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Abstract. Let k be a �eld that is �nitely generated over its prime �eld. In Grothendieck’s anabelian letter
to Faltings, he conjectured that sending a k-scheme to its étale topos de�nes a fully faithful functor from the
localization of the category of �nite type k-schemes at the universal homeomorphisms to a category of topoi. We
prove Grothendieck’s conjecture for in�nite �elds of arbitrary characteristic. In characteristic 0, this shows that
seminormal �nite type k-schemes can be reconstructed from their étale topoi, generalizing work of Voevodsky.
In positive characteristic, this shows that perfections of �nite type k-schemes can be reconstructed from their
étale topoi.
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0. Introduction

Let k be a �nitely generated �eld of characteristic 0. In Grothendieck’s in�uential anabelian letter to
Faltings [10], he made three classes of conjectures regarding the reconstruction of k-schemes. The �rst class
is about describing isomorphisms between ‘anabelian’ k-schemes in terms of outer isomorphisms between
their étale fundamental groups; the second is the section conjecture about describing the set of rational
points of an ‘anabelian’ k-scheme X in terms of sections of the natural homomorphism πét1 (X)→ Gal(k̄∕k).
This paper concerns the third conjecture, which is about reconstructing k-schemes from their étale topoi
[10, p. 7]. The main result of this paper is to prove an extension of Grothendieck’s conjecture.

Write Schft
k for the category of �nite type k-schemes and RTopk for the category of topoi over the étale

topos of Spec(k). Grothendieck’s conjecture asks to what extent the functor

(−)ét ∶ Schft
k → RTopk .

which takes a scheme X to its étale topos Xét is fully faithful. In order to make this plausible, two technical
modi�cations are needed. For the �rst, note that every morphism between �nite type k-schemes sends
closed points to closed points, but this is not true of an arbitrary geometric morphism between étale topoi
(see Example 2.30). Hence we must add this restriction to the morphisms of topoi considered. We say that a
geometric morphism of topoiX → Y is pinned if the induced map on underlying spaces sends closed points
to closed points. Write RToppink for the category of topoi over Spec(k)ét and pinned geometric morphisms.

The second is that by the topological invariance of the étale topos [STK, Tag 03SI], any universal home-
omorphism of schemes induces an equivalence of étale topoi. Hence the optimal result would be that the
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functor X ↦ Xét becomes fully faithful after localizing Schft
k by inverting the universal homeomorphisms.

Grothendieck’s precise conjecture is that this is true when k is �nitely generated of characteristic 0. Our
main result is a proof of this conjecture, together with its natural extension to in�nite �elds of positive
characteristic.

Denote the collection of universal homeomorphisms by UH.

0.1 Theorem. Let k be a �eld that is �nitely generated over its prime �eld. If char(k) > 0, assume that k has
transcendence degree at least 1. Then the functor

(−)ét ∶ Schft
k [UH

−1]→ RToppink
sending a �nite type k-scheme X to its étale topos Xét is fully faithful.

The �rst ingredient in our proof of Theorem 0.1 is an explicit description of the source category. For
this, recall that a scheme X is absolutely weakly normal if every universal homeomorphism X′ → X is an
isomorphism. Over �elds, this reduces to more well-known notions. A characteristic 0 scheme is absolutely
weakly normal if and only if it is seminormal, i.e., does not have cuspidal cubic singularities. A positive char-
acteristic scheme is absolutely weakly normal if and only if it is perfect. The inclusion of the full subcategory
of absolutely weakly normal schemes into all schemes admits a right adjoint

(−)awn ∶ Sch→ Schawn

called absolute weak normalization. Moreover, absolute weak normalization induces an equivalence of
categories Sch[UH−1]⥲ Schawn. As a result, in order to prove Theorem 0.1 we equivalently need to show
that for all �nite type k-schemes X and Y, the natural map

(0.2) Homk(Xawn, Y)→ Hompin
k (Xawn

ét , Yét)

is bijective; here the right-hand side is the set of isomorphism classes of pinned geometric morphisms
Xawn
ét → Yét over Spec(k)ét. By the Mordell–Weil Theorem, Theorem 0.1 follows from the following more

re�ned result:

0.3 Theorem (see Proposition 2.28 and Theorem 6.24). Let k be a �eld of exponential characteristic p.
Assume that:
(0.3.1) For any torus T over k, the only element of T(k) divisible by all integers coprime to p is the identity.

(0.3.2) For any regular �nite type k-schemeX, the only torsion element of Pic(X) that is divisible by all integers
coprime to p is the identity.

(0.3.3) The �eld k admits a nontrivial discrete valuation.
Then for all �nite type k-schemes X and Y the natural map

Homk(Xawn, Y)→ Hompin
k (Xawn

ét , Yét)

is bijective.

Voevodsky’s work. We conclude the introduction by noting that Theorem 0.3 improves upon a result of
Voevodsky [28]. Voevodsky proved that if k is a �nitely generated �eld of characteristic 0 and X and Y are
�nite type k-schemes with X normal, then the natural map

Homk(X,Y)→ Hompin
k (Xét, Yét)

is bijective. Theorem 0.3 generalizes this result in two directions. First, Theorem 0.3 also holds in positive
characteristic. Second, even in charactistic 0, Theorem 0.3 applies when X is only seminormal, and semi-
normal schemes are quite a lot more general than normal schemes. For example, the nodal cubic is not
normal, but is seminormal.

In Voevodsky’s proof of Theorem 0.1 for normal schemes over a �nitely generated �eld of characteristic
0, the fact that the group Pic(X) is �nitely generated is crucial. However, for seminormal schemes, Pic(X) is
in general not �nitely generated and it is not clear how to adapt Voevodsky’s argument in this more general



RECONSTRUCTION OF SCHEMES FROM THEIR ÉTALE TOPOI 3

setting.1 Our proof bypasses these issues by proceeding as follows. We show that both the source and target
of (0.2) are h-local in X. Therefore, using de Jong’s alterations, we may reduce to the case that X is regular.
In particular, in characteristic 0, we can reduce to Voevodsky’s argument. More generally, the assumption
that k is amenable and admits a nontrivial discrete valuation allows us to adapt Voevodsky’s methods to
work in arbitrary characteristic.

Remark. Let k be an in�nite �nitely generated �eld of positive characteristic. Since this paper was written,
we learned that in forthcoming work Zach Berens independently shows that the proof in Voevodsky’s paper
can be adapted to show that perfections of �nite type k-schemes can be reconstructed from their étale topoi.

Linear overview. Section 1 provides background on absolute weak normalization, seminormalization,
and perfection. Part of the di�culty in proving the positive characteristic cases of Theorems 0.1 and 0.3 is that
absolute weak normalizations of �nite type schemes are typically no longer of �nite type or even noetherian.
To e�ectively deal with this issue we introduce morphisms topologically of �nite type, i.e., morphisms that
factor as a universal homeomorphism followed by a morphism of �nite type, and prove some basic results
about them.

In §2, we introduce pinned geometric morphisms as well as what it means for a �eld k to satisfy the
conclusion of Theorem0.1.We call the latter the étale reconstruction property.We give a number of equivalent
formulations of étale reconstruction (see Proposition 2.28) and discuss some immediate consequences (see
Proposition 2.36). In §3, we prove that the injectivity part of the reconstruction theorem holds over any
�eld, in fact any qcqs base scheme S (see Theorem 3.9 and Corollary 3.10). In §4, we prove that for any
S-schemeY, the functorX ↦ HomS(Xawn, Y) satis�es h-descent. We furthermore show that the étale topos
satis�es h-descent. Using alterations, this lets us reduce proving Theorem 0.3 to the case where X is an
a�ne, regular, connected, �nite type k-scheme that admits a rational point and Y = Gm (Theorem 4.18).
Section 5 introduces the class of �elds satisfying condition (0.3.1) and a slight generalization of (0.3.2); we
call these amenable �elds, see De�nition 5.15. We also prove some basic results about amenable �elds. In
§6, we prove Theorem 0.3. The proof given in §6 generalizes the main argument in Voevodsky’s paper [28,
§3] to work in positive characteristic. It also streamlines a number of points.

Throughout the paper we use the language of topoi in our results and proofs, in contrast to Voevodsky
who chose to work with sites. In Appendix A, we prove that the two perspectives are equivalent for our
purposes: any geometric morphism between étale topoi of topologically noetherian schemes is induced by
a morphism of (quasicompact separated) étale sites.

Notational conventions. Let f∶ X → Y be a morphism of schemes. We write:
(1) |X| for the underlying topological space of X.
(2) Sch for the category of schemes and SchX for the category of X-schemes.

(3) ÉtX ⊂ SchX for the full subcategory spanned by the étale X-schemes. We regard ÉtX as a site equipped
with the étale topology.

(4) Xét ≔ Shét(ÉtX) for the étale topos of X.
(5) f∗ ∶ Xét → Yét for the geometric morphism induced by the morphism of sites X ×Y (−)∶ ÉtY → ÉtX .
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number 444845124. The second-named author gratefully acknowledges support from the NSF Mathemati-
cal Sciences Postdoctoral Research Fellowship under Grant #DMS-2102957 and a grant from the Simons
Foundation (816048, LC). The third-named author acknowledges support from Collaborative Research
Centre SFB 1085 ‘Higher Invariants’ funded by the DFG.

1More precisely, it su�ces to know that Pic(X) has no in�nitely divisible torsion elements. IfX is seminormal and S2, [11, Theorem
6.5] implies that Pic(X) has no in�nitely divisible torsion elements. Without the S2 assumption, we are neither aware of a proof nor a
counterexample. This is also observed in forthcoming work by Zach Berens.
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1. Background on absolute weak normalization

As mentioned in the introduction, if f∶ X → Y is a universal homeomorphism of schemes, then by
the topological invariance of the étale topology [STK, Tag 03SI], the induced geometric morphism of étale
topoi f∗ ∶ Xét → Yét is an equivalence of categories. Thus, in order to have a reconstruction theorem, we
must invert universal homeomorphisms of schemes. Said di�erently, we must work with schemes with the
property that universal homeomorphisms between them are automatically isomorphisms.

In this section, we explain how to do this. The solution is to work with absolutely weakly normal schemes.
This notion was originally introduced by Rydh [22, Appendix B] in order to study e�ective descent for étale
morphisms, and further studied by Barwick [1] for the purpose of inverting universal homeomorphisms. For
schemes over �elds, the theory reduces to previously studied notions. A scheme X in positive characteristic
is absolutely weakly normal if and only ifX is perfect, i.e., the absolute FrobeniusX → X is an isomorphism.
In characteristic 0, absolute weak normality reduces to seminormality. Seminormality was originally intro-
duced by Traverso [27] in order to characterize the rings for which the Picard group is homotopy-invariant,
and later simpli�ed by Swan [25].

In §1.1, we recall the de�nitions of absolute weak normality, seminormality, and perfection. In §1.2,
we explain why absolute weak normalization inverts universal homeomorphisms. In §1.3, we discuss the
interaction between seminormalization, perfection, and �nite type hypotheses on morphisms of schemes.
In particular, the perfection of a �nite typeFp-scheme is almost never of �nite type (see Proposition 1.22). As
a result, we introduce the class of schemes topologically of �nite type (De�nition 1.25). This notion behaves
well with respect to perfection and is needed for the positive characteristic case of Theorem 0.1.

1.1 Seminormalization, perfection, and absolute weak normalization. An elementary example of
a universal homeomorphism is the normalization of the cuspidal cubic. Seminormal schemes are the
schemes that do not have cuspidal cubic singularities:

1.1 De�nition (seminormality). Let A be a ring. We say that A is seminormal if for all x, y ∊ A such that
x3 = y2, there exists an element a ∊ A such that x = a2 and y = a3.

1.2 Proposition. Let A be a ring.
(1.2.1) Assume thatA is seminormal and let x, y ∊ A be such that x3 = y2. Then there exists a unique element

a ∊ A such that x = a2 and y = a3.
(1.2.2) If A is seminormal, then A is reduced.

(1.2.3) The ringA is seminormal if and only if for eachmaximal idealm ⊂ A, the local ringAm is seminormal.

(1.2.4) If A is a normal ring, then A is seminormal.

Proof. For (1.2.1), see [STK, Tag 0EUK, Footnote 1] or [8]. Item (1.2.2) is [STK, Tag 0EUQ]. Item (1.2.3) is
[25, Proposition 3.7].

For (1.2.4), note that since A is normal, for each maximal idealm ⊂ A, the localization Am is a normal
domain. Hence by (1.2.3) it su�ces to prove the claim in the case where A is a normal domain. In this case,
since A is a domain, it su�ces to show that if x, y ∊ A ∖ {0} and x3 = y2, there exists an element a ∊ A such
that x = a2 and y = a3. In the fraction �eld of A, we have

(yx )
2
= x3
x2

= x .

Hence the polynomial t2 − x ∊ A[t] is an integral equation for y∕x. Since A is integrally closed, we see that
y∕x ∊ A. Hence a = y∕x is an element such that x = a2 and y = a3. �

In positive characteristic, another example of a universal homeomorphism is the Frobenius:

1.3 Recollection (perfect Fp-schemes; see [5, §3]). Let p be a prime number, and let X be an Fp-scheme.
Write FrobX ∶ X → X for the absolute Frobenius: on underlying spaces, FrobX is the identity, and on
structure sheaves FrobX is given by a ↦ ap. Also recall that FrobX is a universal homeomorphism [STK,
Tag 0CC8]. We say that X is perfect if FrobX is an isomorphism.

http://stacks.math.columbia.edu/tag/03SI
https://stacks.math.columbia.edu/tag/0EUK#footnote-1-mark
http://stacks.math.columbia.edu/tag/0EUQ
http://stacks.math.columbia.edu/tag/0CC8
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The perfection of X is the co�ltered limit

Xperf ≅ lim ( ⋯ X XFrobX FrobX ) .

(Note that since the absolute Frobenius is an a�ne morphism, this limit exists in the category of schemes.)
The Fp-scheme Xperf is always perfect. Write

SchperfFp ⊂ SchFp

for the full subcategory spanned by the perfect Fp-schemes. Then the assignmentX ↦ Xperf is right adjoint
to the inclusion SchperfFp ⊂ SchFp .

To invert universal homeomorphisms for schemes over Spec(Z), it turns out that we just need to make
sure that our schemes do not have a simple class of plane singularity types involving prime powers.

1.4 De�nition (absolute weak normality). A ringA is absolutely weakly normal if the following conditions
are satis�ed:
(1.4.1) The ring A is seminormal.

(1.4.2) For each prime number l and all elements x, y ∊ A such that llx = yl, there is a unique element
a ∊ A such that x = al and y = la.

1.5 Observation. LetA be a ring and l a prime number. If l is invertible inA, then given elements x, y ∊ A
such that llx = yl, there is a unique element a ∊ A such that x = al and y = la; namely a = y∕l.
1.6 Lemma [STK, Tag 0EUM]. Seminormality and absolute weak normality are Zariski local properties of
rings.

1.7 De�nition. A schemeX is seminormal (resp., absolutely weakly normal) if for every a�ne openU ⊂ X,
the ring Γ(U;OX) is seminormal (resp., absolutely weakly normal).

1.8 Lemma [STK, Tag 0EUP]. Seminormality and absolutely weakly normality are a�ne local properties
of schemes. In particular, if X is a seminormal (resp., absolutely weakly normal) scheme, then every open
subscheme of X is seminormal (resp., absolutely weakly normal).

Over �elds, absolute weak normality reduces to seminormality or perfectness:

1.9 Theorem (absolutely weakly normal schemes over �elds).
(1.9.1) A Q-scheme X is absolutely weakly normal if and only if X is seminormal.

