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Abstract. We provide a description of Voevodsky’s ∞-category of motivic spectra in terms
of the subcategory of motives of smooth proper varieties. As applications, we construct weight
filtrations on the Betti and étale cohomologies of algebraic varieties with coefficients in any complex
oriented ring spectrum. We show that these filtrations satisfy `dh-descent, giving an effective way
of calculating them in positive characteristic. In the complex motivic case, we further refine the
weight filtration to one defined at the level of stable homotopy types.
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1. Introduction

1.1. Motivation and overview. Let X be a complex variety. In his fundamental series of papers
[16; 17; 18], Deligne explains how to use the algebraic structure of X to endow the rational singular
cohomology H∗(X(C);Q) with a canonical weight filtration

W0H∗(X(C);Q) ⊆W1H∗(X(C);Q) ⊆ · · · .

Moreover, the complexification
C⊗Q W•H

∗(X(C);Q)

has a canonical mixed Hodge module structure on its associated graded pieces. In fact, the filtration
exists before passing to cohomology: Deligne shows that the singular cochain complex C∗(X(C);Q)
can be canonically refined to an object of the filtered derived ∞-category. The weight filtration
contains crucial algebraic information: it is not an invariant of the topological spaceX(C). Informally,
the weight filtration is obtained by resolving X by smooth proper varieties.

The weight filtration on rational cohomology has been extended to a variety of contexts. In [26],
Gillet and Soulé show that the weight filtration can be refined to a canonical filtration on the complex
of compactly supported integral cochains C∗c(X(C);Z). In this paper, one of our main results is that
the weight filtration is defined at a spectral level, even before passing to algebra. That is, we show
that the weight filtration can be refined to a canonical filtration on the stable homotopy type of
X(C) which equips the latter with a structure of a synthetic spectrum.

Our result is based on a new description of Voevodsky’s stable ∞-category of motivic spectra
SH(C) in terms of the subcategory generated by motives of smooth proper varieties. More generally,
given any base field k of exponential characteristic e, we give a new description of the ∞-catego-
ry SH(k)[1/e] obtained from SH(k) by inverting the exponential characteristic. This gives an clean
constructs of filtered refinements of both Betti and étale realization with coefficients in a complex
orientable cohomology theory.

Applying these filtered realizations to various motivic spectra one can attach to a variety, we
obtain weight filtrations on the (co)homology of varieties. In particular, we are able to construct
weight filtrations on étale cohomology with coefficients in a complex orientable étale sheaf of spectra,
extending Deligne’s weight filtration on `-adic étale cohomology [19].

We also show that the induced filtration on Borel–Moore homology satisfies hyperdescent with
respect to Kelly’s `dh-topology [40]. Combined with the theory of alterations [37, Theorem 4.4;
38, Theorem 1.1; 39, Exposé IX, Théorème 1.1; 62, Theorem 1.2.5], this gives an effective way of
calculating this filtration in positive characteristic. We end the paper with a conjectural picture of
the existence of a synthetic realization in the étale context.

In the rest of this introduction, we explain our results in more detail.

1.2. The complex orientable case. We first describe our result in its most basic case, over the
complex numbers and in the case of a complex orientable cohomology theory (such as complex
bordism, complex K-theory, or ordinary cohomology). We make use of Voevodsky’s ∞-category of
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motivic spectra SH(C), and we assume that the reader is familiar with basics of motivic homotopy
theory; see § 2 or a brief review.

Let A ∈ CAlg(Sp) be a commutative algebra in spectra. We have the A-linear Betti realization
functor

Be(−;A) : SH(C)→ ModA

which is the unique symmetric monoidal left adjoint such that for any smooth C-scheme X, we have

Be(Σ∞+ X;A) ' A⊗ Σ∞+ X(C) .

That is, Σ∞+ X ∈ SH(C) is sent to the the A-linear stable homotopy type of X(C).
The functor Be(−;A) encodes the theory of Betti (co)homology of varieties. In more detail, it

is a left adjoint, so any A-module M determines through the right adjoint to Be(−;A) a motivic
spectrum over C. Through the formalism of six-functors of the stable motivic category, in turn any
motivic spectrum determines (co)homology theories on varieties, in both ordinary and compactly
supported variants, which in this case recovers Betti (co)homology with coefficients in M .

Our first result is that if A is complex orientable, then the A-linear Betti realization can be
equipped with a canonical filtration. Recall that a filtered spectrum is a functor X∗ : Zop → Sp,
where we regard Z as a poset with the usual ordering. We write

FilSp := Fun(Zop,Sp)

for the ∞-category of filtered spectra. Every spectrum X has a canonical Postnikov filtration

· · · → τ≥1X → τ≥0X → τ≥−1X → · · ·

which can be naturally refined to a lax symmetric monoidal functor τ≥∗ : Sp→ FilSp.

1.2.1. Theorem (4.3.13). Let A ∈ CAlg(Sp) be complex orientable. Then, there exists a unique
colimit-preserving lax symmetric monoidal functor

W∗Be(−;A) : SH(C)→ Modτ≥∗(A)(FilSp)

such that on the subcategory of motivic spectra of the form S ' (P1)⊗n ⊗Σ∞+ Y with n ∈ Z and Y a
smooth proper complex variety, we have a natural equivalence

W∗Be(S;A) ' τ≥∗(Be(S;A)) .

We refer to W∗Be(−;A) as the filtered A-linear Betti realization functor.

Note that if A is an ordinary commutative ring, we have an identification

Modτ≥∗(A)(FilSp) ' Dfil(A)

with the classical filtered derived ∞-category of A, obtained by localizing filtered chain complexes
at filtered quasi-isomorphisms. See Proposition 4.1.7.

Informally, Theorem 1.2.1 says that once we decide to equip the A-homology of each smooth
proper variety X with the “trivial filtration” given by the Postnikov tower, there is a unique way to
extend this to a colimit-preserving functor defined on all of SH(C). By construction, for any motivic
spectrum S, the canonical map from the colimit

colim W∗Be(S;A)→ Be(S;A)

is an equivalence. This induces a filtration on homology groups of Be(S;A); hence for any complex
variety X, we obtain a filtration on the complex oriented (co)homology of X(C).

As a sample application, we explain how to use Theorem 1.2.1 to define virtual Euler characteris-
tics with coefficients in Morava K-theories. This description does not rely on Bittner’s presentation
of the Grothendieck ring of varieties [8], and is adaptable to more general base fields. See § 4.7.
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1.3. A new description of motivic spectra. Our proof of Theorem 1.2.1 is based on the following
description of the stable motivic category away from the characteristic. Our description is inspired
by the work of Bachmann–Kong–Wang–Xu on the Chow–Novikov t-structure on motivic spectra [7].

Let k be a field of exponential characteristic e. We say that a motivic spectrum S ∈ SH(k)[1/e]
over k is perfect pure if S belongs to the smallest subcategory

Pure(k) ⊆ SH(k)[1/e]

generated under extensions and retracts by motivic Thom spectra Th(η), where η ∈ K0(X) and X
is a smooth proper k-variety. An additive sheaf F : Pure(k)op → Sp is a functor that sends cofiber
sequences of perfect pure motivic spectra to fiber sequences of spectra; we denote the ∞-category
of additive sheaves of spectra on Pure(k) by ShΣ(Pure(k); Sp)1.

1.3.1. Theorem (3.3.5). Let k be a field of exponential characteristic e. The spectral Yoneda em-
bedding S 7→ mapSH(k)[1/e](−, S) defines an equivalence of ∞-categories

SH(k)[1/e]
∼−→ ShΣ(Pure(k); Sp) .

1.3.2. Remark (inverting e). As usual, the reason Theorem 1.3.1 requires inverting the exponential
characteristic e ultimately relies on the fact that strong resolution of singularities is not known over
general base fields; instead, we use Gabber’s `′-alteration theorem. Our proofs are written in such a
way that if one assumes strong resolution of singularities over k, then the refinement of Theorem 1.3.1
without e inverted holds.

By construction, the equivalence of Theorem 1.3.1 is compatible with the Chow–Novikov t-struc-
ture recently introduced by Bachmann–Kong–Wang–Xu. More precisely, the Chow–Novikov t-struc-
ture on SH(k)[1/e] is identified with the canonical t-structure on additive sheaves induced by the
standard t-structure on spectra.

Let MGL ∈ SH(k) denote the motivic spectrum representing algebraic cobordism. If we replace
SH(k) with the∞-category of MGL[1/e]-modules, Theorem 1.3.1 implies that there is an equivalence
of ∞-categories

(1.3.3) ModMGL[1/e](SH(k)) ' PShΣ(PureMGL(k); Sp)[1/e]

with additive spectral presheaves. Here,

PureMGL(k) ⊆ ModMGL(SH(k))

is the subcategory of modules of the form MGL⊗Σ∞+ X, where X is smooth and proper. As explained
in the work of Elmanto–Sosnilo [23, §2.2.11], this equivalence is also a consequence of the existence
of Bondarko’s weight structure on MGL-modules [9]. Note that if we replace MGL with the mo-
tivic cohomology spectrum MZ, the equivalence (1.3.3) can be thought of as a homotopy-coherent
refinement of the weight homology construction of Kelly–Saito [42, Theorem 2.3].

As an immediate consequence of Theorem 1.3.1, we deduce the following new universal property
of SH(k)[1/e].

1.3.4. Corollary. Let k be a field of exponential characteristic e and let C be a cocomplete stable
∞-category. Then restriction along the inclusion defines an equivalence of ∞-categories

Funcolim(SH(k)[1/e],C)→ Funcofib(Pure(k),C)

between colimit-preserving functors SH(k)[1/e] → C and functors Pure(k) → C that preserve cofiber
sequences.

1In § 3, we show that a spectral presheaf F : Pure(k)op → Sp sends preserves cofiber sequences if and only if it is
additive and a sheaf with respect to a certain natural Grothendieck topology on Pure(k). This justifies our terminology.
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The utility of Corollary 1.3.4 comes down to the fact that cofiber sequences

A B C ΣA∂

in Pure(k) are easier to control than cofiber sequences of arbitrary motivic spectra. Indeed, since the
MGL[1/e]-homology of a smooth proper k-scheme vanishes in negative Chow degree [7, Proposition
3.6(2)], the boundary map

∂ : (MGL⊗ C)[1/e]→ (MGL⊗ ΣA)[1/e]

is necessarily zero; see Proposition 3.2.6. This fact is essentially equivalent to the existence of Bon-
darko’s weight structure on MGL[1/e]-modules. It follows that any additive functor which preserves
MGL[1/e]-split cofiber sequences also preserves cofiber sequences of perfect pure motives. This im-
plies Theorem 1.2.1: since any complex orientable A ∈ CAlg(Sp) is module over Be(MGL) ' MU in
the homotopy category of spectra and Betti realization is symmetric monoidal, the functor

S 7→ τ≥∗Be(S;A)

preserves MGL-split cofiber sequences.

1.4. Filtered étale realization. Since our construction of the filtered Betti realization is based on
properties of the ∞-category of motivic spectra itself, rather than the target of a given realization,
it also allows us to prove the existence of weight filtrations in other contexts. For example, let k be
a field and let ` 6= char(k) be a prime. Write

Re` : SH(k)→ Shhyp
ét (Étk; Sp)∧` ,

for the `-adic étale realization functor valued in hypercomplete sheaves of `-complete spectra on the
small étale site of k; see §2.4. The target can be thought of as the ∞-category of `-complete spectra
equipped with a continuous action of the absolute Galois group Gal(k̄/k). We are able to equip the
étale realization of any motivic spectrum over k with a weight filtration:

1.4.1. Theorem (4.6.5). Let k be a field of exponential characteristic e and let ` 6= e be a prime.
Let A ∈ CAlg(Shhyp

ét (Étk; Sp)∧` ) be complex orientable in the sense that there exists a morphism
Re`(MGL) → A of algebras in the homotopy category. There exists a unique colimit-preserving lax
symmetric monoidal functor

W∗Re`(−;A) : SH(k)[1/e]→ Fil(Shhyp
ét (Étk; Sp)∧` )

valued in filtered hypersheaves such that for any S ∈ Pure(k), we have

W∗Re`(S;A) ' τ≥∗(Re`(S;A)) .

1.5. Descent and the Gillet–Soulé filtration. Let p : X → Spec(C) be a complex variety. Then
X determines a motivic spectrum

Mc(X) := p!(1X) ∈ SH(C)

that encodes the compactly supported cohomology of X; see §2.2. In Corollary 2.2.12, we show that
this motivic spectrum is dualizable. Thus, if A is complex orientable, then by applying filtered Betti
realization to Mc(X) and its dual Mc(X)∨, we obtain filtered spectra

W∗Be(Mc(X);A) and W∗Be(Mc(X)∨;A) .

These filtered spectra provide filtrations on the compactly supported A-cohomology and Borel–
Moore A-homology of X, respectively. Analogously, applying the filtered étale realization of Theo-
rem 1.4.1 we obtain filtrations on `-adic étale (co)homology over an arbitrary field.

Since the weight filtrations considered in this paper are defined using a somewhat abstract char-
acterization of the stable motivic category, it is natural to ask for an explicit way to calculate these
filtrations only using varieties. In both the works of Deligne [16; 17; 18] and Gillet–Soulé [26], the
weight filtration is obtained by repeatedly invoking resolution of singularities to resolve the starting
variety by smooth projective varieties. We show that the same method can be used in our context.
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Since we are also interested in the case of étale cohomology over fields of positive characteristic
(where resolution of singularities is not known) we work with Kelly’s `dh-topology [40]. Recall that
the `dh-topology is generated by the cdh-topology and finite flat and surjective maps of degree prime
to `; see §5.1 for a brief review. By Gabber’s `′-alteration theorem [39, Exposé IX, Théorème 1.1], for
any field k and prime ` 6= char(k), every k-variety admits an `dh-hypercover by regular k-varieties.
Also note that since any cdh-cover is an `dh-cover, so the latter notion is strictly more general than
classical resolution of singularities.

1.5.1. Theorem (5.2.3). Let k be a field and ` 6= char(k) a prime. If X• → X is an `dh-hypercover
of k-schemes, then the canonical map

colim
∆op

Mc(X•)
∨
(`) → Mc(X)∨(`) .

is an MGL-local equivalence; that is, it becomes an equivalence after tensoring with MGL. In par-
ticular, it is ∞-connective with respect to the Chow–Novikov t-structure.

As our filtered realization functors have coefficients in a complex oriented homology theory, they
invert MGL-local maps. Let us now explain how Theorem 1.5.1 gives an effective way of calculating
the filtration on Borel–Moore homology. To treat both the Betti and étale cases uniformly, for a
variety X and A ∈ CAlg(Sp) complex orientable, we write

CBM
∗ (X;A) :=

{
Be(Mc(X)∨;A) (Betti)
Re`(Mc(X)∨(`);A) (étale) .

Informally, these are the A-linear Borel–Moore “cochains”, although note that in the étale case it is
a hypersheaf of spectra on the étale site of k rather than a spectrum itself. Using Theorem 1.2.1 and
Theorem 1.4.1 these objects inherit canonical filtrations.

1.5.2. Theorem (5.3.4). Let k be a field and let ` 6= char(k) be a prime. Let X be a proper k-scheme
and let X• → X be an `dh-hypercover such that for each i ≥ 0, the scheme Xi is smooth and
projective. Then for any `-local A we have

(1.5.3) W∗C
BM
∗ (X;A) ' colim

[i]∈∆op
τ≥∗C

BM
∗ (Xi;A)

where the colimit is calculated in filtered τ≥∗A-modules. If X• → X is a cdh-cover, then (5.3.5) holds
for any A in which the exponential characteristic of k is invertible.

Note that the case of cohomology is more involved: although MGL-locally the motivic spectrum
Mc(X) can be written as a totalization of its hypercover, the filtered realization functors need not
preserve infinite limits. We analyze this situation in more detail in the case of classical integral
cohomology of complex varieties, where we prove that the necessary limit can be replaced by a finite
one. As a consequence, we deduce the comparison result with the Gillet–Soulé filtration introduced
in [26]. Given a complex variety, we write WGS

∗ C∗c(X(C);Z) for the Gillet–Soulé weight filtration on
the compactly supported integral cochains on X(C).

1.5.4. Theorem (5.4.8). Let X be a complex variety. Then there exists a natural equivalence

(1.5.5) W∗C
∗
c(X(C);Z) 'WGS

∗ C∗c(X(C);Z)

of objects of the filtered derived∞-category of Z. In other words, the filtration on compactly supported
integral cochains inherited from the filtered Betti realization coincides with the Gillet–Soulé filtration.

1.5.6. Remark. In the case of a field of characteristic zero, an alternative way to construct filtra-
tions on complex oriented, compactly supported cohomology appears in the recent work of Kuijper
[44]. The filtrations constructed in this way also agree with the ones introduced in this paper, see
Remark 5.4.16.
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1.6. Synthetic Betti realization. In the case of the complex Betti realization we now describe
how the weight filtration can be lifted to a filtration on the stable homotopy type itself. We believe
that an analogous construction should yield a similar filtration in the real Betti and étale cases, and
we sketch the conjectural picture in § 6.5.

The monoidal unit S0 ∈ Sp of spectra is not complex orientable. However, the unit map S0 → MU
is faithfully flat and induces a cosimplicial resolution

S0 MU MU⊗MU · · ·

through complex orientable ring spectra. Moreover, by the work of Hahn–Raksit–Wilson on the even
filtration2 [30], this resolution is essentially universal with respect to this property. The limit of the
associated diagram

Modτ≥∗(MU)(FilSp) Modτ≥∗(MU⊗MU)(FilSp) · · ·

of∞-categories of filtered modules can be thought of as a natural target of a weight filtration functor.
Even better, up to completion it can be identified with the∞-category SynMU of MU-based synthetic
spectra introduced by the second-named author in [55].

The ∞-category SynMU is best understood as an ∞-categorical deformation encoding chromatic
homotopy theory. It is a symmetric monoidal stable ∞-category and monoidal unit has a canonical
(degree-shiftinh) endomorphism τ . This endomorphism τ should be thought of as a formal parameter,
and we have equivalences

Synτ=1
MU ' Sp

between the generic fiber and spectra, and

(1.6.1) Synτ=0
MU ' IndCoh(Mfg)

between the special fiber and Ind-coherent sheaves on the moduli stack of formal groups3. There is
a canonical fully faithful embedding ν : Sp ↪→ SynMU which reduces to the identity of spectra on
the generic fiber and to the association

X 7→ MU∗(X) ∈ IndCoh(Mfg)♥

on the special fiber. For any spectrum X, the τ -adic filtration on ν(X) encodes the Adams–Novikov
spectral sequence calculating the stable homotopy groups π∗(X).

