential image of the functor X ⊗ i>0 : X ⊗ E>0 → X ⊗ E.

(2) If X is an ∞-topos, (1.1) is a pullback square. In particular X ⊗ E>0 becomes a full
subcategory of X ⊗ E, and the t-structure of the previous point simply becomes(

X ⊗ E>0,X ⊗ E60

)
.

We conclude the introduction by describing a heuristic speculation. When X ' PSh(C) is a
presheaf category, one has

PSh(C)⊗ Y ' Fun(Cop,Y) ,

and in particular it follows that PSh(C)⊗ (−) commutes with both limits and colimits in PrL.
On the other hand, any presentable ∞-category X can be written as a localization of a presheaf
category PSh(C0). If Vopěnka’s principle holds, the left orthogonal complement of X inside
PSh(C) is also be presentable, and it is therefore be possible to write it as the localization of a
second presheaf category PSh(C1). Iterating this process, we construct a “resolution” of X by
presheaf ∞-categories, which have an exact behavior with respect to the tensor product in PrL.
We would then be able to define Tor-categories, and Theorem 1.2 would be stating that when X
is an ∞-topos,

Tor1(X , E60) = 0 .

Acknowledgments. PH gratefully acknowledges support from the NSF Mathematical Sciences
Postdoctoral Research Fellowship under Grant #DMS-2102957.

2. Standard t-structures for presentable ∞-categories

2.1. Reminders on the tensor product in PrL. Before we begin, we recall some standard
properties of the tensor product in PrL.

Lemma 2.1. Let L : Y → Y ′ be a localization functor in PrL. For every X ∈ PrL, the induced
functor idX ⊗ L : X ⊗ Y → X ⊗ Y ′ is again a localization.

Proof. We have to check that the right adjoint to idX ⊗ L is fully faithful. Write j : Y ′ → Y for
the fully faithful right adjoint to L. Using the identifications

X ⊗ Y ' FunR(X op,Y) and X ⊗ Y ′ ' FunR(X op,Y ′)
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provided by [Lur17, Proposition 4.8.1.17], we see that the right adjoint to idX ⊗ L is identified
with the functor induced by composition with j. In particular, it follows from [GHN17, Lemma
5.2] that it is fully faithful. �

Recollection 2.2. Let X be a presentable ∞-category and let X ∈ X be an object. It follows
from [Lur09, Corollary 4.4.4.9] that the functor MapX (X,−) : X → Spc admits a left adjoint,
which we denote by

iX := (−)⊗X : Spc→ X .

The functor iX is the unique colimit-preserving functor Spc→ X sending the terminal object to
X. Now let Y be a second presentable ∞-category and consider the induced functor

iX ⊗ idY : Y → X ⊗ Y .

This functor takes an object Y ∈ Y to the elementary tensor X ⊗ Y . Under the identifications

X ⊗ Y ' FunR(Yop,X ) and Y ' FunR(Yop,Spc)

provided by [Lur17, Proposition 4.8.1.17], we see that the right adjoint to iX ⊗ idY can be
explicitly described as the functor given by postcomposition with MapX (X,−). Unraveling the
definitions, we can alternatively describe this right adjoint as the evaluation functor

evX : X ⊗ Y ' FunR(X op,Y)→ Y
F 7→ F (X) .

In particular, we deduce that for every F ∈ X ⊗ Y, one has a natural identification

(2.3) MapX⊗Y(X ⊗ Y, F ) ' MapY(Y, F (X)) ,

where F is viewed as a limit-preserving functor F : X op → Y.

2.2. Standard t-structures.

Recollection 2.4. Let E be a presentable stable ∞-category equipped with an accessible t-
structure τ = (E>0, E60). For every n ∈ Z, the full subcategory E6n is an accessible localization
of E , and therefore it is itself presentable. Notice that

E>n E

0 E6n−1

i>n

τ6n−1

is a pullback square. In particular, E>n is presentable as well. It automatically follows that the
above square is also a pushout in PrL.

