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Abstract

We introduce the basic algebraic geometry backgroundnecessary to understand
the main results of the work of Elmanto, Hoyois, Khan, Sosnilo, and Yakerson on
motivic infinite loop spaces [5]. After recalling some facts about the Hilbert func-
tor of points, we introduce local complete intersection (lci) and syntomic morphisms.
We then give an overview of the cotangent complex and discuss the relationship be-
tween lci morphisms and the cotangent complex (in particular, Avramov’s charac-
terization of lci morphisms). We then introduce the lci locus of the Hilbert scheme
of points and the Hilbert scheme of framed points, and prove that the lci locus of
the Hilbert scheme of points is formally smooth.
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1 Hilbert schemes
In this section we recall the Hilbert functor of points from last time as well as state the
basic representability properties of the Hilbert functor of points.

1.1 Recollection ([STK, Tag 02K9]). A morphism of schemes 𝑓∶ 𝑌 → 𝑋 is finite lo-
cally free if 𝑓 is affine and 𝑓⋆𝒪𝑌 is a finite locally free 𝒪𝑋-module. This is equivalent to
saying that 𝑓 is finite, flat, and locally of finite presentation. If 𝑋 is locally noetherian,
the condition that 𝑓 be locally of finite presentation is implied by the finiteness of 𝑓.

1.2 Definition. Let 𝑆 be a scheme and 𝑋 ∈ Sch𝑆. The Hilbert functor of points is the
functor Hilbfin(𝑋/𝑆)∶ Schop

𝑆 → Set defined by sending 𝑌 ∈ Sch𝑆 to the set of closed
subschemes 𝑍 ⊂ 𝑋 ×𝑆 𝑌 that are finite and locally free over 𝑌.

1.3. The degree of a finite locally free morphism induces a decomposition

Hilbfin(𝑋/𝑆) ≃ ∐
𝑑≥0

Hilbfin
𝑑 (𝑋/𝑆)

of product-preserving presheaves on Sch𝑆.

We have the following representability properties of the Hilbert functor of points:

1.4Theorem (see [5, Lemma 5.1.3]). Let 𝑆 be a scheme,𝑋 ∈ Sch𝑆, and 𝑑 ≥ 0.

(1.4.1) If𝑋 → 𝑆 is separated, then Hilbfin(𝑋/𝑆) is representable by a separated algebraic
space over 𝑆, which is:

(1.4.1.1) Locally of finite presentation if𝑋 → 𝑆 is.
(1.4.1.2) A scheme if every finite set of points of every fiber of𝑋 → 𝑆 is contained

in an affine open in𝑋 (e.g.,𝑋 → 𝑆 is locally quasi-projective).

(1.4.2) If 𝑋 → 𝑆 is finite presented and locally (resp., strongly) quasi-projective, then
Hilbfin
𝑑 (𝑋/𝑆) is locally (resp., strongly) quasi-projective over 𝑆.

Proof. For assertion (1.4.1), combine [13,Theorem1.1; 16,Theorem4.1; STK,Tag 0B9A].
Assertion (1.4.2) is [1, Corollaries 2.7 & 2.8].

1.5 Remark. Nitsure gives a nice introduction to Hilbert and Quot functors [12].

1.6Theorem (Fogarty [6,Theorem 2.4 &Corollary 2.6]). Let 𝑘 be a field and𝑋 a smooth
surface over 𝑘. Then the Hilbert scheme Hilbfin

𝑑 (𝑋/𝑘) is smooth of dimension 2𝑑 and bira-
tional to Sym𝑑(𝑋).

1.7. Although the Hilbert scheme of points of a smooth surface is smooth, Hilbert
schemes of points of smooth schemes are generally not smooth. In this talk we’ll de-
scribe an open subscheme that is smooth, by considering the locus of points ‘cut out by
the minimal number of equations’.
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2 Local complete intersections via equations
In this section we define and give examples of relative global complete intersections and
local complete intersections, which make precise the notion of ‘being cut out by the min-
imal number of equations’.

Relative global complete intersections
2.1 Definition. A morphism of affine schemes 𝑓∶ Spec(𝑆) → Spec(𝑅) is a relative
global complete intersection if there exists a presentation

𝑆 ≅ 𝑅[𝑥1,…, 𝑥𝑛]/(𝑓1,…, 𝑓𝑐) ,

such that all of the nonempty fibers of 𝑓 have dimension 𝑛 − 𝑐.

2.2 Example. Let 𝑘 by a field and 𝐼 ⊂ 𝑘[𝑥] an ideal such that 𝑘[𝑥]/𝐼 is a 0-dimensional
scheme (equivalently, 𝑘[𝑥]/𝐼 is finite-dimensional as a 𝑘-algebra). Since 𝑘[𝑥] is a princi-
pal ideal domain, 𝐼 = (𝑓) for some polynomial 𝑓 ∈ 𝑘[𝑥]. Thus 𝑘[𝑥]/𝐼 is a relative global
complete intersection over 𝑘.

2.3 Example. Let 𝑘 be a field, and 𝑒1,…, 𝑒𝑛 positive integers. Then the ring

𝑘[𝑥1,…, 𝑥𝑛]/(𝑥
𝑒1
1 ,…, 𝑥

𝑒𝑛𝑛 )

is 0-dimensional (since (0) is the only prime), hence a relative global complete intersec-
tion over 𝑘.

The following commuative algebra lemmas give somebasic facts about relative global
complete intersections that we use repeatedly.

