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Abstract

This paper has two main goals. First, we prove nonabelian re�nements of basechange
theorems in étale cohomology (i.e., prove analogues of the classical statements for sheaves
of spaces). Second, we apply these theorems to prove a number of results about the étale
homotopy type. Speci�cally, we prove nonabelian re�nements of the smooth basechange
theorem, Huber–Gabber a�ne analogue of the proper basechange theorem, and Fujiwara–
Gabber rigidity theorem. Our methods also recover Chough’s nonabelian re�nement of the
proper basechange theorem. Transporting an argument of Bhatt–Mathew to the nonabelian
setting, we apply nonabelian proper basechange to show that the pro�nite étale homotopy
type satis�es arc-descent. Using nonabelian smooth and proper basechange and descent, we
give rather soft proofs of a number of Künneth formulas for the étale homotopy type.
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0 Introduction
This paper has two central themes. First, we prove nonabelian re�nements of essentially all
basechange theorems in étale cohomology. More precisely, basechange theorems in étale coho-
mology are usually proven for sheaves of sets or abelian groups; we explain how to generalize
these results to sheaves valued in the∞-category of spaces.

Second, we apply these nonabelian basechange theorems to give rather soft proofs of a num-
ber of results in étale homotopy theory (see §§0.2 and 0.3). Often it is technically possible to
prove results in étale homotopy theory in two steps by separately proving a result for étale funda-
mental groups, and then using a basechange theorem for étale cohomology of abelian sheaves.
However, our perspective is that it is actually easier to prove these results directly from the
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nonabelian re�nements of the basechange theorems. Moreover, we are often able to remove
restrictive hypotheses from statements currently available in the literature, as well as prove new
results.

We start by explaining the nonabelian basechange theorems that we prove.

0.1 Nonabelian basechange theorems in algebraic geometry
To demonstrate our approach, let us focus on the nonabelian re�nement of the smooth baschange
theorem in étale cohomology [SGA 4iii, Exposé XII, Corollaire 1.2]. For the statement, recall
that a morphism of schemes f∶ X → Z is prosmooth if X can be written as the co�ltered limit
of smooth Z-schemes with a�ne transition maps.

0.1 Theorem (nonabelian smooth basechange; Corollary 2.30). Let

(0.2)
W Y

X Z

f̄

ḡ g

f

be a pullback square of qcqs schemes and assume that the morphism f is prosmooth. Write Σ for
the set of prime numbers invertible on Z. Then for each Σ-torsion étale sheaf of spaces F on Y (see
De�nition 1.9), the exchange transformation

f∗g∗(F)→ ḡ∗f̄∗(F)

is an equivalence in the∞-category of étale sheaves of spaces on X.

The assumption that F is Σ-torsion in particular guarantees that there is an integer n ≥ 0
such that the only nonzero homotopy sheaves of F are in degrees ≤ n. Thus one might hope to
prove Theorem 0.1 by a ‘Postnikov tower argument’ inducting on the truncation degree n. The
idea would be to consider the �bers of the map F → τ≤n−1 F to the (n−1)-truncation of F; these
�bers have a homotopy sheaf concentrated in the single degree n. Basechange for τ≤n−1 F is the
inductive hypothesis, and basechange for the �bers follows from the classical cohomological
basechange. One might hope that this implies basechange for F.

Unfortunately, there are (at least) two problems with this naive approach. First, the sheaf
τ≤n−1 F might not admit a global section, so it is not even clear how to start the inductive step.
That is, it may not even make sense to speak of �bers of the map F → τ≤n−1 F. Second, even if
F admits a global section, the pushforward functors appearing in the exchange transformation
f∗g∗(F)→ ḡ∗f̄∗(F) do not commute with the truncation functors.

Proof Overview. One of the key points of this paper is that, by arguing di�erently, it is possible
to reduce Theorem 0.1 to a claim about basechange for sheaves of 1-groupoids (i.e., stacks in
groupoids) and basechange for sheaves of abelian groups. The argument goes roughly as follows.
First note that in order to show that the exchange morphism f∗g∗(F) → ḡ∗f̄∗(F) is an equiva-
lence, it su�ces to check the claim after passing to the stalk at each geometric point x → X. We
then re-express the stalk of an étale sheaf on X as the global sections of its pullback to the strict
localization Spec(Osh

X,x). Applying an unconditional basechange result about pullbacks along
the morphism Spec(Osh

X,x)→ X [5, Proposition 7.5.1], we reduce to proving the following: if X
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and Z are spectra of strictly henselian local rings and f is a prosmooth morphism induced by a
local ring homomorphism, then the natural map

Γét(Y;F)→ Γét(W; f̄∗(F))
is an equivalence (see Corollary 2.14). Using the theory of n-gerbes, we explain why, for this
statement about global sections, it is possible to use a ‘Postnikov tower argument’ to reduce the
claim to the cases whereF is a sheaf of 1-groupoids, andwhereF is an Eilenberg–MacLane object
(see Proposition 2.15 and Corollary 2.25). The �rst case was proven by Giraud [19, Chapitre VII,
Théorème 2.1.2], and the second case is equivalent to the classical statement for cohomology
groups of abelian sheaves.

This reduction to a claim about global sections of schemes over spectra of strictly henselian
local ringsworks in complete generality. As a result, using the samemethodwe reprove Chough’s
nonabelian proper basechange theorem [11, Theorem 1.2], as well as prove nonabelian re�ne-
ments of the Gabber–Huber a�ne analogue of the proper basechange theorem [18; 27] and the
Fujiwara–Gabber rigidity theorem [17, Corollary 6.6.4]. See §2.4. We also apply the nonabelian
smooth and proper basechange theorems to show that, after completion away from the residue
characteristics, the étale homotopy types of the geometric �bers of a smooth proper morphism
of schemes are invariant under specialization (see §2.5).

In the remainder of the introduction, we explain some applications of these nonabelian
basechange theorems.

0.2 Application: arc-descent
Bhatt andMathew recently introduced the arc-topology on schemes [7]. The arc-topology is �ner
than the v-topology, and arc-descent has a number of useful consequences that do not follow
from v-descent. For example, arc-sheaves satisfyMilnor excision and a version of the Beauville–
Laszlo formal gluing theorem [6]. See [7, Corollaries 4.25 & 6.7]. Bhatt–Mathew also showed that
many familiar étale sheaves satisfy arc-descent, e.g., étale cohomology with torsion coe�cients
[7, Theorem 5.4]. The key tool in their proof is the proper basechange theorem.

Once one has access to the nonabelian proper basechange theorem, it is not hard to adjust
Bhatt and Mathew’s arguments to prove a nonabelian version of this result. Write Pro(Spcπ) for
the∞-category of pro�nite spaces. Given a schemeX, write Π̂ét

∞(X) ∊ Pro(Spcπ) for the pro�nite
étale homotopy type of X.
0.3 Theorem (arc-descent for étale homotopy types; Theorem 3.17). The functor

Π̂ét
∞(−)∶ Schqcqs → Pro(Spcπ)

is a hypercomplete arc-cosheaf. In other words, for any arc-hypercovering U∙ → X the induced
morphism

colim
[n]∊�op

Π̂ét
∞(Un)→ Π̂ét

∞(X)

is an equivalence in Pro(Spcπ).
In the remainder of this subsection, let us explain what Milnor excision and formal gluing

mean in the context of étale homotopy theory. Recall that a commutative square of schemes

(0.4)
Z X

Z′ X′

f

i
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is aMilnor square if it is a pullback square, f is a�ne, i is a closed immersion, and the induced
morphism Z′ ⊔Z X → X′ is an isomorphism.1 As a consequence of arc-descent, we have:

0.5 Corollary (Milnor excision). Given a Milnor square (0.5), the induced square

Π̂ét
∞(Z) Π̂ét

∞(X)

Π̂ét
∞(Z′) Π̂ét

∞(X′)

is a pushout square in Pro(Spcπ).

Recall that a formal gluing datum is a pair (A → B, I) of a ring homomorphism A → B
together with a �nitely generated ideal I ⊂ A such that for each n ≥ 0, we have A∕In ≅ B∕InB
[7, De�nition 1.14]. Again by arc-descent, we have:

0.6 Corollary (formal gluing). Given a formal gluing datum (A → B, I), the induced square

Π̂ét
∞(Spec(B) ∖ V(IB)) Π̂ét

∞(Spec(B))

Π̂ét
∞(Spec(A) ∖ V(I)) Π̂ét

∞(Spec(A))

is a pushout square in Pro(Spcπ).

0.3 Application: Künneth formulas
Let k be a separably closed �eld and let X and Y be qcqs k-schemes. Chough observed that if Y
is proper, then the nonabelian proper basechange theorem easily implies that the natural map

(0.7) Π̂ét
∞(X ×k Y)⟶ Π̂ét

∞(X) × Π̂ét
∞(Y)

is an equivalence [11, Theorem 5.3]. (On π1, this recovers the classical Künneth formula for
étale fundamental groups [SGA 1, Exposé X, Corollaire 1.7; 33, Corollary 4.1.23].) Similarly, if X
is smooth, then the nonabelian smooth basechange theorem immediately implies that the map
(0.7) becomes an equivalence after completion away from char(k).

We o�er two re�nements of these results. First, using the fundamental �ber sequence for
étale homotopy types [22, Corollary 3.21], we extend Chough’s result to arbitrary base �elds:

0.8 Proposition (relative Künneth formula, proper case; Corollary 4.26). Let k be a �eld with
absolute Galois groupGk , and letX andY be qcqs k-schemes. IfY is proper over k, then the natural
map

Π̂ét
∞(X ×k Y)⟶ Π̂ét

∞(X) ×BGk
Π̂ét
∞(Y)

is an equivalence in Pro(Spcπ).

Let p be a prime number or 0. Given a scheme X, write Πét
∞(X)∧p′ for the completion of the étale

homotopy type ofX at the set of primes di�erent fromp. Using v-descent, the theory of alterations
[28; 29, Exposé IX; 32; 43], and the fundamental �ber sequence, we prove:

1By [15, Théorème 7.1], the previous conditions guarantee that the pushout of schemes Z′ ⊔Z X exists.
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0.9 Proposition (prime-to-p relative Künneth formula; Corollary 4.27). Let k be a �eld of char-
acteristic p ≥ 0 with absolute Galois group Gk , and let X and Y be qcqs k-schemes. If the pro�nite
group Gk is prime-to-p, then the natural map

Πét
∞(X ×k Y)∧p′ ⟶ Πét

∞(X)∧p′ ×BGk
Πét
∞(Y)∧p′

is an equivalence in Pro(Spcπ).

For k separably closed, Proposition 0.9 recovers a result of Orgogozo [37, Corollaire 4.9]. In addi-
tion, Propositions 0.8 and 0.9 imply Künneth formulas for symmetric powers (see Remarks 4.29
and 4.30).

Linear overview
Section 1 recalls some background about n-gerbes in∞-topoi and the étale homotopy type; the
familiar reader can safely skip this section. In §2,we prove nonabelian re�nements of: the smooth
basechange theorem, the proper basechange theorem, the Gabber–Huber a�ne analogue of the
proper basechange theorem, and the Fujiwara–Gabber rigidity theorem. See, in particular, §2.4.
We also explain why, after completion away from the residue characteristics, the étale homotopy
type of the geometric �bers of a smooth and proper morphism of schemes is invariant under
specialization, see §2.5. In §3 we apply the nonabelian proper basechange theorem to show
that the pro�nite étale homotopy type satis�es arc-descent. Section 4 uses many of the tools
developed in the previous sections to prove Künneth formulas for the étale homotopy type.
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project number 444845124. The third-named author was supported by the SFB 1085 ‘Higher
Invariants’ in Regensburg, funded by the DFG.

1 Background
This section brie�y recalls background on constructible and torsion étale sheaves of spaces (§1.1),
gerbes in∞-topoi (§1.2), the étale homotopy type (§1.3), and exchange transformations (§1.4).

1.1 Notation and terminology
1.1 Notation. Given a scheme X, we write Xét for the∞-topos of étale sheaves of spaces on X.

1.2 Notation. Let X be an ∞-topos and n ≥ −2 an integer. We write X≤n ⊂ X for the full
subcategory spanned by the n-truncated objects. This inclusion admits a left adjoint that we
denote by τ≤n ∶ X → X≤n.
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1.3. For a scheme X, the subcategory Xét,≤0 ⊂ Xét is the full subcategory spanned by the étale
sheaves of sets on X.
1.4 Recollection. Since �ltered colimits commute with �nite limits in an an∞-topos, for any
∞-topos X and integer n ≥ −1, the inclusion X≤n ⊂ X preserves �ltered colimits. As a result,
the endofunctor τ≤n ∶ X → X preserves �ltered colimits.