By the work of Gheorghe–Krause–Isaksen–Ricka [25], synthetic spectra are equivalent to filtered
modules over the sphere spectrum equipped with the filtration

fil∗(S0) := lim
[n]∈∆

τ≥∗(MU⊗n+1)

given by descent along the faithfully flat map S0 → MU. This is essentially the filtration on the
sphere spectrum known as the Adams–Novikov filtration4. Thus, the following realizes the promised
weight filtration at the level of stable homotopy types:

2To be more precise, the MU-resolution of the sphere is universal as a resolution of the sphere through commutative
ring spectra with even homotopy groups, i.e., an even ring spectrum. However, any even ring spectrum is complex
orientable, and any complex orientable spectrum can be made in an MU-algebra in the homotopy category, so we blur
the distinction here.

3In this paper, we mostly work with all (that is, not necessarily even) synthetic spectra, so that the right-hand
side of (1.6.1), the right-hand side is sheaves on the moduli of formal groups in Dirac geometry of Lars Hesselholt and
the second-named author, see [31, §5.2]. It is a natural enlargement of Ind-coherent sheaves on the classical moduli
stack where the Lie algebra line bundle ω has a canonical square root ω⊗1/2.

4To be more precise, [25] describes the subcategory of even synthetic spectra as modules in FilSp over the double-
speed filtration fil∗ev(S0) := limn τ≥2∗(MU⊗n+1). The filtration fil∗ev(S0) is what is typically refereed to as the Adams–
Novikov filtration. However, one can also describe the whole ∞-category SynMU as modules in FilSp over fil∗(S0).
This is analogous to the difference between the even filtration and its half-integer version, see [54, Remark 2.26].
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1.6.2. Theorem (6.3.3). There exists a unique lax symmetric monoidal left adjoint

Besyn : SH(C)→ SynMU

such that for each S ∈ Pure(C), we have

Besyn(S) ' ν(Be(S)) .

The functor Besyn is not strongly symmetic monoidal. To see this, note that the reduction to the
special fiber SynMU → Synτ=0

MU is strongly symmetric monoidal. By construction, when restricted to
synthetic spectra of the form Besyn(X) for X ∈ Pure(k), this reduction takes the form

X 7→ MU∗(X(C)) .

This functor is only lax symmetric monoidal: since MU∗ is not a field, the Künneth map

MU∗(U) ⊗
MU∗

MU∗(V )→ MU∗(U ⊗ V )

is not generally an isomorphism. For the same reason, unless A∗ is a field, the A-linear weight
filtrations of Theorem 1.2.1 are only lax symmetric monoidal.

The functor Theorem 1.6.2 is weakly universal in the sense that if A is a complex orientable ring
spectrum, there is a realization functor

ν(A)⊗ν(S0) (−) : SynMU → Modτ≥∗(A)(FilSp) .

and a canonical natural transformation

(1.6.3) ν(A)⊗ν(S0) Besyn(−)→W∗Be(−;A)

of functors
SH(k)→ Modτ≥∗(A)(FilSp) .

We say only “weakly universal”, because, due to the failure of the Künneth formula, the natural
transformation (1.6.3) is not generally an equivalence.

In Theorem 6.4.6, we show that if the map Spec(A∗)→Mfg classifying the Quillen formal group
is flat, then (1.6.3) is an equivalence. In particular, this is the case when A = Q; hence our synthetic
weight filtration refines Deligne’s rational weight filtration. Similarly, for any ring map A → B
between complex orientable algebras in spectra, there is a comparison natural transformation

τ≥∗(B) ⊗
τ≥∗(A)

W∗Be(−;A)→W∗Be(−;B) .

If A∗ → B∗ is flat, then this map is an equivalence; see Corollary 4.5.4.
Since the synthetic refinement of the weight filtration provided by Theorem 1.6.2 in particular

encodes the stable homotopy type of the Betti realization, it is a much stronger invariant than
the Z-linear weight filtration. As one piece of evidence towards its strength, observe that since the
underlying homotopy type of any complex motivic sphere has only even cells, the synthetic weight
filtration restricts to a functor

Besyn : SH(C)cell → Synev
MU

from the full subcategory spanned by cellular motivic spectra into the full subcategory spanned by
the even synthetic spectra. This restriction was previously constructed by the second-named author
in [55, §7.5]. There, it is shown that for any prime p, this restriction becomes an equivalence

(SH(C)cell)∧p
∼−→ (Synev

MU)∧p

after p-completion [55, Theorem 7.34]. In other words, in the context of p-complete cellular motivic
spectra, the synthetic weight filtration is a complete invariant.
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Linear overview. For the convenience of the reader, in § 2, we recall the basics of motivic homo-
topy theory, Betti realization, and étale realization. We also prove a useful result that allows one
to reduce statements about motives of arbitrary varieties to statements about motives of smooth
proper varieties; see Lemma 2.2.11. In § 3, we prove Theorem 1.3.1. In § 4, we apply our new de-
scription of SH(k)[1/e] to construct filtered refinements of Betti and étale realization; this proves
Theorems 1.2.1 and 1.4.1. In § 5, given a complex variety X, we show that our filtration on the
compactly supported integral cohains C∗c(X(C);Z) agrees with the filtration defined by Gillet and
Soulé. See Theorem 5.4.8. In § 6, we construct the synthetic Betti realization functor

Besyn : SH(C)→ SynMU

of Theorem 1.6.2 and compare synthetic Betti realization to filtered Betti realization. See Theo-
rems 6.3.3 and 6.4.6. We conclude the paper by giving a conjectural description of a synthetic lift
of a general motivic realization functor; see § 6.5.

Acknowledgements. We would like to thank Tom Bachmann, Bhargav Bhatt, Elden Elmanto,
Shane Kelly, Adeel A. Khan, Hana Jia Kong, Jacob Lurie, Vova Sosnilo, and Mura Yakerson for
insightful conversations related to this work.

2. Recollections on motivic homotopy theory

In this section, we review some of the basic tools we need from stable motivic homotopy theory.
Our account is quite brief; for more details we refer the reader to [13; 36; 47, §2].

In § 2.1, we recall the basic setup of stable motivic homotopy theory and the six operations. In
§ 2.2, we collect some basic facts about compactly supported motives attached to schemes. In §§ 2.3
and 2.4, we recall the basics of Betti realization and étale realization, respectively.

2.1. Motivic spectra and the six operations. Given a scheme S, we write SmS for the category
of smooth S-schemes. Informally, the∞-category of motivic spectra over S has the same relationship
to SmS as the topologists’ ∞-category of spectra has to the category of finite CW-complexes.

2.1.1. Recollection. To each scheme S we associate the symmetric monoidal ∞-category SH(S) of
motivic spectra over S. This ∞-category comes equipped with a symmetric monoidal functor

Σ∞+ : SmS → SH(S) ,

where SmS is has symmetric monoidal structive given by the cartesian product. This construction
has the following properties:
(1) The ∞-category SH(S) is stable, presentable, and its tensor product preserves colimits sepa-

rately in each variable.

(2) The functor Σ∞+ : Smop
S → SH(S)op is a sheaf with respect to the Nisnevich topology.

(3) For each X ∈ SmS , the projection X×A1 → X induces an equivalence Σ∞+ (X×A1)
∼−→ Σ∞+ X.

(4) The Tate motive given by the cofiber

S2,1 := cofib(∞ : Σ∞+ S → Σ∞+ (P1
S))

of the point at infinity is ⊗-invertible in SH(S).
Moreover, SH(S) is initial with respect to these properties; that is, given any symmetric monoidal
functor F : SmS → C satisfying properties (1)–(4), there exists a unique colimit-preserving symmetric
monoidal functor F̃ fitting into a commutative triangle

SmS C

SH(S) .

F

Σ∞+
F̃
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See [59, Corollary 2.39].

2.1.2. Recollection (bigraded homotopy groups). Given integers a, b ∈ Z, we have bigraded spheres

Sa,b := Σa−2b(S2,1)⊗b ∈ SH(S) ,

where S2,1 for the Tate motive. Since the Tate motive is ⊗-invertible, all bigraded spheres Sa,b are also
⊗-invertible. Moreover, S0,0 is the monoidal unit of SH(S). For any motivic spectrum E ∈ SH(S),
the bigraded homotopy groups of E are defined as

πp,qE := π0 MapSH(S)(S
p,q, E)

the homotopy classes of maps from bigraded spheres.

2.1.3. Notation (Thom spectra). Let S be a scheme. Given a K-theory class η ∈ K0(S), we write
ThS(η) ∈ SH(S) for the motivic Thom spectrum associated to η. If the base scheme is clear, we
simply write Th(η) instead of ThS(η).

Importantly, the Thom spectrum Th(η) is ⊗-invertible in SH(S) with inverse Th(−η). We write

Ση : SH(S)
∼−→ SH(S)

for the functor Th(η)⊗ (−).

2.1.4.Notation (Eilenberg–MacLane spectra). Let S be a scheme and let R be an ordinary commu-
tative ring. We write MRS ∈ SH(S) for motivic Eilenberg–MacLane spectrum representing motivic
cohomology with coefficients in R. Note that MRS is naturally a commutative algebra in SH(S)
When it does not lead to confusion, we simply write MR instead of MRS .

2.1.5. Recollection (relation to Voevodsky motives). Given a scheme S, write DM(S) for Voevod-
sky’s ∞-category of motives over S. If S is regular over a field with resolution of singularities, then
there is an equivalence of symmetric monoidal ∞-categories

DM(S) ' ModMZ(SH(S))

between DM(S) and modules in SH(S) over the motivic Eilenberg–MacLane spectrum MZ. See [22;
12; 60].

We now review the basics of functoriality of the construction S 7→ SH(S). Our account is brief,
see [14, §1; 15, §2.1] for a more thorough review.

2.1.6. Recollection. For every morphism of schemes f : X → Y , we have an adjunction

f∗ : SH(Y )� SH(X) :f∗ .

The functor f∗ is the unique symmetric monoidal left adjoint that extends the functor SmY → SH(X)
given by

S 7→ Σ∞+ (X ×Y S) .
If f : X → Y is smooth, then the forgetful functor SmX → SmY induces a functor

f] : SH(X)→ SH(Y ) .

that is left adjoint to f∗. Importantly, f](1X) ' Σ∞+ X.

2.1.7. Recollection (exceptional adjoints). If f : X → Y is a morphism locally of finite type, we
have an ‘exceptional’ adjunction

f! : SH(X)� SH(Y ) :f !

along with a natural transformation f! → f∗. These functors are more difficult to construct, but the
following are their main features from the perspective of the present work:

2.1.8. Recollection (compatibilities between the six functors). Let f : X → Y is a morphism locally
of finite type. The following hold:
(1) If f is proper, then f! ' f∗.
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(2) If f is étale, then
f! ' f] and f ! ' f∗ .

Combined with (1) we see that for any factorization f = p ◦ j, where j is an open immersion
and p is proper, we have

f! ' p∗ ◦ j] .

(3) Atiyah duality: If f is smooth with relative tangent bundle Tf , then there are equivalences

Σ−Tf ◦ f ! ' f∗ and f! ◦ ΣTf ' f] .

(4) Projection formula: There is a natural equivalence

f!(−⊗ f∗(−)) ' f!(−)⊗ (−)

of functors SH(X)× SH(Y )→ SH(Y ).

(5) Smooth projection formula: If f is smooth, there is a natural equivalence

f](−⊗ f∗(−)) ' f](−)⊗ (−)

of functors SH(X)× SH(Y )→ SH(Y ).

(6) Basechange: Given a cartesian square

X ′ X

Y ′ Y

f̄

p̄

y
f

p

where f is locally of finite type, we have natural equivalences

p∗f! ' f̄!p̄
∗ and p̄∗f̄

! ' f !p∗ .

(7) Gluing: Given a closed immersion i : Z ↪→ X with open complement j : U ↪→ X, there are
natural cofiber sequences

j!j
! idSH(X) i∗i

∗

and
i!i

! idSH(X) j∗j
∗

of exact functors SH(X)→ SH(X).

2.1.9. Remark. Let f : X → Y be a smooth morphism of schemes. Then f! : SH(X) → SH(Y )
preserves compact objects. To see this, observe that by Atiyah duality, the right adjoint to f! is
given by f ! ' ΣTf ◦ f∗, hence preserves all colimits.

2.1.10. Recollection ([7, Lemma 2.5]). Let f : X → S be a smooth proper morphism of schemes.
Given a class η ∈ K0(X), we write

ThS(η) := f] ThX(η) .
Write TX for the tangent bundle of X. Then the motivic spectrum ThS(η) is dualizable in SH(S)
with dual ThS(−η − TX).

Using the six functors, we can define (co)homology theories associated to morphisms of schemes:

2.1.11. Recollection (cohomology). Fix a base scheme S and motivic spectrum E ∈ SH(S). Let
p : X → S be a morphism of schemes and a, b ∈ Z. Then:
(1) We have the motivic spectrum p∗p

∗(E) ∈ SH(S) encoding the E-cohomology of X. We write

Ea,b(X/S) := π−a,−b(p∗p
∗(E)) .
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(2) If p : X → S is locally of finite type, we have the motivic spectrum p∗p
!(E) ∈ SH(S) encoding

the Borel–Moore E-homology or bivariant E-homology of X. We write

EBM
a,b (X/S) := πa,b(p∗p

!(E)) .

(3) If p : X → S is locally of finite type, we have the motivic spectrum p!p
∗(E) ∈ SH(S) encoding

the compactly supported E-cohomology of X. We write

Ea,bc (X/S) := π−a,−b(p!p
∗(E)) .

(4) If p : X → S is locally of finite type, we have the motivic spectrum p!p
!(E) ∈ SH(S) encoding

the E-homology of X. We write

Ea,b(X/S) := πa,b(p!p
!(E)) .

2.2. Compactly supported motives of schemes. As surveyed in Recollection 2.1.11, the six
functor formalism provides a very general form of cohomology theory. However, it is often convenient
to work with an alternative description, obtained by attaching to any S-scheme a suitable motivic
spectrum. The relationships between schemes (such as an open-closed decomposition) can then be
encoded via relationships between these motivic spectra.

2.2.1. Definition. Let p : X → S be a locally of finite type morphism of schemes. The (compactly
supported) motive associated to X is the motivic spectrum over S given by

Mc(X/S) := p!(1X) .

If the base scheme S is clear from the context, then we simply write Mc(X) for Mc(X/S).

2.2.2. Example. Let k be a field and let p : X → Spec(k) be a smooth morphism with relative
tangent bundle TX . Then by Atiyah duality we have

p! ' p] ◦ Σ−TX .

It follows that Mc(X) can be identified with the Thom spectrum ThX(−TX) of the negative tangent
bundle. This is, informally, a twisted form of the suspension spectrum of X; in the particular case
when X is a variety of dimension d with trivial tangent bundle, then

Mc(X) ' Σ−2d,dΣ∞+ X .

2.2.3.Observation. Let k be a field and letX be a smooth projective k-scheme. As a consequence of
Atiyah duality, Mc(X) is the monoidal dual of Σ∞+ X, see [58, Theorem 2.2]. Moreover, Remark 2.1.9
shows that Mc(X) is also compact.

The compatibilies of the six functors show that the compactly supported motive Mc(X/S) encodes
both the Borel–Moore homology and compactly supported cohomology of X with coefficients in an
arbitrary motivic spectrum over S:

2.2.4. Observation. Let p : X → S be a locally of finite type morphism of schemes and E ∈ SH(S).
Using the projection formula, the motivic spectrum encoding compactly supported E-cohomology
can also be described as

p!p
∗(E) ' p!(1X)⊗ E = Mc(X/S)⊗ E .

2.2.5. Observation. Let p : X → S be a locally of finite type morphism of schemes and E ∈ SH(S).
Using the fact that p∗p! is right adjoint to p!p

∗, we have equivalences

p∗p
!(E) ' HomSH(S)(1S , p∗p

!(E))

' HomSH(S)(p!p
∗(1S), E)

' HomSH(S)(Mc(X/S), E) .
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2.2.6. Observation. As a consequence of Observations 2.2.4 and 2.2.5, the compactly supported
cohomology and Borel–Moore homology of X over S are computed by

Ea,bc (X/S) ' π−a,−b(Mc(X/S)⊗ E)

and
EBM
a,b (X/S) ' πa,b HomSH(S)(Mc(X/S), E) .

2.2.7. Warning. The isomorphisms of Observation 2.2.6 are opposite to the ones appearing in
topology for usual homology and cohomology. That is, it is homology which is defined by mapping
into a spectrum and cohomology which is defined using the tensor product. This is because Mc(X)
encodes the compactly supported theories: Mc(X) should be thought of as a “cohomological” motive,
as witnessed by its contravariant functoriality of Construction 2.2.9.

The formation of the compactly supported motive of a scheme commutes with basechange:

2.2.8. Lemma. Given a cartesian square of schemes

X ′ X

S′ S

p′

f ′

y
p

f

where p is locally of finite type, there is an equivalence Mc(X ′/S′) ' f∗Mc(X/S).

Proof. Using the fact that pullback and exceptional pushforward satisfy basechange, we compute

Mc(X ′/S′) = p′!(1X′) ' p′!(f ′)∗(1X)

' f∗p!(1X)

= f∗Mc(X/S) . �

2.2.9. Construction (functoriality of Mc). Consider a commutative triangle of locally of finite type
morphisms of schemes

X Y

S .

f

p q

The construction X 7→ Mc(X/S) has the following functorialities:
(1) Contravariant functoriality in proper maps: Assume that f is proper. Using the equivalence

f! ' f∗, the unit of the adjunction f∗ a f∗ provides a map

Mc(Y/S) = q!(1Y ) −→ q!f∗f
∗(1Y ) ' q!f!f

∗(1Y ) ' q!f!(1X) ' p!(1X) = Mc(X/S) .

(2) Covariant functoriality in étale maps: Assume that f is étale. Using the equivalence f∗ ' f !

the counit map of f! a f ! yields a map

Mc(X/S) = q!f!(1X) ' q!f!f
∗(1Y ) ' q!f!f

!(1Y ) −→ q!(1Y ) = Mc(Y/S) .

2.2.10. Lemma. Let p : X → S be locally of finite type morphism of schemes. Let i : Z ↪→ X be a
closed immersion with open complement j : U ↪→ X. Then the induced maps Mc(U/S)→ Mc(X/S)
and Mc(X/S)→ Mc(Z/S) assemble into a natural cofiber sequence

Mc(U/S) Mc(X/S) Mc(Z/S)

in SH(S).
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Proof. There is a gluing cofiber sequence

j!j
∗(1X) 1X i!i

∗(1X)

in SH(X). Applying p! : SH(X)→ SH(S) to this cofiber sequence and using the fact that i∗ and j∗
are symmetric monoidal, we obtain a cofiber sequence

p!j!(1U ) p!(1X) p!i!(1Z)

in SH(S). The claim now follows from the definition of the compactly supported motive of an S-
scheme. �

The following is often useful, as it allows one to reduce statements about arbitrary varieties to
statements about smooth proper varieties.