2.4 Lemma ([STK, Tag 00SV]). Let 𝑅 be a ring and 𝑆 ≔ 𝑅[𝑥1,…, 𝑥𝑛]/(𝑓1,…, 𝑓𝑐) a
relative global complete intersection. Let 𝔭 ∈ Spec(𝑆), and write 𝔭′ for the corresponding
prime of 𝑅[𝑥1,…, 𝑥𝑛]. Then:

(2.4.1) The sequence 𝑓1,…, 𝑓𝑐 is a regular sequence in the local ring 𝑅[𝑥1,…, 𝑥𝑛]𝔭′ .

(2.4.2) For each 1 ≤ 𝑖 ≤ 𝑐, the ring 𝑅[𝑥1,…, 𝑥𝑛]𝔭′/(𝑓1,…, 𝑓𝑖) is flat over 𝑅.

(2.4.3) The ring 𝑆 is flat over 𝑅.

(2.4.4) The conormal module (𝑓1,…, 𝑓𝑐)/(𝑓1,…, 𝑓𝑐)2 is a free 𝑆-module with basis given
by the classes of 𝑓1,…, 𝑓𝑐.

2.5 Lemma ([STK, Tag 07CF]). Let 𝑅 be a ring, and 𝐼 ⊂ 𝑅[𝑥1,…, 𝑥𝑛] a finitely gen-
erated ideal. If the conormal module 𝐼/𝐼2 is free over 𝑅[𝑥1,…, 𝑥𝑛]/𝐼, then there exists a
presentation

𝑅[𝑥1,…, 𝑥𝑛]/𝐼 ≅ 𝑅[𝑦1,…, 𝑦𝑚]/(𝑓1,…, 𝑓𝑐)
such that (𝑓1,…, 𝑓𝑐)/(𝑓1,…, 𝑓𝑐)2 is free with basis given by the classes of 𝑓1,…, 𝑓𝑐. In this
case, 𝑅[𝑥1,…, 𝑥𝑛]/𝐼 is a relative global complete intersection over 𝑅.
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The following lemma gives a method for producing relative global complete inter-
sections. First we recall the conormal sequence, which we make repeated use of.

2.6 Recollection (conormal sequence [STK, Tag 01UZ]). Let 𝑖 ∶ 𝑍 ↪ 𝑋 be a closed
immersion of 𝑆-schemes, with ideal sheaf 𝐼. The differential d ∶ 𝐼 ⊂ 𝒪𝑋 → Ω𝑋/𝑆 maps
𝐼2 ⊂ 𝐼 to 𝐼Ω𝑋/𝑆, hence induces an 𝒪𝑋/𝐼-linear map d ∶ 𝐼/𝐼2 → Ω𝑋/𝑆/𝐼Ω𝑋/𝑆. That is, d
pulls back to a map d ∶ 𝒩𝑖 → 𝑖⋆Ω𝑋/𝑆 to a map from the conormal sheaf of 𝑖 to 𝑖⋆Ω𝑋/𝑆.
Moreover, we have a conormal exact sequence

𝒩𝑖 𝑖⋆Ω𝑋/𝑆 Ω𝑍/𝑆 0 .d

2.7 Lemma (see [STK, Tag 00ST]). Let 𝑋 be an affine scheme, 𝑝∶ 𝑈 → 𝐀𝑛𝑋 an affine
étale morphism, and 𝑍 ⊂ 𝑈 a closed subscheme cut out by 𝑐 equations. If the nonempty
fibers of 𝑍 → 𝐀𝑛𝑋 → 𝑋 have dimension 𝑛 − 𝑐, then 𝑍 → 𝑋 is a relative global complete
intersection.

Proof. Factor 𝑝∶ 𝑈 → 𝐀𝑛𝑋 as
𝑈 𝐀𝑚+𝑛𝑋

𝐀𝑛𝑋 ,

𝑖

𝑝

where 𝑖 is a closed immersion. Since 𝑝 is étale,Ω𝑝 ≅ 0, so the conormal sequence

0 𝒩𝑖 𝑖⋆(Ω𝐀𝑚+𝑛𝑋 /𝐀𝑛𝑋) Ω𝑝 0

provides an isomorphism
𝒩𝑖 ≅ 𝑖⋆(Ω𝐀𝑚+𝑛𝑋 /𝐀𝑛𝑋) ≅ 𝒪

𝑚
𝑈 .

Choose functions 𝑓1,…, 𝑓𝑚 on 𝐀𝑚+𝑛𝑋 lifting to generators of 𝒩𝑖 ≅ 𝒪𝑚𝑈 . By Nakayama’s
lemma, there is a function ℎ on 𝐀𝑚+𝑛𝑋 such that 𝑈 is cut out by 𝑓1,…, 𝑓𝑚 in the local-
ization (𝐀𝑚+𝑛𝑋 )ℎ of 𝐀𝑚+𝑛𝑋 at ℎ. But then 𝑈 is cut out by the 𝑚 + 1 equations 𝑓1,…, 𝑓𝑚,
and ℎ𝑥𝑛+𝑚+1 − 1 in 𝐀𝑚+𝑛+1𝑋 . Hence 𝑍 is cut out by 𝑐 + 𝑚 + 1 equations in 𝐀𝑚+𝑛+1𝑋 , so (by
definition) 𝑍 → 𝑋 is a relative global complete intersection.

Local complete intersections
In order to introduce local complete intersections, we recall some preliminaries on reg-
ularity conditions for immersions of schemes.