(1.9.2) An Fp-scheme X is absolutely weakly normal if and only if X is perfect.

Proof. For (1.9.1), since absolute weak normality and seminormality are a�ne-local properties, it su�ces
to check the claim when X = Spec(A) is the spectrum of aQ-algebra. Since absolutely weakly normal rings
are seminormal, we just need to show that if A is seminormal, then A is absolutely weakly normal. Since A
is a Q-algebra, this follows from Observation 1.5.

Item (1.9.2) is [STK, Tag 0EVV]. �

1.10 Corollary. A �eld k is perfect if and only if k is absolutely weakly normal.

1.2 Inverting universal homeomorphisms. Let C be a category andW ⊂ Mor(C) a collection of mor-
phisms. Recall that the localization of C atW is a category C[W−1] equipped with a functor L∶ C→ C[W−1]
that sends morphisms inW to isomorphisms satisfying the following universal property: for any category
D, precomposition with L de�nes a fully faithful functor

−◦L∶ Fun(C[W−1],D)↪ Fun(C,D)
with essential image those functors F∶ C→ D that send morphisms inW to isomorphisms inD.

1.11 Example. Let F∶ C→ C0 be a functor. If F admits a fully faithful left or right adjoint, then F exhibits
C0 at the localization at those morphismsw in C such that F(w) is an isomorphism in C0. See [6, Proposition
5.3.1] or [Ker, Tags 04JM & 04JR].

http://stacks.math.columbia.edu/tag/0EUM
http://stacks.math.columbia.edu/tag/0EUP
http://stacks.math.columbia.edu/tag/0EVV
http://kerodon.net/tag/04JM
http://kerodon.net/tag/04JR
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We now state the main theorem characterizing the category of absolutely weakly normal schemes as the
localization of Sch at the universal homeomorphisms.

1.12 Notation. Write Schsn ⊂ Sch for the full subcategory spanned by the seminormal schemes and
Schawn ⊂ Schsn for the full subcategory spanned by the absolutely weakly normal schemes. We write
UH ⊂ Mor(Sch) for the collection of universal homeomorphisms of schemes and write UHres ⊂ UH for
those universal homeomorphisms that induce isomorphisms on residue �elds.

1.13 Theorem (existence of absolute weak normalization & seminormalization).
(1.13.1) The inclusions Schawn ↪ Sch and Schsn ↪ Sch admit right adjoints

(−)awn ∶ Sch→ Schawn and (−)sn ∶ Sch→ Schsn

Moreover, the counitXawn → X is a universal homeomorphism and the counitXsn → X is a universal
homeomorphism that induces isomorphisms on residue �elds.

(1.13.2) IfX is a reduced scheme,Y is anabsolutelyweakly normal (resp., seminormal) scheme, andf∶ X → Y
is a universal homeomorphism (resp. universal homeomorphism that induces isomorphisms on residue
�elds), then f is an isomorphism.

(1.13.3) A morphism of schemes f∶ X → Y is a universal homeomorphism (resp. universal homeomorphism
that induces isomorphisms on residue �elds) if and only if the morphism fawn (resp., fsn) is an iso-
morphism.

(1.13.4) The functors

(−)awn ∶ Sch→ Schawn and (−)sn ∶ Sch→ Schsn

identify Schawn and Schsn with the localizations Sch[UH−1] and Sch[UH−1
res], respectively.

Proof. Items (1.13.1)–(1.13.2) are [STK, Tags 0EUS & 0H3G] for absolute weak normalization and [STK,
Tags 0EUS & 0H3G] for seminormalization. Thre rest of the proof is exactly the same in both cases, so we
only treat the case of absolute weak normalization. For (1.13.3), consider the commutative square

Xawn Yawn

X Y .

fawn

f

By (1.13.1), the verticalmorphisms are universal homeomorphisms, so by (1.13.2) we see thatf is a universal
homeomorphism if and only if themorphismfawn is an isomorphism. To conclude, note that (1.13.4) follows
from items (1.13.1) and (1.13.3) combined with Example 1.11. �

1.14 De�nition. Given a scheme X, we call Xawn the absolute weak normalization of X and call Xsn the
seminormalization of X.

As an immediate consequence of Theorems 1.9 and 1.13, we deduce:

1.15 Corollary.
(1.15.1) For each Q-scheme X, we have Xawn = Xsn. Moreover, the functor (−)sn ∶ SchQ → SchsnQ identi�es

SchsnQ with the localization SchQ[UH−1].

(1.15.2) For each Fp-scheme X, we have Xawn = Xperf . Moreover, the functor (−)perf ∶ SchFp → SchperfFp
identi�es SchperfFp with the localization SchFp [UH

−1].
1.16 Remark. For normal varieties, (1.15.2) was proven by Stix [24, Lemma 4.1.2].

1.17 Notation. Let X = Spec(A) be an a�ne scheme. Since universal homeomorphisms are a�ne [STK,
Tag 04DE], both Xawn and Xsn are a�ne. We write

Aawn ≔ Γ(Xawn;OXawn) and Asn ≔ Γ(Xsn;OXsn) .
If A is an Fp-algebra, we write Aperf ≔ Aawn.

http://stacks.math.columbia.edu/tag/0EUS
http://stacks.math.columbia.edu/tag/0H3G
http://stacks.math.columbia.edu/tag/0EUS
http://stacks.math.columbia.edu/tag/0H3G
http://stacks.math.columbia.edu/tag/04DE
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For future use, we record the fact that absolute weak normalization preserves Zariski covers.

1.18 Lemma. Let j∶ U ↪ X be an open immersion of schemes. Then the natural square

Uawn Xawn

U X

jawn

j

is cartesian. Hence, jawn is an open immersion and the functor (−)awn ∶ Sch→ Sch preserves Zariski covers.

Proof. Write c∶ Xawn → X for the counit. Since j is an open immersion,

U ×X Xawn ≅ c−1(U) ,
where c−1(U) is given the unique subscheme structure. Since open subschemes of absolutely weakly normal
schemes are again absolutelyweakly normal (Lemma1.8),U×XXawn is absolutelyweakly normal.Moreover,
since c∶ Xawn → X is a universal homeomorphism, the natural morphism U ×X Xawn → U is also a
universal homeomorphism. Since the natural morphism Uawn → U is a universal homeomorphism and
universal homeomorphisms satisfy the 2-of-3 property, the natural morphism

Uawn → U ×X Xawn

is a universal homeomorphism. Since bothUawn andU×XXawn are absolutelyweakly normal, Theorem1.13
shows that the natural morphism Uawn → U ×X Xawn is an isomorphism. �

1.3 Finiteness properties. We now analyze the interaction between seminormalization, perfection, and
�nite type hypotheses. The �rst result is that, like normalization, seminormalization preserves the property
of a scheme being (locally) of �nite type over a �eld.

1.19 Recollection (normalization). LetX be a scheme such that every quasicompact open ofX has �nitely
many irreducible components (e.g., X is locally topologically noetherian). We write ν∶ Xnorm → X for the
normalization of X. Recall that the natural morphism ν∶ Xnorm → X is an integral surjection. In particular,
ν is a�ne; if X = Spec(A) is a�ne, we write

Anorm ≔ Γ(Xnorm;OXnorm) .
Also recall that the natural closed immersion Xred ↪ X induces an isomorphism (Xred)norm ⥲ Xnorm.

1.20. Notice that since normal schemes are seminormal (Proposition 1.2), the normalization morphism
ν∶ Xnorm → X factors through the seminormalization of X. Since the seminormalization c∶ Xsn → X is a
universal homeomorphism, c is a�ne [STK, Tag 04DE]. Since ν is also a�ne, by cancellation we deduce
that the induced morphism Xnorm → Xsn is a�ne.

1.21 Proposition. Let X be a locally noetherian scheme.
(1.21.1) If ν∶ Xnorm → X is �nite, then c∶ Xsn → X is �nite.

(1.21.2) If X is Nagata, then both ν∶ Xnorm → X and c∶ Xsn → X are �nite.

(1.21.3) IfX is (locally) of �nite type over a �eld k, then both ν∶ Xnorm → X and c∶ Xsn → X are �nite. Hence
the seminormalization Xsn is also (locally) of �nite type over k.

Proof. For (1.21.1), �rst note that since X is locally noetherian, the natural closed immersion Xred ↪ X is
�nite. Since the natural morphisms

(Xred)norm → Xnorm and (Xred)sn → Xsn

are isomorphisms, it su�ces to prove the claim under the additional assumption that X is reduced. In this
case, factor the normalization morphism as a composite

ν∶ Xnorm Xsn X .c

http://stacks.math.columbia.edu/tag/04DE
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Both of morphisms in the composite are a�ne, hence it su�ces to prove the claim under the additional
assumption that X = Spec(A) is a�ne, noetherian, and reduced.

Since A is reduced, the normalization homomorphism A → Anorm is injective. Thus [25, Theorem 4.1]
shows that the induced morphism Asn → Anorm is also injective. Since Anorm is a �nite A-module and A is
noetherian, we deduce that Asn is also a �nite A-module. Thus the seminormalization morphism A ↪ Asn
is �nite, as desired.

For (1.21.2), the �niteness of the normalizationmorphism is the content of [STK, Tag 035S]. Since Nagata
schemes are locally noetherian, the �niteness of the seminormalization morphism follows from (1.21.1).
For (1.21.3), note that since X is (locally) of �nite over a �eld, X is Nagata [STK, Tag 035B]. Thus (1.21.2)
shows that the counitXsn → X is a �nite morphism. Since �nite morphisms are of �nite type, the composite
Xsn → X → Spec(k) is of (locally) of �nite type. �

Unfortunately, perfection (hence, also absolute weak normalization) does not preserve the property of be-
ing �nite type. In fact, a perfect Fp-scheme is basically never noetherian. The following precise formulation
of this fact is well-known:

1.22 Proposition. Let X be a perfect Fp-scheme. Then X is noetherian if and only if X is isomorphic to the
spectrum of a �nite product of perfect �elds.

Proof. Clearly a �nite product of perfect �elds is noetherian. So it remains to show that if X is noetherian,
then X is isomorphic to the spectrum of a �nite product of perfect �elds. See [21] for a proof of the claim
under the additional assumption that X is a�ne. If X is not assumed to be a�ne, note that

dim(X) = sup
U⊂X

a�ne open

dim(U) .

Since the spectrum of a product of �elds is 0-dimensional, by the a�ne case we see that dim(X) = 0. Since
every 0-dimensional qcqs scheme is a�ne, X is also a�ne. �

As a result, for the positive characteristic version of our reconstruction results, we need toworkwith schemes
that are only universally homeomorphic to �nite type schemes.

1.23 De�nition. We say that a scheme X is (locally) topologically noetherian if the topological space |X| is
(locally) noetherian.

1.24 Example. Let X be a (locally) noetherian scheme. Then the absolute weak normalization Xawn is
(locally) topologically noetherian.

1.25 De�nition. We say that a morphism of schemes f∶ X → S is (locally) topologically of �nite type if
there exists a universal homeomorphism of S-schemes X → Y such that Y is (locally) of �nite type over S.
1.26 Observation.
(1.26.1) Since universal homeomorphisms and morphisms (locally) of �nite type are both stable under

pullback, the class of morphisms (locally) topologically of �nite type is stable under pullback.

(1.26.2) Since universal homeomorphisms are closed under composition, if f∶ X → S is (locally) topologi-
cally of �nite type, then for any universal homeomorphismℎ∶ X′ → X, the compositefℎ∶ X′ → S
is (locally) topologically of �nite type.

The main example we care about is the following:

1.27 Lemma. Let f∶ X → S be a morphism of schemes. If f is (locally) topologically of �nite type, then the
induced morphisms Xawn → S and Xawn → Sawn are (locally) topologically of �nite type.
Proof. The claim for the morphism Xawn → S follows from (1.26.2) and the fact that the counit Xawn → X
is a universal homeomorphism. For the second claim, note that fawn factors as

Xawn → X ×S Sawn → Sawn .
By the 2-of-3 property for universal homeomorphisms, the left-hand morphism is a universal homeomor-
phism. Since X → S is (locally) topologically of �nite type, (1.26.1) shows that the right-hand morphism

http://stacks.math.columbia.edu/tag/035S
http://stacks.math.columbia.edu/tag/035B
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is (locally) topologically of �nite type. Applying (1.26.2) again shows that the composite Xawn → Sawn is
(locally) topologically of �nite type. �

1.28 Example. Let k be a �eld of characteristic p > 0 and X a scheme (locally) topologically of �nite type
over k. Then Xperf is (locally) topologically of �nite type over both k and kperf .

For seminormal schemes over a �eld of characteristic 0, the properties ‘(locally) of �nite type’ and ‘(lo-
cally) topologically of �nite type’ coincide:

1.29 Lemma. Let k be a �eld of characteristic 0 and let X be a k-scheme.
(1.29.1) If X is (locally) topologically of �nite type over k, then Xsn is (locally) of �nite type over k.
(1.29.2) If X is seminormal, then X is (locally) topologically of �nite type over k if and only if X is (locally) of

�nite type over k.

Proof. For (1.29.1), factor the structure morphism X → Spec(k) as a composite of a universal homeomor-
phismX → Y followed by a morphismY → Spec(k) (locally) of �nite type. Since char(k) = 0, the universal
homeomorphismX → Y also induces an isomorphism on residue �elds. By (1.13.3), the inducedmorphism
Xsn → Ysn is an isomorphism. To conclude, note that since Y is (locally) of �nite type over k, by (1.21.3),
the seminormalization Ysn ≅ Xsn is also locally of �nite type over k.

For the nontrivial implication of (1.29.2), assume that X is (locally) topologically of �nite type over k.
Then since X is seminormal, by (1.29.1) we conclude that X = Xsn is (locally) of �nite type over k. �

We conclude this section by showing that the localization of the category of �nite type k-schemes at the
universal homeomorphisms is the category of k-schemes that are absolutely weakly normal and topologi-
cally of �nite type over k.

1.30 Notation. Let S be a scheme. We write Schft
S ⊂ SchS for the full subcategory spanned by the �nite

type S-schemes. We write Schawn,tft
S ⊂ SchS for the full subcategory spanned by the S-schemes that are

absolutely weakly normal and topologically of �nite type over S.

1.31 Observation. The full subcategory Schawn,tft
S ⊂ SchS is the smallest full subcategory closed under

isomorphisms and containing the absolute weak normalizations of �nite type S-schemes.

1.32 Lemma. Let k be a �eld. Then the functor (−)awn ∶ Schft
k → Schawn

k induces an equivalence of categories

Schft
k [UH

−1]⥲ Schawn,tft
k .

Proof. If char(k) = 0, then the claim follows from Theorem 1.13 and Proposition 1.21.
If char(k) > 0, note that if f∶ X → Y is a universal homeomorphism of �nite type k-schemes, it follows

from Corollary 1.15 that fperf ∶ Xperf → Yperf is an isomorphism of k-schemes. Thus there is an inverse
map gperf ∶ Yperf → Xperf over k. For n ≥ 0, write Yn for the k-scheme de�ned by

Y Y Spec(k) .
FrobnY

Since X and Y are of �nite type over k, there is some n ≫ 0 such that composite Yperf → Xperf → X factors
as

Yperf → Yn → X

and the composite Yn → X
f
,→ Y is given by FrobY . Since FrobY is a universal homeomorphism, it follows

that the localization Schft
k [UH

−1] is equivalent to the localization Schft
k [Frob

−1] at absolute Frobenii.
It remains to show that Schawn,tft

k is the localization of Schft
k at at absolute Frobenii. For this note that we

may also describe the category Schft
k [Frob

−1] as follows. The objects are �nite type k-schemes and for two
objects X and Y, the set of morphisms X → Y is given by

colim
(
Homk(X,Y) Homk(X1, Y) Homk(X2, Y) ⋯Frob∗ Frob∗ Frob∗ )

.