Let us now recall the nonabelian re�nements of étale sheaves with torsion contained in a set
of prime numbers.

1.5 Notation. Write Spc for the∞-category of (small) spaces and Cat∞ for the∞-category of
(small)∞-categories.

1.6 De�nition. Let Σ be a set of prime numbers.

(1.6.1) A �nite group G is a Σ-group if the order of G is in the multiplicative closure of Σ.

(1.6.2) We say that a spaceK is π-�nite ifK is truncated, π0(K) is �nite, and all homotopy groups
of K are �nite. We write Spcπ ⊂ Spc for the full subcategory spanned by the π-�nite
spaces.

(1.6.3) We say that a spaceK is Σ-�nite ifK is π-�nite and all homotopy groups ofK are Σ-groups.
We write SpcΣ ⊂ Spcπ for the full subcategory spanned by the Σ-�nite spaces.

1.7 Notation. Let X be an ∞-topos. We write ΓX,∗ or Γ(X; −) for the global sections functor
X → Spc. We write Γ∗X ∶ Spc→ X for the left adjoint to ΓX,∗, the constant sheaf functor. Given
a scheme X, we also write Γét(X; −) for Γ(Xét; −).
1.8 De�nition (torsion lisse sheaf). Let X be an∞-topos, F ∊ X, and Σ a set of prime numbers.

(1.8.1) We say that F is locally constant if there exists a cover {Ui}i∊I of the terminal object of X,
a corresponding family {Ki}i∊I of spaces, and for each i ∊ I, an equivalence

F ×Ui ≃ Γ∗X(Ki) ×Ui

in X∕Ui .

(1.8.2) We say that F is Σ-torsion lisse if F is locally constant and, in addition, the set I can be
chosen to be �nite and the spacesKi can be chosen to be Σ-�nite. In the case that Σ is the
set of all primes, we simply say that F is lisse. We write X lis ⊂ X for the full subcategory
spanned by the lisse objects.

1.9 De�nition (torsion étale sheaf). Let X be a qcqs scheme, F ∊ Xét an étale sheaf, and Σ a set
of prime numbers.

(1.9.1) We say that F is Σ-torsion constructible if there exists a �nite poset P and a strati�cation
{Xp}p∊P of X by qcqs locally closed subschemes such that for each p ∊ P, the sheaf
F|Xp is Σ-torsion lisse. In the case that Σ is the set of all primes, we simply say that F is
constructible.

(1.9.2) We say that F is Σ-torsion if F is truncated and F can be written as the colimit of a �ltered
diagram of Σ-torsion constructible étale sheaves on X. In the case that Σ is the set of all
primes, we simply say that F is torsion.

1.10 Remark. For a qcqs scheme X, the subcategory of Xét spanned by the Σ-torsion sheaves is
closed under �nite limits and truncations.
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1.2 Gerbes in∞-topoi
In this subsection, we quickly recall the theory of gerbes in an∞-topos from [HTT, §7.2.2].

1.11 Notation. Let X be an∞-topos, F ∊ X, and n ≥ 0 an integer. We write πn(F) ∊ (X∕F)≤0
for the n-th homotopy object of F, see [HTT, De�nition 6.5.1.1]. If n ≥ 1, then πn(F) is naturally
a group object of (X∕F)≤0, which is abelian if n ≥ 2.

Given a global section ∶ ∗ → F, we write πn(F, ) ≔ ∗πn(F) for the pullback of πn(F)
along . Then for n ≥ 1, the object πn(F, ) is a group object of X≤0, which is abelian if n ≥ 2.

1.12 Recollection (n-gerbes). Let X be an∞-topos, F ∊ X, and n ≥ 2 an integer. Then F is
called an n-gerbe on X if it is n-truncated and (n − 1)-connected.2 If F is an n-gerbe, then the
functor

F × (−)∶ X → X∕F
restricts to an equivalence on (n−1)-truncated objects [HTT, Lemma 7.2.1.13]; in particular, on
0-truncated objects. In particular there is an unique abelian group object A ∊ Ab(X≤0) such that

πn(F) ≃ F × A

in X∕F . In this case, we say that F is banded by A. Write pF! ∶ X∕F → X for the forgetful functor;
the proof of [HTT, Lemma 7.2.1.13] shows that there is an equivalence

A ≃ τ≤0 pF! (πn(F)) .

1.13 Recollection (Eilenberg–MacLane objects). Let X be an ∞-topos and n ≥ 1. A degree
n Eilenberg–MacLane object of X is a pointed object ∗ → F that is n-truncated and (n − 1)-
connected. We write

EMn(X) ⊂ X∗
for the full subcategory spanned by the degree n Eilenberg–MacLane objects. For n ≥ 2, given a
degree n Eilenberg–MacLane object ∶ ∗→ F, the n-gerbeF is banded by the sheaf of homotopy
groups πn(F, ) ∊ X≤0. In particular we have an isomorphism

τ≤0 pF! (πn(F)) ≅ πn(F, ) .

The functor

EM1(X)⟶ Grp(X≤0)
[∶ ∗→ F]⟼ π1(F, )

de�nes an equivalence between the∞-category of degree 1 Eilenberg–MacLane objects and the
1-category of group objects of X≤0, see [HTT, Proposition 7.2.2.12]. For n ≥ 2, the functor

EMn(X)⟶ Ab(X≤0)
[∶ ∗→ F]⟼ πn(F, )

de�nes an equivalence between the∞-category of degree n Eilenberg–MacLane objects and the
1-category of abelian group objects of X≤0. We write

K(−, 1)∶ Grp(X≤0)⥲ EM1(X) and K(−, n)∶ Ab(X≤0)⥲ EMn(X)

for the inverse equivalences.
2We use the terminology for connectedness explained in [3, §3.3; 13, §4.1].
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1.14 Recollection (cohomology in an∞-topos). Let X be an∞-topos, and let A be an abelian
group object of X≤0. For each integer n ≥ 0, we write

Hn(X;A) ≔ π0Γ(X; K(A, n))

for the n-th cohomology group of X with coe�cients in A.

We recall the following classi�cation result for gerbes in an∞-topos X. It is an immediate
consquence of [HTT, Theorem 7.2.2.26].

1.15 Theorem. Let X be an∞-topos, and let A be an abelian group object of X≤0, and let n ≥ 2
be an integer. Let ∶ ∗→ K(A, n + 1) be a degree n + 1 Eilenberg–MacLane object of X. Given an
n-gerbe F on X banded by A, there is a map �F ∶ ∗→ K(A, n + 1) that is uniquely determined by
F up to equivalence, and a pullback square

F ∗

∗ K(A, n + 1) .



�F

In particular sending a map �∶ ∗→ K(A, n + 1) to the above pullback de�nes a bijection

Hn+1(X;A)⥲ {n-gerbes on X banded by A}∕≃ .

As a direct consequence we obtain the following (see [HTT, Remark 7.2.2.28]):

1.16 Corollary. Let X be an ∞-topos, let A be an abelian group object of X≤0, and let n ≥ 2
be an integer. An n-gerbe F banded by A admits a global section if and only if the corresponding
cohomology class �F ∊ Hn+1(X;A) vanishes.

Later we need to use the fact that the banding of aΣ-torsion étale sheaf of spaces is aΣ-torsion
étale sheaf of abelian groups. For the proof, we need the following simple observation.

1.17 Lemma. Let X be an∞-topos and n ≥ 1 an integer.

(1.17.1) The functor

τ≥n ∶ X∗ → X∗
F ↦ �b(F → τ≤n−1(F))

preserves �ltered colimits.

(1.17.2) For all F ∊ X∗, the object τ≥n(F) is (n − 1)-connected.

(1.17.3) If F ∊ X∗ is n-truncated, then τ≥n(F) is a degree n Eilenberg–MacLane object.

(1.17.4) If F ∊ X∗ is (n − 1)-connected, then the natural morphism τ≥n(F)→ F is an equivalence.

Proof. For (1.17.1), �rst note that the (n−1)-truncation functor τ≤n−1 ∶ X → X preserves �ltered
colimits (Recollection 1.4), and that �ltered colimits commute with �nite limits in an∞-topos.
Hence the claim follows from the fact that the forgetful functor X∗ → X creates limits and
weakly contractible colimits.
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For (1.17.2), notice that the unit F → τ≤n(F) is (n − 1)-connected. Since (n − 1)-connected
morphisms are stable under pullback [HTT, Proposition 6.5.1.16], the projection τ≥n(F)→ ∗ is
(n − 1)-connected, as desired.

For (1.17.3), by de�nitionwe need to check that the pointed object τ≥n(F) is (n−1)-connected
and n-truncated. The (n−1)-connectedness follows from (1.17.2). The n-truncatedness of τ≥n(F)
follows from the fact that F, τ≤n−1(F), and ∗ are n-truncated and the full subcategory X≤n ⊂ X
is closed under limits.

For (1.17.4), note that since F is (n − 1)-connected, τ≤n−1(F) ≃ ∗. Hence the claim follows
from the fact that equivalences are stable under pullback.

1.18 Proposition. LetX be a qcqs scheme and Σ a set of prime numbers. Let F ∊ Xét be a Σ-torsion
sheaf of spaces on X. If F is an n-gerbe, then the banding AF ∊ Ab(Xét,≤0) of F is a Σ-torsion étale
sheaf of abelian groups on X (i.e., its stalks are Σ-torsion groups).

Proof. Since all functors involved in the construction of the banding AF ≔ τ≤0 pF! (πnF) are
compatible with restriction along an étale map U → X, the claim is étale local on X. Therefore
wemay assume that the gerbeF admits a global section ∶ ∗→ F, hence is a degree n Eilenberg–
MacLane object. We can now write F as the �ltered colimit of a diagram F∙ ∶ ℐ → Xét of n-
truncated Σ-torsion constructible sheaves. Since the étale∞-toposXét is coherent [5, Proposition
3.7.3], the terminal object ∗ ∊ Xét,≤n is compact [SAG, Propostion A.2.3.1]. Thus there is some
i0 ∊ ℐ such that  factors through Fi0 . Since the forgetful functor ℐi0∕ → ℐ is colimit-co�nal [HTT,
Example 5.4.5.9 & Lemma 5.4.5.12], replacing ℐ by ℐi0∕ it follows that we may write the pointed
object (F, ) as a �ltered colimit of pointed objects (Fi , i) such that each Fi is n-truncated and
Σ-torsion constructible.

Lemma 1.17 shows that by replacing Fi by

τ≥n(Fi) = �b(Fi → τ≤n−1 Fi)

we may assume that all (Fi , i) are also degree n Eilenberg–MacLane objects. Since the functor

πn(−)∶ EMn(Xét)→ Xét,≤0

preserves �ltered colimits, we may thus assume that F is Σ-torsion constructible and degree n
Eilenberg–MacLane. Now let x → X be a geometric point. Since homotopy groups are compati-
ble with taking stalks, the group (AF)x = πn(F, )x is isomorphic to πn(Fx, x). But because F is
Σ-torsion constructible, Fx is a Σ-�nite space and therefore πn(Fx, x) is Σ-�nite, as desired.

1.3 The étale homotopy type
In this paper, we make use of the description of the étale homotopy type of Artin–Mazur–
Friedlander [4, §9; 16, §4] via Lurie’s shape theory for ∞-topoi. In this subsection, we recall
what we need of the theory. We refer the reader to [5, Chapters 4 & 11; 8, §2; 9, §2] for more
background on shape theory and to [24, §5] for the relation to the classical de�nition of the étale
homotopy type.

We begin by setting our notation for pro-objects and completions of prospaces.

1.19 Notation. Given an∞-category C, we write Pro(C) for the∞-category of pro-objects in C
obtained by formally adjoining co�ltered limits to C. The existence of Pro(C) is a special case of
(the dual of) [HTT, Proposition 5.3.6.2].

We make extensive use of the following explicit presentation of the∞-category of pro-objects.
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1.20 Recollection [SAG, De�nition A.8.1.1 & Proposition A.8.1.6]. Let C be an accessible∞-
category with �nite limits (e.g., C = Spc). Then there is a natural identi�cation

Pro(C) ≃ Funlex,acc(C, Spc)op

with the opposite of the∞-category of left exact accessible functors C→ Spc.