2.8 Recollection (the Koszul complex). Let 𝑅 be a ring and 𝑟 ∈ 𝑅. The Koszul complex
Koz(𝑟) of 𝑟 is the complex

0 𝑅 𝑅 0⋅𝑟

concentrated in degrees 0 and 1. Note that there is an augmentation Koz(𝑟) → 𝑅/(𝑟).
Given a sequence of elements 𝑟1,…, 𝑟𝑛 ∈ 𝑅, the Koszul complex Koz(𝑟1,…, 𝑟𝑛) of the
sequence 𝑟1,…, 𝑟𝑛 is the tensor product of complexes

Koz(𝑟1,…, 𝑟𝑛) ≔ Koz(𝑟1) ⊗𝑅⋯⊗𝑅 Koz(𝑟𝑛) .

4

http://stacks.math.columbia.edu/tag/01UZ
http://stacks.math.columbia.edu/tag/00ST


Hence there is an induced augmentation

Koz(𝑟1,…, 𝑟𝑛) → 𝑅/(𝑟1,…, 𝑟𝑛) .

Explicitly, Koz𝑝(𝑟1,…, 𝑟𝑛) = Λ𝑝+1(𝑅𝑛) with differential given by

d(𝑒𝑖0 ∧⋯ ∧ 𝑒𝑖𝑝) =
𝑝
∑
𝑘=0
(−1)𝑘𝑟𝑖𝑘𝑒𝑖0 ∧⋯ ∧ ̂𝑒𝑖𝑘 ∧⋯ ∧ 𝑒𝑖𝑝 .

2.9 Recollection (regularity conditions for ideals [STK, Tag 07CU]). Let 𝑅 be a ring. A
sequence of elements 𝑟1,…, 𝑟𝑛 ∈ 𝑅 isKoszul-regular if theKoszul complexKoz(𝑟1,…, 𝑟𝑛)
is a resolution of 𝑅/(𝑟1,…, 𝑟𝑛), i.e.,

H𝑖(Koz(𝑟1,…, 𝑟𝑛)) = 0 for 𝑖 ≠ 0 .

A regular sequence is necessarily Koszul-regular. If 𝑅 is a noetherian ring, then every
Koszul-regular sequence is also regular; see [STK, Tag 063I].

2.10 Definition. Let𝑋 be a scheme and 𝐼 ⊂ 𝒪𝑋 an ideal sheaf. We say that 𝐼 is regular
if for every 𝑥 ∈ supp(𝒪𝑋/𝐼) there is an open neighborhood 𝑈 ⊂ 𝑋 of 𝑥 and a Koszul-
regular sequence 𝑓1,…, 𝑓𝑛 ∈ 𝒪𝑋(𝑈) such that 𝐼|𝑈 is generated by 𝑓1,…, 𝑓𝑛.

An immersion 𝑍 ↪ 𝑋 is regular if there is an open subscheme 𝑍 ⊂ 𝑈 ⊂ 𝑋 such
that 𝑍 is closed in 𝑈 and the ideal sheaf 𝐼𝑍⊂𝑈 ⊂ 𝒪𝑈 is regular.

2.11 Definition. A morphism of schemes 𝑓∶ 𝑌 → 𝑋 is a local complete intersection
(lci) if locally on 𝑋, 𝑓 is the composite of a regular immersion followed by a smooth
morphism. We say that 𝑓 is syntomic if 𝑓 is flat and lci.

2.12. Since the families in the definition of the Hilbert scheme are flat, we are really
more intereseted in syntomic maps.

2.13 Remark. Mazur introduced the word ‘syntomic’ as built from the verb ‘temnein’
(i.e., ‘to cut’) and the prefix ‘syn’ meaning ‘same’ or ‘equal’ [14]. So, roughly, ‘syntomic’
means ‘eqicut’.

2.14 Example. Let 𝑘 be a field. The embedding 𝑖 ∶ Spec(𝑘) ↪ Spec(𝑘[𝑥]) induced by
the map 𝑘[𝑥] → 𝑘 sending 𝑥 to 0 is regular. However, the pullback of 𝑖 along the map
Spec(𝑘[𝑥]/(𝑥2)) ↪ Spec(𝑘[𝑥]) induced by the quotient map 𝑘[𝑥] → 𝑘[𝑥]/(𝑥2) cor-
responds to the map 𝑘[𝑥]/(𝑥2) → 𝑘 killing 𝑥, which is not regular. In particular, the
basechange of an lci map need not be lci.

2.15 Proposition ([SGA 6, Exposé VIII, Proposition 1.6]). The basechange of an lci mor-
phism along a flat morphism is lci.

2.16 Proposition ([STK, Tag 01UI]). Syntomic morphisms are stable under basechange.

2.17. We want a more extrinsic characterization of relative global complete intersec-
tions. The characterization that we will explore is in terms of the cotangent complex.
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3 Background on the cotangent complex
Motivation
Given a morphism of 𝑆-schemes

𝑌 𝑋

𝑆

𝑓

𝑔

we have an exact sequence

(3.1) 𝑓⋆Ω𝑔 Ω𝑔𝑓 Ω𝑓 0 ,

of quasicoherent sheaves on 𝑌, and this sequence generally does not extend to a short
exact. As usual, we are interested in extending (3.1) to a long exact sequence

⋯ 𝜋1(𝑓⋆ℒ𝑔) 𝜋1(ℒ𝑔𝑓) 𝜋1(ℒ𝑓)

𝑓⋆Ω𝑔 Ω𝑔𝑓 Ω𝑓 0 ,

where ℒ𝑓 and ℒ𝑔𝑓 are complexes of quasicoherent sheaves on 𝑌, and ℒ𝑔 is a complex
of quasicoherent sheaves on𝑋. Since the sequence (3.1) does extend to a short exact se-
quence when 𝑓 is smooth, we should also haveℒ𝑓 ≃ Ω𝑓[0] if 𝑓 is smooth. The complex
ℒ𝑓 is what is called the cotangent complex of 𝑓.