2.2.11. Lemma. Let k be a field of exponential characteristic e. Let C ⊆ SH(k)[1/e] be a full subcat-
egory with the following two properties:
(1) The subcategory C is closed under extensions, fibers, and retracts.

(2) For each smooth projective k-variety X, we have Mc(X)[1/e] ∈ C.
Then for any k-variety U , we have Mc(U)[1/e] ∈ C.

Proof. We argue by induction on the dimension of U .
The base case is when dim(U) = 0, so that U is projective. In this case, if k is perfect, then U

is also smooth, and we are done. If k is not perfect, we consider the perfection r : k ↪→ k′ given by
the colimit over the Frobenius morphism. By a result of Elmanto–Khan [21, Corollary 2.1.7], the
pullback functor

r∗ : SH(k)[1/e]→ SH(k′)[1/e]

is an equivalence. Writing U ′ for the basechange of U to k′, Lemma 2.2.8 shows that

r∗Mc(U/k) ' Mc(U ′/k′) .

Write Étk and Étk′ for the small étale sites of k and k′, respectively. Since r is a universal home-
omorphism, the topological invariance of the étale site [28, Exposé IX, Théorème 4.10; 3, Exposé
VIII, Théorème 1.1] implies that the basechange functor

Étk → Étk′

is an equivalence of categories. It follows that there exists a zero-dimensional étale k-scheme V such
that V ′ ' U ′ as k′-schemes. Again applying Lemma 2.2.8, we see that

r∗Mc(V/k)[1/e] ' r∗Mc(U/k)[1/e] .

Since r∗ is fully faithful, we deduce that Mc(V )[1/e] ' Mc(U)[1/e]. By assumption, Mc(V )[1/e] ∈ C,
hence Mc(U)[1/e] ∈ C as well.

For the induction step, assume that dim(U) > 0 and that for each k-variety Z such that dim(Z) <
dim(U), we have Mc(Z)[1/e] ∈ C. By Lemma 2.2.10, for any closed Z ⊆ U we have a cofiber sequence

Mc(U r Z)[1/e]→ Mc(U)[1/e]→ Mc(Z)[1/e] .

Hence it is enough to show that, after possibly replacing U by an open dense subset, we have
Mc(U)[1/e] ∈ C. Applying Lemma 2.2.10 to a decomposition into connected components, we can
assume that U is connected. By further shrinking U , we can also assume that U is smooth with
trivial tangent bundle.

By the theory of alterations we can find a finite étale cover V → U of degree d coprime to e such
that V is an open dense subset of a smooth and projective k-variety X. By the inductive hypothesis
and an application of Lemma 2.2.10, we deduce that Mc(V )[1/e] ∈ C. We want to deduce the same
for Mc(U)[1/e]. Since both U and V have trivial tangent bundles, Example 2.2.2 shows that

Mc(U) ' Σ−2d,dΣ∞+ U and Mc(V ) ' Σ−2d,dΣ∞+ V .
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We deduce from [48, Lemma B.3] that after possibly shrinking U , the motivic spectrum Mc(U)[1/e]
is a retract of Mc(V )[1/e], ending the argument. �

2.2.12. Corollary. Let k be a field of exponential characteristic e. Then for any k-variety X, the
motivic spectrum Mc(X)[1/e] is a compact and dualizable object of SH(k)[1/e].

Proof. Since compact and dualizable objects form a stable subcategory, this follows from Lemma 2.2.11
and the smooth projective case of Observation 2.2.3. �

2.3. Betti realization. We now recall the basics of Betti realizations in characteristic zero. The
first is over the complex numbers.

2.3.1. Construction (complex Betti realization). The functor SmC → Spc sending a smooth C-
scheme to the underlying homotopy type of the topological space X(C) with the analytic topology is
A1-invariant, sends elementary Nisnevich squares to pullback squares, and preserves finite products.

Moreover, the functor SmC → Sp given by X 7→ Σ∞+ X(C) also inverts the Tate motive. As a con-
sequence of the universal property of motivic spectra, this functor uniquely extends to a symmetric
monoidal left adjoint

Be: SH(C)→ Sp

referred to as Betti realization.

2.3.2. Example ([45, Proposition 5.10]). There is a natural equivalence

Be(MR) ' HR

between the Betti realization of the motivic Eilenberg–MacLane spectrum MR and the usual Eilenberg–
MacLane spectrum of R.

2.3.3. Example. There is an equivalence

Be(MGL) ' MU

of commutative algebras in Sp.

2.3.4. Construction (C2-Betti realization). Similarly, if X is a smooth R-scheme, then the complex
points X(C) acquire an action of the Galois group C2 := Gal(C/R). The underlying homotopy type
of X(C) refines to a genuine C2-space. Again by the universal proeprty of motivic spectra, the
functor

SmR → SpC2

X 7→ Σ∞C2,+X(C)

uniquely extends to a symmetric monoidal left adjoint

BeC2
: SH(R)→ SpC2

valued in genuine C2-spectra. This functor is referred to as C2-Betti realization.

2.4. Étale realization. Let k be a separably closed field and ` a prime different from char(k). We
now explain a construction of an étale realization functor from SH(k) to `-complete spectra. In fact,
we give a more general construction that works over any base scheme.

2.4.1. Notation. Let S be a scheme. Write ÉtS ⊆ SmS for the full subcategory spanned by the
étale S-schemes. Giving both of these categories the étale topology, this inclusion ÉtS ⊆ SmS is a
morphism of sites that satisfies the covering lifting property. In particular, this inclusion induces a
fully faithful symmetric monoidal pullback functor

i∗ : Shhyp
ét (ÉtS ; Sp) ↪→ Shhyp

ét (SmS ; Sp)

on étale hypersheaves of spectra.
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2.4.2. Notation. Let S be a scheme. Write SHét(S) for the localization of SH(S) at the desuspen-
sions of étale hypercoverings. Write Lét : SH(S)→ SHét(S) for the symmetric monoidal localization
functor.

2.4.3. Equivalently, the ∞-category SHét(S) can be obtained by first taking A1-local objects in the
∞-topos Shhyp

ét (SmS) of étale hypersheaves of spaces on smooth S-schemes, then P1-stabilizing. As
a result, there is a natural symmetric monoidal left adjoint

Shhyp
ét (SmS ; Sp)→ SHét(S) .

2.4.4. Notation. Let C be a presentable stable ∞-category and ` a prime number. A morphism
f : X → Y in C is an `-equivalence if cofib(f)/` = 0. We write C∧` ⊆ C for the localization of C at
the `-equivalences. We refer to C∧` as the subcategory of `-complete objects. Then inclusuon C∧` ⊆ C

admits a left adjoint that we denote by (−)∧` : C→ C∧` .

The following rigidity result of Bachmann generalizes work of Ayoub [4, §5] as well as earlier work
by Bachmann [6, Theorem 6.6].

2.4.5. Theorem (rigidity [5, Theorem 3.1]). Let S be a scheme and ` a prime number invertible on
S. Then the natural symmetric monoidal left adjoint

Shhyp
ét (ÉtS ; Sp)∧` Shhyp

ét (SmS ; Sp)∧` SHét(S)∧`
i∗,∧`

is an equivalence.

2.4.6. Definition (étale realization). Let S be a scheme and ` a prime number invertible on S. The
`-adic étale realization functor is the composite

Re` : SH(S) SHét(S) SHét(S)∧` Shhyp
ét (ÉtS ; Sp)∧` .Lét (−)∧` ∼

Here the last equivalence is the inverse of the rigidity equivalence of Theorem 2.4.5. Note that Re`
is a composite of symmetric monoidal left adjoints, hence is a symmetric monoidal left adjoint.

2.4.7. Example. Let k be a separably closed field and ` 6= char(k). Then `-adic étale realization
provides a symmetric monoidal left adjoint

Re` : SH(k)→ Sp∧`

to `-complete spectra.

3. Motivic spectra as sheaves on pure motives

Let k be a field of exponential characteristic e. Our goal in this section is to describe the ∞-cate-
gory SH(k)[1/e] of motivic spectra away from the characteristic in terms of motives of smooth proper
k-schemes (see Theorem 3.3.5).

In § 3.1 we introduce a subcategory Pure(k) ⊆ SH(k)[1/e] of pure motives and explore its basic
properties. In § 3.2 characterizes the cofiber sequences in Pure(k); see Proposition 3.2.6. In § 3.3 we
prove our alternative description of SH(k)[1/e].

3.0.1. Notation. Let k be a field of exponential characteristic e. For the remainder of this section,
we simply write

SH(k) := SH(k)[1/e]

for the localization of the stable motivic category away from the exponential characteristic. All of
the motivic spectra appearing below are implicitly localized as well.
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3.1. Perfect pure motivic spectra. We start by introducing the subcategory of ‘pure motives’
relevant for our work. Our definition is inspired by Bachmann, Kong, Wang, and Xu’s recent intro-
duction of the Chow–Novikov t-structure on motivic spectra [7].

3.1.1. Definition. We write
Pure(k) ⊆ SH(k)

for the smallest subcategory closed under extensions and retracts which contains the Thom spectrum
Th(η) for any smooth proper k-scheme X and any class η ∈ K0(X). We say a motivic spectrum A
is perfect pure if A ∈ Pure(k).

3.1.2. Remark. The connective part SH(k)c≥0 of the Chow–Novikov t-structure is the closure of
Pure(k) ⊆ SH(k) under colimits and extensions.

We begin by enumerating the basic features of Pure(k).

3.1.3. Lemma. The following statements hold:
(1) Every object of Pure(k) is dualizable in SH(k).

(2) The subcategory Pure(k) ⊆ SH(k) is closed under monoidal duals.

(3) Every object of Pure(k) is compact in SH(k).

(4) The subcategory Pure(k) ⊆ SH(k) is closed under tensor products.

Proof. Items (1) and (2) are immediate from the definition of Pure(k), Recollection 2.1.10, and the
fact that dualizable objects are closed under extensions. Item (3) follows from item (1) and the fact
that, since the unit of SH(k) is compact, every dualizable object of SH(k) is compact.

For item (4), note that if X and X ′ are smooth k-schemes and η ∈ K0(X) and η′ ∈ K0(X ′), then

Th(η)⊗ Th(η′) ' Th(η × η′) .

Hence the claim follows from the definition of Pure(k) and the fact that smooth proper k-schemes
are closed under fiber products in Smk. �

3.1.4. Warning. Definition 3.1.1 is related to, but distinct from, the notion of a pure motivic
spectrum introduced in [7, Definition 2.10]. The subcategory of pure motivic spectra in the sense of
Bachmann–Kong–Wang–Xu is the closure of Pure(k) under filtered colimits and extensions. Using
the fact that perfect pure motivic spectra are compact, it is not difficult to show that a pure motivic
spectrum A is perfect pure if and only A is compact.

3.1.5. Remark. Since we work away from the characteristic, [7, Remark 2.19; 21, Theorem 3.2.1;
48, Proposition B.1] show that Pure(k) generates SH(k) under colimits and desuspensions.

An important class of examples of motivic spectra are Thom spectra associated to vector bundles
on Grassmannians:

3.1.6. Notation (Grassmannians). Let n ≥ d ≥ 0 be integers. Write

Grd(n) := Grd(Ank )

for the Grassmanian of d-dimensional linear subspaces of Ank . Recall that Grd(n) is a smooth pro-
jective variety of dimension d(n− d).

3.1.7. Example. Write γd,n for the tautological bundle of rank d over Grd(n) and

εd,n := [γd,n]− [O⊕dGrd(n)] ∈ K0(Grd(n)) .

for the associated virtual vector bundle of rank zero. Write Thd(n) := Th(εd,n) for the associated
Thom spectrum. Since Grd(n) is smooth and proper, Thd(n) is perfect pure.

Since
MGL ' colim

d,n→∞
Thd(n+ d) ,

we deduce that MGL is a filtered colimit of perfect pure motivic spectra.
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We are particularly interested in cofiber sequences in Pure(k); hence we make the following
definitions.

3.1.8. Definition. We say that a morphism f : B → A in Pure(k) is:
(1) A pure epimorphism if its fiber fib(f) in SH(k) is again a perfect pure motivic spectrum.

(2) A pure monomorphism if its monoidal dual f∨ : B∨ → A∨ is a pure epimorphism; equivalently,
if the cofiber cofib(f) in SH(k) is perfect pure.

The transition maps appearing in Example 3.1.7 are all pure monomorphisms:

3.1.9. Lemma. Let d,m ≥ 0 be integers. Then the following maps are pure monomorphisms:
(1) The map Thd(m)→ Thd+1(m+1) induced by the morphism Grd(m)→ Grd+1(m+1) classifying

γd,m ⊕ OGrd(m).

(2) The map Thd+1(m)→ Thd(m+ 1) induced by the map Grd+1(m)→ Grd(m+ 1) classifying

γd+1,m ⊆ O⊕mGrd+1(m) ⊆ O⊕m+1
Grd+1(m) .

Proof. For (1), write U for the open complement of the closed immersion

Grd+1(m) ↪→ Grd+1(m+ 1)

induced by the inclusion Amk ⊆ Am+1
k . Note that the map Grd(m)→ Grd+1(m+ 1) factors as

(3.1.10) Grd(m) ↪→ U ↪→ Grd+1(m+ 1) .

Moreover, the left map in (3.1.10) is an affine vector bundle and hence a motivic homotopy equiva-
lence. Applying purity (see [7, Lemma A.2]) to the open-closed decomposition

(3.1.11) U Grd+1(m+ 1) Grd+1(m)
j i

and the virtual vector bundle εd+1,m+1 gives a cofiber sequence in SH(k) of the form

Thd(m) Thd+1(m+ 1) ThGrd+1(m)(εd+1,m+ ⊕N) .

Here, N is the normal bundle of Grd+1(m) ↪→ Grd+1(m + 1). As the cofiber is perfect pure, we
deduce that the first map is a pure monomorphism.

For (2), note that these are the maps corresponding to the closed component in (3.1.11). Write
TGrd+1(m+1) for the tangent bundle of Grd+1(m + 1), and define a virtual vector bundle V on
Grd+1(m+ 1) by

V := TGrd+1(m+1) ⊕ εd+1,m+1 .

Applying purity to V , we obtain a cofiber sequence of the form

ThGrd(m)(j
∗V ) ThGrd+1(m+1)(V ) ThGrd+1(m)(i

∗V ⊕N) .

Passing to monoidal duals and applying Recollection 2.1.10, we obtain a cofiber sequence

Thd+1(m) Thd+1(m+ 1) ThGrd(m)(i
∗V − TGrd(m)) .

This shows that the right-hand map is a pure monomorphism, as needed. �

3.1.12. Example. In light of Example 3.1.7 and Lemma 3.1.9, we can write

MGL ' colim
d,n→∞

Thd(n+ d)

as the colimit a filtered diagram of perfect pure motivic spectra where all of the transition maps are
pure monomorphisms.
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3.2. Characterization of cofiber sequences of perfect pure motivic spectra. We now give
a useful characterization of pure epimorphisms. In § 3.3, we use this characterization to give a
description of SH(k) as an∞-category of sheaves of spectra on Pure(k). Before we start, let us recall
a number of equivalent characterizations of split cofiber sequences.

3.2.1. Recollection (split cofiber sequences). If C is an additive ∞-category, a cofiber sequence

(3.2.2) A B Ci p

is said to be split if there exists a section s : C → B of p, which implies that B ' A ⊕ C. In this
case, we say that i : A→ B is a split monomorphism, and p : B → C is a split epimorphism.

3.2.3. Recollection. Any additive functor C → D of additive ∞-categories preserves split cofiber
sequences.

3.2.4. Recollection. Let C be a symmetric monoidal stable∞-category, and assume that the tensor
product is exact separately in each variable. Let A be an E1-algebra in C. We say that a cofiber
sequence X → Y → Z in C is A-split if the induced cofiber sequence

A⊗X A⊗ Y A⊗ Z

is a split cofiber sequence in ModA(C).

In order to characterize pure epimorphisms, we make use of the fact that MGL-homology of
perfect pure motivic spectra vanishes in negative Chow degree:

3.2.5. Lemma ([7, Proposition 3.6(2)]). Let A ∈ SH(k)c≥0 be a connective object of the Chow–
Novikov t-structure, and let d,w ∈ Z. If d− 2w < 0, then MGLd,w(A) = 0.

3.2.6. Proposition. Let f : B → A be a morphism in Pure(k). The following are equivalent:
(1) The morphism f : B → A is a pure epimorphism.

(2) The morphism MGL⊗ f : MGL⊗B → MGL⊗A is a split epimorphism of MGL-modules.

Proof. (1)⇒(2) Write C := fib(f). Since

MGL⊗ C → MGL⊗B → MGL⊗A

is a cofiber sequence of MGL-modules, it is enough to show that the boundary map

∂ : MGL⊗A→ Σ(MGL⊗ C)

is zero. Since A is dualizable, we can identify the homotopy class of ∂ with an element of

MGL−1,0(A∨ ⊗ C) .

By Lemma 3.1.3, A∨⊗C is again perfect pure. Hence Lemma 3.2.5 shows that MGL−1,0(A∨⊗C) = 0.
(2)⇒(1) By assumption, the boundary map A→ ΣC is zero after tensoring with MGL. Writing

MGL as a filtered colimit of Thom spectra of Grassmanians along pure monomorphisms as in Ex-
ample 3.1.12 and using that A is compact, we deduce that there exists integers d, n ≥ 0 such that
the composite

A→ ΣC ' Th0(0)⊗ ΣC → Thd(n+ d)⊗ ΣC

is zero. Passing to the dual of the Thom spectrum, we deduce that the composite

Thd(n+ d)∨ ⊗A→ A→ ΣC

is zero. Write
B′ := B ×A (Thd(n+ d)∨ ⊗A) .
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Then we have a commutative diagram

C B′ Thd(n+ d)∨ ⊗A

C B A

y

where the rows are cofiber sequences. Since the boundary map Thd(n+ d)∨ ⊗ A → ΣC is zero, we
have

B′ ' C ⊕ (Thd(n+ d)∨ ⊗A) .