With this description it is easy to see that Schawn,tft
k has the correct universal property. �
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2. The étale reconstruction property

The purpose of this section is to formulate what it means for a �eld k to have the property that absolutely
weakly normal schemes topologically of �nite type over k can be reconstructed from their étale topoi. In
order to do this, in §2.1, we begin by setting some topos-theoretic notations and recalling a bit of background
from topos theory. Schemes topologically of �nite type over a �eld are necessarily Jacobson. In §2.2, we recall
the necessary background on Jacobson schemes. A particularly important point is that every morphism
between schemes topologically of �nite type over a �eld carries closed points to closed points. However, not
every geometric morphism between the étale topoi of such schemes has this property.

In §2.3, we study the class of geometric morphisms that send closed points to closed points, which we
called pinned geometric morphisms. We show that for schemes X and Y topologically of �nite type over k,
the groupoid of pinned geometric morphisms Xét → Yét over Spec(k)ét is equivalent to a set. This rigidity
property is fundamental; we need it to make descent arguments in §4. We also use this rigidity property to
formulate what it means for a �eld to satisfy étale reconstruction, see Proposition 2.28 and De�nition 2.29. In
§2.4, we record some immediate consequences of the étale reconstruction property (see Proposition 2.36).

2.1 Notation and recollections on topoi. We make use of the following notation throughout the rest
of the paper.

2.1 Notation. We write RTop for the (2, 1)-category with objects topoi, 1-morphisms (right adjoints in)
geometric morphisms, and 2-morphisms natural isomorphisms.

We also have a relative notion of the (2, 1)-category of topoi sliced over a particular topos.

2.2 Notation. Let ℬ be a topos. We write RTopℬ for the (2, 1)-category of topoi over ℬ de�ned in the
following manner:
(2.2.1) An object of RTopℬ is a geometric morphism of topoi p∗ ∶ X → ℬ.
(2.2.2) A 1-morphism from p∗ ∶ X → ℬ to q∗ ∶ Y → ℬ is a pair (f∗, �) where f∗ ∶ X → Y is a geometric

morphism and � is a natural isomorphism �∶ q∗f∗ ⥲ p∗.
(2.2.3) A 2-morphism from (f∗, �)∶ X → Y to (g∗, �)∶ X → Y is a natural isomorphism ∶ f∗ ⥲ g∗ such

that the triangle of natural isomorphisms

q∗g∗

q∗f∗ p∗

�

�

q∗

commutes.

2.3 Notation. Let ℬ be a topos. Given geometric morphisms p∗ ∶ X → ℬ and q∗ ∶ Y → ℬ, we write
Homℬ(X,Y) for the Hom groupoid in RTopℬ. If ℬ = Sét is the étale topos of a scheme S, we simply write

RTopS ≔ RTopSét and HomS(X,Y) ≔ HomSét(X,Y) .

Moreover, if S = Spec(A) is a�ne, we write

RTopA ≔ RTopSpec(A)ét and HomA(X,Y) ≔ HomSpec(A)ét(X,Y) .

2.4 Recollection (the underlying space of a topos). Let X be a topos. We write Open(X) for the poset of
isomorphism classes of subobjects of the terminal object of X. The poset Open(X) is a locale. We write |X|
for the topological space associated to the locale Open(X), i.e., the topological space of points of Open(X).

If f∗ ∶ X → Y is a geometric morphism, the pullback functor f∗ preserves subobjects of the terminal
object, thus restricts to a morphism of locales

f∗ ∶ Open(X)→ Open(Y) .

We write |f∗|∶ |X| → |Y| for the induced map of underlying spaces.
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2.5 Example. Let X be a scheme. Then there is a natural isomorphism from the locale of open subsets
of the underlying space |X| to the locale Open(Xét). Since |X| is sober, we deduce that there is a natural
isomorphism of topological spaces |Xét|⥲ |X|.

We also recall some background about categories of points of topoi.

2.6 Notation (category of points). LetX be a topos.Wewrite Pt(X) for the category of points ofX. Objects of
Pt(X) are left exact left adjoints x∗ ∶ X → Set and morphisms are natural transformations. The assignment
X ↦ Pt(X) de�nes a functor

Pt∶ RTop→ Cat
from the (2, 1)-category of topoi to the (2, 1)-category of categories. The functoriality is given by sending a
geometric morphism f∗ ∶ X → Y to the functor

Pt(f∗)∶ Pt(X)→ Pt(Y) , x∗ ↦ x∗f∗

with the obvious functoriality in natural transformations.

2.7 Example [SGA 4ii, Exposé VIII, Théorème 7.9]. Let X be a qcqs scheme. The Grothendieck School
computed the category of points of Xét. The objects of Pt(Xét) are geometric points x̄ → X. Given geometric
points x̄ → X and ȳ → X, the set of morphisms x̄ → ȳ is the set

HomPt(Xét)(x̄, ȳ) = HomX(Spec(Osh
X,y), Spec(O

sh
X,x))

ofmorphisms ofX-schemes from the strictly henselian local scheme associated to ȳ to that of x̄. Composition
in Pt(Xét) is given by composition of morphisms of X-schemes.

2.8. An important consequences of Example 2.7 are that for each geometric point x̄ → X with image x ∊ X,
the set of endomorphisms of x̄ in Pt(Xét) is isomorphic to the absolute Galois group Gal(κ(x̄)∕κ(x)). In
particular, every endomorphism of x̄ in Pt(Xét) is an automorphism.

A few times throughout this paper, we need the following observation. In general, the functor

(−)ét ∶ Sch→ RTop
does not preserve �ber products (see [18, Remark 2.6]). However, it does preserve pullbacks along points:

2.9 Lemma. Let f∶ X → S be a morphism between qcqs schemes and s ∊ S. Then the square of étale topoi

Xs,ét Xét

Spec(κ(s))ét Sét

f∗

is a pullback square in RTop.

Proof. The same argument as in [12, Proposition 2.3], replacing the strictly henselian local ring by the
local ring OS,s and using that Spec(OS,s) is isomorphic to the limit of the co�tered diagram of a�ne open
subschemes of S containing s. �

2.2 Background on Jacobson schemes. We now recall the basics about Jacobson schemes. Being Ja-
cobson is a topological property of schemes. The idea is that ‘the closed points see everything about the
topology of a Jacobson space’.

2.10 Notation. Given a topological space T, we write Tcl ⊂ T for the subset of closed points. For a scheme
X, we write Xcl ≔ |X|cl.
2.11 Recollection. A topological space T is Jacobson if every closed subset Z ⊂ T is the closure of Z ∩ Tcl.
We say that a scheme X is Jacobson if the underlying topological space |X| is Jacobson. See [9, Remark 3.34]
for a number of equivalent characterizations of Jacobson spaces.

2.12 Lemma. If f∶ X → S is a morphism of schemes that is locally topologically of �nite type and S is
Jacobson, then X is also Jacobson.
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Proof. Factor f as a composite of a universal homeomorphsm X → X′ followed by a morphism X′ → S
locally of �nite type. Since S is Jacobson, by [STK, Tag 02J5], the scheme X′ is Jacobson. Since |X| is
homeomorphic to |X′|, the scheme X is also Jacobson. �

2.13 Example. If X is a scheme locally topologically of �nite type over a �eld, then X is Jacobson.

As with many topological properties of schemes, there are more algebro-geometric characterizations of
Jacobson schemes. To state them, we need the following de�nition.

2.14 De�nition. Let X be a scheme. We say that x ∊ X is a �nite type point if the natural morphism
Spec(κ(x))→ X is of �nite type. We write Xft-pts ⊂ |X| for the subset of �nite type points.

2.15 Proposition [STK, Tag 01TB]. Let X be a scheme. The following are equivalent:
(2.15.1) The scheme X is Jacobson.

(2.15.2) The set Xft-pts of �nite type points of X is the set Xcl of closed points of X.

(2.15.3) Every morphism X′ → X locally of �nite type carries closed points of X′ to closed points of X.
(2.15.4) For every morphism f∶ X′ → X locally of �nite type and closed point x′ ∊ X′, the point f(x′) is

closed and the �eld extension κ(x′) ⊃ κ(f(x′)) is �nite.

To conclude this subsection, we prove that morphisms from reduced Jacobson schemes are determined
by their values on closed points. For this, we need the following lemma.

2.16 Lemma. Let T be a Jacobson topological space and let S ⊂ T be a locally closed subspace. If S contains
all of the closed points of T, then S = T.

Proof. The claim is immediate from the fact that the map

{locally closed subsets of T}→ {locally closed subsets of Tcl}
W ↦W ∩ Tcl

is bijective [STK, Tag 005Z]. �

2.17 Corollary. LetX be a reduced Jacobson scheme and letZ ⊂ X be a locally closed subscheme. IfZ contains
all of the closed points of X, then Z = X as schemes.

Proof. By Lemma 2.16, we see that |Z| = |X| as topological spaces. Since X is reduced, we deduce that
Z = X as schemes. �

2.18 Lemma. Let X be a reduced Jacobson scheme, and for each closed point x ∊ Xcl choose a �eld extension
Lx ⊃ κ(x). Then the induced morphism

∐

x∊Xcl
Spec(Lx)→ X

is an epimorphism in the category of schemes.

Proof. Note that for each �eld extension L ⊃ k, the induced morphism of schemes Spec(L) → Spec(k) is
an epimorphism. So it su�ces to prove the claim when Lx = κ(x) for each x ∊ Xcl. Let f, g∶ X → Y be
morphisms that become equal after precomposition with the natural morphism

cX ∶
∐

x∊Xcl
Spec(κ(x))→ X .

Consider the equalizer subscheme eq(f, g) ⊂ X, which is locally closed. By assumption, eq(f, g) contains
all of the closed points of X. Since X is Jacobson and reduced, Corollary 2.17 shows that eq(f, g) = X as
schemes. Hence f = g. �

http://stacks.math.columbia.edu/tag/02J5
http://stacks.math.columbia.edu/tag/01TB
http://stacks.math.columbia.edu/tag/005Z
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2.3 Pinned morphisms and the étale reconstruction property. Let k be a �eld, and let X and Y be
schemes locally topologically of �nite type over k. In light of Proposition 2.15, everymorphism of k-schemes
X → Y carries closed points to closed points. Not every geometric morphism Xét → Yét over Spec(k)ét has
this property (see Example 2.30). Hence, in our reconstruction results, we impose this restriction on the
morphisms of topoi.

2.19 De�nition (pinned morphisms).
(2.19.1) A map of topological spaces f∶ S → T is pinned if f carries closed points of S to closed points of T.
(2.19.2) A morphism of schemes f∶ X → Y is pinned if the induced map on underlying topological spaces

|f|∶ |X| → |Y| is pinned.
(2.19.3) A geometric morphism of topoi f∗ ∶ X → Y is pinned if the induced map of underlying topological

spaces |f∗|∶ |X| → |Y| is pinned.

2.20 Notation. Let ℬ be a topos. We write RToppinℬ ⊂ RTopℬ for the subcategory with all objects, 1-
morphisms the pinned geometric morphisms, and 2-morphisms all natural isomorphisms. Given topoi
X,Y ∊ RTopℬ, write

Hompin
ℬ (X,Y) ⊂ Homℬ(X,Y)

for the full subgroupoid spanned by the pinned geometricmorphisms.Whenℬ is the étale topos of a scheme,
we make the same notational simpli�cations as in Notation 2.3.

2.21 Remark (Voevodsky’s terminology). Voevodsky uses the term ‘admissible’ rather than ‘pinned’, see
[28, p. 513]. We �nd the term ‘pinned’ more evocative: the requirement that the geometric morphism carries
closed points to closed points ‘pins down’ the morphism.

2.22 Proposition (rigidity of pinned morphisms). Let S be a scheme and let X and Y be schemes locally
topologically of �nite type over S.
(2.22.1) Let (f∗, �)∶ Xét → Yét be a pinned geometric morphism over Sét. Then (f∗, �) has no nontrivial

automorphisms inHomS(Xét, Yét).
(2.22.2) The groupoidHompin

S (Xét, Yét) is equivalent to a set.

Proof. Item (2.22.2) is simply a reformulation of (2.22.1), so we just need to prove (2.22.1).
We �rst prove the claim under the additional assumption that S is the spectrum of a �eld k. Note that,

by descent, we can assume that k is separably closed. Let �∶ f∗ ⥲ f∗ be an automorphism. The claim
follows if we can show that for every closed geometric point x → Xét the composite x∗�∶ x∗f∗ ⥲ x∗f∗ is
the identity. This is clear because a map inXét is the identity if and only if it is the identity on stalks at closed
points. Since f∗ is pinned, the composite f∗◦x∗ also de�nes a closed geometric point ofYét. By Example 2.7,
we may assume that f∗◦x∗ is induced by a morphism of k-schemes y∶ Spec(k̄) → Y and x∗� de�nes an
automorphism of y∗. Let y0 ∊ Y denote the image of y. Again by Example 2.7, the group of automorphisms
of y∗ is isomorphic to the absolute Galois group Gκ(y0) of κ(y0). Since y0 is a closed point and k is separably
closed it follows that Gκ(y0) = {id} and thus x∗� = id.

For the case of a general base scheme S, �x an automorphism �∶ f∗ → f∗ in Hompin
S (Xét, Yét). Using

Lemma 2.9, we see that pulling back � along any point s∶ Spec(κ(s))→ S induces an automorphism s∗�
of s∗f∗ in the groupoid Hompin

κ(s)(Xs,ét, Ys,ét), which we have already shown to be equivalent to a set. In
particular s∗� = id. This in particular implies that � is the identity stalk-wise, so � = id. �

2.23 Convention. Let k be a �eld and let X and Y be schemes locally topologically of �nite type over
k. Then using Proposition 2.22, we tacitly regard the groupoid Hompin

k (Xét, Yét) as a set, i.e., we identify
Hompin

k (Xét, Yét) with the set of isomorphism classes of geometric morphisms Xét → Yét over Spec(k)ét.

We are almost ready to formulate what it means for a �eld k to have the property that absolutely weakly
normal schemes topologically of �nite type over k can be reconstructed from their étale topoi. First we show
that every morphism between schemes topologically of �nite type is a pinned.



14 MAGNUS CARLSON, PETER J. HAINE, AND SEBASTIANWOLF

2.24 Lemma. Let S be a Jacobson scheme and let X and Y be schemes locally topologically of �nite type over
S. Then every morphism of S-schemes f∶ X → Y is pinned.

Proof. We work locally on the target to assume that X and S are a�ne. Let s∶ X → X′ and t∶ Y → Y′ be
universal homeomorphisms to �nite type S-schemes. Then tf factors as

X X ×S Y X′ ×S Y′ Y′ .
Γf s×t pr2

Since X → S is separated, the graph Γf is a closed immersion; in particular, Γf is pinned. Since s and t are
universal homeomorphisms, s× t is a universal homeomorphism; in particular, s× t is pinned. Since pr2 is a
morphism of schemes locally of �nite type over S, Lemma 2.12 and Proposition 2.15 show that pr2 is pinned.
It follows that tf is pinned. Since t is a universal homeomorphism, this also implies that f is pinned. �

There are a number of equivalent formulations of what it means for a �eld k to have the property that
absolutely weakly normal schemes topologically of �nite type over k can be reconstructed from their étale
topoi. We prove their equivalence before stating the de�nition.