1.21 Remark [HTT, Corollary 5.4.3.6]. Let C be a small∞-category. Then C is accessible if and
only ifC is idempotent complete.Moreover, ifC is accessible, then given an accessible∞-category
D, every functor C→ D is accessible.

1.22. In particular, for every set of primes Σ, the small∞-category SpcΣ is accessible and every
functor SpcΣ → Spc is accessible.

1.23 Recollection (Σ-completion). Let Σ be a set of prime numbers. The inclusion functor
Pro(SpcΣ) ⊂ Pro(Spc) admits a left adjoint

(−)∧Σ ∶ Pro(Spc)→ Pro(SpcΣ)

called Σ-completion. If Σ is the set of all primes, we simply refer to Σ-completion as pro�nite
completion.

Under the identi�cations

Pro(Spc) ≃ Funlex,acc(Spc, Spc)op and Pro(SpcΣ) ≃ Funlex(SpcΣ, Spc)op

the functor (−)∧Σ admits a very convenient description: it is given by pre-composition with the
inclusion SpcΣ ⊂ Spc.

Now we recall the basics of shape theory.

1.24 Recollection (shape of an ∞-topos). Write RTop∞ for the ∞-category of ∞-topoi and
(right adjoints in) geometric morphisms. The shape is a left adjoint functor

Π∞ ∶ RTop∞ → Pro(Spc)

that admits the following explicit description.

(1.24.1) Given an∞-topos X, the shape Π∞(X) is the left exact accessible functor Spc → Spc
given by the composite

ΓX,∗Γ∗X ∶ Spc→ Spc .

That is, for each space K, the value ofΠ∞(X) on K is the global sections of the constant
object of X with value K.

(1.24.2) Given a geometric morphism f∗ ∶ X → Y with unit u∶ idY → f∗f∗, the induced
morphism of prospaces Π∞(X)→ Π∞(Y) corresponds to the morphism

ΓY,∗uΓ∗Y ∶ ΓY,∗Γ
∗
Y ⟶ ΓY,∗f∗f∗Γ∗Y ≃ ΓX,∗Γ∗X

in Pro(Spc)op ⊂ Fun(Spc, Spc).

We refer the reader to [HTT, §7.1.6; 24, §2] for more details.

1.25 Notation. Given an∞-topos X, we write Π̂∞(X) for the pro�nite completion of Π∞(X).
We call Π̂∞(X) the pro�nite shape of X.
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1.26 Notation. Given a scheme X, we write Πét
∞(X) ≔ Π∞(Xét) for the shape of the étale∞-

topos of X. We call Πét
∞(X) the étale homotopy type of X. We write Π̂ét

∞(X) for the pro�nite shape
of Xét and refer to Π̂ét

∞(X) as the pro�nite étale homotopy type of X.

We make frequent use of the following reformulation of what it means for a geometric mor-
phism to induce an equivalence on shapes.

1.27 Observation. Let f∗ ∶ X → Y be a geometric morphism of∞-topoi and let Σ be a set of
prime numbers. Then the induced map Π∞(X) → Π∞(Y) is an equivalence if and only if for
each spaceK, the inducedmap on global sections Γ(Y;K)→ Γ(X;K) is an equivalence. Similarly,
the induced map

Π∞(X)∧Σ → Π∞(Y)∧Σ
on Σ-complete shapes is an equivalence if and only if for each Σ-�nite space K, the induced map
on global sections Γ(Y;K)→ Γ(X;K) is an equivalence.

One of the most important results about the pro�nite shape of an∞-topos is that it is char-
acterized by the fact that it classi�es lisse objects.

1.28 Notation. Let C be an∞-category. We write

Fun(−,C)∶ Pro(Cat∞)op → Cat∞

for the unique functor that extends Fun(−,C)∶ Catop∞ → Cat∞ and transforms co�ltered limits
in Pro(Cat∞) to �ltered colimits in Cat∞.

1.29 Theorem (monodromy for lisse objects [5, Proposition 4.4.18]). Let X be an∞-topos. Then
there is a natural equivalence of∞-categories

X lis ≃ Fun(Π̂∞(X), Spcπ) .

1.30 Theorem [SAG, Corollary E.2.3.3]. Let f∗ ∶ X → Y be a geometric morphism of∞-topoi.
The following are equivalent:

(1.30.1) The pullback functor f∗ restricts to an equivalence Y lis ⥲ X lis.

(1.30.2) The induced map of pro�nite spaces Π̂∞(X)→ Π̂∞(Y) is an equivalence.

1.4 Exchange transformations
We now recall the key compatibility of exchange transformations that we need to use in our
reduction to strictly henselian local rings in the proofs of the nonabelian basechange theorems.

1.31 De�nition. Let

(1.32)
W Y

X Z

f̄∗

ḡ∗ g∗�⟸

f∗

be a square of∞-categories and functors commuting up to a natural transformation �. Assume
that the functors f∗ and f̄∗ admit left adjoints f∗ and f̄∗, respectively. Write cf ∶ f∗f∗ → idX
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for the counit and uf̄ ∶ idY → f̄∗f̄∗ for the unit. The exchange transformation associated to the
oriented square (1.32) is the composite natural transformation

Ex∶ f∗g∗ f∗g∗f̄∗f̄∗ f∗f∗ḡ∗f̄∗ ḡ∗f̄∗ .
f∗g∗uf̄ f∗�f̄∗ cf ḡ∗f̄∗

Note that if � is an equivalence (so that (1.32) commutes), then the middle morphism in the
de�nition of Ex is an equivalence.

The following is immediate from the functoriality of the ‘mate correspondence’; see [23, Theorem
B & Corollary F; 34, §2.2; 38, Theorem B.3.6].

1.33 Proposition. Let

W′ Y′

W Y

X′ Z′

X Z ,

p̄∗

q̄∗

w∗

q∗

y∗

f̄∗

g∗p∗

x∗
z∗

f∗

ḡ∗

be a commutative cube of∞-categories and right adjoint functors. Then the square

x∗f∗g∗ x∗ḡ∗f̄∗

p∗z∗g∗ q̄∗w∗f̄∗

p∗q∗y∗ q̄∗p̄∗y∗

x∗ Ex

≀ Ex f̄∗

p∗ Ex ≀

Ex y∗

canonically commutes. Here the indicated equivalences are natural identi�cations of adjoints.

2 From classical basechange to nonabelian basechange
The goal of this section is to prove nonabelian re�nements of: the smooth basechange theorem
(Corollary 2.30), the proper basechange theorem (Corollary 2.31), the Gabber–Huber a�ne
analogue of proper basechange (Corollary 2.34), and the Fujiwara–Gabber rigidity theorem
(Corollary 2.36).

In § 2.1 we recall how to describe stalks of étale sheaves on strictly henselian local rings
in terms of global sections. In §2.2, we give a simple description of the stalk of an exchange
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transformation (Lemma 2.13). Using this description, §2.3 proves the key technical results that
let us reduce proving nonabelian basechange theorems to classical basechange results (Proposi-
tion 2.15 and Corollaries 2.22 and 2.25). Subsection 2.4 deduces nonabelian re�nements of all of
the basechange theoremsmentioned in the previous paragraph. In §2.5, we apply the nonabelian
smooth and proper basechange theorems to show that, after completion away from the residue
characteristics, the étale homotopy types of the geometric �bers of a smooth proper morphism
of schemes are invariant under specialization (see Proposition 2.49).

2.1 Generalities on strictly henselian local rings
We start with some general facts about strictly henselian local rings, speci�cally that global
sections can be computed as the stalk at the closed point.

2.1 Notation. Let A and B be strictly henselian local rings, and �∶ B → A a local ring homo-
morphism. Write f∶ Spec(A) → Spec(B) for the induced map on spectra. Write x → Spec(A)
and z → Spec(B) for the geometric points speci�ed by the residue �elds of A and B, respectively.

2.2 Proposition (stalks via global sections). In the setting of Notation 2.1:

(2.2.1) There is a natural equivalence

x∗ ≃ Γét(Spec(A); −)

of functors Spec(A)ét → Spc. Hence x∗ ∶ Spc → Spec(A)ét is right adjoint to the global
sections functor.

(2.2.2) There are natural equivalences

Γét(Spec(A);f∗(−)) ≃ x∗f∗ ≃ z∗ ≃ Γét(Spec(B); −)

of functors Spec(B)ét → Spc.

Proof. The proof of (2.2.1) in the setting of 1-topoi is given in [SGA 4ii, Exposé VIII, Proposition
4.6]. The proof given there works verbatim in the setting of∞-topoi. For (2.2.2), note that since
� is a local ring homomorphism, we have a commutative square of schemes

x z

Spec(A) Spec(B) .f

Passing to étale∞-topoi, we obtain a commutative square of∞-topoi

(2.3)

xét zét

Spec(A)ét Spec(B)ét .f∗

Since x and z are geometric points, xét ≃ Spc and zét ≃ Spc. Since Spc is the terminal∞-topos,
we deduce that the top horizontal geometric morphism in (2.3) is the identity. This shows that
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x∗f∗ ≃ z∗; equivalently, f∗x∗ ≃ z∗. Applying (2.2.1) to both of the strictly henselian local rings
A and B, we deduce that

Γét(Spec(A);f∗(−)) ≃ f∗x∗

≃ z∗ ≃ Γét(Spec(B); −) .
In this setting, the constant sheaf functor is also fully faithful:

2.4 Lemma. Let X be an ∞-topos. If the global sections functor Γ∗ ∶ X → Spc admits a right
adjoint Γ♯ ∶ Spc→ X, then both Γ♯ and Γ∗ are fully faithful.
Proof. To see that Γ♯ is fully faithful, �rst note that Γ♯ is a geometric morphism. Since Spc is the
terminal∞-topos [HTT, Proposition 6.3.4.1], the composite geometric morphism

Γ∗Γ♯ ∶ Spc→ Spc

is equivalent to idSpc. Since Γ♯ is right adjoint to Γ∗, this implies that Γ♯ is fully faithful [10,
Lemma 3.3.1].

The claim that Γ∗ is fully faithful now follows from the general fact that given a triple of
adjoints f∗ ⫞ f∗ ⫞ f♯, the functor f∗ is fully faithful if and only if f♯ is fully faithful.

2.5 Example. For a strictly henselian local ring A, the constant sheaf functor Spc→ Spec(A)ét
is fully faithful.

2.6 Lemma. Keep Notation 2.1, and let

W Y

Spec(A) Spec(B)

f̄

ḡ g

f

be a commutative square of schemes. Then there is a natural commutative square

x∗f∗g∗ x∗ḡ∗f̄∗

Γét(Y; −) Γét(W; f̄∗(−))

x∗ Ex

≀ ≀

of functors Yét → Spc. Here the vertical maps are equivalences and the bottom horizontal map is
induced by the unit id → f̄∗f̄∗.
Proof. To simplify notation, write X = Spec(A) and Z = Spec(B). Since x∗ ≃ Γét(X; −), we
equivalently need to show that there is a commutative square with x∗ replaced by Γét(X; −). To
see this, consider the commutative diagram of∞-topoi

(2.7)

Wét Yét

Xét Zét

Spc Spc .

f̄∗

ḡ∗ g∗

f∗

Γét(X;−) Γét(Z;−)
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By the functoriality of exchange transformations, there is a commutative diagram

Γét(Z; g∗(−)) Γét(X;f∗g∗(−)) Γét(X; ḡ∗f̄∗(−))

Γét(Y; −) Γét(W; f̄∗(−)) .

Ex g∗

≀

Γét(X;−) Ex

≀

Ex

Here the vertical equivalences are identi�cations of adjoints, the top left-hand horizontal mor-
phism is induced by the exchange transformation associated to the bottom square of (2.7), the
top right-hand horizontal morphism is induced by the exchange transformation associated to
the top square of (2.7), and the bottom horizontal morphism is the exchange transformation
associated to the large outer rectangle in (2.7).

To complete the proof, note that by Proposition 2.2 and the uniqueness of the global sections
functor, the exchange transformation Γét(Z; −) → Γét(X;f∗(−)) is an equivalence. Moreover,
since the bottom horizontal functor in the diagram (2.7) is the identity, unpacking the de�nition
shows that the exchange transformation associated to the large outer rectangle in (2.7) is given
by applying Γ(Y; −) to the unit id → f̄∗f̄∗.

