
Fully faithful functors and pushouts of∞-categories

Peter J. Haine Maxime Ramzi Jan Steinebrunner

March 5, 2025

Abstract

We study stability properties of fully faithful functors, and compute mapping anima in
pushouts of∞-categories along fully faithful functors. We provide applications of these cal-
culations to pushouts along Dwyer functors and Reedy categories.

Contents

0 Introduction 1

1 Characterizations of fully faithful functors 4

2 Stability properties of fully faithful functors 5

3 Mapping anima in pushouts 10

4 Computing pushouts via necklaces 14

5 Examples and applications 23

References 31

0 Introduction
While limits of categories and∞-categories are generally easy to understand from a computa-
tional perspective, colimits tend to be less tractable. In principle, a colimit of∞-categories can be
computed by unstraightening the functor and inverting all the cocartesian edges, but in general
computing this localization is not feasible.

However, in special cases, colimits of∞-categories can be more approachable. For example,
colimits indexed by∞-groupoids or �ltered colimits are rather straightforward. In this article, we
focus on a special class of diagrams as opposed to diagram shapes; namely, we look at pushouts
along fully faithful embeddings. In this case, we are able to compute all mapping anima in
the pushout. The following is a combination of our main results, scattered as Theorem 2.4,
Corollary 3.1, and Proposition 3.3. Given an∞-category C, we write Ar(C) for the arrow∞-cate-
gory of C and |C| for the realization or classifying anima of C.

1

0.1 Theorem. Consider a pushout square of∞-categories

A C

ℬ D ,

g

f
⌜

f̄

ḡ

where f is fully faithful. In this case, f̄ is fully faithful. Furthermore, for all b ∊ ℬ and c ∊ C, we
have equivalences:

(1) MapD(ḡ(b), f̄(c)) ≃ |ℬb∕ ×ℬA×C C∕c|.

(2) MapD(f̄(c), ḡ(b)) ≃ |Cc∕ ×CA×ℬ ℬ∕b|.

Finally, for all b0, b1 ∊ ℬ we have a pushout square

|||||||
ℬb0∕ ×ℬ

A×
ℬ
ℬ∕b1

|||||||
Mapℬ(b0, b1)

|||||||
ℬb0∕ ×ℬ

A×
C
Ar(C) ×

C
A×

ℬ
ℬ∕b1

|||||||
MapD(ḡ(b0), ḡ(b1))
⌜

ḡ

where the left-hand vertical map is induced by

A⟶ A×
C
Ar(C) ×

C
A,

a⟼ (a, idg(a), a)

and the horizontal maps are de�ned by composing.

For the �rst “three types” of mapping anima

MapC(f̄(c), f̄(c
′)) , MapD(ḡ(b), f̄(c)) , and MapD(f̄(c), ḡ(b)) ,

our methods our rather elementary. They rely on the simple observation that applying PSh(−)
to a pushout square yields a pullback square. In fact, the fact that fully faithful functors are
stable under pushout was already observed by Martini and Wolf [11, Lemma 6.3.10], with the
same method (they do not draw the mapping anima conclusions there). On the other hand, the
“fourth” mapping animaMapD(ḡ(b0), ḡ(b1)) is more complicated, and, as the formula suggests,
involves di�erent methods. Namely, the description of the fourth mapping anima relies on the
explicit formula for Segali�cation via necklaces proven in [1].

We provide various applications of Theorem 0.1 to pushouts along sieve inclusions, pushout
products, and functors out of Reedy categories. See Section 5. We conclude the introduction by
stating one sample application.

In studying the homotopy theory of 1-categories, Thomason introduced a class of fully faithful
functors called Dwyer functors [13]. See De�nition 5.5. The main result of [6] is that (homotopy)
pushouts of 1-categories along Dwyer functors remain 1-categories [6, Theorem 1.6]. We prove
the following generalization of this result:

2

0.2 Corollary (Corollary 5.6). Let P ⊂ Ani be a full subcategory of anima containing the empty
set, and consider a pushout square of∞-categories

A C

ℬ D ,

g

f
⌜

f̄

ḡ

where f is a Dwyer functor, and all mapping anima of A, ℬ, and C lie in P. Then the mapping
anima ofD also lie in P.

In particular, taking P to be the∞-category of (n − 1)-truncated anima, we deduce that the
inclusionCatn ↪ Cat∞ of n-categories into∞-categories preserves pushouts along Dwyer functors.

0.1 Related work
In [10], Wärn studies a related question, namely path anima in arbitrary pushouts of∞-group-
oids, which is a special case of the general question of computing mapping anima in arbitrary
pushouts of∞-categories. Wärn’s work is in a somewhat orthogonal direction from ours. The
answer there involves more in�nitary operations, which is to be expected as zigzag length in
arbitrary localizations is unbounded.