2.25 Observation. Let S be a scheme. Absolute weak normalization induces an adjunction

(Schawn)∕Sawn Sch∕S .
(−)awn

The left adjoint sends an absolutely weakly normal scheme X over Sawn to the composite

X → Sawn → S
of the structure morphism with the counit. In particular, if X is an absolutely weakly normal S-scheme and
Y is an S-scheme, there is a natural bijection

HomS(X,Y) ≅ HomSawn(X,Yawn) .

2.26 Lemma. Let k be a �eld and let X and Y be schemes locally topologically of �nite type over k. The
following are equivalent:

(2.26.1) The natural mapHomk(Xawn, Y)→ Hompin
k (Xawn

ét , Yét) is bijective.

(2.26.2) The natural mapHomkawn(Xawn, Yawn)→ Hompin
kawn(X

awn
ét , Yawn

ét ) is bijective.

Proof. Let us �rst comment that since X and Y are locally topologically of �nite type over k, Lemma 1.27
shows that both Xawn and Yawn are locally topologically of �nite type over k. Hence by Proposition 2.22,
the right-hand sides are sets, so the statements actually make sense.

To prove the claim, notice that the counits Yawn → Y and Spec(kawn)→ Spec(k) induce a commutative
square

(2.27)

Homkawn(Xawn, Yawn) Hompin
kawn(X

awn
ét , Yawn

ét )

Homk(Xawn, Y) Hompin
k (Xawn

ét , Yét) .

By Observation 2.25, the left-hand vertical map is bijective. By the topological invariance of the étale topos,
for any scheme S, the counit Sawn → S induces an equivalence of étale topoi Sawnét ⥲ Sét. Hence the right-
hand vertical map is bijective. Thus the topmap in (2.27) is bijective if and only if the bottommap is bijective,
as claimed. �

For the next result, recall Notations 1.30 and 2.20.

2.28 Proposition. Let k be a �eld. The following conditions are equivalent:
(2.28.1) The functor (−)ét ∶ Schawn,tft

k → RToppink is fully faithful.

(2.28.2) The functor (−)ét ∶ Schft
k [UH

−1]→ RToppink is fully faithful.
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(2.28.3) For all �nite type k-schemes X and Y, the natural map

Homk(Xawn, Y)→ Hompin
k (Xawn

ét , Yét)
is bijective.

(2.28.4) For all schemes X and Y topologically of �nite type over k, the natural map

Homk(Xawn, Y)→ Hompin
k (Xawn

ét , Yét)
is bijective.

(2.28.5) For all schemes X and Y topologically of �nite type over k with X absolutely weakly normal, the
natural map

Homk(X,Y)→ Hompin
k (Xét, Yét)

is bijective.

(2.28.6) For all schemes X and Y topologically of �nite type over k, the natural map

Homkawn(Xawn, Yawn)→ Hompin
kawn(X

awn
ét , Yawn

ét )
is bijective.

Proof. It is an immediate consequence of Lemma 1.32 that (2.28.1), (2.28.2), and (2.28.3) are equivalent.
Clearly (2.28.4) ⇒ (2.28.3). To see that (2.28.3) ⇒ (2.28.4), let X and Y be schemes topologically of �nite
type over k. Then there exist universal homeomorphismsX → X′ and Y → Y′ whereX′ and Y′ are of �nite
type over k. By assumption (2.28.3), the natural map

Homk((X′)awn, Y′)→ Hompin
k ((X′)awnét , Y′ét)

is bijective. By Lemma 2.26, this is equivalent to the claim that the natural map

Homkawn((X′)awn, (Y′)awn)→ Hompin
kawn((X

′)awnét , (Y′)awnét )

is bijective. Since the universal homeomorphisms X → X′ and Y → Y′ induce isomorphisms on absolute
weak normalizations, we deduce that the natural map

Homkawn(Xawn, Yawn)→ Hompin
kawn(X

awn
ét , Yawn

ét )
is bijective. Applying Lemma 2.26 again, we deduce that the natural map

Homk(Xawn, Y)→ Hompin
k (Xawn

ét , Yét)
is bijective, as desired.

The equivalence (2.28.4) ⇔ (2.28.5) is immediate from the fact that the absolute weak normalization
of a scheme topologically of �nite type over k is also topologically of �nite type over k (Lemma 1.27). The
equivalence (2.28.4)⇔ (2.28.6) is immediate from Lemma 2.26. �

The following is the main de�nition of this section.

2.29 De�nition (étale reconstruction). Let k be a �eld. We say that k satis�es étale reconstruction if the
equivalent conditions of Proposition 2.28 are satis�ed.

2.30 Example. The restriction to pinned morphisms in the étale reconstruction property is necessary. To
see this, note that for a �eld of characteristic 0 the map of Galois groups Gk(t) → Gk admits a continuous
section. This section induces a morphism Spec(k)ét → Spec(k(t))ét in RTopk. Composing this with the
geometric morphism induced by the morphism Spec(k(t))→ P1k picking out the generic point, we get a
morphism

Spec(k)ét → P1k,ét
inRTopk whose underlyingmap on topological spaces hits the generic point. Thus this geometricmorphism
is not induced be a morphism of schemes Spec(k)→ P1k.
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2.31 Example. If k is an algebraically closed �eld of characteristic 0, then k does not satisfy étale recon-
struction. If C and C′ are smooth proper curves over k of the same genus, then the étale topoi of C and C′
are equivalent (over the terminal topos Spec(k)ét ≃ Set). See [7].

In characteristic 0, étale reconstruction has another reformulation.

2.32 Corollary. Let k be a �eld of characteristic 0. Then the following are equivalent:
(2.32.1) The �eld k satis�es étale reconstruction.
(2.32.2) For all schemes �nite type k-schemes X and Y with X seminormal, the natural map

Homk(X,Y)→ Hompin
k (Xét, Yét)

is bijective.

Proof. Immediate from Lemma 1.29 and the fact that in characteristic 0, absolute weak normalization and
seminormalization coincide (Corollary 1.15). �

2.4 Consequences of étale reconstruction. We conclude this section by recording some immediate
consequences of the étale reconstruction property (see Proposition 2.36). First we �x some notation.

2.33 Notation. Let ℬ be a topos. Given X,Y ∊ RTopℬ, write
Equivℬ(X,Y) ⊂ Homℬ(X,Y)

for the full subgroupoid spanned by the equivalences of topoi X ⥲ Y over ℬ. When ℬ is the étale topos of
a scheme, we make the same notational simpli�cations as in Notation 2.3.

2.34 Convention. Let k be a �eld and X and Y schemes topologically of �nite type over k. Then

Equivk(Xét, Yét) ⊂ Hompin
k (Xét, Yét) .

Following Convention 2.23, we tacitly identify the groupoid Equivk(Xét, Yét) with the set of isomorphism
classes of equivalences Xét ⥲ Yét over Spec(k)ét.

2.35 Lemma. Let X and Y be topologically noetherian schemes. Then a geometric morphism f∗ ∶ Xét → Yét
is an equivalence if and only if Pt(f∗)∶ Pt(Xét)→ Pt(Yét) is an equivalence.

Proof. Since X and Y are topologically noetherian schemes, the topoi Xét and Yét are coherent; moreover,
Corollary A.9 shows that every geometric morphism f∗ ∶ Xét → Yét is coherent. The claim is now an
immediate consequence of the Makkai–Reyes Conceptual Completeness Theorem (see [19, Corollary 2.3.5;
20, Theorem 7.1.8] or [SAG, Theorem A.9.0.6]). �

We now state the main result of this subsection.

2.36 Proposition. Let k be a �eld that satis�es étale reconstruction and let X and Y be absolutely weakly
normal schemes topologically of �nite type over k. Then:
(2.36.1) The natural map Isomk(X,Y)→ Equivk(Xét, Yét) is bijective.
(2.36.2) A morphism of k-schemes f∶ X → Y is an isomorphism if and only if Pt(f∗) is an equivalence of

categories.

Proof. Item (2.36.1) is immediate from formulation (2.28.1) of the étale reconstruction property. For (2.36.2),
note that our assumptions guarantee that X and Y are topologically noetherian. Hence the claim follows
from (2.36.1) and Lemma 2.35. �

2.37 Remark (reconstruction from condensed categories of points). Let X be a coherent topos. The work
of Barwick–Glasman–Haine [2] and Lurie [19] provides two natural re�nements of the category Pt(X)
to a condensed category (in the sense of condensed mathematics [23]). Let k be a �eld satisfying étale
reconstruction. As a consequence of Proposition 2.36, [2, Theorem 9.3.1 & Proposition 13.5.2], and [19,
Remark 2.2.9 & Theorem 4.3.3], the functor sending an absolutely weakly normal scheme X topologically
of �nite type over k to either of these condensed categories of points of Xét is fully faithful.

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.9.0.6
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3. Proof of injectivity

Let S be a qcqs Jacobson scheme and let X and Y be schemes topologically of �nite type over S. In this
section, we prove that if X is reduced and all �bers of X → S are reduced, then the natural map

(3.1) HomS(X,Y)→ Hompin
S (Xét, Yét)

is injective. See Corollary 3.10. This is the ‘easy part’ of the reconstruction theorem; in particular, it requires
minimal conditions on the base scheme S.

By taking �bers over S, it is straightforward to reduce to the case where S is a �eld. The crux of the argu-
ment is that since morphisms from reduced schemes topologically of �nite type over a �eld are determined
by their values on closed points (Lemma 2.18), we can reduce the claim that (3.1) is injective to the case
where X is the spectrum of a �nite extension of k.

We start by observing that reconstructing a morphism of schemes from a morphism of étale topoi is easy
if the target is a �nite separable �eld extension of k.

3.2 Recollection. Let k be a �eld, let L ⊃ k be a �nite separable �eld extension, and write Y = Spec(L).
We con�ate notation and also write Y ∊ Spec(k)ét for the associated representable sheaf. Then there is a
natural equivalence Yét ⥲ (Spec(k)ét)∕Y of topoi over Spec(k)ét. Let q∗ ∶ Spec(L)ét → Spec(k)ét denote the
natural geometric morphism. In this case, the geometric morphisms into Yét over k are easy to compute.
Indeed by [SGA 4i, Exposé IV, Proposition 5.12], for any k-scheme p∶ X → Spec(k), the functor

Homk(Xét, Spec(L)ét)→ Homk(X, Spec(L))

that sends a geometric morphism (t∗, �) to the morphism of schemes given by the composite

X ≅ t∗(Y) t∗(Y ×Spec(k) Y) = t∗q∗(Y) ≅ p∗(Y) = X ×Spec(k) Y Yt∗(∆) pr2

is an equivalence of groupoids. Furthermore it is easy to check that this isomorphism de�nes an inverse to
the obvious map

Homk(X, Spec(L))→ Homk(Xét, Spec(L)ét) .

3.3 Recollection (closed subtopoi). Let X be a topos and U ∊ Open(X) a subterminal object. Recall that
the closed complement Z ⊂ X of the open subtoposX∕U is the full subcategory ofX spanned by thoseℱ ∊ X
such that the projection pr2 ∶ ℱ ×U → U is an isomorphism. Furthermore if e∗ ∶ W → X is a geometric
morphism such that e∗(U) = ∅ is the intial object, then there is a unique factorization

W X

Z

e∗

e′∗
i∗

3.4 Remark. LetX be a scheme and letZ ⊂ X a closed subschemewith open complementU ⊂ X. Then the
closed complement of the open subtopos Uét ⊂ Xét is equivalent to the topos Zét. (Note that this statement
is true for any closed subscheme structure on |Z|.) Furthermore a geometric morphism e∗ ∶ Wét → Xét
factors through the closed complement Zét if and only if the map of topological spaces |e∗|∶ |W| → |X|
factors through |Z| ⊂ |X|.

3.5 Lemma. Let k be a perfect �eld and X a scheme locally topologically of �nite type over k. Then for any
closed point x ∊ X, the �eld extension κ(x) ⊃ k is �nite.

Proof. By de�nition, there is a universal homeomorphism of k-schemes f∶ X → X′ where X′ is locally of
�nite type over k. Then f(x) ∊ X′ is closed and Proposition 2.15 shows that the �eld extension κ(f(x)) ⊃ k
is �nite. Since k is perfect, the �nite extension κ(f(x)) is also perfect. Since f is a universal homeomorphism,
the induced extension on residue �elds κ(f(x)) ⊃ κ(x) is a universal homeomorphism. Since κ(f(x)) is
perfect, [STK, Tag 0CNC] shows that the �eld extension κ(f(x)) ⊃ κ(x) is an isomorphism. �

http://stacks.math.columbia.edu/tag/0CNC
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3.6 Proposition. Let k be a perfect �eld, L ⊃ k an algebraic �eld extension, and Y a scheme topologically of
�nite type over k. Then the natural map

Y(L)→ Hompin
k (Spec(L)ét, Yét)

is bijective.

Proof. Consider the commutative triangle

Y(L) Hompin
k (Spec(L)ét, Yét)

{closed points of Y} .

It su�ces to see that the horizontal map becomes a bijection after taking �bers over each closed point y0 ∊ Y.
By Remark 3.4, the map on �bers is the natural map

Homk(Spec(L), Spec(κ(y0)))→ Homk(Spec(L)ét, Spec(κ(y0))ét) .
By Lemma 3.5, the residue �eld κ(y0) is a �nite �eld extension of k; thus the claim follows from Recollec-
tion 3.2. �

3.7 Observation. Let S be a scheme and f, g∶ X → Y morphisms of S-schemes. Let T → S be a faithfully
�at map. Then by fpqc descent, f = g if and only if fT = gT as morphisms of T-schemes XT → YT .

In particular, since every extension of �elds K ⊃ k is faithfully �at, given morphisms of k-schemes
f, g∶ X → Y, we have f = g if and only if fK = gK .

We now prove injectivity in general.

3.8 Notation. Given a groupoid G, we write π0(G) for the set of isomorphism classes of objects of G.

3.9 Theorem. Let S be a qcqs scheme and let X and Y be schemes topologically of �nite type over S. If X is
reduced and all �bers of X over S are reduced, then the natural map

HomS(X,Y)→ π0(HomS(Xét, Yét))
is injective.

Proof. Since X is reduced, the natural morphism
∐

s∊S Xs → X is an epimorphism. Notice that we have a
commutative square

HomS(X,Y) π0(HomS(Xét, Yét))

HomS(
∐

s∊S Xs, Y)

∏

s∊S
Homκ(s)(Xs, Ys)

∏

s∊S
π0(Homκ(s)(Xs,ét, Ys,ét)) ,

≀

where the right-hand vertical map is given by pulling back along the morphisms Spec(κ(s))ét → Sét, using
Lemma 2.9. Since the left-hand vertical map is injective, to show that the top horizontal map is injective,
it su�ces to show that the bottom horizontal map is injective. Since all �bers of X over S are reduced, we
may reduce to the case where S = Spec(k) is the spectrum of a �eld.

By Observation 3.7, we may furthermore assume that k is perfect. Since X is reduced and topologically
of �nite type over k, the natural morphism

∐

x∊Xcl
Spec(κ(x))→ X
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is an epimorphism (Lemma 2.18). Thus Lemma 3.5 shows that we can reduce to the case whereX = Spec(L)
for some �nite �eld extension L ⊃ k. In this case the claim follows from Proposition 3.6. �

If S is furthermore Jacobson, Proposition 2.22 and Lemma 2.24 imply the following variant:

3.10 Corollary. Let S be a qcqs Jacobson scheme and let X and Y be schemes topologically of �nite type over
S. If X is reduced and all �bers of X over S are reduced, then the natural map

HomS(X,Y)→ Hompin
S (Xét, Yét)

is injective.