3.2 Notation. For a scheme𝑋, we write QCoh(𝑋) for the derived∞-category of quasi-
coherent sheaves on𝑋.

3.3 Remark (functoriality of Kähler differentials). The quasicoherent sheaf of Kähler
differentials associated to a morphism of schemes has a slightly complicated functorial-
ity. The cleanest way to say this is that Kähler differentials is a functor fitting into the
diagram

QCoh

Fun(Δ1, Sch)op Schop ,

𝑝

𝑠

Ω(−)[0]

where 𝑠 is the source functor and 𝑝 is the cocartesian fibration classified by the diagram
𝑋 ↦ QCoh(𝑋). (See (3.5) for an explicit description of what this means.)

3.4 Remark (the cotangent complex for affine schemes). Let 𝑅 be a ring. Write 𝐃(𝑅)
for the derived∞-category of 𝑅, Alg𝑅 for the cateogry of 𝑅-algebras, and Algsm

𝑅 for the
category of smooth 𝑅-algebras. If we forget the 𝑆-module structure on the cotangent
complex of an 𝑅-algebra 𝑆, then we can define the cotangent complex as the left Kan
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extension
Algsm
𝑅 𝐃(𝑅)

Alg𝑅

Ω−/𝑅[0]

ℒ−/𝑅

of Kähler differentials (concentrated in degree 0) on smooth 𝑅-algebras. If we want to
include the full functoriality and structure of the cotangent complex to align with Re-
mark 3.3, we need to take a more involved relative left Kan extension (see [HA, §7.3.2]).

Often the cotangent complex for affines is presented by by left Kan extending Kähler
differentials from polynomial 𝑅-algebras (rather than smooth 𝑅-algebras, and then one
shows that the cotangenet complex of a smooth 𝑅-algebra is given by Kähler differen-
tials; see [3, Example 2.2; 11, Remark 2.25]. The latter fact shows that these two left Kan
extensions agree.

Properties of the cotangent complex
The cotangent complex for non-affine schemes can be defined by extending the cotan-
gent complex for affine schemes by enforcing Zariski descent. Below is a summary of
the relevant functoriality and properties of the cotangent complex:

3.5. As in Remark 3.3, the cotangent complex is a section

QCoh

Fun(Δ1, Sch)op Schop .

𝑝

𝑠

ℒ(−)

Explicitly, this means that for each scheme 𝑌, the cotangent complex defines a functor

ℒ(−) ∶ (Sch𝑌/)op → QCoh(𝑌) ,

and has the following additional functoriality: given a commutative square

(3.6)
𝑌′ 𝑌

𝑋′ 𝑋 ,

𝑐

𝑓′ 𝑓

there is a natural morphism 𝑐⋆ℒ𝑓 → ℒ𝑓′ in QCoh(𝑌′). Moreover, the cotangent com-
plex satisfies the following properties.

(3.5.1) For any morphism 𝑓∶ 𝑌 → 𝑋, the cotangent complexℒ𝑓 is a connective object
of QCoh(𝑌) (with respect to the usual 𝑡-structure).

(3.5.2) If (3.6) is a pullback and Tor-independent in the sense that Tor𝑖𝒪𝑋(𝒪𝑋′ ,𝒪𝑌) = 0
for 𝑖 > 0, then 𝑐⋆ℒ𝑓 ⥲ ℒ𝑓′ .
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(3.5.3) Fundamental fiber sequence: Given composable morphisms 𝑌 𝑋 𝑆 ,𝑓 𝑔
we

have a natural fiber sequence

𝑓⋆ℒ𝑔 ℒ𝑔𝑓 ℒ𝑓

in QCoh(𝑌).

(3.5.4) Every morphism 𝑓∶ 𝑌 → 𝑋 induces a morphism ℒ𝑓 → Ω𝑓[0] which induces
an isomorphism 𝜋0(ℒ𝑓) ⥲ Ω𝑓[0]. Moreover, if 𝑓 is smooth, thenℒ𝑓 ⥲ Ω𝑓[0].

(3.5.5) If 𝑖 is a closed immersion, there is a natural isomorphism 𝜋1(ℒ𝑖) ≅𝒩𝑖.

Without knowing anything more specific about the cotangent complex, these prop-
erties will allow us to deduce everything that we will need.

3.7 Example. Since étale morphisms are smooth with trivial Kähler differentials, if 𝑓 is
étale, then by (3.5.4) we have ℒ𝑓 ≃ 0.

3.8 Example. Similarly, since closed immersions have trivial Kähler differentials, if 𝑖
is a closed immersion, then by (3.5.4) we have 𝜋0(ℒ𝑖) = 0. Thus (3.5.5) shows that
𝜏≤1ℒ𝑖 ≃𝒩𝑖[1].

3.9 Remarks.

(3.9.1) The Tor-independence condition in (3.5.2) is really just saying that the ordinary
pullback 𝑌′ = 𝑋′ ×𝑋 𝑌 of schemes is already derived.

(3.9.2) While (3.5.1)–(3.5.4) are automatic or easy from definitions of the cotangent
complex, (3.5.5) requireswork. Two approaches are to either relate the cotangent
complex to square-zero extensions [8, Chapitre III, Corollaires 1.2.8.1 & 3.2.7],
or use Quillen’s fundamental spectral sequence [15, Theorem 6.3].

3.10 Remark. For a morphism of schemes 𝑓∶ 𝑌 → 𝑋, the quasicoherent sheaves
𝜋∗(ℒ𝑓) on 𝑌 are known as the André–Quillen homology of 𝑓.