Since B′ is an extension of cofib(S0,0 → Thd(n + d))∨ ⊗ A and B, we see that B′ is perfect pure.
Hence its direct summand C is also perfect pure, completing the proof. �

3.3. Pure sheaves. We now give a description of SH(k) as an ∞-category of sheaves of spectra on
Pure(k). The following is the key definition of this subsection:

3.3.1. Definition. We say a spectral presheaf

X : Pure(k)op → Sp

is a pure sheaf if X sends cofiber sequences of perfect pure motivic spectra to fiber sequences of
spectra. We write

ShΣ(Pure(k); Sp) ⊆ PSh(Pure(k); Sp)

for the full subcategory spanned by the pure sheaves.

3.3.2. Remark. A pure sheaf X : Pure(k)op → Sp is in particular additive. Our terminology comes
from the fact that, as a consequence of [55, Theorem 2.8], among all additive functors pure sheaves
are characterized by the sheaf property with respect to the Grothendieck pretopology on Pure(k)
where covering families consists of a single pure epimorphism.

By [55, Proposition 2.5], the left adjoint

L : PShΣ(Pure(k); Sp)→ ShΣ(Pure(k); Sp)

to the inclusion can be identified with the sheafication functors with respect to this topology. In
particular, it is t-exact with respect to the t-structures inherited from that of spectra.

3.3.3. The inclusion
Pure(k) ↪→ SH(k)

preserves cofiber sequences. Since the target is stable and cocomplete, it follows formally that its
left Kan extension defines a symmetric monoidal left adjoint

F : ShΣ(Pure(k); Sp)→ SH(k) .

Its right adjoint
G : SH(k)→ ShΣ(Pure(k); Sp)

is given by the spectral Yoneda embedding; i.e.,

G(X)(A) ' mapSH(k)(A,X) .

3.3.4. Lemma. Let A,B ∈ Pure(k) be perfect pure and let m < 0 be an integer. Given a map
ΣmB → A, there exists a pure epimorphism B′ → B such that the composite

ΣmB′ → ΣmB → A

is zero.
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Proof. Since m < 0, by Lemma 3.2.5 we have that MGLm,0(B∨ ⊗A) = 0. Thus the composite map

ΣmB → A→ MGL⊗A

is zero. Since B is compact, we deduce that there exist integers n, d ≥ 0 such that

ΣmB → A→ Thd(n)⊗A

is zero. By dualizing, the same follows for the composite

Σm(Thd(n)∨ ⊗B)→ ΣmB → A .

The map Thd(n)∨ ⊗B → B is the required pure epimorphism. �

Now for the promised description of SH(k):

3.3.5. Theorem. The symmetric monoidal functor

F : ShΣ(Pure(k); Sp)→ SH(k)

is an equivalence.

Proof. The ∞-category ShΣ(Pure(k); Sp) is generated under colimits and desuspensions by repre-
sentable presheaves y(A) for A ∈ Pure(k). These are defined as a sheafication

y(A)(−) := L(τ≥0F (−, A))

of the presheaf given by the connective part of the mapping spectrum. By construction as a left
Kan extension, the functor F is uniquely determined by the property of being continuous and the
requirement that

F (y(A)) ' A ∈ SH(k) .

We will analyze the unit map
X → GF (X) .

for some X ∈ ShΣ(Pure(k); Sp). If X ' y(A) is a representable presheaf, by the above discussion
this map takes the form

L(τ≥0F (−, A))→ G(A)(−) ' F (−, A) .

Thus, to verify the result in this case we have to show that the map

τ≥0F (−, A)→ F (−, A)

of presheaves of spectra is a sheafication with respect to the pure epimorphism topology. This map
is a connective cover before sheafication, and thus will remain so after. Thus we only have to check
that G(F (A)) ' F (−, A) is connective as a sheaf.

Suppose that B is perfect pure and we have a class in g ∈ πkG(F (A)) ' F (B,A) for k < 0, which
we can identify with a homotopy class of maps

g : ΣkB → A .

By Lemma 3.3.4, we deduce that there exists a pure epimorphism B′ → B such that g|B′ = 0. It
follows that F (−, A) is connective, as needed.

Both functors preserve filtered colimits, F as it is a left adjoint and G as every perfect pure is
compact. As both are also exact, we deduce that the subcategory of thoseX ∈ ShΣ(Pure(k); Sp) such
that the unit map is an equivalence is closed under colimits and desuspensions. As ShΣ(Pure(k); Sp)
is generated under these by y(A) for A ∈ Pure(k), we deduce that the unit map is an equivalence
for any X, so that F is fully faithful.

Since the essential image of F is closed under colimits and desuspensions and contains A ∈ SH(k),
we deduce that F is an equivalence, as needed. �
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3.3.6. Corollary. Let D be a stable ∞-category which admits small colimits. Restriction along the
inclusion Pure(k) ⊆ SH(k) defines an equivalence of ∞-categories

FunL(SH(k),D)→ Funcofib(Pure(k),D) .

Here, the right-hand side is the full subcategory of Fun(Pure(k),D) spanned by the functors that
preserve cofiber sequences.

3.3.7. Remark (MGL-modules). As a consequence of Theorem 3.3.5, one can deduce a presheaf
description of the ∞-category of MGL-modules. This description was already known and is a conse-
quence of the existence of Bondarko’s weight structure on MGL-modules; see the work of Elmanto–
Sosnilo [23, Theorem 2.2.9].

4. The weight filtration on complex oriented homology

Let A be an E1-ring spectrum. In this section, we show that if A is complex orientable, then the
A-linearized Betti realization functor A⊗ Be(−) : SH(C)→ ModA refines to a left adjoint

W∗Be(−;A) : SH(C)→ Modτ≥∗(A)(FilSp)

valued in modules in filtered spectra over the Postnikov filtration onA. We refer to W∗Be(−;A) as the
filtered Betti realization functor. Note that if A is an ordinary ring, then Modτ≥∗(A)(FilSp) is coincides
with the filtered derived∞-category of A (see Proposition 4.1.7); hence for a complex variety X, the
filtered Betti realization W∗Be(Σ∞+ X;A) defines a filtration on the complex C∗(X(C);A). In §5, we
explain how to use filtered Betti realization to recover the Deligne–Gillet–Soulé weight filtration on
the compactly supported integral Betti cohomology of a complex variety.

In § 4.1, we recall some background on filtered objects. In § 4.2 we set up an abstract framework
for using Corollary 3.3.6 to equip the (A-linear) Betti realization of a motivic spectrum with a filtra-
tion. In § 4.3, we construct the filtered Betti realization functor W∗Be(−;A); see Corollaries 4.3.13
and 4.3.15. In § 4.4, we unpack our construction in the case of an ordinary ring. In § 4.5, we ex-
plain how filtered Betti realization interacts with changing the coefficient ring A. In § 4.6, we use
the general setup explained in § 4.2 to construct a filtered refinement of the `-adic étale realization
functor

Re` : SH(k)→ Shhyp
ét (ÉtS ; Sp)∧` .

In §4.7, we discuss how one can use filtered Betti realization to construct virtual Euler characteristics
associated to Morava K-theories.

4.0.1. Notation. Let k be a field of exponential characteristic e. Throughout this section, we keep
the notational convention SH(k) := SH(k)[1/e] introduced in Notation 3.0.1.

4.1. Background on filtered objects. We begin by reviewing some background on filtered objects
in stable ∞-categories.

4.1.1. Notation. Let C be a stable ∞-category which admits small colimits. We write

Fil(C) := Fun(Zop,C)

for the ∞-category of filtered objects in C. Here we regard Z as a poset with the usual partial order,
so our filtrations are decreasing. The colimit functor defines a left adjoint colim: Fil(C)→ C.

If C has a t-structure, then there is a functor τ≥∗ : C→ Fil(C) given by sending an object X ∈ C

to its Postnikov filtration
· · · τ≥nX τ≥n+1X · · · ,

see [56, Construction 3.3.7]. Moroever:
(1) If the t-structure is right complete, then colim τ≥∗ ' idC, so that the Postnikov filtration is

exhaustive.

(2) If the t-structure is left complete, then lim τ≥∗ ' 0, so that the Postnikov filtration is complete.
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Note that the functor τ≥∗ : C→ Fil(C) is additive, but generally not exact.

4.1.2. Notation. Via Day convolution, the addition on Zop and the tensor product of spectra
assemble into a symmetric monoidal structure

⊗ : FilSp× FilSp→ FilSp

defined by

(X∗ ⊗ Y∗)n := colim
a+b≥n

Xa ⊗ Yb .

4.1.3. With respect to the Day convolution symmetric monoidal structure, the functor

τ≥∗ : Sp→ FilSp

is lax symmetric monoidal. In particular, for any En-ring spectrum A, the filtered spectrum τ≥∗(A)
acquires a natural En-ring structure. Moreover, the functor τ≥∗ : Sp→ FilSp refines to a functor

ModA = ModA(Sp)→ Modτ≥∗(A)(FilSp) ,

which we also denote by τ≥∗. We also write

colim: Modτ≥∗(A)(FilSp)→ ModA

for the induced functor.

4.1.4. Definition. We say a filtered spectrum F∗X is diagonal connective if for all n ∈ Z we have
FnX ∈ Sp≥n. This determines a unique t-structure on filtered spectra which we call the diagonal
t-structure.

4.1.5. Remark. The diagonal t-structure is compatible with the symmetric monoidal structure on
filtered spectra. Since any filtered spectrum of the form τ≥∗A is diagonal connective, the∞-category

Modτ≥∗A(FilSp)

of modules in filtered spectra inherits a unique t-structure for which the forgetful functor is t-exact.
We also refer to this t-structure as the diagonal t-structure.

When A = HR is the Eilenberg–MacLane spectrum associated to an ordinary commutative ring,
Modτ≥∗(HR)(FilSp) recovers the filtered derived ∞-category of R:

4.1.6. Notation. Let R be an ordinary commutative ring. We write Dfil(R) for the ∞-categorical
enhancement of the filtered derived category of R.

4.1.7. Proposition. Let R be an ordinary commutative ring. There are natural symmetric monoidal
equivalences

Modτ≥∗(HR)(FilSp) ' Fil(D(R)) ' Dfil(R) .

Proof sketch. Note that since HR only has a nontrivial homotopy group in degree 0, the filtered
spectrum τ≥∗(HR) is given by

· · · HR HR 0 0 · · · ,

where the nonzero terms are in filtration degrees ≤ 0. With this identification, the left-hand equiv-
alence follows from the natural symmetric monoidal equivalence ModHR ' D(R) and a filtered
variant of the Schwede–Shipley theorem. (See [63, Proposition A.2.1] for the graded variant of the
Schwede–Shipley theorem.) The right-hand equivalence is the content of [29, Theorem 2.6]. �



24 PETER J. HAINE AND PIOTR PSTRĄGOWSKI

4.2. Weight contexts. We now describe a general method of equipping a colimit-preserving functor
defined on the stable motivic category with additional structure.

4.2.1. Definition. Let k be a field. A weight context consists of the following data:
(1) Stable ∞-categories C and D which admit small colimits.

(2) A colimit-preserving functor U : D→ C.

(3) An additive functor T : C→ D along with an equivalence U ◦ T ' idC.

(4) A colimit-preserving functor M : SH(k)→ C.
A solution to a weight context is a functor WM making the following triangle commute

D

SH(k) C .

U

M

WM

4.2.2. In the setting of Definition 4.2.1, we can think of D as the∞-category of objects of C equipped
with additional structure and of U as the forgetful functor. One should think of the functor T , going
the other way, as equipping an object c ∈ C with a “trivial structure”. A solution to a weight context
should be thought of as a way of functorially equipping objects of the form M(X) with additional
structure. Note that we do not assume that T is exact, and indeed in most examples it is not.

The following result is a trivial application of our new description of SH(k) explained in Theo-
rem 3.3.5. However, it turns out that this result has many useful applications.

4.2.3. Theorem. Suppose that we are given a weight context as in Definition 4.2.1 with the following
property:

(∗) If X → Y → Z is a cofiber sequence in Pure(k), then

T (M(X))→ T (M(Y ))→ T (M(Z))

is a cofiber sequence in D.
Then, there exists a unique solution WM : SH(k)→ D satifying the following properties:
(1) The functor WM preserves colimits.

(2) The restriction of WM to Pure(k) is given by T ◦M : Pure(k)→ D.

Proof. By Corollary 3.3.6, the assumptions guarentee that T ◦M : Pure(k) → D uniquely extends
to a colimit-preserving functor WM : SH(k)→ D. �

4.3. Filtered Betti realization. In this subsection, we study Betti realization with coefficients in
a ring spectrum A. The main result of this subsection is that when A is complex orientable, Betti
realization comes equipped with a natural exhaustive filtration (Corollaries 4.3.13 and 4.3.15).

4.3.1. Definition. Let A be an E1-ring spectrum. The A-linear Betti realization functor is the
composite

Be(−;A) : SH(C) Sp ModA .Be A⊗(−)

4.3.2. Let A be an E1-ring spectrum. Then we have a weight context

Modτ≥∗(A)(FilSp)

SH(C) ModA .

colim

Be(−;A)

τ≥∗

In the notation of Definition 4.2.1, U = colim and T = τ≥∗.



SPECTRAL WEIGHT FILTRATIONS 25

4.3.3. Recollection (complex orientations). Let A be an E1-ring spectrum. A complex orientation
of A is a morphism MU → A of associative algebras in the homotopy category hSp of spectra. We
say that A is complex orientatable if there exists a complex orientation of A. We refer the reader to
[49; 50; 57, §4.1] for more background on complex orientations.

4.3.4. Example. (1) If R is an ordinary ring, then there is a natural map of E∞-rings MU→ HR.
In particular, HR is complex orientable.

(2) The complex K-theory spectrum KU has a canonical complex orientation.

(3) For each prime p and integer n ≥ 0, the height n Morava K-theory K(n) has a canonical
complex orientation.

In order to check the hypotheses of Theorem 4.2.3 for Be(−;A), we need the following lemma.

4.3.5. Lemma. Let A be a complex orientable E1-ring and let f : X → Y be a map of spectra such
that MU⊗ f is zero. Then A⊗ f is zero as a map of A-modules.

Proof. By the extension of scalars adjunction, it is enough to show that the map of spectra

(4.3.6) X ' S0 ⊗X A⊗X A⊗ YA⊗f

induced by the unit of A is zero. Choose a complex orientation φ : MU→ A. The map (4.3.6) factors
in the homotopy category hSp as

X MU⊗X MU⊗ Y A⊗ YMU⊗f φ⊗Y

and the middle is zero by assumption. �

4.3.7. Corollary. Let A be a complex orientable E1-ring and let

(4.3.8) X → Y → Z

be a cofiber sequence of spectra. If (4.3.8) is MU-split, then (4.3.8) is A-split.

Proof. We need to show that if the boundary map MU⊗Z → MU⊗ΣX is zero, then the boundary
map A⊗ Z → A⊗ ΣX is also zero. This is immediate from Lemma 4.3.5. �

4.3.9. Lemma. Let A be a complex orientable E1-ring spectrum. Let X → Y → Z be an MGL-split
cofiber sequence in SH(C). Then the null sequence

Be(X;A) Be(Y ;A) Be(Z;A)

is a split cofiber sequence in ModA.

Proof. Since Be(−;A) = A⊗Be(−), by Corollary 4.3.7 it suffices to show that the cofiber sequence
of MU-modules

(4.3.10) MU⊗ Be(X) MU⊗ Be(Y ) MU⊗ Be(Z)

is split. Since Betti realization is symmetric monoidal and Be(MGL) ' MU, the cofiber sequence of
(4.3.10) is obtained by applying Betti realization to the cofiber sequence of MGL-modules

MGL⊗X MGL⊗ Y MGL⊗ Z ,

which is split by assumption. �

4.3.11. Example. Let A be a complex orientable E1-ring spectrum, and let X → Y → Z be a
cofiber sequence in Pure(C). Combining Proposition 3.2.6 and Lemma 4.3.9, we see that

Be(X;A) Be(Y ;A) Be(Z;A)

is a split cofiber sequence in ModA.
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As a consequence, for a complex orientable connective E1-ring A, the weight context of (4.3.2)
has a solution. More generally, any weight context based on A-linear Betti realization has a solution.

4.3.12. Proposition. Let A be a complex orientable E1-ring. Then any weight context of the form

D

SH(C) ModA .

U

Be(−;A)

T

has a unique solution WM : SH(C)→ D satifying the following properties:
(1) The functor WM preserves colimits.

(2) If X ∈ SH(C) is perfect pure, then WM(X) ' T (Be(X;A)).

Proof. By Theorem 4.2.3, it suffices to show that if X → Y → Z is a cofiber sequence in Pure(C),
then

T (Be(X;A)) T (Be(Y ;A)) T (Be(Z;A))

is a cofiber sequence in D. By Example 4.3.11, the cofiber sequence

Be(X;A) Be(Y ;A) Be(Z;A)

in ModA is split. Since T : ModA → D is additive, T preserves this split cofiber sequence. �

4.3.13. Corollary. Let A be an E1-ring spectrum. If A is complex orientable, then there exists a
unique left adjoint

W∗Be(−;A) : SH(C) Modτ≥∗(A)(FilSp)

such that for X ∈ Pure(C), we have

W∗Be(X;A) ' τ≥∗Be(X;A) .

Proof. Apply Proposition 4.3.12 to the weight context (4.3.2). �

4.3.14. Definition (filtered Betti realization). Let A be a complex orientable E1-ring spectrum. We
call the functor

W∗Be(−;A) : SH(C)→ Modτ≥∗(A)(FilSp)

of Corollary 4.3.13 the A-linear filtered Betti realization functor.

Pleasantly, this filtration is exhaustive:

4.3.15. Corollary. Let A be a complex orientable E1-ring spectrum. Then the triangle of ∞-cate-
gories and left adjoints

SH(C) Modτ≥∗(A)(FilSp)

ModA

W∗Be(−;A)

Be(−;A) colim

canonically commutes.

Proof. Both of the functors SH(C)→ ModA in the diagram preserve colimits. Moreover, by Corol-
lary 4.3.13 they agree on Pure(C) ⊆ SH(C). Thus the conclusion follows from Corollary 3.3.6. �

We conclude by recording that the filtered Betti realization is compatible with t-structures. The
relevant t-structure on the motivic side is the Chow–Novikov t-structure of [7], and on the filtered
module side is the diagonal t-structure:



SPECTRAL WEIGHT FILTRATIONS 27

4.3.16. Lemma. Let A be a complex orientable E1-ring spectrum. The filtered Betti realization

W∗Be(−;A) : SH(C)→ Modτ≥∗(A)(FilSp)

is right t-exact with respect to the Chow–Novikov t-structure on motivic spectra and the diagonal
t-structure on filtered spectra; that is, filtered Betti realization preserves connectivity.