The following lemma follows immediately from the fact that in a stable ∞-category a null
sequence is a fiber sequence if and only if it is a cofiber sequence:

Lemma 2.5. Let f : E → Y be a functor between presentable ∞-categories. Assume that E is
stable, that Y is pointed (with zero object 0Y) and that f is either left exact or right exact. Then

ker(f) := {E ∈ E | f(E) ' 0Y}

is closed under extensions. In particular, if τ = (E>0, E60) is a t-structure on E, then for every
n ∈ Z the full subcategories E6n and E>n are closed under extensions.
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Notation 2.6. Let X be a presentable ∞-category and let E be a presentable stable ∞-category
equipped with an accessible t-structure τ = (E>0, E60). For each n ∈ Z, set

iX>n := idX ⊗ i>n : X ⊗ E>n → X ⊗ E and τX6n := idX ⊗ τ6n : X ⊗ E → X ⊗ E6n .

Then the square

X ⊗ E>n X ⊗ E

0 X ⊗ E6n−1

iX>n

τX6n−1

is a pushout in PrL; however, it typically is not a pullback. It follows from Lemma 2.1 that the
right adjoint to τX6n−1 is fully faithful. Under the identifications

X ⊗ E ' FunR(X op, E) and X ⊗ E6n−1 ' FunR(X op, E6n−1) ,

we see that the right adjoint to τX6n−1 is given by composition with i6n−1. In particular, X⊗E6n−1

is naturally identified with the full subcategory of FunR(X op, E) spanned by those right adjoints
F : X op → E that factor through E6n−1. Define

(X ⊗ E)>n := ker
(
τX6n−1 : X ⊗ E → X ⊗ E6n−1

)
.

Lemma 2.7. In the setting of Notation 2.6:
(1) For each n ∈ Z, both X ⊗ E6n and (X ⊗ E)>n are closed under extensions in X ⊗ E.

(2) Let X• : I → PrL be a diagram with limit X . Assume that for every transition morphism
i → j, the induced functor Xi → Xj is both a left and a right adjoint. Then for each
n ∈ Z, the natural functors

X ⊗ E6n → lim
i∈I
Xi ⊗ E6n

and
lim
i∈I

(Xi ⊗ E)>0 →
((

lim
i∈I
Xi

)
⊗ E

)
>0

are equivalences.

Proof. First we prove (1). The claim about (X ⊗ E)>n is a simple consequence of the definitions
and Lemma 2.5. We now deal with X ⊗ E6n. Consider a fiber sequence

F ′ F

0 F ′′

in X ⊗ E . Assume first that both F ′ and F ′′ belong to X ⊗ E6n. Under the identification
X ⊗ E ' FunR(X op, E), observe that limits are computed objectwise. In other words, for every
X ∈ X , the induced square

F ′(X) F (X)

0 F ′′(X)

is a pullback in E . The assumption implies that both F ′(X) and F ′′(X) belong to E6n, so the
same is true of F (X). In other words, F ∈ X ⊗ E6n.

We now prove (2). Since limits commute with limits, it is enough to prove the statement
concerning X ⊗ E6n. However, the assumption on the diagram and [Lur09, Proposition 5.5.3.13
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& Theorem 5.5.3.18] imply that the limit can equally be computed in PrR. The conclusion now
follows from [Lur17, Remark 4.8.1.24] (see also [HPT24, Lemma 4.2.2]). �

The following is our main result about a t-structure on X⊗E when X is an arbitrary presentable
∞-category.

Proposition 2.8. In the setting of Notation 2.6, there exists a unique t-structure(
(X ⊗ E)>0, (X ⊗ E)60

)
on X ⊗E whose connective part coincides with the full subcategory (X ⊗E)>0 of X ⊗E introduced
in Notation 2.6. In addition:

(1) We have (X ⊗ E)60 = X ⊗ E60 as full subcategories of X ⊗ E.

(2) The connective part (X ⊗ E)>0 is generated under colimits and extensions by objects of
the form X ⊗ E for X ∈ X and E ∈ E>0.

Proof. It follows from Lemma 2.7-(1) that (X ⊗ E)>0 is a full subcategory of X ⊗ E closed under
colimits and extensions. In particular, [Lur17, Proposition 1.4.4.11-(1)] applies, providing the
existence (and uniqueness) of the required t-structure. The definition of (X ⊗ E)60 shows that

X ⊗ E6−1 ⊆ (X ⊗ E)6−1 .