3.11 Remark. Corollary 3.10 shows that in the equivalent formulations of étale reconstruction in Proposi-
tion 2.28, we can replace the word ‘bijective’ by ‘surjective’ and these statements are still equivalent to étale
reconstruction.

4. Reduction to regular source and target Gm
Let k be a �eld. The goal of this section is to prove that k satis�es étale reconstruction in the sense of

De�nition 2.29 if and only if for each a�ne, regular, connected, �nite type k-scheme X such that X(k) ≠ ∅,
the natural map

Homk(Xawn,Gm)→ Hompin
k (Xawn

ét ,Gm,ét)
is bijective. We accomplish this as follows. In §4.1, we prove that for a �xed k-scheme Y, the functor

X ↦ Homk(Xawn, Y)
satis�es descent for Voevodsky’s h-topology [29; 30]. In §4.2, we prove that the étale topos also satis�es
h-descent. This implies that the functor

X ↦ Hompin
k (Xawn

ét , Yét)
is an h-sheaf (Corollary 4.12). By the theory of alterations, every scheme of �nite type over a �eld admits
an h-hypercover by regular �nite type schemes; this allows us to reduce reconstruction to the case where X
an a�ne, regular, �nite type k-scheme.

Since one can extract the Zariski topological space of X from the étale topos Xét, in order to reconstruct
X, it su�ces to reconstruct the structure sheaf OX , i.e., to prove reconstruction when Y = A1k. With a little
more work, we show that it actually su�ces to treat the case Y = Gm and X is connected and has a rational
point. Subsection 4.3 makes this informal argument precise. There we also show themore re�ned statement
that k satis�es étale reconstruction if and only if for each a pinned geometric morphism �∗ ∶ Xawn

ét → Gm,ét,
there is a morphism of k-schemes Xawn → Gm that agrees with �∗ on k̄-points.

We note that the idea that it su�ces to prove reconstruction for X a�ne and Y = Gm appeared in
Voevodsky’s work [28].

4.1 h-descent for morphisms from absolutely weakly normal schemes. The purpose of this sub-
section is to prove the following:

4.1 Theorem. Let S be a scheme and let Y be an S-scheme. Then the presheaf SchopS → Set given by

X ↦ HomS(Xawn, Y)
is an h-sheaf.

For �nite type schemes over a noetherian scheme of characteristic 0 this was proven in [30, Theorem
3.2.9]. The general statement is an easy consequence of the case Y = A1S:

4.2 Proposition [STK, Tag 0EVU]. Let S be a scheme. Then the presheaf SchopS → Set given by

X ↦ HomS(Xawn,A1S)
is an h-sheaf.

http://stacks.math.columbia.edu/tag/0EVU
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Proof of Theorem 4.1. We want to show that for any h-coverW → X, the natural map

HomS(Xawn, Y)→ lim
(
HomS(Wawn, Y)⇉ HomS((W ×X W)awn, Y)

)

is an isomorphism. Using Lemma 1.18, we may work Zariski locally on Y and therefore assume that Y and
S are both a�ne. Furthermore, since absolute weak normalization preserves Zariski covers (Lemma 1.18),
the functor

X ↦ HomS(Xawn, Y)
is a Zariski sheaf. Hencewemay assume thatX = Spec(A) andW = Spec(B) are a�ne. Now Proposition 4.2
implies that the natural ring homomorphism

Aawn → lim
(
Bawn ⇉ (B ⊗A B)awn

)

is an isomorphism, which implies our claim. �

4.3 Example. Let S be a scheme. Then the presheaf SchopS → Set given by X ↦ HomS(Xawn,Gm) is an
h-sheaf.

4.2 h-descent for the étale topos. We now prove that the étale topos satis�es h-descent. We make use
of the following general result.

4.4 Notation. We write Cat for the (2, 1)-category with objects locally small categories, 1-morphisms
functors, and 2-morphisms natural isomorphisms. Write Gpd ⊂ Cat for the full subcategory spanned by
the groupoids. We write LTop for the (2, 1)-category with objects topoi, 1-morphisms left exact left adjoints,
and 2-morphisms natural isomorphisms.

4.5 Recollection. The inclusion LTop→ Cat preserves limits. See [HTT, Proposition 6.3.2.3] for the proof
of this result in the setting of∞-topoi. In the setting of ordinary topoi, the proof is verbatim the same.

4.6 Proposition. Let C∙ ∶ �+ → Cat be an augmented cosimplicial category. Let G∶ C−1 → C0 denote the
agumentation. Assume that:
(4.6.1) The category C−1 admits limits of G-split equalizer diagrams, and those equalizers are preserved by G.
(4.6.2) For every morphism �∶ [m]→ [n] in �+, the square

Cm Cm+1

Cn Cn+1

d0

�∗ ([0]⋆�)∗

d0

is horizontally right adjointable. (In particular, this requires that the coface functors d0 be left adjoints.)
Then the natural functor �∶ C−1 → lim[n]∊� Cn admits a fully faithful right adjoint. Moreover, if G is conser-
vative, then � is an equivalence of categories.

Proof. The∞-categorical version of this statement is the content of [HA, Corollary 4.7.5.3]. Since the in-
clusion Cat ↪ Cat∞ of ordinary categories into∞-categories is a right adjoint, the statement here is an
immediate consequence of the∞-categorical statement. �

4.7 Remark. Proposition 4.6 is also a consequence of old results of Beck (ubpublished) and Bénabou–
Roubaud [3]. See [16, p. 270]. However, these works do not give the explicit statement we use; Lurie’s result
is the∞-categorical generalization of the exact result we use.

4.8 Proposition. The functor (−)ét ∶ Schop → LTop with pullback functoriality is an h-sheaf.

Proof. Since the assignment X ↦ Xét is a Zariski sheaf, all that remains to be veri�ed is that X ↦ Xét
satis�es descent for proper surjections. Let f∶ X → Y be a proper surjective morphism of schemes; we
need to show that the induced augmented cosimplicial diagram of categories

(4.9) Yét Xét (X ×Y X)ét ⋯f∗

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.3.2.3
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.7.5.3
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is a limit diagram.We prove this by showing that (4.9) satis�es the hypotheses of Proposition 4.6. For (4.6.1),
note that as a pullback functor, f∗ is left exact. Moreover, since f is surjective, the functor f∗ is conservative,
so all that remains to be shown is (4.6.2).

For (4.6.2), notice that relevant square of categories is given by applying (−)ét to the pullback square of
schemes

X ×Y X×Y[n] X×Y[n]

X ×Y X×Y[m] X×Y[m] .

pr2

idX ×� �

pr2
Here the vertical morphisms are induced by �∶ [m] → [n]. Also notice that since f is proper and proper
morphisms are stable under pullback, for each l ≥ −1, the projection morphism

pr2 ∶ X ×Y X×Y[l] → X×Y[l]

is proper. By the proper basechange theorem for étale sheaves of sets [SGA 4ii, Exposé XII, Théorème 5.1(i)],
the induced square of étale topoi

(X×Y[m])ét (X ×Y X×Y[m])ét

(X ×Y X×Y[n])ét (X×Y[n])ét .

pr∗2

(idX ×�)∗ �∗

pr∗2

is horizontally right adjointable, as desired. �

4.10 Remark. Rydh has proven that the quasicompact étale site and quasicompact separated étale site
both satisfy h-descent [22, Corollaries 5.15 & 5.16]; one can use this to show that the étale topos satis�es
h-descent. However, our proof method is quite di�erent and, given Proposition 4.6, more direct.

4.11 Remark (arc-descent for the étale topos). One can also show that the the étale topos satis�es descent
for the �ner arc-topology introduced by Bhatt and Mathew [4]. Given Proposition 4.8, the proof of this
is exactly the same as the proof of the analogous result for the derived∞-category of constructible étale
sheaves [4, Theorem 5.13].

4.12 Corollary. Let k be a �eld and let Y be a k-scheme. Then the functor Schopk → Gpd given by

X ↦ Hompin
k (Xét, Yét)

is an h-sheaf. Furthermore, when restricted to schemes topologically of �nite type over k, it is an h-sheaf of sets.

Proof. ByProposition 4.8, it follows thatHomk((−)ét, Yét) is anh-sheaf of groupoids. SinceHom
pin
k ((−)ét, Yét)

is a subfunctor of the former, we only need to show that a geometric morphism f∗ ∶ Xét → Yét is pinned
if there is an h-cover p∶ W → X such that (f◦p)∗ is pinned. For this it su�ces to see that p is surjective
on closed points. This holds since the �ber over every closed point is nonempty an qcqs and therefore has a
closed point. The ‘furthermore’ part is a consequence of Proposition 2.22. �

4.3 Reduction to the regular case. In this subsection, we show that a �eld k satis�es étale reconstruc-
tion if and only if for each a�ne, regular, connected, �nite type k-schemeX with a rational point and pinned
geometric morphism �∗ ∶ Xawn

ét → Gm,ét, there exists a morphism of k-schemes Xawn → Gm,ét that agrees
with �∗ on k̄-points.

We begin with a technical proposition needed in our proof. To prove this, we state some facts about the
étale topos proven in Appendix A.

4.13. Let X be a scheme. We write ÉtqcsX ⊂ ÉtX for the full subcategory spanned by those p∶ X′ → X such
that p is quasicompact and separated. If X is quasiseparated, then restriction along the inclusion de�nes
an equivalence of categories

Shét(ÉtX)⥲ Shét(Ét
qcs
X )
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See Lemma A.4. Moreover, if X and Y are topologically noetherian schemes, then for every geometric
morphism f∗ ∶ Xét → Yét, the functor f∗ sends Ét

qcs
Y to ÉtqcsX . Hence f∗ is induced by the morphism of

sites f∗ ∶ ÉtqcsY → ÉtqcsX . See Corollary A.9.

The following is a slight generalization of [28, Proposition 2.3]. For convenience of the reader we also
spell out a proof.

4.14 Proposition. Let k be a �eld and let X and Y be schemes topologically of �nite type over k; also assume
that X is reduced. Let (f∗, �)∶ Xét → Yét be a pinned geometric morphism of topoi over Spec(k)ét. Assume
that for each V ∊ ÉtqcsY , there exists a morphism of k-schemes �V ∶ f∗(V)→ V such that for any morphism of
k-schemes x∶ Spec(k̄)→ f∗(V) we have

(f|V)∗◦x∗ ≅ �V,∗◦x∗

inHompin
k (Spec(k̄)ét, Yét). Then f∗ ≅ �Y,∗ inHom

pin
k (Xét, Yét).

Proof. First note that, as just explained, f∗(V) is representable by an étale X-scheme. Now observe that by
assumption the square

(4.15)
f∗(V) V

X Y

�V

�Y

commutes after precomposing with any geometric point Spec(k̄)→ f∗(V). SinceX is reduced, f∗(V) is also
reduced; hence it follows that the square (4.15) commutes. The universal property of the pullback induces
a morphism of étale X-schemes

V ∶ f∗(V)→ �∗Y(V) .
In particular, V is quasicompact and étale. The same reasoning shows that (V)V∊ÉtqcsY

de�nes a natural
transformation ∶ f∗ → �∗Y .

We claim that each V is an isomorphism. For this it su�ces to see that V induces an isomorphism on
geometric �bers over closed points ofX. Indeed, becauseX is Jacobson, this implies that V is an étale surjec-
tive monomorphism and thus an isomorphism by [STK, Tag 06NC]. But for a morphism x∶ Spec(k̄)→ X
we have by assumption x∗f∗ ≅ (x◦�Y)∗ and therefore  induces an endomorphism of the stalk functor
(x◦�Y)∗. But by the description of the category of points given recalled in Example 2.7, any endomorphism
of a point of the étale topos is an isomorphism. In particular,  is an isomorphism.

To conclude the proof, we only need to check that the isomorphism  is compatible with �, i.e., that 
de�nes an 2-isomorphism in LTopk. Explicitly we have to check that for any �nite separable �eld extension
E of k the triangle of X-schemes

(4.16)
f∗(YE)

XE �∗Y(YE)

YE�E

∼

commutes. It again su�ces to check that for any geometric point x∶ Spec(k̄)→ X whose image is a closed
point of Y, the triangle (4.16) commutes after applying x∗. The induced triangle reads

(f◦x)∗(YE)

Spec(k̄)E x∗�∗Y(YE) .

x∗YE

∼

x∗�E

Therefore, it su�ces to see that the natural isomorphism x∗ de�nes a natural isomorphism in LTopk. For
this we apply Lemma 4.17 below to the geometric morphism f∗◦x∗, the map of schemes �Y◦x, the natural

http://stacks.math.columbia.edu/tag/06NC
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isomorphism x ∶ x∗◦f∗ ⥲ x∗�∗Y that we are given by assumption, and the collection of maps

�̃V ∶ x∗f∗(V) f∗(V) V ,
�V

where the left-hand map is the projection from the pullback. For this we have to verify that the assumptions
of Lemma 4.17 below are satis�ed. The only nontrivial point that we have to verify is that there are natural
isomorphisms x∗f|∗V ≅ �̃∗V for any V ∊ ÉtqcsY . But x∗f∗(V) is just a disjoint union of spectra of separably
closed �elds, and by assumptionwehave such a natural isomorphism for every connected component, giving
us the desired natural transformation in general. Thus Lemma 4.17 implies that x∗ = x. In particular x∗
is a natural isomorphism in LTopk, because x is by assumption. �

4.17 Lemma. Letk be a�eld and letY be scheme topologically of �nite type overk. Letf∗ ∶ Spec(k̄)ét → Yét be
a pinned geometric morphism, x∶ Spec(k̄)→ Y a morphism of k-schemes and ∶ x∗ ⥲ f∗ an isomorphism
in Hompin

k (Spec(k̄)ét, Yét). Assume that we are given a natural collection of maps (�V ∶ f∗(V)→ V)V∊ÉtqcsYsuch that:
(4.17.1) We have �Y = x.

(4.17.2) We have natural isomorphisms f|∗V ⥲ �∗V inHompin
k (f∗(V)ét, Vét).

Then for each V ∊ ÉtqcsY , the map ̃V ∶ f∗(V)→ x∗(V) induced by the naturality square

f∗(V) V

Spec(k̄) Y

�V

�Y=x

and the universal property of the pullback agrees with V ∶ f∗(V)⥲ x∗(V).

Proof. By the universal property of the pullback we only have to check that the diagram of schemes

f∗(V)

x∗(V) V

Spec(k̄) Y

V

�V

x|V

x

commutes. The only non-obvious equation we have to check for this is �V = x|V◦V . For this, by Proposi-
tion 3.6 it su�ces to show that the associated diagram in RTopk commutes.

By assumption (4.17.2) on the maps �V , it su�ces to provide a natural isomorphism

�∶ f|∗V ⥲ ∗V◦x|
∗
V

in LTopk. For any quasicompact separated étale morphism T → V, the commutative square

f∗(T) x∗(T)

f∗(V) x∗(V)

T
∼

V
∼

induces an isomorphism
�T ∶ f∗(T)→ f∗(V) ×x∗(V) x∗(T) .

Finally, it is easy to check that the morphisms (�T)T∊ÉtqcsV
de�ne a natural isomorphism in LTopk, because

 does. �
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We are now ready to prove the main result of this section. Our proof makes use of the h-descent results
of §§4.1 and 4.2 and the following observation.

4.18 Theorem (reduction to regular source and target Gm). Let k be a �eld. Then the following statements
are equivalent:
(4.18.1) The �eld k satis�es étale reconstruction in the sense of De�nition 2.29. That is, for all �nite type

k-schemes X and Y, the natural map

Homk(Xawn, Y)→ Hompin
k (Xawn

ét , Yét)

is bijective.