It would be very interesting to see whether the two approaches can be combined to compute
general pushouts of∞-categories.

0.2 Linear overview
In Section 1, we record equivalent characterizations of full faithfulness which are helpful for our
work but also worth knowing in general. In Section 2we study stability properties of fully faithful
functors under categorical operations, one of which being pushouts along arbitrary functors. In
Section 3, we compute all mapping anima in pushouts along fully faithful functors, modulo a
key technical input for the “fourth” mapping anima, which we deal with in Section 4 using the
theory of necklaces and results of [1]. Finally, in Section 5, we give a number of applications.
Among other things we generalize [6, Theorem 1.6], and we show that functors out of Reedy
∞-categories admit a latching-matching description analogous to the 1-categorical situation.

0.3 Notational conventions
We writeAni for the∞-category of anima (also referred to as spaces or∞-groupoids) and Cat∞
for the∞-category of∞-categories. The inclusion Ani ↪ Cat∞ admits both a left and a right
adjoint. We denote the left and right adjoints by

|−| ∶ Cat∞ → Ani and (−)≃ ∶ Cat∞ → Ani ,

respectively. We refer to |C| as the realization or classifying anima of C and refer to C≃ as the
(groupoid) core of C.

0.4 Acknowledgments
We thank David Nadler for asking questions that lead to us writing this note. We also thank the
members of the Copenhagen question seminar for inspiring the content of section 5.2.

3

PH gratefully acknowledges support from the NSF Mathematical Sciences Postdoctoral Re-
search Fellowship under Grant #DMS-2102957. MR was supported by the Danish National
Research Foundation through the Copenhagen Centre for Geometry and Topology (DNRF151)
while part of this work was conducted, and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 427320536 – SFB 1442, as well as by Germany’s Ex-
cellence Strategy EXC 2044 390685587, Mathematics Münster: Dynamics–Geometry–Structure
during the �nishing stages of writing. JS was supported by the Independent Research Fund Den-
mark (grant no. 10.46540/3103-00099B) and the Danish National Research Foundation through
the "Copenhagen Centre for Geometry and Topology" (grant no. CPH-GEOTOP-DNRF151).

1 Characterizations of fully faithful functors
In this section, we recall some basic characterizations of fully faithful functors. We begin by
recalling when adjoints are fully faithful.

1.1 Lemma [4, Lemma 3.3.1]. Let L∶ C⇄ D ∶R be an adjunction. The following are equivalent:

(1) The left adjoint L is fully faithful.

(2) The unit �∶ idC → RL is an equivalence.

(3) The composite RL∶ C→ C is an equivalence of∞-categories (e.g., there exists an equivalence
RL ≃ idC).

1.2 Lemma. Let L ⫞ f ⫞ R be a chain of adjunctions. Then L is fully faithful if and only if R is
fully faithful.

Proof. By Lemma 1.1, L is fully faithful if and only if fL ≃ id. By uniqueness of adjoints, this
is equivalent to the requirement that id ≃ fR. Again applying Lemma 1.1, this is equivalent to
saying that R is fully faithful.

As a consequence, we deduce the following characterization of fully faithful functors in terms
of presheaves.

1.3 Lemma. The following are equivalent for a functor of∞-categories f∶ C→ D:

(1) The functor f is fully faithful.

(2) The functor f! ∶ PSh(C)→ PSh(D) given by left Kan extension along f is fully faithful.

(3) The functor f∗ ∶ PSh(C)→ PSh(D) given by right Kan extension along f is fully faithful.

Proof. To see that (2) ⇒ (1), note that by [HTT, Proposition 5.2.6.3], there is a commutative
square

C D

PSh(C) PSh(D)

f

ょ ょ

f!

where よ is the Yoneda embedding. Since the Yoneda embedding is fully faithful, if f! is fully
faithful, then f is also fully faithful.

4

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.2.6.3

To see that (1)⇒ (2), note that (the proof of) [HTT, Proposition 4.3.2.17] shows that if f is
fully faithful, then the unit for the f! ⫞ f∗ adjunction is an equivalence. Hence f! is also fully
faithful.

That (2) and (3) are equivalent follows from Lemma 1.2.

We conclude with the following Segal anima characterization of full faithfulness.

1.4 Proposition (see also [10, Propositions 3.8.6 & 3.8.7]). The following are equivalent for a
functor of∞-categories f∶ C→ D:

(1) The functor f is fully faithful.

(2) The induced square

Fun([1],C) Fun([1],D)

C × C D ×D

f◦−

(s,t) (s,t)

f×f

is a pullback square of∞-categories.