3.11 Remark (formally smooth and étale morphisms via the cotangent complex). Let
𝑓 be a morphism of schemes. Consider the following statements:

(3.11.1) The morphism 𝑓 is smooth.

(3.11.2) The natural morphism ℒ𝑓 → Ω𝑓[0] is an equivalence and Ω𝑓 is finite locally
free. Equivalently, ℒ𝑓 is 0-truncated and perfect.

(3.11.3) The morphism 𝑓 is formally smooth.

Then we have implications (3.11.1)⇒(3.11.2)⇒(3.11.3). Hence if 𝑓 is locally of finite
presentation, then the statements (3.11.1)–(3.11.3) are equivalent. However, the impli-
cation (3.11.3)⇒(3.11.2) is false in general: [STK, Tag 06E5] provides an example of a
formally étale morphism with 𝜋2(ℒ𝑓) ≠ 0.

Similarly, consider the following statements:
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(3.11.4) The morphism 𝑓 is étale.

(3.11.5) The cotangent complex ℒ𝑓 is trivial.

(3.11.6) The morphism 𝑓 is formally étale.

Then we have implications (3.11.4)⇒(3.11.5)⇒(3.11.6). Hence if 𝑓 is locally of finite
presentation, then the statements (3.11.4)–(3.11.6) are equivalent. Again, the implica-
tion (3.11.6)⇒(3.11.5) is false.

See [8, Chapitre III, Propositions 3.1.1 & 3.1.2] for the details of the proofs of these
implications.

4 Local complete intersections and the cotangent complex
In this section we show that the cotangent complex of a local complete intersection
morphism is perfect and 1-truncated (Corollary 4.7). Through our proof, we show that
if a morphism 𝑓 admits a factorization as a composite 𝑓 = 𝑠𝑖 where 𝑖 is a regular im-
mersion and 𝑠 is smooth, then the cotangent complex of 𝑓 is simply given by the com-
plex 𝒩𝑖 → 𝑖⋆Ω𝑠 with differential coming from the conormal sequence. We then state
Avramov’s characterization of lci morphisms in the locally noetherian setting in terms
of the cotangent complex (Theorem 4.11).

We begin by showing that the cotangent complex of a local complete intersection is
1-truncated.

4.1 Proposition. If 𝑓∶ 𝑌 → 𝑋 is lci, then the cotangent complex ℒ𝑓 of 𝑓 is 1-truncated.

Proof sketch. Since the claim is local on 𝑌, we can assume that𝑋 is affine and 𝑓 factors
as

𝑌 𝑉

𝑋 ,

𝑖

𝑓
𝑠

where 𝑖 is a regular closed immersion and 𝑠 is smooth. Since ℒ𝑠 ≃ Ω𝑠[0], the fiber
sequence

𝑖⋆ℒ𝑠 ℒ𝑓 ℒ𝑖

induces isomorphisms 𝜋𝑘(ℒ𝑓) ≅ 𝜋𝑘(ℒ𝑖) for all 𝑘 > 1. So we can reduce to the case
where 𝑉 = 𝑋 = Spec(𝐴), and 𝑌 = Spec(𝐴/(𝑎1,…, 𝑎𝑛)), where (𝑎1,…, 𝑎𝑛) ⊂ 𝐴 is
Koszul-regular. The fundamental fiber sequence allows us to inductively reduce to the
case that 𝑛 = 1.

That is, we have reduced to the case where 𝑌 = Spec(𝐴/(𝑎)), where 𝑎 ∈ 𝐴 is not a
zerodivisor. The square

(4.2)
Spec(𝐴/(𝑎)) Spec(𝐙[𝑡]/(𝑡))

Spec(𝐴) 𝐀1𝐙 ,

𝑖
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induced by the map 𝐙[𝑡] → 𝐴 sending 𝑡 ↦ 𝑎 is a pullback. Moreover, since 𝑎 is not a
zerodivisor, the square (4.2) is Tor-independent, so we can reduce to proving the claim
for the cotangent complex of the zero section 𝑖 ∶ Spec(𝐙) ↪ 𝐀1𝐙. The fundamental fiber
sequence applied to

Spec(𝐙) 𝐀1𝐙

Spec(𝐙)

𝑖

gives a fiber sequence

𝑖⋆ℒ𝐀1𝐙/ Spec(𝐙) ℒSpec(𝐙)/ Spec(𝐙) ℒ𝑖 .

Since 𝐀1𝐙 is smooth over Spec(𝐙), we have ℒ𝐀1𝐙/ Spec(𝐙) ≃ Ω𝐀1𝐙/ Spec(𝐙)[0]. The fact that
ℒSpec(𝐙)/ Spec(𝐙) ≃ 0 now implies that 𝜋𝑘(ℒ𝑖) = 0 for 𝑘 > 1, as desired.

The next result gives a description of the 1-truncation of the cotangent complex of
a morphism that admits a factorization into a closed immersion followed by a smooth
morphism.

4.3 Proposition ([8, Chapitre III, Corollaire 3.2.7]). Let 𝑓∶ 𝑌 → 𝑋 be a morphism of
schemes, and assume that𝑓 admits a factorization as𝑓 = 𝑠𝑖, where 𝑖 is a closed immersion
and 𝑠 is smooth. Then there is a natural equivalence

𝜏≤1ℒ𝑓 ≃ [𝒩𝑖 𝑖⋆Ω𝑠d ] ,

where 𝑖⋆Ω𝑠 is in degree 0

Proof. Since 𝑠 is smooth, ℒ𝑓 ≃ Ω𝑠[0], so the fundamental fiber sequence for the fa-
cotrization 𝑓 = 𝑠𝑖 is given by

(4.4) 𝑖⋆Ω𝑠[0] ℒ𝑓 ℒ𝑖 .