Proof. By definition, the connective part of the Chow–Novikov t-structure is generated under colimits
and extensions by perfect pure motivic spectra. Thus, it is enough to show that for X perfect pure

W∗Be(X;A) ' τ≥∗(Be(X))

is connective, which is clear. �

For the next result, recall that an object X of a stable ∞-category with t-structure C is ∞-
connective if X ∈

⋂
n∈Z C≥n. Also recall that the t-structure on C is left separated if

⋂
n∈Z C≥n = 0.

4.3.17. Corollary. Let A be a complex orientable E1-ring spectrum. The filtered Betti realization

W∗Be(−;A) : SH(C)→ Modτ≥∗(A)(FilSp)

inverts maps of motivic spectra which are∞-connective with respect to the Chow–Novikov t-structure.

Proof. Since W∗Be(−;A) is exact, it is enough to show that if X is∞-connective with respect to the
Chow–Novikov t-structure, then W∗Be(X;A) = 0. By Lemma 4.3.16, we deduce that W∗Be(X;A) is
∞-connective with respect to the diagonal t-structure, so that W∗Be(X;A) is levelwise∞-connective.
Since the standard t-structure on spectra is left separated, it follows that W∗Be(X;A) = 0. �

4.4. The case of an ordinary ring. We now unpack the filtered Betti realization in the case of
an ordinary ring.

4.4.1. Notation. If R is an ordinary commutative ring, we simply write

Be(−;R) : SH(C)→ D(R)

for Be(−; HR). Note that the functor Be(−;R) is the unique symmetric monoidal left adjoint with
the property that for any smooth C-scheme X, we have

Be(Σ∞+ X;R) ' C∗(X(C);R) .

An important feature is that Betti realization with coefficients in an ordinary ring factors through
modules over motivic cohomology:

4.4.2. Observation (Be(−;R) factors through MR-modules). Let R be an ordinary commutative
ring. Since Betti realization Be: SH(C) → Sp is symmetric monoidal and Be(MR) ' HR, the
R-linear Betti realization functor factors through MR-modules in SH(C). That is, R-linear Betti
realization refines to a unique symmetric monoidal left adjoint

ModMR(SH(C))→ ModHR(Sp) ' D(R)

fitting into a commutative square

SH(C) Sp

ModMR(SH(C)) ModHR(Sp) .

Be

MR⊗(−) HR⊗(−)

We also denote this refinement by Be(−;R) : ModMR(SH(C))→ D(R).

In this case, Definition 4.3.14 specializes to the following:
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4.4.3. Example. Let R be an ordinary commutative ring. Since the Eilenberg–MacLane spectrum
HR admits a canonical complex orientation, there is a filtered Betti realization functor

SH(C) Modτ≥∗(HR)(FilSp) Fil(D(R))
W∗Be(−;R) ∼

Here the right-hand equivalence is provided by Proposition 4.1.7.

Again, filtered Betti realization with coefficients in an ordinary ring factors through modules over
motivic cohomology:

4.4.4.Observation (W∗Be(−;R) factors through MR-modules). Let R be an ordinary commutative
ring. In light of Observation 4.4.2, the filtered R-linear Betti realization functor W∗Be(−;R) refines
to a unique left adjoint

ModMR(SH(C))→ Fil(D(R))

fitting into a commutative triangle

SH(C)

ModMR(SH(C)) Fil(D(R)) .

W∗Be(−;R)MR⊗(−)

We also denote this refinement by W∗Be(−;R) : ModMR(SH(C))→ Fil(D(R)).

4.5. Changing the coefficients of filtered Betti realization. Let φ : A→ B be a morphism of
complex orientable E1-rings. In this subsection, we produce a comparison natural transformation

τ≥∗(B) ⊗
τ≥∗(A)

W∗Be(−;A)→W∗Be(−;B)

and show that this natural tranformation is an equivalence if φ is flat (Corollary 4.5.4). To start, we
need to analyze the interaction between Postnikov filtrations and tensor products.

4.5.1. Observation. Let φ : A→ B be a morphism of E1-rings. Then the square

ModB ModA

Modτ≥∗(B)(FilSp) Modτ≥∗(A)(FilSp)

τ≥∗ τ≥∗

commutes. Here the horizontal functors are the forgetful functors. Passing to horizontal left adjoints,
there is an exchange transformation filling the square

ModA ModB

Modτ≥∗(A)(FilSp) Modτ≥∗(B)(FilSp) .

B⊗A(−)

τ≥∗ τ≥∗

τ≥∗(B) ⊗
τ≥∗(A)

(−)

Exφ
=⇒

4.5.2. Construction (comparison morphism). Let φ : A→ B be a morphism of complex orientable
connective E1-rings. Define a natural transformation

cφ : τ≥∗(B) ⊗
τ≥∗(A)

W∗Be(−;A) −→W∗Be(−;B)
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of functors SH(C)→ Modτ≥∗(B)(FilSp) as follows. Note that since τ≥∗(B)⊗τ≥∗(A) W∗Be(−;A) and
W∗Be(−;B) are both left adjoints, by the equivalence

FunL(SH(C),Modτ≥∗(B)(FilSp)) Funcofib(Pure(C),Modτ≥∗(B)(FilSp))∼

of Corollary 3.3.6, it suffices to construct the restriction cφ|Pure(C) to perfect pure motivic spectra.
For this, we take the natural transformation

τ≥∗(B) ⊗
τ≥∗(A)

τ≥∗(Be(−;A)) τ≥∗(B ⊗A Be(−;A))
Exφ Be(−;A)

induced by the exchange transformation.

For flat ring maps, the exchange transformation is an equivalence:

4.5.3. Lemma. Let φ : A → B be a morphism of E1-rings. If φ is flat, then the exchange transfor-
mation

Exφ : τ≥∗(B) ⊗
τ≥∗(A)

τ≥∗(−) −→ τ≥∗(B ⊗A (−))

is an equivalence of functors ModA → Modτ≥∗(B)(FilSp).

Proof. Since φ is flat, the left adjoint B ⊗A (−) : ModA → ModB is t-exact [51, Theorem 7.2.2.15].
Hence for each M ∈ ModA and n ∈ Z, the natural map

B ⊗A τ≥n(M) −→ τ≥n(B ⊗AM)

is an equivalence. �

4.5.4. Corollary. Let φ : A → B be a morphism of complex orientable E1-rings. If φ is flat, then
the comparison natural transformation

cφ : τ≥∗(B) ⊗
τ≥∗(A)

W∗Be(−;A) −→W∗Be(−;B)

is an equivalence of functors SH(C)→ Modτ≥∗(B)(FilSp).

Proof. Since both τ≥∗(B)⊗τ≥∗(A) W∗Be(−;A) and W∗Be(−;B) are left adjoints, by Corollary 3.3.6
it suffices to show that cφ is an equivalence when restricted to Pure(C). The claim now follows from
the definitions of W∗Be(−;A) and W∗Be(−;B) combined with Lemma 4.5.3. �

4.5.5. Example. The comparison natural transformation

Q⊗Z W∗Be(−;Z)→W∗Be(−;Q)

is an equivalence of functors SH(C)→ Fil(D(Q)).

4.6. Filtered étale realization. Let k be a field and ` 6= char(k) a prime. In Definition 2.4.6, we
recalled Bachmann’s construction an `-adic étale realization functor

Re` : SH(k)→ Shhyp
ét (ÉtS ; Sp)∧` .

In this subsection, we show that the complex orientable variants of this functor have a canonical lift
to filtered sheaves.

4.6.1. Definition. Let k be a field and ` 6= char(k) a prime. We say that A ∈ Alg(Shhyp
ét (ÉtS ; Sp)∧` )

is complex orientable if there exists a map of associative algebras

Re`(MGL)→ A

in the homotopy category of Shhyp
ét (ÉtS ; Sp)∧` .
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4.6.2. Remark. Write
R : Shhyp

ét (ÉtS ; Sp)∧` → SH(k)

for the right adjoint to Re`. The condition that A is complex orientable in the sense of Definition 4.6.1
is equivalent to the condition that the motivic spectrum R(A) ∈ Alg(SH(k)) representing A-linear
étale cohomology is orientable as a motivic spectrum.

4.6.3. Recall that one says thatX ∈ Shhyp
ét (Étk; Sp) is coconnective if for every E ∈ Étk, the spectrum

X(E) is coconnective. This is a coconnective part of a unique t-structure which we call the standard
t-structure; see [52, §1.3.2]. The heart can be described as the category

Shhyp
ét (Étk; Sp)♥ ' Shhyp

ét (Étk; Ab) ' Shét(Étk; Ab),

of étale sheaves of abelian groups on k. A map X → Y of hypercomplete sheaves is an equivalence
if and only if for each i ∈ Z, the induced map π♥i X → π♥i Y is an isomorphism.

4.6.4. Definition. Let k be a field of exponential characteristic e, let ` 6= e be a prime, and let
A ∈ Alg(Shhyp

ét (Étk; Sp)∧` ). The A-linear étale realization functor is the composite

Re`(−;A) : SH(k) Shhyp
ét (Étk; Sp)∧` ModA(Shhyp

ét (Étk; Sp)∧` ) .Re` A⊗(−)

4.6.5. Proposition. Let k be a field of exponential characteristic e and ` 6= e a prime. Let A ∈
Alg(Shhyp

ét (Étk; Sp)∧` ) be complex orientable. Then there exists a unique left adjoint

W∗Re`(−;A) : SH(k) −→ Fil(Shhyp
ét (Étk; Sp)∧` )

such that for X ∈ Pure(k) and any n ∈ Z we have

W∗Re`(X;A) ' (τ≥∗(Re`(X;A))∧`

the `-completion of the Whitehead cover of Re`(X;A) with respect to the standard t-structure.

Proof. By Theorem 4.2.3, it suffices to show that if X → Y → Z is a cofiber sequence in Pure(k),
then

τ≥∗(Re`(X;A))→ τ≥∗(Re`(Y ;A))→ τ≥∗(Re`(Z;A))

is a cofiber sequence in Fil(Shhyp
ét (Étk; Sp)∧` ). Since there exists a map Re`(MGL)→ A of the algebras

in the homotopy category of Shhyp
ét (Étk; Sp)∧` , the same argument as in Lemma 4.3.5 shows that

Re`(X;A)→ Re`(Y ;A)→ Re`(Z)

is a split cofiber sequence, hence preserved by all additive functors, such as τ≥∗. �

4.6.6. Definition. We call the left adjoint functor

W∗Re`(−;A) : SH(k)→ Fil(Shhyp
ét (Étk; Sp)∧` )

of Proposition 4.6.5 the filtered étale realization.

4.6.7. Remark. Since the standard t-structure on hypercomplete sheaves is left separated, same
argument as in the Betti case covered in Corollary 4.3.17 shows that filtered étale realization inverts
Chow–Novikov ∞-connective maps.

4.7. Virtual Euler characteristics. An old conjecture of Serre, first solved by Deligne using the
weight filtration, is the existence of virtual Euler characteristics. These are invariants

ai(X;Q) ∈ Z

of a complex variety X uniquely determined by the following properties:
(1) If X is smooth and proper, then

ai(X;Q) = dimQ Hi(X(C);Q) .
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(2) If X is a variety with an open subvariety U ⊆ X with closed complement Z ⊆ X, then

ai(X;Q) = ai(U ;Q) + ai(Z;Q) .

Over a field of characteristic zero, these virtual Euler characteristics can be defined using Bittner’s
presentation of the Grothendieck ring of varieties [8].

In terms of the weight filtration on compactly supported cochains C∗c(X(C);Q), the virtual Euler
characteristic is given by the explicit formula

ai(X;Q) = (−1)iχQ(gr−i C∗c(X(C);Q)) .

Here,
gri C∗c(X(C);Q) := cofib (Wi+1C∗c(X(C);Q)→WiC

∗
c(X(C);Q))

is the i-th graded piece of the weight filtration, and χQ denotes the Euler characteristic of a perfect
Q-module in spectra defined by the difference between the dimension in even odd degrees:

χQ(P ) := dimQ π2∗(P )− dimQ π2∗+1(P ) .

Thus, analogous to the way that Khovanov homology categorifies the Jones polynomial [43], the
weight filtration can be thought of as the “geometry” behind the virtual Euler characteristics.

Besides ordinary cohomology, there are other complex oriented cohomology theories which behave
like fields, known as the Morava K-theories. For each prime p and integer n ≥ 1, we write K(n) for
the height n Morava K-theory at the (implicit) prime p. In many ways, despite the fact that their
ring of coefficients

K(n)∗ ' Fp[v±1
n ] with deg(vn) = 2pn − 2

is of positive characteristic, these cohomology theories behave like objects of characteristic zero; see
[11; 32]. This makes Morava K-theories useful, for example, in problems involving orientations of
orbifolds, as in Abouzaid and Blumberg’s breakthrough work on the Arnold conjecture in symplectic
geometry [1].

Since the ring of coefficients K(n)∗ forms a graded field and is concentrated in even degrees,
analogously to the case of rational cohomology one can define an Euler characteristic of a perfect
K(n)-module P by a formula

χK(n)(P ) := dimK(n)∗(π2∗(P ))− dimK(n)∗(π2∗+1(P )) .

When applied to K-cohomology of spaces, these Morava–Euler characteristics satisfy a host of use-
ful properties, and at odd primes can be used to recover an interesting invariant of spaces called
homotopy cardinality ; see the work of Yanovski [64].

Since the E1-ring spectra K(n) are complex orientable, one can show that the Euler characteristics
defined by

ai(X; K(n)) := dimFp K(n)i(X(C))

when X is smooth and proper satisfy Bittner’s relation. It follows that they extend to a virtual
Morava–Euler characteristic defined on all complex varieties. We now show that the weight filtration
on K(n)-cohomology provided by Corollary 4.3.13 can be thought of as the “geometry” behind these
virtual Morava–Euler characteristics. This also had the advantage of applying to étale cohomology,
including in positive characteristic, where Bittner’s theorem is not known to hold, see Remark 4.7.4.

4.7.1. Notation. To keep the notation similar to the rational case, we write

W∗C
∗
c(X(C); K(n)) := W∗Be(Mc(X); K(n))

for the weight filtration on compactly supported K(n)-linear cochains, by which we mean the fil-
tered K(n)-linear Betti realization of the compactly supported motive Mc(X) introduced in Defini-
tion 2.2.1. This is a τ≥∗K(n)-module in filtered spectra.



32 PETER J. HAINE AND PIOTR PSTRĄGOWSKI

4.7.2. Definition. Let X be a complex variety. The virtual Morava–Euler characteristic of X is
defined by

ai(X; K(n)) = (−1)i(χFp gr−i C∗c(X(C); K(n))) ,

the Fp-Euler characteristic of the i-th graded piece of the weight filtration on compactly supported
K(n)-linear cochains.

Note that since the associated graded of τ≥∗K(n) is given by the homotopy groups π∗K(n) '
Fp[v±1

n ], each graded piece of the weight filtration on K(n)-linear cohomology is in particular a
module over π0K(n) ' Fp, so that Definition 4.7.2 is well-defined.

4.7.3. Theorem. The virtual Morava–Euler characteristic of Definition 4.7.2 has the following prop-
erties:

(1) If X is smooth and proper, then

ai(X; K(n)) := dimFp K(n)i(X(C)) .

(2) If X is a variety with an open subvariety U ⊆ X with closed complement Z ⊆ X, then

ai(X; K(n)) = ai(U ; K(n)) + ai(Z; K(n)) .

Proof. If X is smooth and proper, then as observed in Example 2.2.2, the motive of X can be
identified with the Thom spectrum ThX(−TX) of the negative tangent bundle. It follows from the
definition of the filtered Betti realization on pure motives as an associated graded of the Postnikov
filtration that

gr−i C∗c(X(C); K(n)) ' Σ−iπ−i(Be(ThX(−TX))⊗K).

It follows that if X is smooth and proper, then

ai(X; K(n)) = dimFp K(n)−i(Be(ThX(−TX)))

= dimFp K(n)−i(ThX(C)(−TX(C)))

= dimFp K(n)i(X(C)) ,

where the second equality is the fact that the Betti realization takes Thom spectra to Thom spectra,
and the last one is Atiyah duality. This gives the first claimed property.

The second property is an immediate consequence of the localization cofiber sequence

Mc(U)→ Mc(X)→ Mc(Z)

of Lemma 2.2.10, exactness of filtered Betti realization, and the fact that the Euler characteristic is
additive in cofiber sequences. �

4.7.4. Remark (étale Morava–Euler characteristics). One can also define analogues of Morava K-
theories in the context of étale realization; for example, as étale realizations of Voevodsky’ algebraic
Morava K-theories5. These will also be complex orientable, and a variation on Definition 4.7.2 will
also yield a Morava–Euler characteristic in the context of étale cohomology. Since étale Morava K-
theories have received comparatively little attention in the literature compared to their topological
cousins, we decided against writing this section at this level of generality.

5Since we only consider `-adic cohomology in the étale context, and the Hopkins–Morel theorem holds away from
the characteristic, the `-local Morava K-theories can be constructed over any field as an appropriate localization of a
quotient of MGL, which is analogous to how they are constructed in topology
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5. Descent and the Gillet–Soulé filtration

In this section, we show that filtration on compactly supported cohomology given by the filtered
Betti realization functor can be calculated through an appropriate hypercover. As a consequence,
we deduce that our filtration on integral cohomology of a complex variety agrees with the one
constructed by Gillet–Soulé in [26]. The key geometric input needed to establish the hypercover
formula are Kelly’s `dh-topology on schemes [40], and a result of Geisser on `dh-hypercovers [24,
Theorem 1.2].

In §5.1, we review background on the `dh-topology. In §5.2, we prove that Borel–Moore homology
with coefficients in an orientable motivic spectrum satisfies `dh-hyperdescent; see Theorem 5.2.3.
In § 5.3, we use `dh-hypercovers to calculate the weight filtration on Borel–Moore homology; see
Theorem 5.3.4. In § 5.4, we use our perspective on filtrations to recover the Gillet–Soulé weight
filtration on the compactly supported integral cochains on a complex variety; wee Theorem 5.4.8.

5.1. Background on the cdh-topology and `dh-topology. We briefly review the necessary
background on the cdh- and `dh-topologies. For more background, see [20, §2; 41] and [40], respec-
tively.

5.1.1. Recollection (cdp- and cdh-topologies).
(1) A family of morphisms of schemes {pi : X ′i → X}i∈I is completely decomposed if for each

x ∈ X there exists an i ∈ I and point x′ ∈ p−1
i (x) such that the induced map of residue fields

κ(x)→ κ(x′) is an isomorphism.