(3) The induced square of groupoid cores

Fun([1],C)≃ Fun([1],D)≃

(C × C)≃ (D ×D)≃

f◦−

(s,t) (s,t)

f×f

is a pullback square of anima.

Proof. That (1) is equivalent to (3) follows from inspecting the vertical �bers of the square in (3).
Furthermore, if f is fully faithful, then so is f[1] and thus in (2) both horizontal functors are fully
faithful and we can check that it is a pullback square by noting that an arrow is the essential
image of f[1] if and only if both its source and target are. Finally, (2) implies (3) by observing
that the groupoid core functor (−)≃ preserves pullbacks.

2 Stability properties of fully faithful functors
In this section, we prove ourmain results concerning stability properties of fully faithful functors
under speci�c colimits.

2.1 Proposition. Let ℐ an ∞-category, C∙,D∙ ∶ ℐ → Cat∞ diagrams, and f∙ ∶ C∙ → D∙ a
natural transformation. Assume that for each i ∊ ℐ, the functor fi is fully faithful. Then:

(1) The induced functor limi∊ℐ Ci → limi∊ℐ Di is fully faithful.

(2) If ℐ is �ltered, then the induced functor colimi∊ℐ Ci → colimi∊ℐ Di is fully faithful.

5

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.4.3.2.17

Proof. First note that [1] is a compact object of Cat∞ and the groupoid core functor (−)≃ pre-
serves �ltered colimits. Thus the functors Cat∞ → Ani given by

C↦ Fun([1],C)≃ and C↦ (C × C)≃

preserve both limits and �ltered colimits. Since limits commute and �ltered colimits of anima
commute with pullbacks, both claims follow from item (3) of Proposition 1.4.

We now record counterexamples to (2) when ℐ is not �ltered.

2.2 Example. Let f∶ X → Y be an arbitrary map of anima. By [Ker, Tag 04QR], f can be
represented as a colimit over �op of a co�bration of simplicial sets f∙ ∶ X∙ → Y∙. Since f∙ is
a levelwise injection, f∙ is levelwise fully faithful. Since f was arbitrary, this proves that fully
faithful maps are not closed under geometric realizations.

2.3 Example. Consider the map of spans

{1 < 2} {1} {0 < 1 < 2}

{1 < 2} {1 < 2} {0 < 1 < 2} .

The pushout in Cat∞ of the top row is the poset with elements 0, 1, 2, and 2′ and generating
relations 0 < 1, 1 < 2, and 1 < 2′. (This can for example be shown using Corollary 5.2.) On the
other hand, the pushout in Cat∞ of the bottom row is the poset {0 < 1 < 2}. In particular, the
induced functor on pushouts is not fully faithful.

2.4 Theorem (fully faithful functors are stable under pushout). Given a pushout square of∞-
categories

(2.5)
A C

ℬ D ,

g

f
⌜

f̄

ḡ

if f is fully faithful, then f̄ is fully faithful.

To prove this, we start by studying properties of pullbacks.

2.6 Proposition. Let

(2.7)
W Y

X Z

p̄∗

q̄∗
⌟

q∗

p∗

be a pullback square of ∞-categories. If p∗ ∶ X → Z admits a fully faithful left adjoint, then
p̄∗ ∶ W → Y admits a fully faithful left adjoint.

6

http://kerodon.net/tag/04QR

Proof. Let p! denote the fully faithful left adjoint to p∗, and �∶ idZ ⥲ p∗p! the unit equivalence.
By the universal property of the pullback, the functors idY ∶ Y → Y and p!q∗ ∶ Y → X, together
with the equivalence

q∗◦ idY = idZ ◦q∗ p∗p!q∗
�q∗
∼

induce a functor p̄! ∶ Y →W.
We claim that p̄! is a fully faithful left adjoint to p̄∗. More precisely, we show that the natural

equivalence �∶ idY ⥲ p̄∗p̄! that we get from the de�nition of p̄! is a unit transformation, from
which the full faithfulness follows at once. We need to show that given y ∊ Y and w ∊ W, the
composition

MapW(p̄!(y), w) MapY(p̄
∗p̄!(y), p̄∗(w)) MapY(y, p̄

∗(w))−◦�

is an equivalence. Because the second map in this composite is an equivalence by de�nition, it
su�ces to prove that the �rst map in the composite is an equivalence.

Since (2.7) is a pullback square, the projections induce an equivalence

MapW(p̄!(y), w)⥲ MapX(q̄
∗p̄!(y), q̄∗(w)) ×

MapZ(p∗q̄∗p̄!(y),p∗q̄∗(w))
MapY(p̄

∗p̄!(y), p̄∗(w))

Therefore, it su�ces to show that the projection

MapX(q̄
∗p̄!(y), q̄∗(w))→ MapZ(p

∗q̄∗p̄!(y), p∗q̄∗(w))

is an equivalence. Under the canonical equivalence q̄∗p̄! ≃ p!q∗, this projection is identi�ed
with the projection

MapX(p!q
∗(y), q̄∗(w))→ MapZ(p

∗p!q∗(y), p∗q̄∗(w)) .