(4.18.2) For all �nite type k-schemes X and Y, such that X is a�ne, regular, connected, and X(k) ≠ ∅, the
natural map

Homk(Xawn, Y)→ Hompin
k (Xawn

ét , Yét)

is bijective.

(4.18.3) LetX andY be �nite type k-schemes, such thatX is a�ne, regular, connected, andX(k) ≠ ∅. Then for
any pinned geometric morphism �∗ ∶ Xét → Yét over Spec(k)ét, there exists a morphism of k-schemes
f∶ Xawn → Y such that the induced map f(k̄)∶ Xawn(k̄)→ Y(k̄) agrees with �∗(k̄).

(4.18.4) Let X be an a�ne, regular, connected, �nite type k-scheme such that X(k) ≠ ∅. Then for any
pinned geometric morphism �∗ ∶ Xawn

ét → A1ét over Spec(k)ét, there exists a morphism of k-schemes
f∶ Xawn → A1 such that the induced map

f(k̄)∶ Xawn(k̄)→ k̄

agrees with �∗(k̄).
(4.18.5) Let X be an a�ne, regular, connected, �nite type k-scheme such that X(k) ≠ ∅. Then for any

pinned geometric morphism �∗ ∶ Xawn
ét → Gm,ét over Spec(k)ét, there exists a morphism of k-schemes

f∶ Xawn → Gm such that the induced map

f(k̄)∶ Xawn(k̄)→ k̄×

agrees with �∗(k̄).

Proof. Clearly (4.18.1)⇒ (4.18.2). To see that (4.18.2)⇒ (4.18.1), note that by Theorem 4.1 andCorollary 4.12
both the source and target of the map in (4.18.1) satisfy h-descent in X. Thus we may work h-locally and
by the theory of alterations [14, Theorem 1.1; 15, Exposé IX, Théorème 1.1; 13, Theorem 4.4; 26, Theorem
1.2.5] we may reduce to the case where X is regular. By further working Zariski locally, we may reduce to
the case where X is a�ne. Passing to a �nite extension of k if necessary, we may assume that X is connected
and X(k) ≠ ∅. This completes the proof that (4.18.2)⇒ (4.18.1).

Clearly (4.18.2) implies (4.18.3) and the converse follows from Corollary 3.10 combined with Proposi-
tion 4.14. Clearly (4.18.3) implies (4.18.4) and (4.18.5). Since we can coverA1 by two copies ofGm, it follows
that if we manage to construct the desired morphism of k-schemes over both copies of Gm, we can recon-
struct it over A1: since the two maps agree on X(k̄) by assumption, they will automatically agree over the
intersection. Thus (4.18.5) implies (4.18.4).

To �nish the proof it thus su�ces to show that (4.18.4)⇒ (4.18.3). We may work Zariski locally on both
the source and target to assume that X = Spec(A) and Y = Spec(B) are a�ne. Let �∗ ∶ Xét → Yét be a
pinned geometric morphism. De�ne a map of sets

 ∶ B = Homk(Y,A1)⟶ Homk(Xawn,A1) = Aawn

by sending b∶ Y → A1k to the unique element  (b)∶ Xawn → A1 such that  (b)(k̄) = b∗◦�∗(k̄). Indeed,
we assumed that such an element  (b) exists and it is clearly unique. We claim that  ∶ B → Aawn is a ring
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homomorphism. In other words we have to see that the square

Homk(Y,A1 ×A1) Homk(Y,A1)

Homk(Xawn,A1 ×A1) Homk(Xawn,A1)

mult∗

 ×  

mult∗

wheremult∶ A1 ×A1 → A1 is the multiplication map, commutes and similarly for the addition map. Both
cases are exactly the same, so we just explain the case of the multiplication map.

For this, by Proposition 2.15 and Lemma 2.18 we may assume that X = Spec(k̄). Now observe that if we
show that the square

(4.19)

Homk(Y,A1 ×A1) Hompin
k (Yét, (A1 ×A1)ét)

Homk(Spec(k̄),A1 ×A1) Hompin
k (Spec(k̄)ét, (A1 ×A1)ét)

 × −◦�∗

∼

commutes, then the claim easily follows fromCorollary 3.10. A consequence of Proposition 3.6 the canonical
map

Hompin
k (Spec(k̄)ét, (A1 ×A1)ét)→ Hompin

k (Spec(k̄)ét,A1ét) × Hom
pin
k (Spec(k̄)ét,A1ét)

induced by the projections is an isomorphism. Thus it su�ces to see that the square (4.19) commutes after
composing with the two projections A1 ×A1 → A1. This is immediate from the de�nition of  .

It follows that  is indeed a map of rings and therefore induces a morphism of schemes f∶ Xawn → Y.
All that is left to show is that for any morphism of k-schemes x∶ Spec(k̄)→ Xawn. we have �∗◦x∗ ≅ f∗◦x∗.
In other words, we have to show that the square

Homk(Spec(k̄), Xawn) Hompin
k (Spec(k̄)ét, Xét)

Homk(Spec(k̄), Y) Hompin
k (Spec(k̄)ét, Yét)

∼

f◦− �∗◦−

∼

commutes. Note that since Y is a�ne it su�ces to prove this after composing with any morphism of k-
schemes b∶ Y → A1. Then the claim is clear from the construction of  . �

4.20 Remark. For the proof of Theorem 0.1, it is not necessary to use the theory alterations. Indeed, using
that any �nite type k-scheme admits a �nite surjection from its normalization, the proof of Theorem 4.18
also shows that it su�ces to prove the conclusion of (4.18.5) for normal schemes. But by Proposition 5.22
the proof given in §6 works more generally for normal schemes over �nitely generated �elds.

5. Amenable fields

In §4,we proved that a �eld k satis�es étale reconstruction if and only if for each a�ne, regular, connected,
�nite typek-schemeXwith a rational point and pinned geometricmorphism�∗ ∶ Xawn

ét → Gm,ét, there exists
a morphism of k-schemes Xawn → Gm,ét that agrees with �∗ on k̄-points. In §6, we will check this criterion
for in�nite �elds that are �nitely generated over their prime �elds. However, the argument we give works
over more general �elds. The idea is to relate both sides to the étale cohomology group

H1
ét(X;Gm) ≅ Pic(X)

and prove that the desired map is surjective by an an obstruction-theoretic argument. The purpose of this
section is to introduce the class of �elds that for which our argument works; we call these amenable �elds.

In order to formulate the condition of amenability properly, we need to avoid some bad behavior that
happens at the characteristic. To do this, in §5.1, we introduce variants of divisibility, pro�nite completion,
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Tate modules, and étale cohomology with coe�cients in Ẑ(1) that are all away from a prime. In §5.2, we
introduce amenable �elds and show that �nitely generated �elds are amenable.

5.1 Prime-to-p Kummer theory. We begin by introducing prime-to-p divisibility.

5.1 Notation. Let p be a prime number or 1. We writeNp′ ⊂ N for the set of positive integers n such that
gcd(n, p) = 1. Throughout, we regardNp′ as a poset ordered by divisibility.

5.2 De�nition. Let p be a prime number or 1, and letA be an abelian group. We say that an element a ∊ A
is p′-divisible (or prime-to-p-divisible) if for each n ∊ Np′ , there exists an element b ∊ A such that nb = a.
We say that A is p′-divisible if every element of A is p′-divisible.

5.3 Observation. If p = 1, then a p′-divisible abelian group is exactly a divisible abelian group.

5.4 Notation. Let A be an abelian group (or group scheme).
(5.4.1) For each integer n ≥ 1, write A[n] ⊂ A for the kernel of multiplication by n, i.e., the n-torsion in A.
(5.4.2) Let p be a prime number or 1. The p′-Tate module of A is the limit

Tp′(A) ≔ lim
n∊(Np′ )op

A[n] .

Form dividing n, the transition map A[n]→ A[m] is given by multiplication by n∕m.

5.5 Observation. Let p be a prime number or 1. If an abelian group A has no nonzero p′-divisible torsion
elements, then Tp′(A) = 0.

5.6 Lemma. Let p be a prime number or 1 and let A be an abelian group. Then:
(5.6.1) For each n ∊ Np′ , the natural homomorphism A → A[1∕p] induces an isomorphism

A[n]⥲ (A[1∕p])[n]
on n-torsion subgroups.

(5.6.2) The natural homomorphism A → A[1∕p] induces an isomorphism

Tp′(A)⥲ Tp′(A[1∕p]) .

Proof. For (5.6.1), observe that since Z[1∕p] is �at over Z, we have
(A[n])[1∕p] ≅ A[n]⊗Z Z[1∕p] ≅ (A[1∕p])[n] .

So it su�ces to show that p acts invertibly on A[n]. For this, note that A[n] is a Z∕n-module and since p
is coprime to n, the class of p in Z∕n is a unit. Item (5.6.2) is an immediate consequence of (5.8.1) and the
de�nition of the p′-Tate module. �

Now we study completions of abelian groups away from a prime.

5.7 Notation. Let p be a prime number or 1. For an abelian group A, the p′-completion of A is the limit

A∧p′ ≔ lim
n∊(Np′ )op

A∕n ,

where the transition maps are the quotient maps. That is, A∧p′ is the maximal prime-to-p quotient of the
pro�nite completion of A. We write

Ẑp′ ≔ Z∧p′ ≅
∏

primes
l≠p

Zl .

5.8 Lemma. Let p be a prime number or 1 and let A be an abelian group. Then:
(5.8.1) For each n ∊ Np′ , the natural homomorphismA → A[1∕p] induces an isomorphismA∕n ⥲ A[1∕p]∕n.

(5.8.2) The natural homomorphism A → A[1∕p] induces an isomorphism A∧p′ ⥲ A[1∕p]∧p′ .
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Proof. For (5.8.1), observe that

A[1∕p]∕n ≅ (A∕n)⊗Z Z[1∕p] ≅ (A∕n)[1∕p] ,
so it su�ces to show that p acts invertibly on A∕n. For this, note that A∕n is a Z∕n-module and since p is
coprime to n, the class of p in Z∕n is a unit. Item (5.8.2) is an immediate consequence of (5.8.1) and the
de�nition of p′-completion. �

5.9. Let k be a �eld of exponential characteristic p and let X be a k-scheme. Then for any n ∊ Np′ , the
Kummer sequence provides a natural short exact sequence

(5.10) 0 O×(X)∕n H1
ét(X;�n) Pic(X)[n] 0 .

Here, �n is the étale sheaf of n-th roots of unity.

5.11 De�nition (the p′-Kummer map). Let k be a �eld of exponential characteristic p and let X be a
k-scheme. Write

H1
ét(X; Ẑp′(1)) ≔ lim

n∊(Np′ )op
H1
ét(X;�n) .

We then de�ne the p′-Kummer map

Kum∶ O×(X)∧p′ ⟶ H1
ét(X; Ẑp′(1))

as the limit of the maps O×(X)∕n → H1
ét(X;�n) for n ∊ Np′ , coming from the Kummer sequence.

5.12 Observation (functoriality of H1
ét(X; Ẑp′(1))). Let k be a �eld of exponential characteristic p and

let X and Y be k-schemes. Then for each positive integer n coprime to p, the sheaves �n,X and �n,Y are
the pullbacks of �n,Spec(k). As a consequence, for any geometric morphism f∗ ∶ Xét → Yét over Spec(k)ét
(not necessarily induced by a morphism of schemes), we have f∗(�n,Y) ≅ �n,X . Hence for each i ≥ 0, the
assignment X ↦ Hi

ét(X;�n) is functorial in geometric morphisms of étale topoi over Spec(k)ét. Thus the
assignment

X ↦ H1
ét(X; Ẑp′(1))

is also functorial in geometric morphisms of étale topoi over Spec(k)ét.

5.13 Observation. Let k be a �eld of exponential characteristic p and let X be a k-scheme. For m divid-
ing n, the transition map O×(X)∕n → O×(X)∕m is surjective. Hence the co�ltered system de�ning the
p′-completion of O×(X) is a Mittag-Le�er system. So [STK, Tag 0598] shows that taking limits over the
sequences (5.10), we obtain an exact sequence

(5.14) 0 O×(X)∧p′ H1
ét(X; Ẑp′(1)) Tp′(Pic(X)) 0 .Kum

In particular, the p′-Kummer map is an isomorphism if and only if Tp′(Pic(X)) = 0.

5.2 Amenability. The following is the main de�nition of this section.

5.15 De�nition. Let k be a �eld of exponential characteristic p. We say that k is amenable if the following
conditions hold:
(5.15.1) For each torus T over k, the abelian group T(k) has no nonzero p′-divisible elements.

(5.15.2) For each regular �nite type k-scheme X, we have Tp′(Pic(X)) = 0.

For future use, we record the following consequences of Observations 5.5 and 5.13:

5.16 Observation. Let k be of exponential characteristic p.
(5.16.1) If condition (5.15.1) is satis�ed, then for any torus T over k, the Kummer map

T(k)→ lim
n∊(Np′ )op

H1
ét(k;T[n])

is injective.

http://stacks.math.columbia.edu/tag/0598
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(5.16.2) If for each regular �nite type k-scheme X, the group Pic(X) has no p′-divisible torsion elements,
then condition (5.15.2) is satis�ed.

(5.16.3) Condition (5.15.2) is satis�ed if and only if for each regular �nite type k-schemeX, the p′-Kummer
map Kum∶ O×(X)∧p′ → H1

ét(X; Ẑp′(1)) is an isomorphism.

We now deduce analogous facts about absolute weak normalizations.

5.17 Lemma. Let k be a �eld of exponential characteristic p and let X be a qcqs seminormal k-scheme. Then
the natural homomorphism O×(X)→ O×(Xawn) induces an isomorphism

O×(X)[1∕p]⥲ O×(Xawn) .

Proof. If p = 1, then since X is seminormal, Xawn = X and there is nothing to show. If p > 1, then Xawn is
the perfection of X, thus applying [STK, Tag 01Z0] we deduce that

O×(Xawn) ≅ colim (O×(X)
⋅p
,,→ O×(X)

⋅p
,,→⋯)

= O×(X)[1∕p] . �

5.18 Lemma (perfection and the Picard group [5, Lemma 3.5]). Let X be a qcqs Fp-scheme. Then pullback
along the counit Xperf → X induces an isomorphism

Pic(X)[1∕p]⥲ Pic(Xperf ) .

5.19 Lemma. Let k be an amenable �eld and let X be a regular �nite type k-scheme. Then:
(5.19.1) Pullback along the counit Xawn → X induces an isomorphism

Tp′(Pic(X))⥲ Tp′(Pic(Xawn)) .

(5.19.2) The p′-Kummer map Kum∶ O×(Xawn)∧p′ → H1
ét(X

awn; Ẑp′(1)) is an isomorphism.

(5.19.3) We have Tp′(Pic(Xawn)) = 0.