2.2 The stalk of the exchange transformation
Let

(2.8)
W Y

X Z

f̄

ḡ g

f

be a commutative square of qcqs schemes (which we �x throughout this subsection). Given a
geometric point x → X, the goal of this subsection is to use Lemma 2.6 to express the stalk of
the exchange transformation f∗g∗ → ḡ∗f̄∗ at x in terms of global sections. To explain this, we
�x the following notation.

2.9 Notation (strict localizations). Let S be a qcqs scheme and s → S a geometric point. Write

S(s) ≔ Spec(Osh
S,s)

for the strict localization of S at s. We write ls ∶ S(s) → S for the projection. Given a morphism
of qcqs schemes X → S, we write Xs and X(s) for the pullbacks of schemes

Xs X(s) X

s S(s) S .

⌟ ⌟
l̄s

f(s) f

ls

The key fact we need is that the right-hand square satis�es basechange for truncated sheaves:
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2.10 Proposition. KeepNotation 2.9. Then for each truncated étale sheafF ∊ Xét,<∞, the exchange
transformation

l∗sf∗(F)→ f(s),∗l̄∗s (F)
is an equivalence.

Proof. Combine [5, Example 6.7.4 & Proposition 7.5.1] with [22, Proposition 2.3].

We make use of the following notation throughout the rest of the section:

2.11Notation. Consider a commutative square (2.8) of qcqs schemes. Let x → X be a geometric
point with image z → Z in Z. We denote the natural morphisms between these schemes induced
by the functionality of pullbacks as indicated in the following commutative cube:

(2.12)

W(x) Y(z)

W Y

X(x) Z(z)

X Z .

p̄

q̄

l̄x

q

l̄z

f̄

g
p

lx
lz

f

ḡ

By de�nition, the side vertical faces of (2.12) are pullback squares. Hence if the front vertical
face is a pullback square, then the back vertical face is also a pullback square.

We are ready to rewrite the stalk of the exchange transformation in terms of global sections:

2.13 Lemma. Consider a commutative square (2.8) of qcqs schemes, and let x → X be a geometric
point with image z → Z. Then:

(2.13.1) There is a commutative square

l∗xf∗g∗ l∗xḡ∗f̄∗

p∗q∗l̄∗z q̄∗p̄∗l̄∗z

l∗x Ex

Ex l̄∗z

of functors Yét → X(x),ét. Moreover, the vertical natural transformations are equivalences
when evaluated on truncated étale sheaves.

(2.13.2) There is a commutative square

x∗f∗g∗ x∗ḡ∗f̄∗

Γét(Y(z); l̄∗z(−)) Γét(W(z); p̄∗l̄∗z(−))

x∗ Ex
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of functors Yét → xét ≃ Spc. Moreover, the vertical natural transformations are equiva-
lences when evaluated on truncated étale sheaves.

Proof. Claim (2.13.1) is an immediate consequence of Proposition 2.10 combined with the func-
toriality of exchange transformations (Proposition 1.33) applied to the diagram of étale∞-topoi
associated to the cube of schemes (2.12). By taking stalks at the geometric point x → X(x), claim
(2.13.2) follows from (2.13.1) combined with Lemma 2.6.

The following gives a reformulation of when the exchange transformation is an equivalence.

2.14 Corollary. Consider a commutative square (2.8) of qcqs schemes, and let F ∊ Yét,<∞ be a
truncated étale sheaf on Y. The following are equivalent:

(2.14.1) The exchange transformation f∗g∗(F)→ ḡ∗f̄∗(F) is an equivalence.

(2.14.2) For each geometric point x → X, the stalk of the exchange transformation

x∗f∗g∗(F)→ x∗ḡ∗f̄∗(F)

is an equivalence.

(2.14.3) For each geometric point x → X with image z → Z, the natural map

Γét(Y(z); l̄∗zF)→ Γét(W(z); p̄∗l̄∗zF)

is an equivalence.

Proof. Immediate from Lemma 2.13 and the fact that equivalences of truncated étale sheaves of
spaces on a qcqs scheme can be checked on stalks [SAG, Propositions 2.3.4.2 & A.4.0.5].

2.3 Reduction to the local case
In light of Corollary 2.14, the following topos-theoretic proposition provides a criterion for using
basechange for sheaves of 1-groupoids and cohomological basechange for sheaves of abelian
groups to deduce that the stalk of the exchange transformation is an equivalence. We are most
interested in the case of a pushforward on étale∞-topoi induced by a morphisms of schemes.

2.15 Proposition. Let �∗ ∶ U → V be a geometric morphism of∞-topoi and letV′ ⊂ V<∞ be a
full subcategory closed under �nite limits and truncations. Consider the following statements:

(2.15.1) For each 1-truncated object F ∊ V′, the natural map Γ(V;F)→ Γ(U;�∗F) is an equiva-
lence.

(2.15.2) For each integer n ≥ 2 and degree n Eilenberg–MacLane object G ∊ V′, the natural map
Γ(V;G)→ Γ(U;�∗G) is an equivalence.

(2.15.3) For each integer n ≥ 2 and n-gerbe G ∊ V′, the banding of G is inV′.

(2.15.4) For each integer n ≥ 2 and n-gerbe G ∊ V′, the natural map Γ(V;G)→ Γ(U;�∗G) is an
equivalence.

(2.15.5) For each F ∊ V′, the natural map Γ(V;F)→ Γ(U;�∗F) is an equivalence.
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Then (2.15.2) and (2.15.3) together imply (2.15.4). Also (2.15.1) and (2.15.4) together imply
(2.15.5). Hence (2.15.1), (2.15.2), and (2.15.3) together imply (2.15.5).

2.16 Remark. Condition (2.15.2) is equivalent to the condition that for each abelian group
object A of (V′)≤0 and integer i ≥ 0, the induced map on cohomology groups

Hi(V;A)→ Hi(U;�∗A)

is an isomorphism.

2.17 Remark. Proposition 2.15 is surely known to experts. For example, in more speci�c situa-
tions, the argument we give essentially appears in [8, Proposition 5.11] and [11, §4]. Since we
could not �nd a reference for the result stated in its full generality, we have decided to record it
for posterity.

Proof that (2.15.2) + (2.15.3)⇒ (2.15.4). Let n ≥ 2 and let G ∊ V′ be an n-gerbe. By assumption
(2.15.2), all that remains to be shown is that if Γ(V;G) = ∅, then Γ(U;�∗G) = ∅.

Write A ∊ V for the banding of G; by assumption (2.15.3), we have that A ∊ V′. Let

�G ∊ Hn+1(V;A) and ��∗G ∊ Hn+1(U;�∗A)

denote the cohomology classes corresponding to G and �∗G via Theorem 1.15. Since Γ(V;G)
is empty, Corollary 1.16 implies that �G is nonzero. Again by Corollary 1.16, the claim that
Γ(U;�∗G) = ∅ is equivalent to the claim that the class ��∗G is nonzero. To see that ��∗G ≠ 0, by
applying assumption (2.15.2) to the (n + 1)-gerbe K(A, n + 1), we see that the natural pullback
map of abelian groups

(2.18) Hn+1(V;A)→ Hn+1(U;�∗A)

is an isomorphism. Since the isomorphism (2.18) carries �G to ��∗G and �G ≠ 0, we conclude
that ��∗G ≠ 0 as required.

Proof that (2.15.1) + (2.15.4)⇒ (2.15.5). Using the fact that every object of V′ is truncated, we
proceed by induction on the integer n ≥ 1 such that F is n-truncated. The base case n = 1
is satis�ed by assumption (2.15.1). For the induction step, assume that we know the claim for
n-truncated objects ofV′, and let F ∊ V′ be an (n+ 1)-truncated object. Since pullback functors
commute with n-truncations, we have a commutative square

(2.19)
Γ(V;F) Γ(U;�∗(F))

Γ(V; τ≤n F) Γ(U;�∗(τ≤n F)) .

cF

cτ≤n F

By the inductive hypothesis, the morphism cτ≤n F is an equivalence. Hence it su�ces to show
that the square (2.19) is a pullback square. If Γ(V; τ≤n F) = ∅, then by the inductive hypotheses
all spaces appearing in (2.19) are empty, so this is clear. So assume that Γ(V; τ≤n F) ≠ ∅; then
we need to show that for every point of Γ(V; τ≤n F), the induced map on �bers

�b
(
Γ(V;F)→ Γ(V; τ≤n F)

)
�b

(
Γ(U;�∗F)→ Γ(U;�∗ τ≤n F))

)�F,n
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is an equivalence.
Given such a point ∗→ τ≤n F of Γ(V; τ≤n F), write

τ≥n+1 F ≔ �b(F → τ≤n F) .

Since F is (n + 1)-truncated, τ≥n+1 F is (n + 1)-truncated and n-connected. That is, τ≥n+1 F is
an (n + 1)-gerbe. Since the global section functors and pullback functors commute with �nite
limits, we see that there is a commutative square

Γ(V; τ≥n+1 F) �b
(
Γ(V;F)→ Γ(V; τ≤n F)

)

Γ(U;�∗ τ≥n+1 F) �b
(
Γ(U;�∗(F))→ Γ(U;�∗ τ≤n F))

)
,

∼

�F,n

∼

where the horizontal maps are equivalences and the left-hand vertical map is the natural map.
Since τ≥n+1 F is an (n + 1)-gerbe, assumption (2.15.4) implies that the left-hand vertical map is
an equivalence. Thus �F,n is also an equivalence, as desired.

To apply Proposition 2.15, we �rst axiomatize the properties that Σ-torsion sheaves satisfy.

2.20 De�nition. Let X be a qcqs scheme. A étale coe�cient subcategory is a full subcategory
S(X) ⊂ Xét satisfying the following properties:
(2.20.1) The subcategory S(X) ⊂ Xét is closed under �nite limits.

(2.20.2) Every object of S(X) is truncated.

(2.20.3) For each integer n ≥ 0 and object F ∊ S(X), we have τ≤n(F) ∊ S(X).

(2.20.4) For each integer n ≥ 2, and n-gerbe G ∊ S(X), the banding of G is in S(X).
An étale coe�cient system S∶ Schqcqs,op → Cat∞ is a subfunctor of the functor

(−)ét ∶ Schqcqs,op → Cat∞

such that for each qcqs scheme X, the subcategory S(X) ⊂ Xét is an étale coe�cient subcategory.

2.21 Example. In light of Proposition 1.18, the following are étale coe�cient systems:

(2.21.1) S(X) ≔ Xét,<∞ is the∞-category of truncated étale sheaves on X.

(2.21.2) Σ is a set of primes and S(X) is the∞-category of Σ-torsion étale sheaves on X.
The following are the key consequences of Proposition 2.15:

2.22 Corollary. Let �∶ U → V be a morphism of qcqs schemes. Let S(V) ⊂ Vét be an étale
coe�cient subcategory. Assume that the following conditions are satis�ed:

(2.22.1) If G ∊ S(V) is 1-truncated, then the natural map Γét(V;G) → Γét(U;�∗G) is an equiva-
lence.

(2.22.2) For each abelian group object A of S(V)≤0 and integer i ≥ 0, the natural map

Hi
ét(V;A)→ Hi

ét(U;�
∗A)

is an isomorphism.
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Then for each F ∊ S(V), the natural map Γét(V;F)→ Γét(U;�∗F) is an equivalence.

Proof. The claim follows from Proposition 2.15; in light of Remark 2.16, hypotheses (2.15.1)–
(2.15.3) are satis�ed by our assumptions and the de�nition of a coe�cient subcategory.

2.23 De�nition. Let S∶ Schqcqs,op → Cat∞ be an étale coe�cient system. We say that a com-
mutative square of qcqs schemes

(2.24)
W Y

X Z

f̄

ḡ g

f

satis�es basechange with S-coe�cients if for each F ∊ S(Y), the exchange transformation

f∗g∗(F)→ ḡ∗f̄∗(F)

is an equivalence.

2.25 Corollary (reducing to strictly henselian local rings). Let S∶ Schqcqs,op → Cat∞ be an étale
coe�cient system and consider a commutative square (2.24) of qcqs schemes. Assume that for each
geometric point x → X with image z → Z, the following conditions are satis�ed:

(2.25.1) If G ∊ S(Y(z)) is 1-truncated, then the natural map Γét(Y(z);G) → Γét(W(x); p̄∗G) is an
equivalence.