To prove that equality holds, let F ∈ (X ⊗E)6−1, and view F as a right adjoint functor X op → E .
We have to prove that F factors through E6−1. Observe that the functoriality of the tensor
product of ∞-categories implies that the composite

X ⊗ E>0 X ⊗ E X ⊗ E6−1
idX⊗i>0 idX⊗τ6−1

is zero. In other words, the functor idX ⊗ i>0 : X ⊗ E>0 → X ⊗ E factors through (X ⊗ E)>0. It
follows that every object of the form X ⊗ E, for X ∈ X and E ∈ E>0, belongs to (X ⊗ E)>0. In
particular, the assumption F ∈ (X ⊗ E)6−1 guarantees that

MapE(E,F (X)) ' MapX⊗E(X ⊗ E,F ) ' 0 ,

where the first equivalence follows from Recollection 2.2, specifically (2.3). Since this holds for every
X ∈ X and every E ∈ E>0, we deduce that F factors through E6−1. Thus, X⊗E6−1 = (X⊗E)6−1.

We now prove item (2). Let C ⊂ X ⊗ E be the smallest full subcategory closed under colimits
and extensions and containing objects of the form X ⊗ E for X ∈ X and E ∈ E>0. Recall
from [Lur17, Proposition 1.4.4.11-(2)] that C is automatically presentable, and that therefore it
gives rise to a t-structure τ ′ = (C,D) on X ⊗ E . The same argument given above immediately
implies that D ⊆ X ⊗ E60. Conversely, let F ∈ X ⊗ E60 and let CF be the full subcategory
of X ⊗ E spanned by the objects G such that MapX⊗E(G,F ) ' 0. By definition, CF is closed
under colimits, and Lemma 2.5 implies that CF is closed under extensions as well. Moreover, CF
contains every object of the form X ⊗ E for X ∈ X and E ∈ E>1. Thus, CF contains C[−1]. It
follows that F ∈ D, and hence that D = X ⊗ E60. The uniqueness of the t-structure implies then
that C = (X ⊗ E)>0, whence the conclusion. �

Definition 2.9. In the setting of Notation 2.6, we refer to

τX :=
(
(X ⊗ E)>0, (X ⊗ E)60

)
as the standard t-structure on X ⊗ E induced by the t-structure τ = (E>0, E60) on E .

Example 2.10. Let X be an ∞-topos and let E = Sp be the ∞-category of spectra, equipped
with its standard t-structure. In [Lur18, Proposition 1.3.2.7] it is shown that X ⊗Sp ' Sh(X ;Sp)
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is equipped with a t-structure (Sh(X ;Sp)>0,Sh(X ;Sp)60). In addition, [Lur18, Remark 1.3.2.6]
provides a natural identification

Sh(X ;Sp)60 ' Sh(X ;Sp60) ' X ⊗ Sp60 .

It follows that the t-structure on X ⊗ Sp coincides with the one provided by Proposition 2.8. In
particular, it follows from [Lur18, Proposition 1.3.2.7] that this t-structure is compatible with
filtered colimits and right complete.

Corollary 2.11. Let f∗ : X → Y be a functor in PrL. Then the induced functor

f∗E := f∗ ⊗ idE : X ⊗ E → Y ⊗ E
is right t-exact. If in addition f∗ is a left exact left adjoint between ∞-topoi and E = Sp, then f∗E
is also left t-exact.

Proof. Write f∗ : Y → X for the right adjoint to f∗. Under the identifications

X ⊗ E ' FunR(X op, E) and Y ⊗ E ' FunR(Yop, E) ,

we see that the right adjoint fE∗ to f∗E is given by composition with f∗. It immediately follows
that fE∗ takes Y ⊗ E60 to X ⊗ E60, and therefore that f∗E is right t-exact. The second half of the
statement follows combining Example 2.10 with [Lur18, Remark 1.3.2.8]. �

3. Standard t-structures for ∞-topoi

Let E be a presentable stable∞-category equipped with an accessible t-structure τ = (E>0, E60).
We now investigate the natural comparison functor

iX>0 : X ⊗ E>0 → (X ⊗ E)>0 .

The main result of this section is that when X is an ∞-topos and the t-structure τ is right
complete, this functor is an equivalence (Proposition 3.8).

We begin with the following general criterion, that holds without extra assumptions:

Lemma 3.1. Let E be a presentable stable ∞-category equipped with an accessible t-structure
τ = (E>0, E60) and let X be a presentable ∞-category. Then the following conditions are
equivalent:

(1) The functor iX>0 : X ⊗ E>0 → X ⊗ E is fully faithful and the essential image of iX>0 is
closed under extensions.

(2) The functor iX>0 : X ⊗ E>0 → (X ⊗ E)>0 is an equivalence.