(2) The cdp-topology on the category of qcqs schemes is defined as follows: a sieve on a qcqs
scheme X is a cdp-covering sieve if and only if it contains a completely decomposed family
{pi : X ′i → X}i∈I where each pi is proper and of finite presentation.

(3) The cdh-topology is the topology generated by the cdp-topology and the Nisnevich topology.
Also recall that every motivic spectrum satisfies cdh-descent [36, Corollary 6.25]. Moreover, for a
field k, every cdh-sheaf over k is automatically a cdh-hypersheaf [20, Corollary 2.4.16].

5.1.2. Recollection (`dh-topology). Let ` be a prime number.
(1) A morphism of schemes p : X ′ → X is an fps`′-cover if p is finite flat and surjective, and p∗OX′

is a free OX -module of rank prime to `.

(2) The `dh-topology is the topology generated by the cdh-topology and fps`′-covers.

5.1.3. Definition. Let X be a scheme and let p : ∆op → Sch/X be a simplicial X-scheme. We say
that p is a cdh-hypercover (respectively, `dh-hypercover) if for each i ≥ 0, the induced map

Xi → (coskXi−1X•)

is a cdh-cover (respectively, `dh-cover).

5.1.4. Remark. Unwrapping the definition of the coskeleton, we see that p is a hypercover if and
only if for each i ≥ 0, the matching maps

X0 → X , X1 → X0 ×X X0 , X2 → · · ·

are coverings.

5.2. Hyperdescent for orientable Borel–Moore homology. In this subsection, we show that
Borel–Moore homology with respect to an orientable motivic spectrum satisfies `dh-hyperdescent.

5.2.1. Notation. Throughout this subsection, we fix a base field k of exponential characteristic e
and a prime ` 6= e.
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5.2.2. Notation. In Definition 2.2.1 we attached to a variety p : X → Spec(k) a motivic spectrum

Mc(X) := p!(1X) .

By Corollary 2.2.12, this motivic spectrum is dualizable away from the characteristic, and we write

Mc(X)∨(`) ∈ SH(k)(`)

for the `-local monoidal dual.

The rest of this subsection is be devoted to the proof of the following result.

5.2.3. Theorem. If X• → X is an `dh-hypercover of k-schemes, then the natural map

(5.2.4) colim
∆op

Mc(X•)
∨
(`) → Mc(X)∨(`) .

is an MGL-local equivalence; that is, the map (5.2.4) becomes an equivalence after tensoring with
MGL. In particular, the map (5.2.4) is ∞-connective with respect to the Chow–Novikov t-structure.

5.2.5. Remark. Note that a cdh-hypercover is an `dh-hypercover for all `. Hence, if X• → X is a
cdh-hypercover, then the `-localization in Theorem 5.2.3 can be replaced by localization away from
the exponential characteristic e. That is, the map

colim
∆op

Mc(X•)[1/e]
∨ → Mc(X)[1/e]∨

is also an MGL-local equivalence.

The proof of Theorem 5.2.3 is somewhat involved and occupies the remainder of this subsection.
Our argument can be informally divided into three parts:
(1) First, we show that Theorem 5.2.3 follows from an `dh-hyperdescent statement in Borel–Moore

MGL-homology. This is Lemma 5.2.8.

(2) We then use the homotopy t-structure to prove connectivity estimates on Borel–Moore homol-
ogy of varieties with respect to a connective, orientable homology theory. This is Lemma 5.2.14.

(3) Finally, we use Spitzweck’s calculation of the slices of MGL and our connectivity estimates to
show that `dh-hyperdescent for motivic cohomology implies `dh-hyperdescent for MGL. For
motivic cohomology the needed hyperdescent statement was proven by Geisser [24, Theorem
1.2], and later generalized by Kelly [40, Theorem 4.0.13].

5.2.6. Convention. For the rest of this section, we work `-locally, and all motivic spectra are
implicitly localized at `. We begin with part (1), where it is convenient to employ the following
notation.

5.2.7. Notation. If E is an `-local motivic spectrum, we write

EBM
X := E ⊗Mc(X)∨(`).

This is justified by Observation 2.2.6, since we have equivalences

πp,q(E
BM
X ) ' [Sp,q, E ⊗Mc(X)∨(`)]

' [Σp,qMc(X), E]

' EBM
p,q (X) .

Note that if X is smooth and projective, then Observation 2.2.3 shows that

EBM
X ' E ⊗ Σ∞+ X .

5.2.8. Lemma. Assume that the following condition is satisfied:
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(∗) For any k-scheme X, any `dh-hypercover X• → X, and any s ∈ Z, the canonical comparison
map of spectra

colim mapSH(k)(S
2s,s,MGLBM

X• )→ mapSH(k)(S
2s,s,MGLBM

X )

is an equivalence.
Then Theorem 5.2.3 holds.

Proof. In terms of Notation 5.2.7, Theorem 5.2.3 is equivalent to showing that the natural map of
MGL-modules

(5.2.9) colim
∆op

MGLX• → MGLX

is an equivalence. Since all MGL-local equivalences are Chow–Novikov ∞-connective [7, Corollary
3.17], the second part of Theorem 5.2.3 follows from the first.

By [23, Theorem 2.2.9], the spectral Yoneda embedding induces an equivalence between the ∞-
category of MGL-modules and spectral presheaves on the thick subcategory generated by modules
of the form MGL ⊗ S, where S ∈ Pure(k). Thus, (5.2.9) is an equivalence if and only if for any
S ∈ Pure(k), the map

(5.2.10) colim mapMGL(MGL⊗ S,MGLX•)→ mapMGL(MGL⊗ S,MGLX)

is an equivalence. Since MGL is orientable, MGL-linear perfect pure motives are generated as a thick
subcategory by modules of the form

Σ2(d+s),d+sMGLY ,

where Y is a smooth projective variety of dimension d and s ∈ Z. For any variety Z, we then have

mapMGL(Σ2(d+s),d+sMGLY ,MGLZ) ' mapMGL(Σ2s,sMGL,MGLY×Z)

' mapSH(k)(S
2s,s,MGLY×Z)

Thus, to show that (5.2.10) is an equivalence it is enough to show that for each smooth projective
variety Y and integer s, the map

(5.2.11) colim mapSH(k)(S
2s,s,MGLY×X•)→ mapSH(k)(S

2s,s,MGLY×X)

is an equivalence. Since Y ×X• → Y ×X is again an `dh-hypercover, the conclusion follows from
assumption (∗). �

We now proceed with the second step of the proof, which is a vanishing result for Borel–Moore
homology of varieties. The vanishing holds for motivic spectra that are connective with respect to
the homotopy t-structure, which we now recall.

5.2.12. Recollection (homotopy t-structure). Write

SH(k)≥0 ⊆ SH(k)

for the full subcategory generated under colimits and extensions by Σp,qΣ∞+ X for X ∈ Smk and
p > q. The subcategory SH(k)≥0 defines the connective part of a unique t-structure on SH(k) called
the homotopy t-structure. This t-structure has the following two properties, both proven in [35,
Corollary 2.4]:
(1) The homotopy t-structure is left complete. That is, the natural functor

SH(k)→ lim
(
· · · SH(k)≤2 SH(k)≤2 SH(k)≤0

τ≤1 τ≤0
)

is an equivalence. Hence the homotopy t-structure is left separated, i.e.,
⋂
d∈Z SH(k)≥d = 0.

(2) If E is connective, then for any smooth variety X, for p > q + dim(X) we have

(5.2.13) Ep,q(X) ' [Σ−p,−qΣ∞+ X,E] = 0 .
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5.2.14. Lemma. Let E ∈ SH(k)[1/e] be connective motivic spectrum that admits a structure of an
MGL-module. Then for any variety X and integers p < q, we have

EBM
p,q (X) = 0 .

Proof. Let us first assume that k is perfect. Recall that EBM
p,q (X) ' [Σp,qMc(X), E] and write

C ⊆ SH(k)[1/e] for full subcategory of motivic spectra A such that for all p < q, we have

[Σp,qA,E] = 0 .

It suffices to show that C satisfies the hypotheses of Lemma 2.2.11.
Since C is closed under extensions, fibers, and retracts, it is enough to show that if X is a smooth

projective k-scheme, then Mc(X)[1/e] ∈ C. In this case, Example 2.2.2 shows that

Mc(X) ' ThX(−TX) .

Hence we have a string of isomorphisms

EBM
p,q (X) ' [Σp,q(ThX(−TX)), E]

' [MGL⊗ Σp,q(ThX(−TX)), E]MGL ,

where the final term denotes homotopy classes of maps of MGL-modules. Write d := dim(X); using
the Thom isomorphism we can further rewrite the right-hand side as

[MGL⊗ Σp−2d,q−d(Σ∞+ X), E]MGL ' [Σp−2d,q−d(Σ∞+ X), E]

' E2d−p,d−q(X) .

As observed in Recollection 5.2.12, the right-hand side vanishes when 2d − p > d − q + d, which
translates to p < q, as needed.

If k is not perfect, then write k → k′ for the perfection of k. As in the proof of Corollary 2.2.12,
we reduce to the perfect case by using the equivalence SH(k)[1/e] ' SH(k′)[1/e] of [21, Corollary
2.1.7]. �

We now proceed with the third step of the proof, which reduces from MGL-homology to motivic
cohomology. We need to make use of the slice tower, which we now recall.

5.2.15. Recollection (effective covers & slice filtration). Let E be a motivic spectrum and r ∈ Z.
We write frE for the r-th effective cover of E. These effective covers give rise to a functorial filtration

· · · → f1E → f0E → f−1E → · · · → E .

We write
srE := cofib(fr+1E → frE)

for the r-th slice. We also write
crE := cofib(fr+1E → E) .

5.2.16. Recollection (slices of MGL). The spectrum MGL is 0-effective, i.e., f0MGL ' MGL [61,
Corollary 3.2]. Assuming the Hopkins–Morel equivalence, Spitzweck calculated the slices of MGL as

(5.2.17) srMGL ' M(π2rMU) ,

where on the right-hand side we have the motivic cohomology spectrum associated to π2rMU, which
is a free abelian group of finite rank [61, Theorem 4.7]. The Hopkins–Morel equivalence was subse-
quently proven by Hoyois away from the characteristic [35], showing that (5.2.17) holds `-locally.

5.2.18. Lemma. Let X be a k-variety. Then for p < q + r, the canonical map

(MGL(`))
BM
p,q (X)→ (crMGL(`))

BM
p,q (X)

is an isomorphism.
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Proof. By a result of Spitzweck [61, Proof of Theorem 4.7], the (r+ 1)-st effective cover fr+1MGL(`)

is a colimit of spectra of the form Σ2(r+1),r+1MGL(`). In particular, fr+1MGL(`) is (r+1)-connective
in the homotopy t-structure. The desired result now follows from the cofiber sequence

fr+1MGL(`) → MGL(`) → crMGL(`)

and Lemma 5.2.14. �

We now complete the promised argument.

Proof of Theorem 5.2.3. Throuthout the proof, we implicitly work `-locally and drop the `-localization
from notation. By Lemma 5.2.8, it is enough to show that if X• → X is an `dh-hypercover and s ∈ Z,
then the natural map

colim mapSH(k)(S
2s,s,MGLBM

X• )→ mapSH(k)(S
2s,s,MGLBM

X )

is an equivalence. As the standard t-structure on spectra is right complete, a diagram F : C. → Sp
is a colimit if and only if for each m ∈ Z, the diagram

(τ≥m ◦ F ) : C. → Sp≥m

of m-coconnective spectra is a colimit. Thus, the map

colim mapSH(k)(S
2s,s,MGLBM

X• )→ mapSH(k)(S
2s,s,MGLBM

X )

is an equivalence if and only if for each m ∈ Z, the induced map of spectra

(5.2.19) colim(τ≥m mapSH(k)(S
2s,s,MGLBM

X• ))→ τ≥m mapSH(k)(S
2s,s,MGLBM

X )

has an (m+ 1)-connective cofiber. By Lemma 5.2.18, for all k-varieties Z and integers k < r− s, the
map

πk mapSH(k)(S
2s,s,MGLBM

Z )→ πk mapSH(k)(S
2s,s, crMGLBM

Z )

is an isomorphism. Thus, if r > m+ s, then the map (5.2.19) is equivalent to the map

colim(τ≥m mapSH(k)(S
2s,s, (crMGL)BM

X• ))→ τ≥m mapSH(k)(S
2s,s, (crMGL)BM

X ) .

Thus it suffices to show that for each r ∈ Z the map

colim mapSH(k)(S
2s,s, (crMGL)BM

X• )→ mapSH(k)(S
2s,s, (crMGL)BM

X )

is an equivalence. In other words, we have to show `dh-hyperdescent for crMGL-Borel–Moore ho-
mology of varieties.

As we observed in Recollection 5.2.16, by a result of Spitzweck the slices of algebraic cobordism
are given by suspensions of motivic cohomology associated to finitely generated abelian groups. It
follows that crMGL belongs to the smallest thick subcategory containing the motivic cohomology
spectrum MZ and closed under bigraded suspensions. Thus suffices to show that

colim mapSH(k)(S
2s,s, (MZ)X•)→ mapSH(k)(S

2s,s, (MZ)X)

is an equivalence; in other words, that `-localized motivic cohomology of varieties satifies `dh-hyper-
descent. Since `-localized motivic cohomology has transfers along finite flat morphisms, this follows
from a theorem of Geisser [24, Theorem 1.2]; see also a generalization due to Kelly [40, Theorem
4.0.13]. �
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5.3. The weight filtration on Borel–Moore homology via `dh-hyperdescent. In this sub-
section, we explain how Theorem 5.2.3 allows one can calculate the weight filtration on Borel–Moore
homology using `dh-hypercovers.

5.3.1. Recollection. If X is a complex variety and A ∈ Alg(Sp) is an algebra in spectra, then
the Borel–Moore homology of the topological space X(C) with coefficients in A can be identified
with the homotopy of the Betti realization of the monoidal dual of the compactly supported motive
Mc(X) of Definition 2.2.1:

HBM
∗ (X(C);A) ' π∗Be(Mc(X)∨;A) .

If A is complex orientable, then Corollary 4.3.13 gives a canonical lift of Be(Mc(X)∨;A) to a filtered
spectrum

W∗Be(Mc(X);A) ∈ Modτ≥∗A(Fil Sp) .
Hence this filtration induces a weight filtration on the Borel–Moore homology groups HBM

∗ (X(C);A).
Analogously, if k is an arbitrary field and if A ∈ Alg(Shhyp

ét (ÉtS ; Sp)∧` ) is complex orientable, then
to any k-variety X we can associate a hypercomplete étale sheaf of spectra

Re`(Mc(X)∨(`);A)) .

This hypersheaf inherits a filtration from the filtered étale realization of Definition 4.6.6.

5.3.2. Notation. To treat both the Betti and étale cases uniformly, for a variety X and A as in
Recollection 5.3.1 we write

CBM
∗ (X;A) :=

{
Be(Mc(X)∨;A) (Betti)
Re`(Mc(X)∨(`);A)) (Étale)

Informally, these are the A-linear Borel–Moore “chains”, although note that in the étale case it is a
hypersheaf of spectra on the étale site of k rather than a spectrum itself. If k is separably closed,
both types of “chains” are given by a spectrum.

5.3.3. Recollection (`dh-hypercovers by smooth schemes). If X is proper, then by using a theory
of alterations, we can construct an `dh-hypercover X• → X such that Xi is smooth and projective
for each i ≥ 0, see [26, Lemma 2 in §1.4], where in op. cit. every time one invokes a resolution of
singularities, we instead use the theory of alterations to obtain an `dh-cover. If k is of characteristic
zero, then by resolution of singularities any variety admits a cdh-hypercover which is levelwise smooth
and projective.

5.3.4. Theorem. Let X be a proper variety. Assume one of the following hypotheses:
(1) Let X• → X be an `dh-hypercover such that Xi is smooth and projective for each i ≥ 0 and let

A be `-local.

(2) Let X• → X be a cdh-hypercover and assume that the exponential characteristic is invertible
in A.

Then we have

(5.3.5) W∗C
BM
∗ (X;A) ' colim

[i]∈∆op
W∗C

BM
∗ (Xi;A) ' colim

[i]∈∆op
τ≥∗C

BM
∗ (Xi;A)

where the colimit is calculated in Modτ≥∗(A)(FilSp).

Proof. By a combination of Theorem 5.2.3 of Remark 5.2.5, we see that the canonical map

colim Mc(X•)
∨ → Mc(X)∨

is Chow–Novikov ∞-connective. By Corollary 4.3.17, the filtered Betti realization inverts Chow–
Novikov ∞-connective maps; similarly, Remark 4.6.7 shows that étale realization inverts Chow–
Novikov ∞-connective maps. Hence we deduce the left-hand equivalence. Since each Xi is smooth
and proper, by construction we have

W∗Be(Mc(Xi)
∨;A) ' τ≥∗Be(Mc(Xi)

∨;A) .
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Hence the right-hand equivalence follows. �

5.3.6. Corollary. Let X be a proper complex variety and let A ∈ Alg(Sp) be complex orientable.
Then the filtration on

HBM
∗ (X(C);A) ' π∗CBM

∗ (X;A)

induced from the weight filtration on the left-hand side coincides with the filtration induced by the
hypercover spectral sequence.

E1
s,t := HBM

t (Xs(C);A)⇒ HBM
s+t(X(C);A) .

Proof. The filtered spectrum colim[i]∈∆op τ≥∗C
BM
∗ (Xi;A) appearing in Theorem 5.3.4 can be iden-

tified with Deligne’s décalage of the simplicial spectrum CBM
∗ (X•;A). See [2, §9; 51, §1.2.4]. By a

result of Levine [46, Proposition 6.3], the resulting filtration on the homotopy groups of the colimit
coincides with the one induced by the spectral sequence of geometric realization. �

As observed in Recollection 5.3.3, any proper variety admits an `dh-hypercover by smooth vari-
eties. Hence Theorem 5.3.4 provides a way to explicitly calculate the weight filtration on Borel–Moore
homology. If U is not necessarily proper, then the weight filtration can be calculated as follows.

5.3.7. Proposition. Let X be a proper variety and Z ⊆ X a closed subvariety with open complement
U . Then the induced maps on Borel–Moore homology form a canonical cofiber sequence

W∗C
BM
∗ (Z;A)→W∗C∗(X;A)→W∗C

BM
∗ (U ;A).

In particular, the weight filtration on CBM
∗ (U ;A) is canonically determined by the weight filtrations

on C∗(X;A) and CBM
∗ (Z;A).