Proof. For (5.19.1), note that if p = 1, then Xawn = X. Hence Lemma 5.18 shows that with no conditions
on p, pullback along the counit induces an isomorphism

Pic(X)[1∕p]⥲ Pic(Xawn) .
By Lemma 5.6 we see that pullback along the counit induces isomorphisms

Tp′(Pic(X))⥲ Tp′(Pic(X)[1∕p])⥲ Tp′(Pic(Xawn)) .
To conclude, note that Observation 5.13 shows that (5.19.2)⇔ (5.19.3). Moreover, Observation 5.16 shows
that Tp′(Pic(X)) = 0; so item (5.19.1) implies (5.19.3). �

The property of being amenable is stable under �nite �eld extensions:

5.20 Lemma. Let k be an amenable �eld and let L ⊃ k be a �nite �eld extension. Then L is also amenable.

Proof. If X is regular and of �nite type over L, it is also regular and of �nite type over k. Thus, we only need
to check the condition on tori. If L ⊃ k is separable, then this follows by noting that for any torus T over L,
the Weil restriction ResL∕k(T) is a torus over k with the property that

ResL∕k(T)(k) = T(L) .
In the case that L ⊃ k is �nite purely inseparable, ResL∕k does not carry tori to tori, so we cannot reason

in the same way. In this case, note that by Galois descent, it is enough to check that our statement is true
for the torus Gm over L. Since L ⊃ k is �nite purely inseparable, there is some n > 0 such that Lpn ⊂ k. If
a ∊ L× is p′-divisible, then so is apn ∊ k. By our assumption on k, this implies that apn = 1. Thus a = 1, so
the statement holds for tori. �

5.21 De�nition. We say that a �eld k is �nitely generated if k is a �nitely generated �eld extension of its
prime �eld.

http://stacks.math.columbia.edu/tag/01Z0
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We now show that �nitely generated �elds are amenable. We �rst recall the the following fundamental
result on the �nite generation of Picard groups.

5.22 Proposition [11, Proposition 6.1]. Let k be a �nitely generated �eld and let X be normal �nite type
k-scheme. Then Pic(X) is �nitely generated.

5.23 Lemma. Let L be a �eld of exponential characteristic p. If for any torus T over k, the abelian group T(L)
has no nonzero p′-divisible elements, then the function �eld L(t) has the same property.

Proof. It su�ces to show the statement for the standard torusGm,L(t), so assume thatf ∊ L(t)× isp′-divisible.
We then immediately see that f is constant, and by the assumption on L, this shows that f = 1. �

5.24 Proposition. If k is a �nitely generated �eld, then k is amenable.

Proof. Given Proposition 5.22, we only have to show that tori over k have no p′-divisible points. Since
any �nitely generated �eld is a �nite extension of a purely transcendental extension of its prime �eld, by
Lemma 5.20, it is enough to show that if L has the property that no L-torus has p′-divisible elements, then
L(t) has the same property. This is the content of Lemma 5.23. �

6. Reconstruction for amenable discretely valued fields

The goal of this section is to prove the main result of this paper: if k is an amenable �eld that admits a
nontrivial discrete valuation, then k satis�es étale reconstruction (Theorem 6.24). In particular, we deduce
that in�nite �nitely generated �elds satisfy étale reconstruction (Corollary 6.25).

In §6.1 we provide a ‘cohomological’ criterion for amenable �elds to satisfy étale reconstruction (Propo-
sition 6.12). Subsection 6.2 proves some preparatory lemmas needed to check this criterion in the presence
of a discrete valuation. In §6.3, we prove the main result.

6.1 A cohomological criterion for reconstructing amenable �elds. To state our cohomological cri-
terion for étale reconstruction, we begin by �xing some notation.

6.1 Notation (the canonical class in H1
ét(Gm; Ẑp′(1))). Let k be a �eld of exponential characteristic p. For

each positive integer n coprime to p, note that the Kummer sequence provides a canonical class

c1,n ∊ H1
ét(Gm;�n) .

Note that form dividing n, the homomorphism �n → �m given by raising to the n∕m-th power induces a
homomorphism

H1
ét(Gm;�n)→ H1

ét(Gm;�m)

that sends c1,n to c1,m. We write c1 for the class

(c1,n)n∊(Np′ )op ∊ H
1
ét(Gm; Ẑp′(1)) .

6.2 Notation. Let k be a �eld of exponential characteristic p and letX be a k-scheme. Following Voevodsky
we write

O×
top(X) ≔ Hompin

k (Xét,Gm,ét) .

De�ne a map χ′top by the assignment

χ′top ∶ O×
top(X)→ H1

ét(X; Ẑp′(1))
f∗ ↦ f∗(c1) .

Here, note that the class f∗(c1) is well-de�ned by the functoriality of the assignment X ↦ H1
ét(X; Ẑp′(1)) in

geometric morphisms of étale topoi over Spec(k)ét explained in Observation 5.12.
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6.3. By construction, the square

(6.4)

O×(X) O×(X)∧p′

O×
top(X) H1

ét(X; Ẑp′(1))

can

Kum

χ′top

commutes.

6.5 Construction (χtop). Let k be an amenable �eld of exponential characteristic p and let X be a regular
�nite type k-scheme. Recall from Lemma 5.19 that the p′-Kummer map

Kum∶ O×(Xawn)∧p′ ⟶ H1
ét(X

awn; Ẑp′(1))

is an isomorphism. We write χtop for the composite

O×
top(Xawn) H1

ét(X
awn; Ẑp′(1)) O×(Xawn)∧p′ .

χ′top Kum−1
∼

Our goal is to show that if the image of χtop is contained in the image of the natural homomorphsim
O×(Xawn)→ O×(Xawn)∧p′ , then k satis�es étale reconstruction. To prove this criterion, we need a construc-
tion and a couple of observations.

6.6 Construction. Let k be a �eld of exponential characteristic p, letY be a kawn-scheme, and let E ⊃ kawn
be a �nite �eld extension. For any morphism of kawn-schemes x∶ Spec(E)→ Y, we obtain a pullback map

x∗ ∶ H1
ét(Y; Ẑp′(1))⟶ H1

ét(Spec(E); Ẑp′(1)) ≅ (E×)∧p′ .

Thus for any �xed class � ∊ H1
ét(Y; Ẑp′(1)) we obtain a map

Y(E)→ (E×)∧p′ , x ↦ x∗(�) .

Passing to the colimit over all �nite extensions of kawn, we obtain a map

 � ∶ Y(k̄)→ colim
E

(E×)∧p′ .

We write
êv(−,−)∶ Y(k̄) × H1

ét(Y; Ẑp′(1))→ colim
E

(E×)∧p′

for the pairing corresponding to the assignment that sends a class � ∊ H1
ét(Y; Ẑp′(1)) to the map  � .

6.7 Notation. Let k be an amenable �eld of exponential characteristic p and let X be a regular �nite type
k-scheme. We also write êv for the composite

(6.8) Xawn(k̄) ×O×(Xawn)∧p′ Xawn(k̄) × H1
ét(X

awn; Ẑp′(1)) colimE(E×)∧p′ .
id ×Kum

∼
êv

6.9 Observation. Let k be an amenable �eld of exponential characteristic p. Then for any separable �eld
extension E ⊃ k, the canonical map

E× → (E×)∧p′
is injective because it may be identi�ed with the Kummer map. Since (Eawn)× = E×[1∕p] and p is invertible
on the right hand side, we also deduce that the natural map

(Eawn)× → (Eawn,×)∧p′
is injective. Passing to the colimit over all �nite separable �eld extensions, we therefore obtain an injective
map

i∶ k̄× → colim
E

(Eawn,×)∧p′ .
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6.10 Observation. If Y = Gm in Construction 6.6 and c1 ∊ H1
ét(Gm; Ẑp′(1)) is the canonical class, then the

induced map
 c1 = êv(−, c1)∶ k̄× = Gm(k̄)→ colim

E
(E×)∧p′

is the canonical map i.

6.11 Observation. For any pinned geometric morphism f∗ ∶ Xét → Yét between schemes topologically of
�nite type over kawn, by construction, the square

X(k̄) × H1
ét(Y; Ẑp′(1)) Y(k̄) × H1

ét(Y; Ẑp′(1))

X(k̄) × H1
ét(X; Ẑp′(1)) colim

E
(E×)∧p′

f∗×id

id ×f∗ êv

êv

commutes. In particular, taking Y = Gm and restricting to

Xawn(k̄) × {c1} ⊂ Xawn(k̄) × H1
ét(Gm; Ẑp′(1)) ,

it follows that for any f∗ ∊ O×
top(Xawn) the triangle

Xawn(k̄) k̄×

colim
E

(E×)∧p′

f∗

 χtop(f∗) i

commutes.

6.12 Proposition. For an amenable �eld k of exponential characteristic p, the following are equivalent:
(6.12.1) The �eld k satis�es étale reconstruction.
(6.12.2) For each a�ne, regular, connected, �nite type k-scheme X with X(k) ≠ ∅, we have

im
(
χtop ∶ O×

top(Xawn)→ O×(Xawn)∧p′
)
⊂ im

(
can∶ O×(Xawn)→ O×(Xawn)∧p′

)
.

Proof. To see that (6.12.1)⇒ (6.12.2), note that if k satis�es étale reconstruction, then for each regular �nite
type k-scheme X, the natural map

O×(Xawn)→ O×
top(Xawn)

is an isomorphism. So the commutativity of the square (6.4) shows that im(χtop) ⊂ im(can).
For the implication (6.12.2)⇒ (6.12.1), choose a separable closure k̄ of kawn, and let �∗ ∊ O×

top(Xawn) be
a pinned geometric morphism Xawn

ét → Gm,ét over k. Theorem 4.18 shows that it su�ces to construct an
elementf ∊ O×(Xawn) that agreeswith�∗ onXawn(k̄). By assumption, there exists an elementf ∊ O×(Xawn)
mapping to χtop(�∗) under the natural map

can∶ O×(Xawn)→ O×(Xawn)∧p′ .

It follows from Observation 6.11 that for any x̄ ∊ Xawn(k̄) we have

i(f(x̄)) = êv(x̄, can(f)) = êv(x̄, χtop(�∗)) =  χtop(�∗)(x̄) = i(�∗(x̄)) .

Because k is amenable, i is injective (Observation 6.9), so f(x̄) = �∗(x̄), as desired. �
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6.2 Finite generation & units. The rest of this section is dedicated to verifying the hypotheses of Propo-
sition 6.12 when k is amenable and admits a nontrivial discrete valuation. Our argument relies on under-
standing the kernel of the homomorphism O×(Xawn) → (kawn)× induced by a rational point x ∊ X(k). It
will be useful to know that this kernel is �nitely generated and free; this subsection proves this.

6.13 Recollection. A �eld extension K ⊃ k is regular if it is separable and k is algebraically closed in K.

6.14 Example [9, Proposition 5.51]. Let k be a �eld and let X be an integral k-scheme. Then the �eld
extension K(X) ⊃ k is regular if and only if X is geometrically integral over k.

6.15 Lemma. Let A ↪ B be an injective ring homomorphism. If A is integrally closed in B, then the abelian
group B×∕A× is torsion-free.

Proof. Let b ∊ B× be an element such that bn = a for some a ∊ A×. Then the polynomial tn − a ∊ A[t] is
an integral equation for b. Since A is integrally closed in B, we deduce that b ∊ A. Moreover, since bn is a
unit in A, we deduce that b is also a unit in A. Hence the class of b is the identity in B×∕A×. �

6.16 Proposition. Let k be a �eld and K ⊃ k a �nitely generated regular �eld extension. Let R ⊂ K be a
k-subalgebra that is �nitely generated as a k-algebra. Then:
(6.16.1) The abelian group R×∕k× is �nitely generated and free.

(6.16.2) For any k-algebra augmentation "∶ R → k, there is an isomorphism ker("×) ≅ R×∕k×. In particular,
ker("×) is �nitely generated and free.

Proof. For (6.16.1), the claim that R×∕k× is �nitely generated is proven in [17, Chapter 2, Corollary 7.3].
Hence it su�ces to show that the group R×∕k× is torsion-free. Notice that the incusion R ⊂ K induces an
injection R×∕k× ↪ K×∕k×. By Lemma 6.15, the group K×∕k× is torsion-free; hence the subgroup R×∕k× is
also torsion-free.

For (6.16.2), consider the short exact sequence of abelian groups

1 ker("×) R× k× 1 ."×

Since " is an augmentation, "× ∶ R× → k× admits a section. The splitting lemma completes the proof. �

6.17 Notation. Let k be a �eld and let X be a k-scheme with �xed rational point x ∊ X(k). Denote by
O×
1 (X) ⊂ O×(X) the subgroup spanned by those f such that f(x) = 1. That is, O×

1 (X) is the kernel of the
map O×(X) → k× induced by the k-point x. By functoriality, the k-point x induces a kawn-point xawn of
Xawn. We also write O×

1 (X
awn) ⊂ O×(Xawn) for the subgroup spanned by those f such that f(xawn) = 1.

6.18 Corollary. Let k be a �eld and let X be an a�ne, geometrically integral, �nite type k-scheme. Then for
each x ∊ X(k), the abelian group O×

1 (X) is �nitely generated and free.

Proof. SinceX is geometrically integral and of �nite type over k, Example 6.14 shows that the �eld extension
K(X) ⊃ k is �nitely generated and regular. Since the k-subalgebra O(X) ⊂ K(X) is �nitely generated, the
claim now follows from Proposition 6.16. �

6.19 Lemma. Let k be a �eld of exponential characteristic p and let X be an a�ne, regular, connected, �nite
type k-scheme with X(k) ≠ ∅. Then for each x ∊ X(k), the Z[1∕p]-module O×

1 (X
awn) is �nitely generated and

free.

Proof. First notice that sinceX is a connected k-scheme that admits a rational point,X is geometrically con-
nected [STK, Tag 04KV]. Since X is regular and of �nite type over k, we deduce that X is also geometrically
irreducible.

If p = 1, then X = Xawn and X is smooth over k. Since X is geometrically irreducible, [STK, Tag 056T]
shows that X is geometrically integral over k. Thus Corollary 6.18 shows that O×

1 (X) is a �nitely generated
free abelian group. Ifp > 1, then since the naturalmorphism (Xkperf )red → X is a universal homeomorphism,
Lemma 5.17 shows that

O×
1 (X

awn) ≅ O×
1 ((Xkperf )red)[1∕p] .

http://stacks.math.columbia.edu/tag/04KV
http://stacks.math.columbia.edu/tag/056T
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Now note that since X is geometrically irreducible, (Xkperf )red is also geometrically irreducible. Moreover,
since kperf is perfect and (Xkperf )red is reduced, (Xkperf )red is also geometrically reduced. Hence (Xkperf )red is
geometrically integral. To conclude, note that Corollary 6.18 shows thatO×

1 ((Xkperf )red) is a �nitely generated
free abelian group. �

6.3 Amenable discretely valued �elds satisfy étale reconstruction. We now verify that the hypoth-
esis of Proposition 6.12 holds for amenable �elds that admit a nontrivial discrete valuation. This is a slight
generalization of Voevodsky’s argument in [28, Proposition 3.4]. For this, we need two preparatory results.

6.20. Let p be a prime number or 1. Recall that by Lemma 5.8, we have Ẑp′ ≅ Z[1∕p]∧p′ . Also note that the
natural homomorphism Z[1∕p]→ Z[1∕p]∧p′ is injective. Hence for the rest of this section, we tacitly regard
Z[1∕p] as a subgroup of Ẑp′ .

6.21 Lemma. Let p be a prime number or 1, and let � ∊ Ẑp′ . If there exists a nonzero element n ∊ Z[1∕p] such
that n� ∊ Z[1∕p] ⊂ Ẑp′ , then � ∊ Z[1∕p].

Proof. For l ≠ p, write prl ∶ Ẑp′ → Zl for the projection. By assumption,

� ∊ Q ⊂ Ẑp′ ⊗Q and prl(�) ∊ Zl ⊂ Ql .

Thus the l-adic valuation of � is greater than or equal to 0. So � = m∕pk for somem ∊ Z and k ∊ N. �

The following result is the only part that seems to break over a �nite �eld:

6.22 Proposition. Let k be an amenable �eld of exponential characteristic p. Let X be an a�ne, regular,
connected, �nite type k-scheme with a �xed rational point x ∊ X(k). Choose a basis g1,… , gm for the �nitely
generated free Z[1∕p]-module O×

1 (X
awn). Let

� = ga11 ⋯ gamm ∊ O×
1 (X

awn)∧p′

where a1,… , am ∊ Ẑp′ , be such that êv(−, �) factors through

i∶ k̄× → colim
E

(E×)∧p′ .