(3) There exists an integer n ∈ Z such that the ∞-category X ⊗ E>n is prestable and that

iX>n : X ⊗ E>n → X ⊗ E
is fully faithful.

Proof. The equivalence (1)⇔(2) is immediate from the definition of the connective part (X ⊗E)>0

of the standard t-structure. The implication (2)⇒(3) is clear.
To see that (3)⇒(2), without loss of generality, we can suppose n = 0. In virtue of Proposi-

tion 2.8-(2), we see that (X ⊗ E)>0 is generated under colimits and extensions by the essential
image of iX>0. Thus, to prove that the inclusion (X ⊗ E)>0 ⊆ X ⊗ E>0 holds, it suffices to prove
that the essential image of iX>0 is closed under extensions. To see this, let F ′ → F → F ′′ be a
fiber sequence in X ⊗ E and assume that F ′ and F ′′ belong to the essential image of iX>0 (and
hence of iX>−1). Let α : F ′ → F ′′[1] be the map classifying the given extension. Since X ⊗ E is
stable, we can write

F ' fib
(
F ′′

α→ F ′[1]
)
,
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where α is a morphism in X ⊗ E . By assumption, we can write

F ′ ' iX>0(U ′) and F ′′ ' iX>0(U ′′) .

Since iX>0 commutes with colimits, it commutes in particular with suspensions, so that

F ′[1] ' iX>0(U ′[1]) ,

where the suspension U ′[1] is computed in X ⊗ E>0. The full faithfulness of iX>0 guarantees that
we can write α ' iX>0(β), where β : U ′′ → U ′[1] is a morphism in X ⊗ E>0. Set

U := fib(β) ∈ X ⊗ E>0 .

Since this ∞-category is prestable by assumption, we deduce that the pullback diagram

U U ′′

0 U ′[1]

β

is also a pushout. In particular, it is taken to a pushout by iX>0 and, since X ⊗ E is stable, we
deduce that in fact

iX>0(U) ' fib(iX>0(β)) ' fib(α) ' F .

Thus, F belongs as well to the essential image of iX>0, whence the conclusion. �

We now record an easy application of Lemma 3.1. For this, the reader may wish to review the
definition of a projectively generated presentable ∞-category in [Lur09, Definition 5.5.8.23] or
[Hai22, Recollection 2.4].

Corollary 3.2. Let E be a presentable stable ∞-category equipped with an accessible t-structure
(E>0, E60), and let X be a projectively generated presentable ∞-category. Then the functor

iX>0 : X ⊗ E>0 → (X ⊗ E)>0

is an equivalence.

Proof. Write X0 ⊂ X for the full subcategory spanned by the compact projective objects. Then
we have identifications

X ⊗ E>0 ' Fun×(X op
0 , E>0) and X ⊗ E ' Fun×(X op

0 , E) ,

where Fun×(X op
0 ,D) denotes the full subcategory of Fun(X op

0 ,D) spanned by the functors that
preserve finite products. Moreover, since i>0 : E>0 ↪→ E preserves finite products, under these
identifications, the functor iX>0 = idX ⊗ i>0 is given by postcomposition with i>0. See [Hai22,
Variant 2.10].

In particular, since i>0 is fully faithful with essential image closed under extensions, we deduce
that iX>0 : X ⊗ E>0 → X ⊗ E is fully faithful and the essential image closed under extensions.
Lemma 3.1 completes the proof. �

3.1. An unstable statement. Let X be an ∞-topos. We write 1X for the final object of X
and we write

X∗ := X1X /

for the ∞-category of pointed objects of X . For an integer n > −2, we consider the ∞-category

X6n
∗ := (X∗)6n
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of n-truncated objects in X∗. Unraveling the definitions, we see that the inclusion X6n
∗ ⊆ X∗ has

a left adjoint that sends a pointed object (X,x) to the pointed object (τ6n(X), x′), where x′ is
the composite

1X X τ6nX .x

We still denote this left adjoint by
τ6n : X∗ → X6n

∗ .

For k > −1, we define X>k
∗ as the fiber product

X>k
∗ X∗

∗ X6k−1
∗ .

τ6k−1

1X

The functoriality of the tensor product of ∞-categories immediately yields the following commu-
tative diagram:

X ⊗ Spc>k∗ X ⊗ Spc∗ X ⊗ Spc6k−1
∗

X>k
∗ X∗ X6k

∗ .