Since 𝑖 is a closed immersion, 𝜋0(ℒ𝑖) = 0 and 𝜋1(ℒ𝑖) ≅ 𝒩𝑖, so 𝜏≤1ℒ𝑖 ≃ 𝒩𝑖[1]. Applying
𝜏≤1 to the fiber sequence we obtain a fiber sequence

𝑖⋆Ω𝑠[0] 𝜏≤1ℒ𝑓 𝒩𝑖[1] .

The connecting homomorphism𝒩𝑖 → 𝑖⋆Ω𝑠 is given by − d ∶ 𝒩𝑖 → 𝑖⋆Ω𝑠, so we deduce
that in QCoh(𝑌), the cotangent complex is given by the cofiber of − d ∶ 𝒩𝑖 → 𝑖⋆Ω𝑠, or
equivalently d, which is simply given by the complex

𝒩𝑖 𝑖⋆Ω𝑠 ,d

where 𝑖⋆Ω𝑠 is in degree 0.
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4.5 Corollary. Let 𝑓∶ 𝑌 → 𝑋 be a morphism of schemes, and assume that 𝑓 admits a
factorization as 𝑓 = 𝑠𝑖, where 𝑖 is a regular closed immersion and 𝑠 is smooth. Then there
is a natural equivalence

ℒ𝑓 ≃ [𝒩𝑖 𝑖⋆Ω𝑠d ] .

Proof. Combine Propositions 4.1 and 4.3.

4.6 Corollary. Let 𝑖 ∶ 𝑍 ↪ 𝑋 be a regular closed immersion of schemes. Thenℒ𝑖 ≃𝒩𝑖[1].
4.7 Corollary. If 𝑓∶ 𝑌 → 𝑋 is lci, then the cotangent complexℒ𝑓 is a 1-truncated perfect
complex.

Proof. All that remains is to show that ℒ𝑓 is perfect. The statement is local on 𝑌, so we
can assume that 𝑓 factors through a regular closed embedding 𝑖 ∶ 𝑌 ↪ 𝑉 over𝑋, where
𝑠 ∶ 𝑉 → 𝑋 is smooth. Corollary 4.5 provides an equivalenceℒ𝑓 ≃ [𝒩𝑖 → 𝑖⋆Ω𝑠]. Thus it
suffices to shows that𝒩𝑖 and 𝑖⋆Ω𝑠 are locally free of finite rank. The fact that 𝑠 is smooth
implies thatΩ𝑠 is locally free of finite rank [STK, Tag 00TH], and the fact that the ideal
sheaf of 𝑖 is regular implies that𝒩𝑖 is locally free of finite rank [STK, Tag 07CU].

4.8. Of particular use to us will be that the cotangent complex of an lci morphism
𝑓∶ 𝑌 → 𝑋 defines a point of the K-theory∞-groupoid K(𝑌).

Avramov’s characterization of local complete intersections
It is natural to ask if there is an analogue of the characterization of smooth morphisms
in terms of the cotangent complex (Remark 3.11).

4.9 Question. To what extent does Corollary 4.7 characterize lci morphisms in terms
of the cotangent complex?

The following characterization of finite type lci morphisms with locally noetherian tar-
get is due to Lichtenbaum–Schlessinger and Quillen [8, Proposition 3.2.6; 9, Theorem
3.3.3; 15, Theorems 5.4 & 5.5].

4.10Theorem. Let 𝑓∶ 𝑌 → 𝑋 be a morphism of schemes where 𝑋 is locally noetherian.
If 𝑓 is locally of finite type, then 𝑓 is lci if and only if the cotanget complex ℒ𝑓 is perfect
and 1-truncated.
If the source is also locally noetherian, the assumption that 𝑓 be locally of finite type is
unnecessary.

4.11 Theorem (Avramov [2, Theorem 1.2]). Let 𝑓∶ 𝑌 → 𝑋 be a morphism of locally
noetherian schemes. Then 𝑓 is lci if and only if the cotangent complex ℒ𝑓 is 1-truncated.
4.12 Warning. The noetherianity assumptions in Theorem 4.11 are necessary. If 𝑘 is
a perfect field of characteristic 𝑝 > 0, and 𝑋 is a perfect 𝑘-scheme, then the cotangent
complexℒ𝑋/𝑘 vanishes because the Frobenius needs to induce both an isomorphism on
ℒ𝑋/𝑘 and multiplication by 𝑝. So if 𝑓∶ 𝑋 → 𝑌 is a morphism of perfect 𝑘-schemes, by
the fundamental fiber sequence the cotangent complex ℒ𝑓 of 𝑓 vanishes. However, not
everymorphism of perfect 𝑘-schemes is lci; the problem here is that perfect schemes are
almost never (locally) noetherian.
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Wefinishwith onemore relationship between lcimorphisms and the cotangent com-
plex. To do this, we need to introduce the virtual relative dimension of an lci morphism.

4.13 Definition ([SGA 6, Exposé VIII, Proposition 1.8 & Définition 1.9; 10, Chapter 6,
Definition 4.11]). Let 𝑓∶ 𝑌 → 𝑋 be an lci morphism and 𝑦 ∈ 𝑌. The virtual relative
dimension of 𝑓 at 𝑦 is the rank

vrdim𝑦(𝑓) ≔ rank𝑦ℒ𝑓 .

Note that the virtual relative dimension is a locally constant integer-valued function on
𝑌.

Let 𝑑 be an integer. We say that 𝑓 has virtual relative dimension 𝑑 if the function
𝑦 ↦ vrdim𝑦(𝑓) is constant with value 𝑑.