If k admits a nontrivial discrete valuation, then � ∊ O×
1 (X

awn).

Proof. We note that the discrete valuation on k extends to a nontrivial Z[1∕p]-valued valuation on kawn. We
make the following claim:

6.23 Claim. For any 1 ≤ d ≤ m, we can �nd a �nite extension E ⊃ kawn, points x1,… , xd ∊ Xawn(E)
and an extension of the valuation on kawn to a valuation �∶ E× → Z[1∕p] such that the determinant of the
Z[1∕p]-matrix

A(d) = (�(gs(xt)))s,t
is nonzero.

If we can prove Claim 6.23 we are done. To see this, note that since O×
1 (X

awn) is a �nitely generated free
Z[1∕p]-module, to prove that � ∊ O×

1 (X
awn), we equivalently need to show that a1,… , am ∊ Z[1∕p]. Write

�̂∶ (E×)∧p′ → Ẑp′ for the p′-completion of �. Note that for d = m we have

A(m) ⋅
⎛
⎜
⎝

a1
⋮
am

⎞
⎟
⎠
=

⎛
⎜
⎝

�̂(êv(x1, �))
⋮

�̂(êv(xm, �))

⎞
⎟
⎠
.

Since �̂(êv(xd, �)) ∊ Z[1∕p] by assumption, by multiplying with the adjugate of the Z[1∕p]-matrix A(m), we
see that each aj has the property that

det(A(m))aj ∊ Z[1∕p] .
Since det(A(m)) ∊ Z[1∕p] is nonzero, Lemma 6.21 implies that a1,… , am ∊ Z[1∕p], as desired. �
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Proof of Claim 6.23. We proceed by induction on d. For the base case d = 1, we claim that there is some
�nite extension E ⊃ kawn, and some x ∊ Xawn(E) such that �(g1(x)) ≠ 0. Pick a nontrivial extension of the
valuation of kawn to E, and consider the induced map g1 ∶ Xawn → Gm. Since g1 is not constant, g1 is an
open map. Since the complement of g1(Xawn) is a �nite set of closed points, we can pick some x ∊ Xawn(E)
for some extension E ⊃ kawn such that �(g1(x)) ≠ 0, .

For the induction step, assume that the statement holds ford. Consider thematrixA(d+1) = (�(gs(xt)))s,t
for some points x1,… , xd+1 yet to be chosen, and expand det(A(d + 1)) formally in minors as

det(A(d + 1)) =
d+1∑

s=1
(−1)s+1�(gs(x1))Ms ,

whereMs is the determinant we obtain by removing the row and column containing gs(x1). By induction,
there exist a �nite extension E′ ⊃ kawn and points x2,… , xd+1 ∊ Xawn(E′) such that M1 ≠ 0. We now
consider the function

g′ ≔ g±M1
1 ⋯ g±Md+1

d+1 ∊ O×
1 (X

awn) .

Since the gj are linearly independent andM1 ≠ 0, the function g′ is not constant. Thus, g′ is open, so there
is a �nite extension E ⊃ E′ and a x1 ∊ Xawn(E′) such that �(g′(x1)) ≠ 0 and the claim follows. �

The following is the main result of this paper:

6.24 Theorem. If k is an amenable �eld that admits a nontrivial discrete valuation, then k satis�es étale
reconstruction.

Proof. Let p denote the exponential characteristic of k and choose a separable closure k̄ ⊃ kawn. By Propo-
sition 6.12, we need to show that for each a�ne, regular, connected, �nite type k-scheme X with a �xed
rational point x ∊ X(k), we have

im
(
χtop ∶ O×

top(Xawn)→ O×(Xawn)∧p′
)
⊂ im

(
can∶ O×(Xawn)→ O×(Xawn)∧p′

)
.

Let �∗ ∊ O×
top(Xawn) and write � ≔ χtop(�∗). After scaling �∗, we can, without loss of generality assume that

�∗(xawn) = 1. Thus � lies in the group O×
1 (X

awn)∧p′ .
We note that the pairing

êv ∶ Xawn(k̄) ×O×
1 (X

awn)∧p′ → colim
E

(E×)∧p′

de�ned by (6.8) extends the usual evaluation map

Xawn(k̄) ×O×
1 (X

awn) k̄× colimE (E×)∧p′ .
i

Next, we observe that, by construction, êv(−, �) =  χtop(�∗). In particular, since �∗ is pinned, êv(−, �) factors
through i∶ k̄× ↪ colimE(E×)∧p′ . Thus by Proposition 6.22, � is in the image of the natural homomorphism

can∶ O×
1 (X

awn)→ O×
1 (X

awn)∧p′ ,

as desired. �

6.25 Corollary. If k is an in�nite �eld that is also �nitely generated, then k satis�es étale reconstruction.

Proof. Since k is �nitely generated, Proposition 5.24 shows that k is amenable. Since k is also in�nite, k
admits a nontrivial discrete valuation. Hence k satis�es the hypotheses of Theorem 6.24. �
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Appendix A. Morphisms of étale sites and étale topoi

Given a scheme X, write ÉtqcsX ⊂ ÉtX for the subsite of the étale site spanned by the quasicompact
separated morphisms. If X is quasiseparated, then ÉtqcsX is a basis for the étale topology (see Lemma A.4).
In this appendix, we verify that if X and Y are topologically noetherian schemes, then every geometric
morphism f∗ ∶ Xét → Yét is induced by amorphism of sitesÉtqcsY → ÉtqcsX . See Corollary A.9. This allows us
to repackage the étale reconstruction property in site-theoretic terms (seeCorollaryA.15). In [28], Voevodsky
exclusively works with quasicompact separated étale sites; however, Grothendieck’s conjecture [10, p. 7] is
speci�cally about étale topoi. SoCorollaryA.9 also veri�es that Voevodsky’s site-theoretic result is equivalent
to the topos-theoretic statement appearing in Grothendieck’s letter.

We start by introducing a few bases for the étale site. Before doing so, we remind the reader that quasi-
compactness and quasiseparatedness are topological properties of schemes and morphisms of schemes.

A.1 Recollection (quasicompactness and quasiseparatedness). A map of topological spaces f∶ S → T
is quasicompact (resp., quasiseparated) if for every quasicompact (resp., quasiseparated) open V ⊂ T, the
preimage f−1(V) ⊂ S is quasicompact (resp., quasiseparated). A morphism of schemes f∶ X → Y is
quasicompact (resp., quasiseparated) if the induced map on underlying topological spaces |f|∶ |X| → |Y|
is quasicompact (resp., quasiseparated).

If S is a noetherian space, then every subset of S is quasicompact and quasiseparated. In particular, in
this case, every map f∶ S → T to an arbitrary topological space T is qcqs.

A.2 Notation (variants of the étale site). Let X be a scheme. We write

ÉtsepX ⊂ ÉtX , ÉtqcsX ⊂ ÉtX , and Éta�X ⊂ ÉtX
for the full subcategories spanned by those p∶ X′ → X such that p is separated, p is quasicompact and
separated, and X′ is a�ne over Spec(Z), respectively.
A.3 Observation. Let X be a scheme.
(A.3.1) By cancellation, every morphism in ÉtsepX is separated and every morphism in ÉtqcsX is quasicompact

and separated. Moreover, since separated and quasicompact morphisms are stable under base-
change, the full subcategories

ÉtqcsX ⊂ ÉtsepX ⊂ ÉtX
are closed under �nite limits.

(A.3.2) Since a�ne schemes are separated and everymorphismwith separated source is separated, we have

Éta�X ⊂ ÉtsepX .

(A.3.3) Assume thatX is quasiseparated. Since every morphism from a quasicompact scheme to a quasisep-
arated scheme is quasicompact, we have

Éta�X ⊂ ÉtqcsX .

(A.3.4) If X is qcqs, then every object of ÉtqcsX is qcqs.

A.4 Lemma. Let X be a scheme. Then:
(A.4.1) The full subcategories

Éta�X ⊂ ÉtsepX ⊂ ÉtX
are both bases for the étale topology. Hence restriction along the inclusions de�ne equivalences of topoi

Shét(ÉtX)⥲ Shét(Ét
sep
X )⥲ Shét(Éta�X ) .

The inverses are given by right Kan extension along the inclusions.

(A.4.2) Assume that X is quasiseparated. Then ÉtqcsX ⊂ ÉtX is a basis for the étale topology. Hence restriction
along the inclusion de�nes an equivalences of topoi

Shét(ÉtX)⥲ Shét(Ét
qcs
X ) .

The inverse is given by right Kan extension along the inclusion.
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Proof. First note that by [19, Propositions B.6.4 & B.6.6], the statements about equivalences of topoi follow
from the statements about bases. To prove (A.4.1), �rst note that it su�ces to prove that Éta�X ⊂ ÉtX is a
basis. This is immediate from the fact that Zariski covers are étale covers. For (A.4.2) note that since X is
quasiseparated, we have

Éta�X ⊂ ÉtqcsX .
Hence the claim is a consequence of (A.4.1). �

In the remainder of this subsection, we explain why every coherent geometric morphism between the
étale topoi of qcqs schemes is induced by a morphism between quasicompact separated étale sites.

A.5 Recollection (coherent topoi). LetX be a topos. An object X ∊ X is quasicompact if for every epimor-
phism ∐

i∊I
Xi ↠ X

there exists a �nite subset J ⊂ I such that
∐

j∊J Xj → X is an epimorphism. An object X ∊ X is quasisepa-
rated if for all diagrams Y → X ← Y′ with Y and Y′ quasicompact, the pullback Y ×X Y′ is quasicompact.
Finally, an object X ∊ X is coherent if X is both quasicompact and quasiseparated. A geometric morphism
f∗ ∶ X → Y of topoi is coherent if for every coherent object Y ∊ Y, the pullback f∗(Y) is coherent. See [SGA
4ii, Exposé VI; 19, §C.5] for more on coherent topoi.

A.6 Example. Let X be a qcqs scheme. Then the étale topos Xét is coherent. Moreover, [SGA 4ii, Exposé
IX, Proposition 2.7] shows that an étale sheaf ℱ ∊ Xét is coherent if and only if ℱ is constructible.

A.7 Lemma. Let X and Y be qcqs schemes and let f∗ ∶ Xét → Yét be a geometric morphism. The following
are equivalent:
(A.7.1) The geometric morphism f∗ is coherent.
(A.7.2) The induced map of topological spaces |f∗|∶ |X| → |Y| is quasicompact.

Proof. If f∗ is coherent, then by restricting the morphism f∗ to subobjects of the terminal object of Yét we
deduce that induced map |f∗| is quasicompact. Conversely, assume that |f∗| is quasicompact. Since X and
Y are qcqs, in light of Example A.6 we need to show that for each constructible sheaf ℱ ∊ Yét, the pullback
f∗(ℱ) is constructible. By assumption, there is a �nite strati�cation {Yi}i∊I of Y where each Yi ⊂ Y is qcqs
and locally closed such that on each stratum, ℱ|Yi is �nite locally constant. Since |f∗| is quasicompact, the
strati�cation pulls back to a strati�cation {|f∗|−1(Yi)}i∊I of X by qcqs locally closed subschemes such that
on each stratum, f∗(ℱ) is �nite locally constant. �

A.8 Theorem. LetX and Y be qcqs schemes and let f∗ ∶ Xét → Yét be a coherent geometric morphism. Then
for each V ∊ ÉtqcsY , the étale sheaf f∗(V) is representable by an object of ÉtqcsX . Hence f∗ is induced by the
morphism of sites

f∗ ∶ ÉtqcsY → ÉtqcsX .

Proof. The diagonal V → V ×Y V is a clopen immersion; let V′ be the complementary clopen subscheme.
Since f∗ is coherent, by Lemma A.7 the sheaves f∗(V) and f∗(V′) are constructible. Hence f∗(V) and
f∗(V′) are represented by an étale algebraic spaces U → X and U′ → X. Furthermore, pulling back the
isomorphism V ⊔ V′ ⥲ V ×Y V, we obtain an isomorphism

U ⊔ U′ ⥲ U ×X U .

Thus the diagonal of U is a closed immersion, equivalently, U → X is separated. Since an étale algebraic
space is also locally quasi-�nite, it follows from [STK, Tag 03XX] that U is a scheme and U → X is quasi-
compact and separated, as desired. �

A.9 Corollary. Let X and Y be schemes. If X is topologically noetherian and Y is qcqs, then:
(A.9.1) Every geometric morphism f∗ ∶ Xét → Yét is coherent.
(A.9.2) Every geometric morphism f∗ ∶ Xét → Yét is induced by a morphism of quasicompact separated étale

sites ÉtqcsY → ÉtqcsX .

http://stacks.math.columbia.edu/tag/03XX
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Proof. By Theorem A.8, it su�ces to prove (A.9.1). For this, note that by Lemma A.7, it su�ces to shows
that |f∗|∶ |X| → |Y| is quasicompact. Since |X| is noetherian, this is automatic. �

We conclude by reformulating the étale reconstruction property (see Proposition 2.28 andDe�nition 2.29)
in terms of sites.

A.10 Notation. Let k be a �eld and let X and Y be k-schemes. Assume that X is topologically noetherian
and Y is qcqs. We write Homk(Ét

qcs
Y ,ÉtqcsX ) for the groupoid of morphisms f−1 ∶ ÉtqcsY → ÉtqcsX in the

(2, 1)-category of sites under the étale site of Spec(k). We write

Hompin
k (ÉtqcsY ,ÉtqcsX ) ⊂ Homk(Ét

qcs
Y ,ÉtqcsX )

for the full subgroupoid spanned by those morphisms of sites f−1 ∶ ÉtqcsY → ÉtqcsX such that the induced
geometric morphism

Xét ≃ Shét(Ét
qcs
X ) Shét(Ét

qcs
Y ) ≃ Yét

f∗

is a pinned geometric morphism in the sense of De�nition 2.19.

A.11 Corollary. Let k be a �eld and letX andY be k-schemes. Assume thatX is topologically noetherian and
Y is qcqs. Then the natural functors

Homk(Ét
qcs
Y ,ÉtqcsX )→ Homk(Xét, Yét) and Hompin

k (ÉtqcsY ,ÉtqcsX )→ Hompin
k (Xét, Yét)

given by f−1 ↦ f∗ are equivalences of groupoids.

Proof. Immediate from Corollary A.9 and the de�nitions. �

A.12. In light of Proposition 2.22 and Corollary A.11, if X and Y are topologically of �nite type over k, then
the groupoid Hompin

k (ÉtqcsY ,ÉtqcsX ) is equivalent to a set.

A.13 Corollary. Let k be a �eld and let X and Y be schemes topologically of �nite type over k. Then the
following are equivalent:
(A.13.1) The natural map

Homk(X,Y)→ Hompin
k (ÉtqcsY ,ÉtqcsX ) , f ↦ f−1

is bijective.

(A.13.2) The natural mapHomk(X,Y)→ Hompin
k (Xét, Yét) is bijective.

A.14 Remark. Corollary A.13 shows that Voevodsky’s site-theoretic result [28, Theorem 3.1] is equivalent
to the following statement: for every �nitely generated �eld k of characteristic 0 and �nite type k-schemes
X and Y with X normal, the natural map

Homk(X,Y)→ Hompin
k (Xét, Yét)

is bijective.

A.15 Corollary. Let k be a �eld. Then k satis�es étale reconstruction if and only if for all schemes X and Y
topologically of �nite type over k with X absolutely weakly normal, the natural map

Homk(X,Y)→ Hompin
k (ÉtqcsY ,ÉtqcsX )

is bijective.
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