αk

idX⊗τ6k−1

τX6k−1

The central and the right vertical functors are equivalences (see [Lur17, Examples 4.8.1.21 &
4.8.1.22]), and they would be even if X were simply a presentable ∞-category. Since X is an
∞-topos, we furthermore see:

Proposition 3.3. Let X be an ∞-topos. Then for each integer k > 0, the comparison functor

αk : X ⊗ Spc>k∗ → X>k
∗

is an equivalence.

Proof. Recall from [Lur17, Notation 5.2.6.11] the iterated bar-cobar adjunction

Bar
(k)
X : MonEk

(X )� X∗ : CoBar
(k)
X .

(For X ∈ X∗, the underlying object of CoBar
(k)
X (X) is just the k-fold based loop object ΩkX.)

By [Lur17, Theorem 5.2.6.15], this adjunction restricts to an equivalence

Bar
(k)
X : Mongp

Ek
(X )� X>k

∗ : CoBar
(k)
X .

Notice that

X ⊗Mongp
Ek

(Spc) ' FunR(X op,Mongp
Ek

(Spc))

' Mongp
Ek

(FunR(X op,Spc))

' Mongp
Ek

(X ) .

Hence it suffices to argue that the diagram

X ⊗Mongp
Ek

(Spc) Mongp
Ek

(X )

X ⊗ Spc>k∗ X>k
∗

∼

idX⊗Bar(k) Bar
(k)
X

αk
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commutes. (Here, Bar(k) denotes the iterated bar construction for Spc.) Since all functors
commute with colimits, it suffices to check that the diagram commutes after composition with
the universal functor

X ×Mongp
Ek

(Spc)→ X ⊗Mongp
Ek

(Spc)

that preserves colimits separately in each variable. For this, it is enough to observe that given
X ∈ X , the functor

X ⊗ (−) : Spc→ X
commutes with colimits and therefore [Lur17, Example 5.2.3.11] supplies a canonical identification

X ⊗ Bar(k)(−) ' Bar
(k)
X (X ⊗−) ,

which is functorial in X. The conclusion follows. �

Corollary 3.4. Let X be an ∞-topos. Then the natural functor

X ⊗ Sp>0 → X ⊗ Sp

is fully faithful.

Proof. Recall from [Lur17, Remark 5.2.6.26] that one has

Sp>0 ' lim
(
· · · Spc>n+1

∗ Spc>n∗ · · · Spc>1
∗

)
.Ω Ω Ω Ω

Similarly,

Sp ' lim
(
· · · Spc∗ Spc∗ · · · Spc∗

)
.Ω Ω Ω Ω

Moreover, the inclusion Sp>0 ↪→ Sp is induced by the fully faithful inclusions Spc>n∗ ↪→ Spc∗,
which assemble into a natural transformation of the above limit diagrams. Notice that both limits
are taken in PrR and therefore they are preserved by the functor X ⊗ (−) (see [Lur17, Remark
4.8.1.24]). Thus, the claim follows at once from Proposition 3.3. �

Remark 3.5. Let (C, τ) be an ∞-site and assume that X ' Sh(C, τ). The functoriality of the
tensor product in PrL immediately implies that the diagram

PSh(C)⊗ Sp>0 PSh(C)⊗ Sp

Sh(C, τ)⊗ Sp>0 Sh(C, τ)⊗ Sp

commutes, where the vertical arrows are the sheafification functors. Moreover, the formula for the
sheafification provided in the proof of [Lur09, Proposition 6.2.2.7] (which holds with coefficients in
any presentable∞-category) shows that this square is horizontally right adjointable. In particular,
one can deduce the full faithfulness provided by Corollary 3.4 for X = Sh(C, τ) directly from the
one for X = PSh(C), which is straightforward since PSh(C)⊗ (−) ' Fun(Cop,−) preserves fully
faithful left adjoints.

3.2. Proof of the main theorem.

Recollection 3.6. Let Y be a presentable ∞-category and let D be a presentable prestable
∞-category. Then combining [Lur18, Example C.1.5.6 and Theorem C.4.1.1] we deduce that

Y ⊗D ' Y ⊗ (Sp>0 ⊗D)

' (Y ⊗ Sp>0)⊗D .
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Similarly, if E is a presentable stable ∞-category, [Lur17, Example 4.8.1.23] shows that

Y ⊗ E ' Y ⊗ (Sp⊗ E)

' (Y ⊗ Sp)⊗ E
' Sp(Y)⊗ E .