(2.25.2) For each abelian group object A of S(Y(z))≤0 and integer i ≥ 0, the natural map

Hi
ét(Y(z);A)→ Hi

ét(W(x); p̄∗A)

is an isomorphism.

Then the square (2.24) satis�es basechange with S-coe�cients.

Proof. Combine Corollaries 2.14 and 2.22.

2.26Remark. The results of §§2.1 to 2.3 holdwith étale∞-topoi of schemes replaced by arbitrary
∞-topoi. To formulate these results in this more general setting, one replaces ‘geometric point’
by ‘point of an∞-topos’, ‘étale∞-topos of the spectrum of a strictly henselian local ring’ with
‘local∞-topos’ (see [SGA 4ii, Exposé VI, 8.4.6; 5, §6.2; 30, §C.3.6; 31]), and the ‘qcqs’ assumption
by the assumption that the ∞-topos is ‘bounded coherent’ (see [SAG, De�nitions A.2.0.12 &
A.7.1.2]). We have taken care to write the proofs so that they work verbatim in this more general
setting. However, in order to keep the arguments reasonably familiar to an algebro-geometric
audience, we decided to formulate the results of this section for étale∞-topoi of schemes.

2.4 Nonabelian basechange theorems
We now use the results of §2.3 to deduce a number of nonabelian basechange theorems from
results already available in the literature. The �rst two are the nonabelian re�nements of the
smooth and proper basechange theorems.
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2.27 Recollection. A morphism of schemes f∶ X → Z is prosmooth if there exists a co�ltered
diagramX∙ ∶ I → SchZ of smoothZ-schemeswith a�ne transitionmaps such thatX ≅ limi∊I Xi
and f is the projection.

2.28 Example. Let f∶ X → Z be a prosmooth morphism of schemes, and let x → X be a
geometric point with image z → Z. Then the induced morphism on spectra of strictly local
schemes X(x) → Z(z) is prosmooth.

For the next two results, let

(2.29)
W Y

X Z

f̄

ḡ
⌟

g

f

be a pullback square of qcqs schemes.

2.30 Corollary (nonabelian smooth basechange). Write Σ for the set of primes invertible on Z. If
f is prosmooth, then the pullback square (2.29) satis�es basechange with Σ-torsion coe�cients.

Proof. It su�ces to show that the étale coe�cient system of Σ-torsion sheaves satis�es the hy-
potheses of Corollary 2.25. Hypothesis (2.25.1) follows from Giraud’s smooth basechange for
sheaves of groupoids [19, Chapitre VII, Théorème 2.1.2]. Hypothesis (2.25.2) is the classical
smooth basechange theorem [SGA 4iii, Exposé XII, Corollaire 1.2].

2.31 Corollary (nonabelian proper basechange). If g is proper, then the pullback square (2.29)
satis�es basechange with torsion coe�cients.

Proof. It again su�ces to show that the étale coe�cient system of torsion sheaves satis�es the
hypotheses of Corollary 2.25. Hypothesis (2.25.1) follows from Giraud’s proper basechange for
sheaves of groupoids [19, Chapitre VII, Théorème 2.2.2; 29, Exposé XX, Théorème 2.1.2],3 and
hypothesis (2.25.2) is the classical result [SGA 4iii, Exposé XII, Théorème 5.1].

2.32 Remark. Though the speci�c reduction to a more simple case di�ers, the key idea in our
proof of nonabelian proper basechange is the same as in Chough’s proof [11, Theorem 1.2].
A combination of Chough’s work and the proof of the basechange theorem for oriented �ber
products of bounded coherent∞-topoi [5, Theorem 7.1.7; 29, Exposé XI, Théorème 2.4] inspired
our proofs of Proposition 2.15 and Corollaries 2.30 and 2.31.

Now we explain the nonabelian extensions of the Gabber–Huber a�ne analogue of the
proper basechange theorem [18; 27] and the Fujiwara–Gabber rigidity theorem [17, Corollary
6.6.4].4 To state these results, we �x the following notation.

2.33 Notation. Let (A, I) be a henselian pair and f∶ X → Spec(A) a proper morphism. Write

Z ≔ Spec(A∕I) ×
Spec(A)

X ,

3Giraud’s result makes noetherianity asssumptions; [29, Exposé XX, Théorème 2.1.2] explains why these assumptions
are unnecessary.

4The Fujiwara–Gabber theorem generalizes a result of Elkik [14, p. 579].
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and write i∶ Z ↪ X for the inclusion. Let U ⊂ Spec(A) be an open containing Spec(A) ∖ V(I).
Write A∧ for the I-adic completion of A, and write

U∧ ≔ U ×
Spec(A)

Spec(A∧) .

Write �∶ U∧ → U for the projection.

2.34 Corollary (nonabelian a�ne analogue of proper basechange). Let (A, I) be a henselian pair,
and keep Notation 2.33. Then:

(2.34.1) For every torsion sheaf of spaces F ∊ Xét, the natural map Γét(X;F) → Γét(Z; i∗F) is an
equivalence.

(2.34.2) The induced map of pro�nite spaces Π̂ét
∞(Z)→ Π̂ét

∞(X) is an equivalence.

Proof. First note that (2.34.2) follows from (2.34.1) by restricting to constant sheaves. For (2.34.1),
by Corollary 2.22 applied to the morphism i, it su�ces to prove the claim when F is 1-truncated,
as well for abelian cohomology with torsion coe�cients. These results are the content of [18, §5,
Corollary 1].

2.35 Remark. The most typical formulation of the a�ne analogue of proper basechange as-
sumes that X = Spec(A) and Z = Spec(A∕I).

The following removes the noetherianity and characteristic 0 assumptions from [1, Theorem
4.2.2]. See also [2, §§6.2 & 6.3].

2.36 Corollary (nonabelian Fujiwara–Gabber rigidity). Let (A, I) be a henselian pair with I ⊂ A
�nitely generated, and keep Notation 2.33. Then:

(2.36.1) For every torsion sheaf of spaces F ∊ Uét, the natural map Γét(U;F)→ Γét(U∧;�∗F) is an
equivalence.

(2.36.2) The induced map of pro�nite spaces Π̂ét
∞(U∧)→ Π̂ét

∞(U) is an equivalence.

Proof. Again, (2.36.2) follows from (2.36.1) by restricting to constant sheaves. For (2.36.1), by
Corollary 2.22 applied the morphism �, it su�ces to prove the claim when F is 1-truncated, as
well for abelian cohomology with torsion coe�cients. The 1-truncated case is the content of
[29, Exposé XX, Théorème 2.1.2]. The abelian cohomology statement is well-known; see, for
example, [7, Theorem 6.11].

2.37 Remark. The most typical formulation of the Fujiwara–Gabber theorem assumes that

U = Spec(A) ∖ V(I) and U∧ = Spec(A∧) ∖ V(IA∧) .

2.38 Remark (basechange for torsion sheaves of spectra). Corollaries 2.30, 2.31, 2.34, and 2.36
imply the same results for (Σ-)torsion sheaves of spectra. Let us brie�y explain how. Let Σ be a
set of prime numbers. We say that a spectrum E is Σ-�nite if for each n ∊ Z, the space Ω∞E[n]
is a Σ-�nite space. (Note that a Σ-�nite spectrum is necessarily bounded-above.) Given this, if
X is a qcqs scheme, we can modify De�nitions 1.8 and 1.9 to make sense for étale sheaves of
spectra. Let F be an étale sheaf of spectra on X. We say that F is Σ-torsion lisse if there is an
étale cover {U1,… , Un} of X such that for each i, the restriction F|Ui is constant with value a
Σ-�nite spectrum. We say that F is Σ-torsion constructible if there exists a �nite poset P and a
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strati�cation {Xp}p∊P of X by qcqs locally closed subschemes such that for each p ∊ P, the étale
sheaf of spectra F|Xp is Σ-torsion lisse. We say that F is Σ-torsion if F is truncated and F can be
written as the colimit of a �ltered diagram of Σ-torsion constructible étale sheaves of spectra.

Write Sp(Xét) for the stable ∞-category of étale sheaves of spectra on X. The ∞-category
Sp(Xét) coincides with the stabilization of the∞-topos Xét. By the functoriality of stabilization
in left exact functors, pullback along a morphism of schemes commutes with shifts and the un-
derlying space functor Ω∞

X ∶ Sp(Xét)→ Xét. Moreover, the functor Ω∞
X preserves sifted colimits

[HTT, Corollary 5.2.6.18]. Hence if F ∊ Sp(Xét) is a Σ-torsion lisse, Σ-torsion constructible, or Σ-
torsion étale sheaf of spectra, then for each n ∊ Z, the étale sheaf of spacesΩ∞

X F[n] has the same
property. As a result, a direct application of [20, Proposition 4.7] shows that Corollaries 2.30,
2.31, 2.34, and 2.36 imply the same results for (Σ-)torsion sheaves of spectra.

2.5 Application: invariance under specialization
As an immediate application of the results of §2.4, we see that for a proper morphism X → S,
the pro�nite étale homotopy types of the geometric �ber Xs and the ‘Milnor ball’ X(s) agree:

2.39Corollary. Letf∶ X → S be a propermorphism between qcqs schemes and s → S a geometric
point. Then the closed immersion i∶ Xs ↪ X(s) induces an equivalence

Π̂ét
∞(Xs)⥲ Π̂ét

∞(X(s)) .

Proof. Apply Corollary 2.34 to the henselian pair (Osh
S,s,ms) and the morphism X(s) → S(s).

2.40 Remark. Corollary 2.39 removes the noetherianity hypotheses from [16, Proposition 8.6].

There is a dual version of Corollary 2.39 for prosmooth morphisms. For this, we need a few
lemmas.

2.41 Lemma. LetT be an irreducible topological space with generic point �. Also write �∶ {�}↪ T
for the inclusion of the generic point. Then:

(2.41.1) There is a natural identi�cation �∗ = Γ∗Sh(T) of functors Spc→ Sh(T).

(2.41.2) If F ∊ Sh(T) is a constant sheaf, then the unit F → �∗�∗(F) is an equivalence.

Proof. First note that (2.41.2) is an immediate consequence of (2.41.1). For (2.41.1), notice that
since T is irreducible and � is the generic point, every nonempty open of T contains �. Thus, by
the de�nition of the pushforward, we see that for each K ∊ Spc and open U ⊂ T, we have

�∗(K)(U) = {K, U ≠ ∅
∗, U = ∅ .

Since �∗(K) is a sheaf whose restriction to nonempty opens of T is the constant presheaf, we
deduce that �∗(K) is the constant sheaf at K.

2.42 Recollection (schemes with strictly henselian local rings). A scheme X is everywhere
strictly local if for each point x ∊ X, the local ring OX,x is strictly henselian. In this case, all
residue �elds of X are separably closed. Moreover, the natural geometric morphism of∞-topoi

Xét → Xzar
is an equivalence [42, Corollary 2.5].
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The following result can be seen as a dual of Proposition 2.2.

2.43 Lemma. Let S be an irreducible everywhere strictly local scheme with generic point �. Note
that � is a geometric point, and also write �∶ Spec(κ(�))→ S for the inclusion of the generic point.
Then:

(2.43.1) The functor �∗ ∶ Spec(κ(�))ét → Sét is equivalent to the constant sheaf functor.

(2.43.2) If F ∊ Sét is a constant sheaf, then the unit F → �∗�∗(F) is an equivalence.

Proof. Since S is everywhere strictly local, the natural geometric morphism Sét → Szar is an
equivalence. So it su�ces to prove the claim where we replace étale ∞-topoi by Zariski ∞-
topoi. By assumption, the underlying topological space of S is irreducible. Hence the claim is an
immediate consequence of Lemma 2.41.

Here is the promised dual of Corollary 2.39:

2.44 Proposition. Let S be an irreducible everywhere strictly local scheme, write Σ for the set of
prime numbers invertible on S, and denote the inclusion of the generic point by �∶ Spec(κ(�))→ S.
Let f∶ X → S be a prosmooth morphism, and write i∶ X� → X for the inclusion of the generic
(geometric) �ber of f. Then:
(2.44.1) For every constant Σ-torsion étale sheaf F on X, the unit F → i∗i∗(F) is an equivalence.

(2.44.2) For every constant Σ-torsion étale sheaf F on X, the natural map

Γét(X�;F)→ Γét(X; i∗F)

is an equivalence.