Proof. Immediate from the localization sequence of Lemma 2.2.10 and the fact that the filtered
realization is exact. �

5.4. Filtration on cohomology and the comparison with the Gillet–Soulé filtration. In
this subsection, we apply Theorem 5.2.3 to compare the filtration on compactly supported integral
cohomology of a complex variety with the Gillet–Soulé filtration introduced in [26]. Recall that the
Gillet–Soulé filtration refines Deligne’s weight filtration on rational cohomology [17].

5.4.1. Warning (there are two different filtrations). There are two filtrations one can construct on
cohomology using the filtered realization functors introduced in this paper. To avoid complicating
notation, let us focus on the Betti case; the discussion applies equally well to the filtered étale
realization.

If A ∈ CAlg(Sp) is complex orientable and X is a complex variety, then we have an identification

H∗c(X(C);A) ' π−∗Be(Mc(X);A) .

A natural way to lift the right-hand side to a filtered object is to consider

(5.4.2) W∗Be(Mc(X);A) .

However, an alternative is to observe that by Corollary 2.2.12, the motivic spectrum Mc(X) is
dualizable; hence we can also consider the dual

(5.4.3) mapτ≥∗A(W∗Be(Mc(X)∨;A), τ≥∗A) ,

of Be(Mc(X)∨;A) inside Modτ≥∗(A)(FilSp). Recall that filtered Betti realization is not symmetric
monoidal, but only lax symmetric monoidal. Hence due to the failure of the universal coefficient
theorem, (5.4.2) and (5.4.3) need not coincide. This failure can already be observed when X is
smooth and proper in which case:
(1) The filtered object (5.4.2) can be identified with the Whitehead filtration on cochains.

(2) The filtered object (5.4.3) can be identified with the dual of the Whitehead filtration on chains.
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When A is ordinary cohomology with coefficients in a field, these two coincide. However, in general
they do not coincide.

5.4.4. Note that out of the two ways of filtering cochains described in Warning 5.4.1, it is the first
one which is preferable. Indeed, if X is a proper variety, then the diagonal map X → X ×X equips
Mc(X) with a canonical structure of a commutative algebra in SH(C). Since W∗Be(−;A) is lax
symmetric monoidal, it follows that

W∗Be(Mc(X);A)

canonically inherits the structure of a commutative algebra in filtered τ≥∗A-modules6.

5.4.5. Notation. Let X be a complex variety. We write

C∗c(X(C);Z) ∈ D(Z)

for the complex of compactly supported integral cochains on X(C), considered as an object of the
derived ∞-category.

We recall the definition of the Gillet–Soulé filtration.

5.4.6. Recollection (the Gillet–Soulé filtration). If X is a proper complex variety, then using res-
olution of singularities we can construct a cdh-hypercover X• → X by smooth proper varieties.
The Gillet–Soulé filtration on the Betti cohomology of X is the filtration associated to the spectral
sequence

Hs(Xt(C);Z)⇒ Hs−t(X(C);Z) .
Turning this into a filtered spectrum using décalage yields a definition

WGS
∗ C∗(X(C);Z) := lim

[n]∈∆
τ≥∗C

∗(Xn(C);Z) ∈ Fil(D(Z))

If X is not necessarily proper, we embed X as an open subvariety X ⊆ X of a proper variety X
with closed complement Z and define

WGS
∗ C∗c(X(C);Z) := fib

(
WGS
∗ C∗c(X(C);Z)→WGS

∗ C∗c(Z(C);Z)
)
.

The results of [26] show that, as objects of the filtered derived ∞-category, these filtrations neither
depend on the choice of the hypercover X• nor on the choice of the compactification X. We refer to
the filtered object WGS

∗ C∗c(X(C);Z) as the Gillet–Soulé filtration on C∗c(X(C);Z).

5.4.7. Notation (filtered Betti realization & compactly supported cochains). If X is a complex
variety, we have an identification

C∗c(X(C);Z) ' Be(Mc(X);Z)

of objects in the derived ∞-category D(Z). We write

W∗C
∗
c(X(C);Z) := W∗Be(Mc(X);Z)

for the filtration induced by the filtered Betti realization of Definition 4.3.14.

The filtration on compactly supported integral cochains inherited from the filtered Betti realiza-
tion coincides with the Gillet–Soulé filtration:

5.4.8. Theorem. Let X be a complex variety. Then there exists an equivalence

(5.4.9) W∗C
∗
c(X(C);Z) 'WGS

∗ C∗c(X(C);Z)

of objects of the filtered derived ∞-category of Z.

6Dually, Mc(X)∨ is a cocommutative coalgebra; however, lax monoidal functors need not preserve coalgebras.
This is why (5.4.2) is preferable to (5.4.3). This is the same reason why cohomology groups of a topological space
form a commutative algebra, but homology groups need not form a coalgebra unless we have some further flatness
assumption.
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Before proceeding with the proof, let us remark that the main difficulty lies in the fact that the
Gillet–Soulé filtration is defined as a limit, whereas filtered Betti realization is a left adjoint, hence
preserves colimits. Since we are in the stable context, finite limits and be expressed as finite colimits
and vice versa, but the limit defining the Gillet–Soulé filtration is a totalization of a cosimplicial
object and hence is not finite. To prove Theorem 5.4.8, we will show that after passing to the
associated graded, the cdh-hypercover can be replaced by a suitable chain complex in effective Chow
motives. Gillet and Soulé’s work [26] then shows that this complex of effective Chow motives can be
chosen to be bounded.

The key step in the proof of Theorem 5.4.8 is to argue that the associated graded of the filtered
Betti realization is defined on MZc=0-modules. This takes some preparation.

5.4.10. Recollection (associated graded). We write

Gr(Sp) := Fun(Zdisc,Sp)

for the ∞-category of graded spectra. Given a filtered spectrum F∗S, the associated graded of F∗S
is the graded spectrum defined by

grk(F∗S) := cofib(Fk+1S → FkS) .

A filtered spectrum F∗S is complete if limn∈Z FnS = 0. We write

Fil∧(Sp) ⊆ FilSp

for the full subcategory spanned by the complete filtered spectra. On this subcategory, passing the
associated graded functor

gr∗ : Fil∧(Sp)→ Gr(Sp)

is conservative.

5.4.11. Notation. Let MZ ∈ SH(C) denote the motivic cohomology spectrum and MZc=0 ' MZc≤0

its connective cover in the Chow–Novikov t-structure.

The first observation is that the associated graded of the Z-linear filtered Betti realization factors
through MZc=0-modules:

5.4.12. Lemma. There exists a left adjoint functor

gr∗ Bec=0(−;Z) : ModMZc=0
(SH(C))→ Gr(D(Z))

such that there is an equivalence

gr∗ Bec=0(MZc=0 ⊗ S;Z) ' gr∗(W∗Be(S;Z))

natural in S ∈ SH(C).

Proof. Write Chow(C) for the additive 1-category of pure Chow motives over C. By [7, §4.2], there
is an equivalence of ∞-categories

ModMZc=0(SH(C)) ' PShΣ(Chow(C); Sp)

between MZc=0-modules and spectral presheaves on Chow(C). It follows that any additive functor
on Chow(C) valued in a cocomplete stable ∞-category extends uniquely to a colimit-preserving
functor on all MZc=0-modules. The needed functor gr∗ Bec=0(−;Z) is defined as the unique colimit-
preserving functor such that

grn Bec=0(M ;Z) := Σ−nHn
Be(M ;Z)

for any M ∈ Chow(C), where the right-hand side is the homological Betti realization of a Chow
motive. If S ∈ SH(C) is perfect pure, then wehave MZc=0 ⊗ S ∈ Chow(C) so that

gr∗ Bec=0(MZc=0 ⊗ S;Z) ' Σ−nHn
Be(MZc=0 ⊗ S;Z)

' gr∗(W∗Be(S;Z)) .
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Since both sides preserve colimits, Corollary 3.3.6 implies that this natural equivalence defined on
perfect pures extends to an equivalence on all of SH(C). �

Proof of Theorem 5.4.8. By Lemma 2.2.10, the left-hand filtration takes open-closed decompositions
to fiber sequences, and by definition the Gillet–Soulé filtration takes open-closed decompositions to
fiber sequences. Hence we can assume that X is proper. Using resolution of singularities, we can
choose a cdh-hypercover X• → X such that Xi is smooth and proper for each i ≥ 0. Functoriality
of the filtered Betti realization applied to X• → X gives a canonical comparison map

(5.4.13) W∗C
∗(X(C);Z)→ lim

[i]∈∆
W∗C

∗(Xi(C);Z) ' lim τ≥∗C
∗(Xi(C);Z) 'WGS

∗ C∗(X(C);Z) .

We will prove that (5.4.13) is an equivalence.
First, we claim that both the source and target of (5.4.13) are complete. Indeed, the target is a

limit of Whitehead filtrations, which are complete, and hence is complete itself. On the other hand,
since the subcategory of those motivic spectra S such that W∗Be(S;Z) is complete is thick and
contains motives of all smooth and proper varieties, Lemma 2.2.11 implies that the source is also
complete.

We deduce that it is enough to show that (5.4.13) is an equivalence after passing to associated
graded objects. By Lemma 5.4.12, the map between associated graded objects can be identified with
the comparison map

gr∗ Bec=0(MZc=0 ⊗Mc(X);Z)→ lim
[i]∈∆

gr∗ Bec=0((MZc=0 ⊗Mc(Xi);Z) :

Since X• → X is a cdh-cover and MZc=0 is an MGL-module, by Theorem 5.2.3 and Remark 5.2.5,
we have

MZc=0 ⊗Mc(X)∨ ' colim
[i]∈∆op

MZc=0 ⊗Mc(Xi)
∨ .

Passing to monoidal duals, this shows that

(5.4.14) MZc=0 ⊗Mc(X)→ lim
[i]∈∆

MZc=0 ⊗Mc(Xi) .

We have to show that this limit is preserved by the functor gr∗ Bec=0(−;Z) of Lemma 5.4.12.
Through the Dold–Kan correspondence, the cosimplicial object MZc=0⊗Mc(X•) : ∆→ Chow(C)

determines a chain complex of pure Chow motives; this complex can be identified with the weight
complex of [26, p. 137-138]. By [26, p.137, Theorem 2], this chain complex is homotopy equivalent to
a bounded one. Using the Dold–Kan correspondence, this homotopy equivalence of chain complexes
determines a map MZc=0⊗X• → C• of cosimplicial Chow motives which is a cosimplicial homotopy
equivalence. The assumption that the chain complex associated to C• is bounded implies that C• is
n-coskeletal for some n.

We have a commutative diagram of MZc=0-modules of the form

MZc=0 ⊗Mc(X)

lim
[i]∈∆

MZc=0 ⊗Mc(Xi) lim
[i]∈∆

Ci .

Since the horizontal map is induced by a cosimplicial homotopy equivalence, it is an equivalence,
and similarly gr∗ Bec=0(MZc=0⊗Mc(X•);Z) ' lim gr∗ Bec=0(C•;Z). Thus, it is enough to show that

gr∗ Bec=0(Mc(X);Z)→ lim gr∗ Bec=0(C•;Z)

is an equivalence. However, as the right-hand side is a totalization of an n-coskeletal cosimplicial
object, it can be identified with a finite limit. As gr∗ Bec=0(−;Z) is exact, it preserves finite limits,
ending the argument. �
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5.4.15. Remark. A key step in the proof of Theorem 5.4.8 is the boundedness result for the Gillet–
Soulé weight complex, which implies that the infinite cdh-hypercover X• → X can be replaced by
an object of finitary nature. On the other hand, as a consequence of Lemma 2.2.11, the filtered
spectrum

W∗Be(Mc(X);A)

can always be obtained from the Whitehead filtration on A-linear cochains of smooth, proper vari-
eties using only finite limits and colimits. Unlike in the case of Borel–Moore homology covered by
Theorem 5.3.4, for general A we do not if the filtration on cochains satisfies cdh-descent; although
Theorem 5.4.8 shows that it does when A = Z.

5.4.16. Remark (Kuijper’s work). In the case of a field of characteristic zero, a weight filtration on
compactly supported cohomology with coefficients in a complex orientable ring spectrum A can also
be constructed using the recent work of Kuijper [44]. We claim that this filtration agrees with the
filtered realization introduced in this work applied to Mc(X).

For simplicity, let us consider the complex Betti case. We have the association

X 7→ τ≥∗C
∗
c(X(C);A) ∈ FilSp ,

which we think of as a presheaf defined on smooth and proper varieties. As observed in [44, 8.3], if A-
cohomology admits Gysin maps, then this presheaf satisfies descent for blow-ups squares. Moreover,
if A is complex orientable then A-cohomology admits Gysin maps. Thus, by [44, Theorem 1.1], this
presheaf uniquely extends to one defined on all varieties, giving the sought after weight filtration on
compactly supported cohomology. Note that the two filtrations

X 7→ τ≥∗C
∗
c(X(C);A) and X 7→W∗Be(Mc(X);A)

agree on smooth and proper varieties, have the localization property, and satisfy descent for blow-up
squares. Hence the uniqueness part of Kujiper’s result, shows that these filtrations necessarily agree
on all complex varieties.

6. Synthetic Betti realization

Write SynMU for the ∞-category of MU-based synthetic spectra introduced by the second-named
author in [55]. The goal of the section is to show that the Betti realization functor Be: SH(C)→ Sp
refines to a lax symmetric monoidal left adjoint

Besyn : SH(C)→ SynMU

as well as explore its basic properties. We refer to this refinement as synthetic Betti realization.
In §6.1, we recall the background on synthetic spectra necessary to understand the construction of

the synthetic Betti realization functor. In §6.2, we explain give an alternative description of synthetic
spectra as modules in filtered spectra over the filtration on the sphere given by descent along the
faithfully flat map S0 → MU. This description is later used to compare synthetic Betti realization
with filtered Betti realization. In §6.3, we construct the functor Besyn; see Theorem 6.3.3. In §6.4, we
explain the relationship between synthetic Betti realization to filtered Betti realization. In particular,
if A is a Landweber exact complex oriented E1-ring, then the filtered Betti realization W∗Be(−;A)
can be recovered from synthetic Betti realization; see Theorem 6.4.6. In § 6.5, we give conjectural
description of a synthetic lift of a general motivic realization functor, such as étale realization.

6.1. Recollection on synthetic spectra. Initiated by Quillen, chromatic homotopy theory studies
the relationship between stable homotopy theory and the arithmetic formal groups. An important
aspect of this relationship is the Adams–Novikov spectral sequence

Hs(Mfg;ωt/2)⇒ πs−tS
0

relating cohomology of the moduli stack of formal groups to stable homotopy groups. Synthetic
spectra can be informally thought of as categorification of this spectral sequence. The purpose of
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this subsection is to briefly review what we need about synthetic spectra for this paper; we refer the
reader to [55] for more details.

We first recall the construction of MU-based synthetic spectra from [55, §4]. We say that a
spectrum A is finite MU-projective if A is a compact object of Sp and MU ⊗ A is free as an MU-
module; that is, there exists integers d1, . . . , dn and an equivalence of MU-modules

MU⊗A ' Σd1MU⊕ · · · ⊕ ΣdnMU .

Equivalently, A is compact and MU∗(A) is free as an MU∗-module. We write

Spfp
MU ⊆ Sp

for the full subcategory spanned by the finite MU-projective spectra. We say that map f : A→ B of
finite MU-projectives is an MU-epimorphism if f becomes a split epimorphism after tensoring with
MU; equivalently, if MU∗A → MU∗B is surjective. This notion of a covering equips the site Spfp

MU

with a Grothendieck topology.

6.1.1. Definition. The ∞-category of MU-based synthetic spectra is given by

SynMU := ShΣ(Spfp
MU; Sp)

the ∞-category of additive sheaves on spectra on the site Spfp
MU of finite MU-projective spectra.

6.1.2 (SynMU as a deformation of Sp). The ∞-category SynMU is stable and presentable. Moreover,
through left Kan extension it inherits a symmetric monoidal tensor product from that of finite
spectra. As we briefly explained in the introduction, the ∞-category SynMU is best understood as
an ∞-categorical deformation of spectra in the following sense. Its monoidal unit has a canonical
endomorphism

τ : 1Syn → 1Syn

which should be thought of as a formal parameter. Moreover, there is an equivalence

Synτ=1
MU ' Sp

between the generic fiber and spectra. The special fiber is related to arithmetic. Write Mδ
fg for the

Dirac moduli stack of formal groups (that is, a sheaf on the category of graded-commutative rings)
as defined in [31, §5.2]. Then there is an equivalence

Synτ=0
MU ' IndCoh(Mδ

fg)

between the special fiber and Ind-coherent sheaves on Mδ
fg.

One can describe this∞-category of Ind-coherent sheaves on Mδ
fg in terms of Ind-coherent sheaves

on the usual moduli stack of formal groups as follows:

6.1.3. Remark (Dirac moduli of formal groups and its classical counterpart). The ∞-category of
Ind-coherent sheaves on Mδ

fg admits a fully faithful embedding

i : IndCoh(Mfg) ↪→ IndCoh(Mδ
fg)

from Ind-coherent sheaves on the moduli stack Mfg of formal groups in classical algebraic geometry.
The target is obtained from the source by attaching an anti-symmetric square root ω1/2 of the Lie
algebra line bundle ω ∈ IndCoh(Mfg) in the sense that any F ∈ IndCoh(Mδ

fg) can be uniquely written
in the form

F ' (i(F0))⊕ (ω
1/2 ⊗ i(F1))

for F0,F1 ∈ IndCoh(Mfg). Informally, the additional root arises from the fact that in spectra, the
Betti realization Be(P1

C) ' S2 of the Tate motive has a tensor square root, given by the 1-sphere S1.
This situation is quite special to complex Betti realization.
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6.1.4. Remark. The embedding i : IndCoh(Mfg) ↪→ IndCoh(Mδ
fg) mentioned in Remark 6.1.3 can

be identified with the embedding of special fibers

(Synev
MU)τ=0 ↪→ Synτ=0

MU

induced by the inclusion of even synthetic spectra of [55, §5.2] into all synthetic spectra.

6.1.5. Remark (Ind-coherent sheaves and Hovey’s stable∞-category). In terms of Hopf algebroids,
we have a canonical equivalence

IndCoh(Mδ
fg) ' StableMU∗MU

between sheaves on the Dirac moduli of formal groups and Hovey’s stable ∞-category of MU∗MU-
comodules as in [33]. Under this equivalence, the subcategory

IndCoh(Mfg) ⊆ IndCoh(Mδ
fg)

of sheaves on the classical moduli stack corresponds to the stable∞-category of MU∗MU-comodules
concentrated in even degrees.