Corollary 3.7. Let X be an ∞-topos and let D be a Grothendieck prestable ∞-category. Then
X ⊗D is again a Grothendieck prestable ∞-category.

Proof. Combining Recollection 3.6 and [Lur18, Theorem C.4.2.1], it is enough to deal with the
case where D = Sp>0, and this case immediately follows from Corollary 3.4, Example 2.10, and
[Lur18, Proposition C.1.2.9]. �

Proposition 3.8. Let X be an ∞-topos. Let E be a presentable stable ∞-category equipped
with an accessible t-structure τ = (E>0, E60) which is compatible with filtered colimits and right
complete. Then for every integer n ∈ Z, the natural functor

X ⊗ E>n → (X ⊗ E)>n

is an equivalence. In particular, the standard t-structure on X ⊗ E is compatible with filtered
colimits and right complete.

Proof. It is enough to treat the case n = 0. We know from Corollary 3.7 that X ⊗ E>0 is a
Grothendieck prestable ∞-category. In particular, [Lur18, Remark C.1.1.6 & Proposition C.1.2.9]
imply that the natural functor

X ⊗ E>0 → Sp(X ⊗ E>0) ' X ⊗ E>0 ⊗ Sp ' X ⊗ Sp(E>0)

is fully faithful. On the other hand, since the t-structure τ is right complete, [Lur18, Remark
C.3.1.5] provides a canonical equivalence Sp(E>0) ' E . The first claim then follows from
Lemma 3.1. Finally, [Lur18, Proposition C.1.4.1] guarantees that the unique t-structure on
X ⊗ E ' Sp(X ⊗ E>0) whose connective part is given by X ⊗ E>0 is compatible with filtered
colimits.

We are left to prove that the standard t-structure is right complete. For this, we have to check
that the canonical functor

colim
(
· · · → (X ⊗ E)>n → (X ⊗ E)>n−1 → · · ·

)
→ X ⊗ E

is an equivalence, where the colimit is computed in PrL. Using the equivalences

(X ⊗ E)>n ' X ⊗ E>n ,

the conclusion follows immediately from the fact that the t-structure τ is right complete and the
fact that X ⊗ (−) commutes with colimits in PrL. �

Remark 3.9. In particular, Proposition 3.8 establishes the full faithfulness of the natural functor

X ⊗ E>0 → X ⊗ E .

Assume that X = Sh(C, τ) is the ∞-topos of sheaves on some ∞-site (C, τ). Then

X ⊗ E>0 ' Sh(C, τ ; E>0) and X ⊗ E ' Sh(C, τ ; E) .

Notice that the natural functor

Sh(C, τ ; E>0)→ Sh(C, τ ; E)

induced by the functoriality of the tensor product in PrL implicitly involves sheafification. Indeed,
if F is a sheaf with values in E>0, we can view F as a presheaf with values in E , but this presheaf
is typically not a sheaf (as the constant sheaf on S1 with coefficients in a commutative ring R
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shows). Instead, the above comparison functor further sheafifies the resulting presheaf. As a
result, even for sheaf ∞-topoi, it is not obvious that this functor is fully faithful.

Corollary 3.10. Let f∗ : X → Y be a left exact left adjoint between ∞-topoi. Let E be a
presentable stable ∞-category equipped with an accessible t-structure τ = (E>0, E60) which is
compatible with filtered colimits and right complete. Then the induced functor

f∗ ⊗ idE : X ⊗ E → Y ⊗ E
is t-exact.

Proof. We already know from Corollary 2.11 that f∗ ⊗ idE is right t-exact. To prove left t-
exactness, we first recall that Proposition 3.8 shows that the t-structures on both X ⊗ E and
Y ⊗ E are right complete. Therefore, X ⊗ E ' Sp(X ⊗ E>0), and similarly for Y ⊗ E . Invoking
[Lur18, Proposition C.3.2.1], we see that f∗ ⊗ idE is left t-exact if and only if the induced functor

(f∗ ⊗ idE>0
) : X ⊗ E>0 → Y ⊗ E>0

is left exact. Combining Recollection 3.6, Corollary 3.7 and [Lur18, Proposition C.4.4.1], we
reduce ourselves to the case where E = Sp. In this case, the conclusion follows from the second
half of Corollary 2.11. �
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