(2.44.3) The morphism i induces an equivalenceΠét
∞(X�)∧Σ ⥲ Πét

∞(X)∧Σ .
Proof. First note that (2.44.1) immediately implies (2.44.2) and (2.44.3). Since every constant
étale sheaf on X is pulled back from S, write F ≃ f∗(G) for a constant étale sheaf G on S. We
need to show that the unit map

f∗(G)→ i∗i∗f∗(G) ≃ i∗f∗��∗(G)

is an equivalence. Since �∗(G) is a Σ-torsion sheaf and f is prosmooth, applying nonabelian
smooth basechange (Corollary 2.30) to the pullback square

X� Spec(κ(�))

X S
i

f�

�

f

shows that
i∗f∗��∗(G) ≃ f∗�∗�∗(G) .

We deduce that the map
f∗(G)→ i∗i∗f∗(G) ≃ f∗�∗�∗(G)

in question may be identi�ed with applying f∗ to the unit map G → �∗�∗(G). Since S is every-
where strictly local, Lemma 2.43 shows that the latter map is an equivalence; hence the claim
follows.
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We conclude this subsection by using Corollary 2.39 and Proposition 2.44 to show that for
a smooth proper morphism f∶ X → S, the étale homotopy types of the Milnor balls X(s) and
geometric �bers Xs are invariant under specialization. First let us recall a bit about étale special-
izations and de�ne the specialization morphism.

2.45 Recollection (étale specializations). Let S be a scheme and let s → S and t → S be
geometric points. An étale specialization s ⇜ t is a morphism of S-schemes S(t) → S(s). See [STK,
Tag 0GJ2] for more background.

To simplify things, we say ‘let �∶ S(t) → S(s) be an étale specialization’ to mean that the
geometric points s → S and t → S as well as the morphism � have been speci�ed.

2.46 Notation. Let f∶ X → S be a morphism of schemes and let �∶ S(t) → S(s) be an étale
specialization. We write �̄∶ X(t) → X(s) for the basechange of � along f.

2.47 De�nition (specialization morphism). Let S be a scheme, let �∶ S(t) → S(s) be an étale
specialization, and let f∶ X → S be a morphism of schemes. The morphism �̄∶ X(t) → X(s)
induces a specialization map

Π̂ét
∞(X(t))→ Π̂ét

∞(X(s))
on the étale homotopy types of the Milnor balls of f. If f is proper, the specialization map

sp� ∶ Π̂
ét
∞(Xt)→ Π̂ét

∞(Xs)

is the unique map making the square

Π̂ét
∞(Xt) Π̂ét

∞(X(t))

Π̂ét
∞(Xs) Π̂ét

∞(X(s)) .

∼

sp� Π̂ét∞(�̄)

∼

commute. Here, the horizontal maps are induced by the inclusions Xt ↪ X(t) and Xs ↪ X(s);
since f is proper, Corollary 2.39 shows that they are equivalences.

In order to prove invariance under specialization, we need the following technical observa-
tion:

2.48 Lemma. Let (R,m) be local ring such that the residue �eld R∕m is separably closed. Let
K be a �eld and let x∶ Spec(K) → Spec(R) be a morphism with image x ∊ Spec(R) such that
the induced �eld extension κ(x) ⊂ K on residue �elds is a separable closure. Then there exists a
factorization of x as a composite

Spec(K) Spec(V) Spec(R)j �

with the following properties:

(2.48.1) The ring V is an everywhere strictly local, local integral domain with maximal ideal p.

(2.48.2) The map � is induced by a local homomorphism R → V and the induced �eld extension
R∕m↪ V∕p is an isomorphism.
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(2.48.3) The image of j is the generic point of Spec(V) and the induced map Frac(V) → K is an
isomorphism.

Proof. Let q ⊂ R denote the prime ideal corresponding to the image of x. By replacing R by
R∕q, we may assume that R is a domain and x has image the generic point of Spec(R). Thus the
extension Frac(R) → K is a separable closure. Let R′ be the integral closure of R in K. Then R′
is normal and the induced �eld extension Frac(R′)↪ K is an isomorphism. Now pick a prime
ideal a ⊂ R′ lying above the maximal ideal of R. Since R∕m is separably closed, [42, Proposition
2.6] shows that the local ring V = R′a is everywhere strictly local. It follows that the factorization

R → V → K

satis�es the desired criteria.

2.49 Proposition (invariance under specialization). Let f∶ X → S be a smooth and proper
morphism of schemes and let Σ be the set of primes invertible on S. Then for any étale specialization
�∶ S(t) → S(s) the specialization maps

Π̂ét
∞(�̄)∶ Π̂ét

∞(X(t))→ Π̂ét
∞(X(s)) and sp� ∶ Π̂

ét
∞(Xt)→ Π̂ét

∞(Xs)

become equivalences after Σ-completion.

Proof. Write �t ∶ t → S(s) for the composite

t S(t) S(s) .
�

By the de�nition of the specialization maps, it su�ces to show that the morphism

Xt X(t) X(s)
�̄

obtained by pulling back �t along f∶ X → S induces an equivalence on Σ-complete étale homo-
topy types. Use Lemma 2.48 to factor �t to produce a commutative diagram

t Spec(V) Spec(V∕m)

S(s) s ,

j

�t �

i1

≀

i2

where V, j, and � satisfy properties (2.48.1)–(2.48.3), and i1 and i2 denote the inclusions of the
closed points. We now apply the functor Π̂ét

∞(− ×S X)∧Σ to the above diagram. Since X is proper
over S, by Corollary 2.39 this functor inverts i1 and i2. Hence it also inverts �. Furthermore,
since Spec(V) is irreducible and everywhere strictly local, t is the generic point, and X is smooth
over S, Proposition 2.44 shows that this functor inverts j. We conclude that it also inverts �t, as
desired.

2.50 Remark. Proposition 2.49 removes numerous hypotheses from [4, Corollary 12.13].
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3 Application: arc-descent
Introduced by Bhatt and Mathew in [7], the arc-topology is a very �ne Grothendieck topology
(�ner than the v-topology) on the category of qcqs schemes. In practice, many invariants that
a priori only satisfy étale descent can be shown to satisfy arc-descent (see [7, §5]). For exam-
ple, étale cohomology with torsion coe�cients satis�es arc-descent. In this section, we prove a
nonabelian version of this result: we show that the pro�nite étale homotopy type

Π̂ét
∞ ∶ Schqcqs → Pro(Spcπ)

is a hypercomplete cosheaf for the arc-topology (see Theorem 3.17).
Wequickly recall the relevant de�nitions in §3.1. In §3.2,we prove that Π̂ét

∞ is a hypercomplete
arc-cosheaf. Besides the general machinery developed in [7], the key ingredient for our proof is
the nonabelian proper basechange theorem.

3.1 Reminders on the v-topology and the arc-topology
We begin by recalling the de�nitions of the v- and arc-topologies.

3.1 De�nition (cosheaves). Let (S, �) be an∞-site and C an∞-category. We say that a functor
F∶ S→ C is a �-cosheaf if the functor Fop ∶ Sop → Cop is a �-sheaf. Equivalently,F is a �-cosheaf
if F sends �-covering sieves in S to colimit diagrams in C. We say that F is a hypercomplete �-
cosheaf if Fop is a hypercomplete �-sheaf.

3.2 Notation. For a scheme S, write SchqcqsS ⊂ SchS for the full subcategory of S-schemes
spanned by those S schemes that are qcqs over Spec(Z).

3.3 Recollection. Amorphism f∶ Y → X of qcqs schemes is an arc-cover if for any valuation
ring V of rank ≤ 1 and any morphism Spec(V)→ X, there exists a faithfully �at map V →W of
rank ≤ 1 valuation rings and a morphism Spec(W)→ Y that �ts into a commutative square

Spec(W) Y

Spec(V) X .

For a qcqs scheme S, arc-covers generate a topology on the category SchqcqsS that we call the
arc-topology.

Similarly, f∶ Y → X is called a v-cover, if for every valuation ring V (not necessarily of rank
≤ 1) and morphism Spec(V) → X, there is a faithfully �at map of valuation rings V → W and
commutative square as above. The resulting topology on SchqcqsS is called the v-topology.

3.4. Every v-cover is an arc-cover [7, Proposition 2.1]. Also note that by the valuative criterion
for properness, every proper surjection of qcqs schemes is a v-cover.

3.5. In general, the arc-topology is strictly �ner than the v-topology [7, Corollary 2.9]. If X is
noetherian, then every arc-cover f∶ Y → X is also a v-cover [7, Proposition 2.6]. Moreover, in
this case, f is also a cover for Voevodsky’s h-topology [44; 45]. See [39, Theorem 2.8].
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Bhatt and Mathew gave a convenient criterion for verifying that a v-sheaf is an arc-sheaf in
terms of excision (see Theorem 3.16). In the remainder of this subsection, we recall the relevant
terminology to state this criterion. In §3.2, we make use of this result to deduce that the pro�nite
étale homotopy type satis�es arc-descent.

First, this criterion requires the v-sheaf to be �nitary:

3.6 Recollection. Let C be an∞-category with �ltered colimits and let S be a scheme. A functor

F∶ Schqcqs,opS → C

is �nitary if F carries limits of co�ltered diagrams of S-schemes with a�ne transition maps to
�ltered colimits in C.

If C is an∞-category with co�ltered limits, we say that a functor F∶ SchqcqsS → C is �nitary
if the corresponding functor Fop ∶ Schqcqs,opS → Cop is �nitary.

3.7 Proposition. The protruncated and pro�nite étale homotopy types

Πét
<∞ ∶ Schqcqs → Pro(Spc<∞) and Π̂ét

∞ ∶ Schqcqs → Pro(Spcπ)

are �nitary functors.

Proof. First notice that pro�nite completion preserves co�ltered limits, so it su�ces to prove
the claim for the protruncated étale homotopy type. For this, note that by [SGA 4ii, Exposé VII,
Lemme 5.6; 12, Lemma 3.3], the functor

(−)ét ∶ Schqcqs → RTop∞

is �nitary. By [5, Corollary 4.3.7] and [SAG, Corollary A.8.3.3], the protruncated shape preserves
limits of co�ltered diagrams of bounded coherent∞-topoi and coherent geometric morphisms.
The claimnow follows from the facts that the étale∞-topos of a qcqs scheme is bounded coherent
[5, Proposition 3.7.3], and that for every morphism between qcqs schemes f∶ X → Y, the
induced geometric morphism f∗ ∶ Xét → Yét is coherent [5, Example 3.7.5].

A useful fact about �nitary functors is that they are determined by their values on �nitely pre-
sented schemes:

3.8 Recollection [STK, Tag 09MV]. Let S be a quasiseparated scheme. Then every object of
SchqcqsS can be written as the limit of a co�ltered diagram of �nitely presented S-schemes with
a�ne transition maps.

3.9 Observation (equivalences of �nitary functors). Let C be an∞-category with �ltered col-
imits and let S be a quasiseparated scheme. In light of Recollection 3.8, given �nitary functors

F, G∶ Schqcqs,opS → C ,

a natural transformation �∶ F → G is an equivalence if and only if � is an equivalence when
restricted to the full subcategory spanned by the �nitely presented S-schemes.

Second, arc-sheaves automatically satisfy excision forMilnor squares:
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3.10 Recollection (Milnor excision). A commutative square of schemes

Z X

Z′ X′

f

i

is aMilnor square if it is bicartesian, f is a�ne, and i is a closed immersion. Given a scheme S,
a functor

F∶ Schqcqs,opS → C
satis�esMilnor excision if F carries Milnor squares to pullback squares in C.

We also recall the following weakening of Milnor excision:

3.11 Recollection (aic-v-excision). Let C be an∞-category and S a scheme. A functor

F∶ Schqcqs,opS → C

satis�es aic-v-excision if for any absolutely integrally closed valuation ring V and p ∊ Spec(V)
the square

F(Spec(V)) F(Spec(Vp))

F(Spec(V∕p)) F(Spec(κ(p))

is a pullback in C.

3.12. We say that a functor F∶ SchqcqsS → C satis�esMilnor excision (resp., aic-v-excision) if Fop
satis�es Milnor excision (resp., aic-v-excision).

Third, we need the target∞-category to be su�ciently nice.

3.13De�nition. An∞-categoryC is compactly generated by cotruncated objects ifC is compactly
generated and every compact object of C is cotruncated (i.e., truncated in Cop).