4.14 Remark. If we choose a factorization of𝑓 as a composite𝑓 = 𝑠𝑖 in a neighborhood
of 𝑦 where 𝑖 is a regular immersion and 𝑠 is smooth, then the virtual relative dimension
at 𝑦 is given by

vrdim𝑦(𝑓) = rank𝑖(𝑦)Ω𝑠 − rank𝑦𝒩𝑖 .

4.15 Proposition. Let𝑓∶ 𝑌 → 𝑋 be an lci morphism of virtual relative dimension 𝑑 ≥  0.

(4.15.1) The morphism 𝑓 is syntomic if and only if the nonempty fibers of 𝑓 have dimen-
sion 𝑑.

(4.15.2) If𝑋 and 𝑌 are affine, then 𝑓 is a relative global complete intersection if and only
if 𝑓 is syntomic and [ℒ𝑓] = [𝒪⊕𝑑𝑌 ] in K0(𝑌).

Proof. First we prove (4.15.1). Assume that 𝑓 is flat. Since flat lci morphisms are stable
under pullback, we can assume that 𝑋 is the spectrum of a field. Then it is clear that 𝑌
has dimension 𝑑.

Now we prove the converse. Since flatness can be checked locally on 𝑋 and 𝑌, we
can assume that 𝑋 and 𝑌 are affine. Choose a closed immersion 𝑖 ∶ 𝑌 ↪ 𝐀𝑛𝑋 over 𝑋.
Since 𝑓 is lci, by definition, 𝑖 is regular, and hence the conormal sheaf𝒩𝑖 is locally free
of rank 𝑛−𝑑. Let𝑈 ⊂ 𝐀𝑛𝑋 be an affine open for which𝒩𝑖|𝑈 is free. ByNakayama’s lemma,
there exists a function ℎ on 𝑈 such that 𝑌 ×𝐀𝑛𝑋 𝑈 is cut out by 𝑛 − 𝑑 equations in 𝑈ℎ.
Lemma 2.7 shows that 𝑌 ×𝐀𝑛𝑋 𝑈 → 𝑋 is a relative global complete intersection, hence
flat (Lemma 2.4).

Now we prove (4.15.2). First assume that 𝑓 is syntomic and [ℒ𝑓] = [𝒪⊕𝑑𝑌 ] in K0(𝑌).
Since 𝑓 is syntomic, we can choose a factorization of 𝑓 as

(4.16)
𝑌 𝐀𝑛𝑋

𝑋 ,

𝑖

𝑓

where 𝑖 is a regular closed embedding. Corollary 4.5 shows that

[ℒ𝑓] = [𝒪⊕𝑛𝑌 ] − [𝒩𝑖]
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in K0(𝑌). Hence [ℒ𝑓] = [𝒪⊕𝑑𝑌 ] if and only if the conormal sheaf𝒩𝑖 is stably free. In this
case, by increasing 𝑛 if necessary, we may assume that𝒩𝑖 is free, which shows that that
𝑓 is a relative global complete intersection (Lemma 2.5).

Conversely, if 𝑓 is a relative global complete intersection, then we can choose a fac-
torization (4.16) such that the conormal sheaf𝒩𝑖 is free (Lemma 2.4). Corollary 4.5 then
proves the claim.

5 The lci locus of the Hilbert scheme of points
In this section we define the lci locus of the Hilbert functor of points, first introduced
by Ciocan-Fontanine and Kapranov [4, §4.3]. Following [5, §5.1] we then prove that the
lci locus of the Hilbert functor of points of a smooth 𝑆-scheme is formally smooth over
𝑆 (Theorem 5.2). For another treatment of the lci locus of the Hilbert functor of points,
see [STK, Tag 06CJ].

5.1 Definition. Let 𝑆 be a scheme and 𝑋 ∈ Sch𝑆. The Hilbert functor of local complete
intersections is the subfunctor

Hilbflci(𝑋/𝑆) ⊂ Hilbfin(𝑋/𝑆)

defined by sending 𝑌 ∈ Sch𝑆 to the set of closed subschemes 𝑍 ⊂ 𝑋 ×𝑆 𝑌 that are finite
syntomic over 𝑌.

5.2Theorem. Let 𝑆 be a scheme,𝑋 ∈ Sch𝑆, and 𝑑 ≥ 0 an integer.

(5.2.1) The subfunctor Hilbflci(𝑋/𝑆) ⊂ Hilbfin(𝑋/𝑆) is open.

(5.2.2) If𝑋 → 𝑆 is smooth, then Hilbflci(𝑋/𝑆) is formally smooth over 𝑆.

Proof. Assertion (5.2.1) is immediate from [7, Corollaire 19.3.8].
Now we prove (5.2.2). Let 𝑉 ⊂ 𝑉′ be a first-order thickening of affine schemes and
𝑉′ → 𝑆 be a morphism. We need to show that every closed subscheme 𝑖 ∶ 𝑍 ↪ 𝑉 ×𝑆 𝑋
that is finite syntomic over 𝑉 can be lifted to a closed subscheme 𝑍′ ⊂ 𝑉′ ×𝑆 𝑋 that
is finite syntomic over 𝑉′. Since 𝑋 → 𝑆 is smooth, the immersion 𝑖 is lci [STK, Tag
069M], and in particular the conormal sheaf 𝒩𝑖 is finite locally free. Sicne 𝑍 is affine,
the canonical sequence of conormal sheaves

0 𝑖⋆(𝒩𝑉×𝑆𝑋/𝑉′×𝑆𝑋) 𝒩𝑍/𝑉′×𝑆𝑋 𝒩𝑖 0

is split exact (see [STK, Tag 063N]). Choosing a splitting, we can identify 𝒩𝑖 with a
subsheaf of𝒩𝑍/𝑉′×𝑆𝑋. Let𝑍

(1) be the first-order infintesimal neighborhood of𝑍 in𝑉′×𝑆
𝑋, so that the conormal sheaf𝒩𝑍/𝑉′×𝑆𝑋 can be identified with the ideal sheaf 𝐼𝑍⊂𝑍(1) of
𝑍 in 𝑍(1).