6.1.6 (synthetic analogues). The ∞-category of synthetic spectra is equipped with a fully faithful
embedding ν : Sp ↪→ SynMU, called the synthetic analogue, which fits into a commutative diagram

(6.1.7)

Sp

Sp SynMU IndCoh(Mfg)

ν
MU∗(−)

(−)τ=1 (−)τ=0

The functor ν is additive, but it is not exact. However, one can show that a cofiber sequence

A→ B → C

of spectra is preserved by ν if and only if

0→ MU∗A→ MU∗B → MU∗C → 0

is short exact [55, Lemma 4.23]. In particular, ν : Sp ↪→ SynMU preserves MU-split cofiber sequences;
this is the crucial property we need to construct the synthetic lift of the Betti realization functor.

6.2. Synthetic spectra as filtered spectra. We now explain an alternative presentation of syn-
thetic spectra in terms of filtered spectra. There are two relevant filtrations on the sphere that come
from descent along the faithfully flat map S0 → MU.

6.2.1. Notation.
(1) Write fil∗ev(S0) the commutative algebra in filtered spectra defined by the limit

fil∗ev(S0) := lim
[n]∈∆

τ≥2∗(MU⊗[n]) .

Here, the limit is taken over the diagram given by applying the double-speed Postnikov filtration
to the cobar construction of the unit S0 → MU. This filtration on the sphere is the Adams–
Novikov filtration; it can also be identified with the even filtration of [30; 54].

(2) Write fil∗(S0) for the commutative algebra in filtered spectra defined by the limit

fil∗(S0) := lim
[n]∈∆

τ≥∗(MU⊗[n]) .

We refer to fil∗(S0) as the MU-descent filtration on S0. The filtration fil∗(S0) agrees with the
half-weight even filtration of [54, Remark 2.26].

The following description of synthetic spectra in terms of filtered spectra is due to Gheorghe–
Krause–Isaksen–Ricka [25]. See also [27, §1.3; 54, §3.2].
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6.2.2. Proposition (synthetic spectra as filtered spectra).
(1) There is an equivalence of symmetric monoidal ∞-categories

Γ∗ : SynMU Modfil∗(S0)(FilSp) .∼

(2) The equivalence Γ∗ restricts to an equivalence of symmetric monoidal ∞-categories

Synev
MU Modfil∗ev(S0)(FilSp) .∼

(3) The triangle

SynMU Modfil∗(S0)(FilSp)

Sp

Γ∗

∼

(−)τ=1 colim

canonically commutes.

Now let us further relate filtered objects in modules over a complex orientable ring to synthetic
spectra.

6.2.3. Lemma. Let A be a complex orientable E1-ring spectrum. Then:
(1) There is an equivalence Γ∗(ν(A)) ' τ≥∗A of E1-algebras in FilSp.

(2) The equivalence Γ∗ : SynMU
∼−→ Modfil∗(S0)(FilSp) induces is an equivalence of ∞-categories

Modν(A)(SynMU)
∼−→ Modτ≥∗(A)(FilSp) .

Proof. For (1), note that under the equivalence Γ∗ : SynMU
∼−→ Modfil∗(S0)(FilSp), ν(A) corresponds

to A equipped with the Adams–Novikov filtration. Since A is complex orientable and hence a retract
of an MU-module, the Adams–Novikov filtration on A is identified with the Postnikov filtration
τ≥∗A. See [55, Proposition 4.60].

For (2), note that by (1) and Proposition 6.2.2, we have equivalences

Modν(A)(SynMU) ' ModΓ∗(ν(A))(Modfil∗(S0)(FilSp))

' Modτ≥∗(A)(FilSp) . �

6.3. Synthetic complex Betti realization. In this subsection, we refine the Betti realization
functor

Be: SH(C)→ Sp

of Construction 2.3.1 to a colimit-preserving functor valued in synthetic spectra. This refinement
is analogous to our construction of filtered Betti realization (Definition 4.3.14). Specifically, the
idea is to send a perfect pure motivic spectrum X to the ‘trivial’ synthetic spectrum ν(Be(X))
associated to the Betti realization of X. To check that this extends to a colimit-preserving functor
SH(C) → SynMU, we need to check that it the functor ν(Be(−)) preserves cofiber sequences in
Pure(C):

6.3.1. Lemma. Let X → Y → Z be an MGL-split cofiber sequence in SH(C). Then the null sequence

ν(Be(X)) ν(Be(Y )) ν(Be(Z))

is a cofiber sequence of synthetic spectra.

Proof. By Lemma 4.3.9, the induced cofiber sequence of MU-modules

MU⊗ Be(X) MU⊗ Be(Y ) MU⊗ Be(Z)

is split. The claim now follows from the fact that the functor ν : Sp ↪→ SynMU preserves MU∗-exact
cofiber sequences [55, Lemma 4.23]. �
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6.3.2. Example. Let X → Y → Z is a cofiber sequence in Pure(C). Combining Proposition 3.2.6
and Lemma 6.3.1 shows that

ν(Be(X)) ν(Be(Y )) ν(Be(Z))

is a cofiber sequence of synthetic spectra.

6.3.3. Theorem. There exists a unique lax symmetric monoidal left adjoint

Besyn : SH(C)→ SynMU

such that for X ∈ Pure(C), we have

Besyn(X) ' ν(Be(X)) .

Proof. By Theorem 4.2.3, it suffices to show that if X → Y → Z is a cofiber sequence in Pure(C),
then the sequence

ν(Be(X)) ν(Be(Y )) ν(Be(Z))

is a cofiber sequence in SynMU; this is the content of Example 6.3.2. �

6.3.4. Definition (synthetic Betti realization). We refer to the functor Besyn : SH(C) → SynMU of
Theorem 6.3.3 as complex synthetic Betti realization.

Using the fact that synthetic Betti realization is a left adjoint, it is not hard to see that synthetic
Betti realization refines the usual Betti realization:

6.3.5. Lemma. The triangle of ∞-categories and left adjoints

SH(C) SynMU

Sp

Besyn

Be (−)τ=1

canonically commutes.

Proof. By Corollary 3.3.6, it suffices to show that this diagram commutes when restricted to perfect
pures. If X ∈ Pure(C), this follows from the equivalences

Besyn(X)τ=1 ' (ν(Be(X))τ=1 ' Be(X) .

Here, the second equivalence uses that (6.1.7) commutes. �

6.4. Comparing synthetic Betti realization and filtered Betti realization. As a consequence
of Proposition 6.2.2, we see that synthetic Betti realization can be thought of as equipping Be(X)
with an additional filtration compatible with the MU-descent filtration of the sphere. In this sub-
section, we use the filtered perspective on synethetic spectra explained in §6.2 to compare synthetic
Betti realization with filtered Betti realization (recall Definition 4.3.14).

6.4.1. Construction (A-linear realization of a synthetic spectrum). Let A be a complex orientable
E1-ring. Write ReA for the composite

SynMU Modν(A)(SynMU) Modτ≥∗(A)(FilSp) .
ν(A)⊗(−) ∼

Here, the second functor is the equivalence of Lemma 6.2.3. We call ReA the A-linear realization
functor.

6.4.2. Observation. Since ν is lax symmetric monoidal, for any spectrum X we have a canonical
comparison map

ν(A)⊗ ν(X)→ ν(A⊗X)

which we can identify with a map

(6.4.3) ReA(ν(X))→ τ≥∗(A⊗X) ,
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where we use that A⊗X is a retract of an MU-module to identify Γ∗ν(A⊗X) with τ≥∗(A⊗X).

6.4.4. Remark. If f : A→ B is a map of complex orientable E1-ring spectra, then the induced map
ν(A)→ ν(B) of E1-algebras in synthetic spectra gives rise to a natural transformation

ReA(−)→ ReB(−) .

This natural transformation is adjoint to a comparison morphism, which we denote by

Re(f) : τ≥∗B ⊗
τ≥∗A

ReA(−) −→ ReB(−) .

In fact, Re(f) is an equivalence, as for X ∈ SynMU it can be identified with the canonical map

ν(B) ⊗
ν(A)

ν(A)⊗ ν(X)→ ν(B)⊗ ν(X) .

As a consequence of Corollary 3.3.6, we can make the following definition.

6.4.5. Definition. We write

φA : ReA(Besyn(−))→W∗Be(−;A)

for the unique natural transformation of colimit-preserving functors

SH(C)→ Modτ≥∗(A)(FilSp)

such that for every perfect pure S ∈ Pure(C) it can be identified with the map

ReA(Besyn(S)) ' ReA(ν(Be(S))→ τ≥∗(A⊗ Be(S)) 'W∗Be(S;A)

of (6.4.3).

For the following result, recall that a complex oriented ring spectrum A is said to be Landweber
exact if the map Spec(A∗) → Mfg classiying the Quillen formal group is flat. For example, this is
true if π∗(A) is a rational vector space.

6.4.6. Theorem. Let X ∈ SH(C) and let A be a complex oriented E1-ring. Assume that one of the
following conditions holds:
(1) The motivic spectrum X is cellular.

(2) The complex oriented E1-ring A is Landweber exact.
Then the map

φA : ReA(Besyn(X))→W∗Be(X;A)

is an equivalence.

Proof. Suppose first that X is cellular. Since both functors preserve colimits, it suffices to show that
φA is an equivalence for motivic spectra of the form

X ' S2n,n ' (P1)⊗n .

Since S2n,n is perfect pure, we see that φA can be identified with the canonical map

ν(A)⊗ ν(Be(S2n,n)) ' ν(A)⊗ ν(Sn)→ ν(A⊗ Sn) ' ν(A⊗ Be(S2n,n)) .

Since Sn is MU-finite projective, [55, Lemma 4.24] implies that this map is an equivalence.
In the Landweber exact case, [34, Propositions 2.12 & 2.13] shows that A is a filtered colimit of

finite MU-projectives. The proof is now the same as the proof in the cellular case. �

6.4.7. Remark. If f : A→ B is a morphism of complex oriented E1-rings, then the comparison map

cf : τ≥∗B ⊗
τ≥∗A

W∗Be(−;A)→W∗Be(−;B)
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of Construction 4.5.2 is compatible with the those of Definition 6.4.5 in the sense that we have a
commutative diagram

τ≥∗B ⊗
τ≥∗A

ReA(Besyn(−)) τ≥∗B ⊗
τ≥∗A

W∗Be(−;A)

ReB(Besyn(−)) W∗Be(−;B)

τ≥∗B ⊗
τ≥∗A

φA

Re(f) cf

φB

of functors SynMU → Modτ≥∗B(FilSp) and natural transformations. To see this, note that all these
functors preserve colimits, and so to give such a square it is enough to define it on perfect pures. If
S ∈ Pure(k), then the above square reduces to

ν(B) ⊗
ν(A)

ν(A)⊗ ν(Be(S)) ν(B) ⊗
ν(A)

ν(B ⊗ Be(S))

ν(B)⊗
A
ν(Be(S)) ν(B ⊗ Be(S)) .

6.5. Synthetic real Betti realization and synthetic étale realization. In this section, highly
inspired by the work of Burklund–Hahn–Senger on the∞-category of Artin–Tate real motivic spectra
[10], we give conjectural description of a synthetic lift of a general motivic realization functor, such
as étale realization.

We first describe the main difference which makes the general case more interesting than the
complex one. Notice that the complex Betti realization is valued in the ∞-category of spectra,
and the synthetic lift of Theorem 6.3.3 shows that it can be naturally lifted to the ∞-category of
synthetic spectra, which was constructed previously in [55]. However, in both the case of the real
Betti realization

BeC2
: SH(R)→ SpC2

and the étale realization
Re` : SH(k)→ Shhyp

ét (Étk; Sp)∧` ,
the target is spectra equipped with additional structure (either that of a genuine C2-spectrum or,
informally, a continuous action of the absolute Galois group Gal(k/k)). Hence it is natural to expect
that the synthetic lift of these realizations would not be valued in ordinary synthetic spectra, but
rather in a synthetic deformation which takes this additional structure into account. Thus, before one
can discuss the existence of a lift, one first has to construct an appropriately structured deformation.
We propose a candidate for such a deformation in Definition 6.5.6. As an invitation towards further
research in this direction, we also make conjectures on its structure.

We can treat both Betti and étale realizations uniformly by introducing the following notion:

6.5.1. Definition. An abstract realization functor over a field k is a symmetric monoidal, colimit-
preserving functor

Re: SH(k)→ C

valued in presentably symmetric monoidal, stable ∞-category.

6.5.2. Warning. In the generality of Definition 6.5.1, one should probably only expect a functor
valued in an even synthetic category, so that the formalism of this section applied to Be: SH(C)→ Sp
does not recover exactly the construction of §6.3, but rather only its even variant. We believe that the
existence of a non-even extension of the synthetic deformation is special to the case of the complex
Betti realization. The reason is that it relies on the existence of a tensor square root of the Tate
motive Be(P1) ' S2 ∈ Sp; this is not true in either the real or étale contexts.
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We now fix an abstract realization functor Re: SH(k)→ C. To motivate the following definition,
we recall [54, Proposition 3.6]. Write Perf(Sp)ev ⊆ Sp for the∞-category finite spectra with an even
cell decomposition. An (MU-based) even synthetic spectrum can be identified with an additive sheaf

X : (Perf(Sp)ev)op → Sp

on Perf(Sp)ev with respect to the topology of MU∗-epimorphisms (equivalently, with respect to the
topology where coverings are maps whose fiber is again even). Since the even cells can be identified
as S2k ' Be((P1)⊗k), this suggests the following notions.

6.5.3. Definition. Let Re: SH(k)→ C be an abstract realization functor. The C-Tate motive is

LC := Re(P1) .

6.5.4. Definition. Let Re: SH(k)→ C be an abstract realization functor. We say that an object of
C is perfect even if it belongs to the smallest subcategory

Perf(C)ev ⊆ Perf(C)

containing L⊗nC for all n ∈ Z and closed under retracts and extensions.

6.5.5. Since Re(MGL) is a filtered colimit of perfect evens, arguing as in Proposition 3.2.6, one
shows that the following two conditions are equivalent for a map f : c→ d between perfect evens of
Definition 6.5.4:
(1) fib(f) ∈ C is perfect even.

(2) Re(MGL)⊗ c→ Re(MGL)⊗ d admits a section.
We say that a map f of perfect evens is an even epimorphism if f satisfies these two equivalent
conditions.

6.5.6. Definition. Let Re: SH(k)→ C be an abstract realization functor. The even synthetic defor-
mation of C is the ∞-category

Synev(C) := ShΣ(Perf(C)ev;C)

of C-valued additive sheaves with respect to the even epimorphism topology.

6.5.7.Remark. Since the inclusion Perf(C)ev ↪→ C preserves cofiber sequences, its left Kan extension
gives a localization functor

Synev(C)→ C .
This localization should be informally thought of as expressing the target as the generic fiber of the
source.

6.5.8. Remark. As an ∞-category, the even synthetic deformation depends only on C and on the
invertible object LC. However, to define the synthetic analogue functor ν : C → Synev(C) we use
more information about the functor Re.

Recall that in the classical case, the synthetic analogue ν : Sp ↪→ Synev
MU is given by the spectral

Yoneda embedding followed by taking connective covers. The work of Burklund–Hahn–Senger sug-
gests that in the general case, the right replacement for connectivity of spectra is that of effectivity.

6.5.9. Definition. Let Re: SH(k) → C be an abstract realization functor. We say that an object
c ∈ C is effective if c belongs to the smallest subcategory

Ceff ⊆ C

which contains Re(Σ−nΣ∞+ X) for X ∈ Smk and n ≥ 0 and is closed under colimits. For an integer
q ∈ Z, we say that an object c ∈ C is q-effective if c belongs to the smallest subcategory

Ceff(q) ⊆ C

which contains L⊗qC ⊗ E for E ∈ Ceff effective.
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6.5.10. By construction Ceff(q) is presentable and the inclusion Ceff(q) ⊆ C admits a right adjoint

fq : C→ Ceff(q)

which we call the q-th effective cover. As

Ceff(q + 1) ⊆ Ceff(q) ,

we have canonical natural transformations fq+1(−)→ fq(−) which assemble into the slice tower

(6.5.11) · · · → fq+1(−)→ fq(−)→ fq−1(−)→ · · · .

6.5.12. Remark. Since LC ⊗ Ceff(q) = Ceff(q + 1), we have that for any c ∈ C, we have

LC ⊗ fq(c) ' fq+1(LC ⊗ c) .

Informally, if we think of the slice tower as the variant of the Postnikov tower, tensoring with the
Tate motive plays the role of the suspension.

6.5.13. Definition. If c ∈ C, the synthetic analogue ν(c) ∈ Synev(C) is given by the sheafication of
the presheaf

f0 MapC(−, c) : Perf(C)op
ev → C ,

where MapC is the internal mapping object of C.

The existence of the synthetic lift of Re relies on the following conjecture.

6.5.14. Conjecture. The functor ν : C→ Synev(C) preserves Re(MGL)-split cofiber sequences.

6.5.15. Remark. Notice that if Conjecture 6.5.14 holds, then using Corollary 3.3.6 we can define
the synthetic lift

Resyn : SH(k)→ Synev(C)

as the unique colimit-preserving functor such that

Resyn(S) ' ν(Re(S))

for any perfect pure S.

As we mentioned at the beginning of this section, our approach is inspired by the work of
Burklund–Hanh–Senger, who instead of additive sheaves work with filtered objects. We now ex-
plain how the synthetic deformation presented here should conjecturally be related to the filtered
object perspective of [10].

Using Remark 6.5.12, the slice tower of Map(−, L⊗0) induces a filtered object

ν(L⊗∗) ∈ Fil(Synev(C))

of the form
· · · → ν(L⊗1)→ ν(L⊗0)→ ν(L⊗−1)→ · · · .

This object the slice analogue of the Postnikov tower of [53, §5.2], which is shown in op. cit. to
encode the Adams filtration. We conjecture that ν(L⊗∗) has an analogous property in the context
of motivic realizations, at least for Artin–Tate objects.

6.5.16. Conjecture. We have that:
(1) The internal mapping object functor

MapC(ν(L⊗∗),−) : Synev(C)→ Fil(C)

can be promoted to an equivalence

Synev(C) ' Modfil∗(L⊗0)(Fil(C))

between the synthetic deformation and modules over

fil∗(L⊗0) ' EndC(ν(L⊗∗), ν(L⊗∗)) .
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(2) Through the equivalence of (1), the synthetic realization functor

Resyn : SH(k)→ Fil(C)

can be identified on Artin–Tate objects with the functor sending X ∈ SHAT(k) to

· · · → Re(f1X)→ Re(f0X)→ Re(f−1X)→ · · · ,
the realization of its tower of effective covers (see Recollection 5.2.15).
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