3.14 Example. The∞-category Pro(Spcπ)op ≃ Ind(Spcopπ ) is compactly generated by cotrun-
cated objects.

3.15 Example. If C is a compactly generated∞-category, then for each n ≥ 0, the subcategory
C≤n ⊂ C is compactly generated by cotruncated objects.

Finally, the promised characterization of arc-descent in terms of v-descent and excision:

3.16 Theorem [7, Theorem 4.1]. Let C be an∞-category that is compactly generated by cotrun-
cated objects, and let S be a qcqs scheme. Let F∶ Schqcqs,opS → C be a �nitary v-sheaf. Then the
following are equivalent:

(3.16.1) F is an arc-sheaf.

(3.16.2) F satis�es Milnor excision.

(3.16.3) F satis�es aic-v-excision.
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3.2 arc-descent for the étale homotopy type
In this subsection, we use Theorem 3.16 to prove:

3.17 Theorem. The functor

Π̂ét
∞(−)∶ Schqcqs → Pro(Spcπ)

is a �nitary hypercomplete arc-cosheaf. In other words, for any semi-simplicial arc-hypercovering
p∙ ∶ U∙ → X the induced diagram Π̂ét

∞(U∙)→ Π̂ét
∞(X) is a colimit diagram in Pro(Spcπ).

We �rst verify that the pro�nite étale homotopy type satis�es aic-v-excision. This follows
from the fact that the∞-category of constructible étale sheaves of spaces satis�es aic-v-excision.

3.18 Recollection. IfV is an absolutely integrally closed valuation ring, then every local ring of
V is strictly henselian [7, Lemma 5.3]. That is, Spec(V) is everywhere strictly local in the sense
of Recollection 2.42.

3.19 Notation. Given a qcqs scheme X, write Xcons
ét ⊂ Xét for the full subcategory spanned by

the constructible étale sheaves of spaces in the sense of De�nition 1.9.

3.20 Recollection (sheaves on �nite posets). Let P be a poset. Recall that the Alexandro� topol-
ogy on the set P is the topology where the open subsets are the subsets that are upwards-closed
under the partial order. If P is �nite, then there is a natural equivalence

Sh(P) ≃ Fun(P, Spc) .

See [5, 8.1.1].

3.21 Lemma. Let V be an absolutely integrally closed valuation ring of �nite rank n. Then there
is a natural equivalence of∞-topoi

Spec(V)ét ≃ Fun({0 <⋯ < n}, Spc) .

Moreover, this equivalence restricts to an equivalence

Spec(V)consét ≃ Fun({0 <⋯ < n}, Spcπ) .

Proof. Since the natural geometric morphism Spec(V)ét → Spec(V)zar is an equivalence, it
su�ces to prove the claim for Zariski ∞-topoi. The claim now follows from the fact that the
Zariski topological space of Spec(V) is isomorphic to the poset {0 <⋯ < n} equipped with the
Alexandro� topology and Recollection 3.20.

3.22 Corollary. The functor (−)consét ∶ Schqcqs,opS → Cat∞ satis�es aic-v-excision.

Proof. Since (−)consét is a �nitary functor, by [7, Lemma 2.22] it su�ces to check aic-v-excision
for �nite rank absolutely integrally closed valuation rings. So let V be an absolutely integrally
closed valuation ring of �nite rank n, let p ∊ Spec(V), and write i for the rank of the valuation
ring V∕p. By Lemma 3.21, the square

Spec(V)consét Spec(Vp)consét

Spec(V∕p)consét Spec(κ(p))consét
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is given by applying Fun(−, Spcπ) to the pushout square

{i} {i <⋯ < n}

{0 <⋯ < i} {0 <⋯ < n}

in Cat∞. Therefore it is a pullback, as desired.

3.23 Proposition. Let S be a qcqs scheme and let F ∊ Sét be a constructible sheaf. Then the functor

Γét(−;F)∶ Schqcqs,opS → Spc , [f∶ X → S]↦ Γét(X;f∗F)

is a �nitary arc-hypersheaf.

Proof. Since there exists an integer n ≥ 0 such that F is n-truncated, Γét(−;F) takes values in
Spc≤n; hence it su�ces to see that Γét(−;F) is an arc-sheaf. The functor Γét(−;F) is �nitary, so
by Theorem 3.16 it su�ces to see that Γét(−;F) satis�es aic-v-excision and v-descent. Since

Γét(X;f∗F) = MapXconsét
(∗, f∗F)

and mapping spaces in pullbacks of∞-categories are computed as pullbacks of the mapping
spaces, aic-v-excision is an immediate consequence of Corollary 3.22. For v-descent, we note
that the proof of [7, Proposition 5.2] verbatim applies in our situation. The only non-geometric
input that is used there is the proper basechange theorem; in the present nonabelian situation,
we appeal to Corollary 2.31.

Proof of Theorem 3.17. Since colimits in

Pro(Spcπ) ≃ Funlex(Spcπ, Spc)op

are computed as pointwise limits in Funlex(Spcπ, Spc), the claim is equivalent to showing that
if F ∊ Xét is a constant sheaf at a π-�nite space, then the natural map

Γét(X;F)→ lim
[n]∊�inj

Γét(Un;p∗nF)

is an equivalence. This follows from Proposition 3.23.

3.24 Remark (arc-descent for ∞-categories of constructible sheaves). Let Λ be a �nite ring.
Bhatt–Mathew showed that the functor X ↦ Dcons(Xét; Λ) that carries a qcqs scheme to its
constructible derived∞-category is an arc-hypersheaf [7, Theorem 5.13]. The key ingredients
of the proof are: aic-v-excision, proper basechange, the preservation of constructibility under
proper pushforwards, and Lurie’s general result about basechange and descent [HA, Corollary
4.7.5.3]. In the nonabelian setting, the only part of this argument that is currently unavailable is
that pushforwards along proper morphisms preserve constructibility. Once this is proven, it will
also follow that the functor X ↦ Xcons

ét satis�es arc-hyperdescent.

31

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.7.5.3
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.7.5.3


4 Application: Künneth formulas
Let k be a �eld of characteristic p ≥ 0. In this section, we prove Künneth formulas for the étale
homotopy type (possibly completed away from p). For example, if k is separably closed we �rst
show that for qcqs k-schemes X and Y the natural map of prime-to-p étale homotopy types

Πét
∞(X ×k Y)∧p′ ⟶ Πét

∞(X)∧p′ × Π
ét
∞(Y)∧p′

is an equivalence (Theorem 4.12). At least when X and Y are �nite type, this was already proven
by Orgogozo in 2003 [37, Corollaire 4.9]. Orgogozo’s result seems to not be very widely-known
(see [35]); one goal of this section is to disseminate it. From this, we derive some relative Künneth
formulas overmore general �elds (Corollaries 4.26 and 4.27). These also implyKünneth formulas
for symmetric powers (see Remarks 4.29 and 4.30).

In §4.1, we start by proving a general result relating nonabelian basechange theorems and
Künneth formulas over separably closed �elds. Subsection 4.2 uses this result to prove the Kün-
neth formula for the prime-to-p étale homotopy type over separably closed �elds and derives
some consequences (e.g.,A1-invariance). In §4.3, we prove relative Künneth formulas over �elds
that are not separably closed.

4.1 Künneth formulas via basechange
The purpose of this subsection is to prove the following proposition. We are most interested in
the case whereW = X ×k Y.

4.1 Proposition (Künneth formula from basechange). Let Σ be a set of prime numbers, k a
separably closed �eld, and

(4.2)
W Y

X Spec(k)

f̄

ḡ g

f

a commutative square of qcqs schemes. Assume that for every constant Σ-torsion étale sheaf F on
Y, the exchange transformation f∗g∗(F) → ḡ∗f̄∗(F) is an equivalence. Then the natural map of
Σ-complete étale homotopy types

Πét
∞(W)∧Σ⟶ Πét

∞(X)∧Σ × Π
ét
∞(Y)∧Σ

is an equivalence.

The proof of Proposition 4.1 is an axiomatization of the proof of Chough’s Künneth formula
in the proper setting [11, Theorem 5.3]; see Example 4.9. To give the proof, we �rst recall the
basics about the composition product of prospaces and its relation to the product. For this, we
make crucial use of the identi�cation of prospaces as left exact accessible functors Spc → Spc
(Recollection 1.20).

4.3 Recollection [SAG, Remark E.2.1.2]. Composition of functors de�nes a monoidal structure
(A, B)↦ A◦B on the∞-category Fun(Spc, Spc)op. We call this monoidal structure the compo-
sition monoidal structure. Since the composition of two left exact accessible functors Spc→ Spc
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is again left exact and accessible, the composition monoidal structure restricts to a monoidal
structure on the full subcategory

Pro(Spc) ⊂ Fun(Spc, Spc)op .

4.4 Observation. The identity functor is both the unit for ◦ and the terminal object of Pro(Spc).
Hence given prospaces A and B, the universal property of the product provides a natural com-
parison map

c∶ A◦B → A × B .

This map is not generally an equivalence. However, in the setting of étale homotopy theory, it is
close to being an equivalence:

4.5 Example. Let Σ be a set of prime numbers and let X and Y be qcqs schemes. By a variant
of the proof of [5, Corollary 2.8.5], the natural map of prospaces

Πét
∞(X)◦Πét

∞(Y)⟶ Πét
∞(X) × Πét

∞(Y)

becomes an equivalence after protruncation, hence also after Σ-completion.

The next two observations relate the composition product to exchange transformations.

4.6 Observation. Let

(4.7)
W Y

X Spc

f̄∗

ḡ∗ ΓY,∗

ΓX,∗

be a commuative square of∞-topoi and geometric morphisms. Note that the exchange transfor-
mation associated to the square (4.7) de�nes a natural transformation

ΓX,∗Γ∗XΓY,∗Γ
∗
Y ΓX,∗ḡ∗f̄∗Γ∗Y ≃ ΓW,∗Γ∗W

ΓX,∗ Ex Γ∗Y

of left exact accessible functors Spc→ Spc. Let us write

"∶ Π∞(W)⟶ Π∞(X)◦Π∞(Y)

for the corresponding map in Pro(Spc).

4.8 Observation. The natural map Π∞(W)→ Π∞(X) × Π∞(Y) factors as a composite

Π∞(W) Π∞(X)◦Π∞(Y) Π∞(X) × Π∞(Y) .
" c

Proof of Proposition 4.1. Since k is separably closed, Spec(k)ét ≃ Spc. By Observation 4.8, the
natural map of prospaces Πét

∞(W)→ Πét
∞(X) × Πét

∞(Y) factors as a composite

Πét
∞(W) Πét

∞(X)◦Πét
∞(Y) Πét

∞(X) × Πét
∞(Y) .

" c

Since " is induced by the exchange transformation associated to the square (4.2), the assumptions
imply that themap " becomes an equivalence after Σ-completion. By Example 4.5, themap c also
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becomes an equivalence after Σ-completion. Thus c" becomes an equivalence after Σ-completion.
To conclude, note that [21, Example 2.17] shows that the natural map of Σ-pro�nite spaces

(Πét
∞(X) × Πét

∞(Y))∧Σ⟶ Πét
∞(X)∧Σ × Π

ét
∞(Y)∧Σ

is an equivalence.

We conclude this subsection with two examples. The �rst is due to Chough [11, Theorem
5.3]; we recapitulate it here for the sake of completeness.

4.9Example (Künneth formula, proper case). Let k be a separably closed�eld and letX andY be
qcqs k-schemes. If Y is proper, then the nonabelian proper basechange theorem (Corollary 2.31)
and Proposition 4.1 imply that the natural map of pro�nite spaces

Π̂ét
∞(X ×k Y)⟶ Π̂ét

∞(X) × Π̂ét
∞(Y)

is an equivalence.

4.10 Notation. Let p be a prime number or 0. We write p′ for the set of prime numbers di�erent
from p.

4.11 Example (prime-to-p Künneth formula, smooth case). Let k be a separably closed �eld of
characteristic p ≥ 0, and let X and Y be qcqs k-schemes. If X is smooth, then the nonabelian
smooth basechange theorem (Corollary 2.30) and Proposition 4.1 imply that the natural map of
p′-pro�nite spaces

Πét
∞(X ×k Y)∧p′ ⟶ Πét

∞(X)∧p′ × Π
ét
∞(Y)∧p′

is an equivalence.

4.2 Prime-to-p Künneth formulas, after Orgogozo
In this subsection, we prove the following Künneth formula, removing the smoothness hypoth-
esis from Example 4.11. We then derive some corollaries.