Let 𝑍′ ⊂ 𝑍(1) be the closed subscheme cut out by the submodule (hence subideal)

𝒩𝑖 ⊂𝒩𝑍/𝑉′×𝑆𝑋 = 𝐼𝑍⊂𝑍(1) .
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By construction, 𝒩𝑍/𝑍′ is the pullback of 𝒩𝑉×𝑆𝑋/𝑉′×𝑆𝑋 to 𝑍, hence also the pullback to
𝒩𝑉/𝑉′ to 𝑍. By [STK, Tag 06AG(23)], we further deduce that 𝑍′ is finite locally free
over𝑉′, so𝑍′ defines an element of Hilbfin(𝑋/𝑆)(𝑉′) lifting𝑍 ∈ Hilbfin(𝑋/𝑆)(𝑉). Since
𝑉 → 𝑉′ is surjective and open subfunctors are stable under generization, (5.2.1) implies
that 𝑍′ → 𝑉′ is lci.

6 The Hilbert scheme of framed points
We now define framings and the Hilbert functor of framed points, which plays the role
of the moduli space of framed 0-manifolds and cobordisms from topology. We finish by
providing some examples.

6.1 Definition ([5, Definition 5.1.7]). Let𝑋 be a smooth 𝑆-scheme, and

[𝑖 ∶ 𝑍 ↪ 𝑋 ×𝑆 𝑇] ∈ Hilbfin(𝑋/𝑆)(𝑇)

A framing of𝑍 is an isomorphism 𝜙∶ 𝒩𝑖 ⥲ 𝑖⋆(Ω𝑋×𝑆𝑇/𝑇). TheHilbert scheme of framed
points of𝑋 over 𝑆 is the functor

Hilbfr(𝑋/𝑆)∶ Schop
𝑆 → Set

sending 𝑇 ∈ Sch𝑆 to the set of pairs (𝑍, 𝜙) with 𝑍 ∈ Hilbfin(𝑋/𝑆)(𝑇) and 𝜙 a framing of
𝑍.
6.2. Again, the degree induces a decomposition

Hilbfr(𝑋/𝑆) ≃ ∐
𝑑≥0

Hilbfr
𝑑 (𝑋/𝑆)

of product-preserving presheaves on Sch𝑆.

6.3. If 𝑍 ∈ Hilbfin(𝑋/𝑆)(𝑇) admits a framing, then by Nakayama’s lemma 𝑍 is locally
cut out by a minimal number of equations, hence is a local complete intersection over
𝑇. Thus there is a map forgetting framings

Hilbfr(𝑋/𝑆) → Hilbflci(𝑋/𝑆) .

6.4 Example. Let 𝑘 be a field. Then we can identify Hilbfin
𝑑 (𝐀1𝑘/𝑘)(𝑘) with the set of

ideals 𝐼 ⊂ 𝑘[𝑥] such that the quotient 𝑘[𝑥]/𝐼 is a 𝑘-vector space of dimension 𝑑. Since
𝑘[𝑥] is a principal ideal domain, every ideal 𝐼 is generated by a polynomial 𝑓, so that

𝐼/𝐼2 ≅ (𝑓)/(𝑓2) .

A framing of a point corresponding to an ideal 𝐼 = (𝑓) is the data of an isomorphism

(𝑓)/(𝑓2) ⥲ Ω𝑘[𝑥]/𝑘 ⊗𝑘[𝑥] (𝑘[𝑥]/(𝑓))
≅ 𝑘[𝑥] d𝑥/(𝑓) .

Multiplication by𝑓 provides such an isomorphism, so every 𝑘-point of Hilbfin
𝑑 (𝐀1𝑘/𝑘)(𝑘)

admits a framing (in particular, is lci).
In fact, Hilbflci(𝐀1𝑘/𝑘) = Hilbfin(𝐀1𝑘/𝑘), but this is more difficult to see.
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6.5 Warning. It is not true that Hilbflci(𝐀𝑛𝑘/𝑘) = Hilbfin(𝐀𝑛𝑘/𝑘) for 𝑛 > 1. For example,
not every 𝑘-point of Hilbfin(𝐀2𝑘/𝑘) is lci. Consiser the quotient

𝑘[𝑥, 𝑦]/(𝑥2, 𝑥𝑦, 𝑦2) .

As a 𝑘-vector space (𝑥2, 𝑥𝑦, 𝑦2)/(𝑥2, 𝑥𝑦, 𝑦2)2 has dimension 7, generated by 𝑥2, 𝑥𝑦, 𝑦2,
𝑥2𝑦, 𝑥𝑦2, 𝑥3, and 𝑦3. On the other hand, sinceΩ𝑘[𝑥,𝑦]/𝑘 is a free 𝑘[𝑥, 𝑦]-module of rank
2, for any ideal 𝐼 ⊂ 𝑘[𝑥, 𝑦] such that 𝑘[𝑥, 𝑦]/𝐼 is a finite dimensional 𝑘-vector space, the
𝑘-vector space

Ω𝑘[𝑥,𝑦]/𝑘 ⊗𝑘[𝑥,𝑦] (𝑘[𝑥, 𝑦]/𝐼)
is even-dimensional.
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