4.12 Theorem (prime-to-p Künneth formula). Let k be a separably closed �eld of characteristic
p ≥ 0, and let X and Y be qcqs k-schemes. Then the natural map of p′-pro�nite spaces

Πét
∞(X ×k Y)∧p′ ⟶ Πét

∞(X)∧p′ × Π
ét
∞(Y)∧p′

is an equivalence.

To prove this, we use the fact that every �nite type k-scheme admits a v-hypercover by regular
k-schemes:

4.13 Observation (alterations & v-hypercovers). Let k be a �eld and X a �nite type k-scheme.
By the theory of alterations [28, Theorem 1.1; 29, Exposé IX, Théorème 1.1; 26, Theorem 4.4; 43,
Theorem 1.2.5],X admits a proper surjection, in partiuclar a v-cover, from a regular k-scheme. By
repeatedly applying this result for iterated pullbacks, it follows that there exists a semi-simplicial
v-hypercover U∙ → X where each Un is a regular k-scheme.

4.14. Let K ⊃ k be an extension of �elds, and let X and Y be k-schemes. Then the natural
morphism of K-schemes (X ×k Y)K → XK ×K YK is an isomorphism.
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Proof of Theorem 4.12. Let kalg ⊃ k be an algebraic closure of k. Since the morphism of schemes
Spec(kalg) → Spec(k) is a universal homeomorphism and the étale homotopy type is topolog-
ically invariant, by basechanging to kalg and applying (4.14), we may assume without loss of
generality that k is algebraically closed. Furthermore, since the assignments

X ↦ Πét
∞(X ×k Y)∧p′ and X ↦ Πét

∞(X)∧p′ × Π
ét
∞(Y)∧p′

de�ne �nitary functors Schqcqsk → Pro(Spcp′), it su�ces to prove the claim in the case that X is
of �nite type over k (Observation 3.9).

In this case, since regular schemes over algebraically closed �elds are smooth, Observa-
tion 4.13 shows that X admits a semi-simplicial v-hypercover U∙ by smooth k-schemes. Using
the facts that the p′-complete étale homotopy type is a hypercomplete v-cosheaf (Theorem 3.17)
and geometric realizations of semi-simplicial objects are universal in Pro(Spcp′) [21, Corollary
1.18], we compute

Πét
∞(X ×k Y)∧p′ ≃ colim

[n]∊�opinj
Πét
∞(Un ×k Y)∧p′ (v-hyperdescent)

≃ colim
[n]∊�opinj

(
Πét
∞(Un)∧p′ × Π

ét
∞(Y)∧p′

)
(Example 4.11)

≃
⎛
⎜
⎝
colim
[n]∊�opinj

Πét
∞(Un)∧p′

⎞
⎟
⎠
× Πét

∞(Y)∧p′ (geometric realizations are universal)

≃ Πét
∞(X)∧p′ × Π

ét
∞(Y) . (v-hyperdescent)

We now deduce some consequences of Theorem 4.12. The �rst is the analogous Künneth
formula for prime-to-p étale fundamental groups.

4.15 Notation. Let Σ be a set of primes. Given a progroup G, write GΣ for the maximal pro-Σ
quotient of G.

4.16 Recollection (fundamental groups of completions). Let Σ be a set of primes. Let U be a
prospace that can be written as a �nite coproduct of connected prospaces. By [4, Corollary 3.7],
for any basepoint u ∊ U, the natural map

π1(U, u)Σ → π1(U∧
Σ , u)

is an isomorphism.
As a consequence, if U is a pro�nite space, then for any basepoint u ∊ U, the natural map

π1(U, u)Σ → π1(U∧
Σ , u) is also an isomorphism

4.17 Corollary. Let k be a separably closed �eld of characteristic p ≥ 0, and let X and Y be qcqs
k-schemes. Let z → X ×k Y be a geometric point with images x → X and y → Y. Then the natural
continuous homomorphism

πét1 (X ×k Y, z)p
′ ⟶ πét1 (X, x)

p′ × πét1 (Y, y)
p′

is an isomorphism.

Proof. Immediate from Theorem 4.12 and Recollection 4.16.

Theorem 4.12 also implies invariance results for the prime-to-p étale homotopy type.
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4.18 Example (invariance under extensions of separably closed �elds). Let k be a separably
closed �eld of characteristic p ≥ 0 and let X be a qcqs k-scheme. Then for every extension of
separably closed �elds K ⊃ k:

(4.18.1) The natural map Πét
∞(XK)∧p′ → Πét

∞(X)∧p′ is an equivalence.

(4.18.2) The natural continuous homomorphism πét1 (XK)
p′ → πét1 (X)

p′ is an isomorphism.

4.19 Remark. Item (4.18.2) recovers Landesman’s recent invariance result [36, Theorem 1.1].
See also [SGA 1, Exposé XIII, Proposition 4.6].

4.20 Corollary (A1-invariance). Let k be a separably closed �eld of characteristic p ≥ 0. Then the
functor

Πét
∞(−)∧p′ ∶ Schqcqsk → Pro(Spcp′)

is A1-invariant.

Proof. By the Künneth formula (Theorem 4.12), it su�ces to show that Πét
∞(A1k)

∧
p′ ≃ ∗. If p > 0,

then since A1k is smooth, connected, and a�ne, [40, Proposition 15; 41, Lemma 2.7(a)] shows
that

Πét
<∞(A1k) ≃ K(πét1 (A

1
k), 1) .

The claim now follows from the fact that πét1 (A
1
k) is a pro-p group. If p = 0, this follows from

Example 4.18, the Riemann existence theorem, and the fact that the topological space A1C(C) is
contractible.

4.3 Relative Künneth formulas
Let k be a �eld and letX andY be qcqs k-schemes. In this subsection,we proveKünneth formulas
for the étale homotopy type of X ×k Y, when k is not separably closed. The idea is to use the
fundamental �ber sequence

(4.21) Π̂ét
∞((X ×k Y)k̄) Π̂ét

∞(X ×k Y) Π̂ét
∞(Spec(k))

of [22] to reduce to the separably closed case.
The next proposition is a general result that applies to a number of situations. Since the �ber

sequence (4.21) need not remain a �ber sequence after completion away from char(k), some
care is needed to formulate it.

4.22 Recollection. Let Σ be a set of prime numbers, and write Σ′ for the complement of Σ in
the set of all primes. A �eld k is Σ′-closed in the sense of [22, De�nition 3.24] if for any separable
closure k̄ ⊃ k, the Galois group Gal(k̄∕k) is a pro-Σ group.

4.23 Proposition. Let k be a �eld with separable closure k̄ ⊃ k, let X and Y be qcqs k-schemes,
and let Σ be a set of prime numbers. Assume the following conditions:

(4.23.1) The �eld k is Σ′-closed.

(4.23.2) Künneth formula over k̄: The natural map

Πét
∞(Xk̄ ×k̄ Yk̄)∧Σ⟶ Πét

∞(Xk̄)∧Σ × Π
ét
∞(Yk̄)∧Σ

is an equivalence.
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Then the induced square

Πét
∞(X ×k Y)∧Σ Πét

∞(Y)∧Σ

Πét
∞(X)∧Σ Πét

∞(Spec k)∧Σ
is a pullback square of pro�nite spaces.

Proof. Write G ≔ Gal(k̄∕k). Since k is Σ′-closed, G is a pro-Σ group; hence the pro�nite space
BG is Σ-complete. The choice of separable closure provides an identi�cation Πét

∞(Spec k) ≃ BG.
Since the basepoint ∗→ BG is an e�ective epimorphism, it su�ces to show that the natural map

(4.24) Πét
∞(X ×k Y)∧Σ⟶ Πét

∞(X)∧Σ ×BGΠ
ét
∞(Y)∧Σ

becomes an equivalence after pullback along ∗→ BG.
First we compute the �ber of the left-hand side of (4.24) over BG. To do this, note that the

fundamental �ber sequence [22, Corollary 3.28] implies that the natural square

Πét
∞((X ×k Y)k̄)∧Σ Πét

∞(X ×k Y)∧Σ

∗ BG

is a pullback. Moreover, combining (4.14) with assumption (4.23.2) shows that

Πét
∞((X ×k Y)k̄)∧Σ ≃ Πét

∞(Xk̄ ×k̄ Yk̄)∧Σ
≃ Πét

∞(Xk̄)∧Σ × Π
ét
∞(Yk̄)∧Σ

To compute the �ber of the right-hand side of (4.24) over BG, consider the cube

(4.25)

Πét
∞(Xk̄)∧Σ × Π

ét
∞(Yk̄)∧Σ Πét

∞(Yk̄)∧Σ

Πét
∞(X)∧Σ ×BGΠ

ét
∞(Y)∧Σ Πét

∞(Y)∧Σ

Πét
∞(Xk̄)∧Σ ∗

Πét
∞(X)∧Σ BG .

Again by the fundamental �ber sequence, we see that the rightmost vertical and bottom horizon-
tal faces are pullback squares. Since the front and back vertical faces of (4.25) are by de�nition
pullbacks, we see that all squares appearing in (4.25) are pullback squares. In particular,

(Πét
∞(X)∧Σ ×BGΠ

ét
∞(Y)∧Σ) ×BG ∗ ≃ Πét

∞(Xk̄)∧Σ × Π
ét
∞(Yk̄)∧Σ .

Thus the natural map (4.24) induces an equivalence on �bers, as desired.
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4.26 Corollary (relative Künneth formula, proper case). Let k be a �eld and let X and Y be qcqs
k-schemes. If Y is proper over k, then the induced square

Π̂ét
∞(X ×k Y) Π̂ét

∞(Y)

Π̂ét
∞(X) Π̂ét

∞(Spec k)

is a pullback.

Proof. Apply Proposition 4.23 for Σ the set of all primes; hypothesis (4.23.1) is trivially satis�ed
and Example 4.9 shows that hypothesis (4.23.2) is satis�ed.

4.27 Corollary (prime-to-p relative Künneth formula). Let k be a �eld of characteristic p ≥ 0
and let X and Y be qcqs k-schemes. If k is p-closed, then the induced square

Πét
∞(X ×k Y)∧p′ Πét

∞(Y)∧p′

Πét
∞(X)∧p′ Πét

∞(Spec k)∧p′

is a pullback.

Proof. Apply Proposition 4.23; Theorem 4.12 shows that hypothesis (4.23.2) is satis�ed.

4.28 Warning. If k is not p-closed, Corollary 4.27 is false. See [22, Warning 3.23].

We concludewith two remarks about how to use Corollaries 4.26 and 4.27 to deduce Künneth
formulas for symmetric powers. These symmetric Künneth formulas are analagous to Deligne’s
results about the étale cohomology of symmetric powers [SGA 4iii, Exposé XVII, Théorème
5.5.21]; see the introduction of [25] for a summary of how these results di�er from Deligne’s.

4.29 Remark (symmetric Künneth formula, proper case). Let k be a �eld and X a proper k-
scheme. Following ideas of Hoyois [25, §5], Chough proved that if k is separably closed, there is
a Künneth formula for symmetric powers

Π̂ét
∞(Symn X)⥲ Symn Π̂ét

∞(X)

[11, Theorem 6.12]. The only part of Chough’s proof that uses that the ground �eld is separably
closed is the Künneth formula (which, at the time of Chough’s paper, was only known over
separably closed �elds). As a consequence of Corollary 4.26, Chough’s proof shows that the
symmetric Künneth formula for proper schemes holds over arbitrary base �elds.

4.30 Remark (prime-to-p symmetric Künneth formula). Let k be a �eld of characteristic p ≥ 0
and let X be a quasiprojective k-scheme. If k is separably closed, Hoyois proved that for any
prime l ≠ p, the natural map

Πét
∞(Symn X)→ Symn Πét

∞(X)

becomes an equivalence after Z∕l-homological localization [25, Theorem 5.6]. Similarly to Re-
mark 4.29, the key ‘non-formal’ input is that the natural map

Πét
∞(X×n)→ Πét

∞(X)×n
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becomes an equivalence after Z∕l-homological localization [25, Proposition 5.1]. Since we now
know the stronger Künneth formula Corollary 4.27, Hoyois’ proof shows that if k is a p-closed
�eld, then the natural map

(Πét
∞(Symn X))∧p′ → (Symn Πét

∞(X))∧p′

of pro�nite spaces over Π̂ét
∞(Spec(k)) is an equivalence.
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