Composing thismapwith precomposition along �q∗(y), we get an equivalence, by the de�nition of
an adjunction. Since �q∗(y) is an equivalence, the projection is also an equivalence, as desired.

2.8 Remark. See [11, Lemma 6.3.9] for a generalization of Proposition 2.6 to internal higher
categories.

Note that in Proposition 2.6, we obtain an equivalence p!q∗ ≃ q̄∗p̄! by design. Given a
commutative square as in (2.7) where p∗ and p̄∗ have left adjoints p! and p̄!, there is also a
canonical map

p!q∗ → q̄∗p̄! ,

called the Beck–Chevalley map or exchange transformation. See [HA, De�nition 4.7.4.13; 2; 7].
We point out to the reader that in the situation where p! is fully faithful (but where the square
is not assumed to be a pullback), the existence of an equivalence p!q∗ ≃ q̄∗p̄! implies that
speci�cally the Beck–Chevalley map is an equivalence. This digression is not needed in the
proof of Theorem 2.4, but is good to know.

2.9 Lemma. Let
W Y

X Z

p̄∗

q̄∗
⌟

q∗

p∗

7

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.7.4.13

be a commutative square where p∗ and p̄∗ admit fully faithful left adjoints p! and p̄!, respectively.
If the functor q̄∗p̄! lands in the essential image of p! (e.g., there exists an equivalence p!q∗ ≃ q̄∗p̄!),
then the Beck–Chevalley map p!q∗ → q̄∗p̄! is an equivalence.

Proof. Fix x ∊ X and y ∊ Y. Mapping into x, the Beck–Chevalley map at y corresponds, by
de�nition, to the following composite

Map(q̄∗p̄!(y), x)→ Map(p∗q̄∗p̄!(y), p∗(x))
≃ Map(q∗p̄∗p̄!(y), p∗(x))
→ Map(q∗(y), p∗(x))
≃ Map(p!q∗(y), x) .

Since q̄∗p̄! lands in the essential image of p! by assumption, the �rst map in this composition is
an equivalence. Since p̄! is fully faithful, the unit map idY → p̄∗p̄! is an equivalence; hence the
�nal map in the composition is also an equivalence. Hence for any x ∊ X, the whole composition
is an equivalence, from which it follows that the Beck–Chevalley map is an equivalence.

We can summarize Proposition 2.6 as saying that, under the hypotheses, p̄∗ admits a fully faithful
left adjoint, and that the square is horizontally left adjointable.

We can now prove that fully faithful functors are stable under pushout:

Proof of Theorem 2.4. Applying PSh(−) to the pushout square (2.5) yields a pullback square

PSh(D) PSh(C)

PSh(ℬ) PSh(A)

f̄∗

ḡ∗
⌟

g∗

f∗

of presheaf ∞-categories and restriction functors. By Lemma 1.3, it su�ces to prove that the
left adjoint of the restriction functor f̄∗ ∶ PSh(D) → PSh(C) is fully faithful. Equivalently, by
uniqueness of adjoints, we need to show that f̄∗ admits a fully faithful left adjoint.

Since f is fully faithful, Lemma 1.3 shows that f∗ ∶ PSh(ℬ)→ PSh(A) admits a fully faithful
left adjoint. Proposition 2.6 shows that f̄∗ also admits a fully faithful left adjoint, as desired.

2.10 Corollary. Let
A C

ℬ D ,

g

f
⌜

f̄

ḡ

be pushout square of∞-categories where f is fully faithful. Then the induced square of presheaf
∞-categories

PSh(D) PSh(C)

PSh(ℬ) PSh(A)

f̄∗

ḡ∗
⌟

g∗

f∗

is horizontally left adjointable; that is, the Beck–Chevalley map f!g∗ → ḡ∗f̄! is an equivalence.

8

Proof. Combine Theorem 2.4 and Lemma 2.9.

We conclude by noting that the fact that fully faithful functors are stable under pushout
immediate implies some more stability properties:

2.11 Proposition. Let C be an∞-category with pushouts, and let P be a collection of morphisms
in C that contains all equivalences and is stable under composition and pushout. Let

X0 W0 Y0

X1 W1 Y1

x w y

be a commutative diagram in C. Assume one of the following:

(1) The left-hand square is a pushout and y ∊ P.

(2) The morphisms x, y, and the codiagonal ∇w ∶ W1 ⊔W0 W1 →W1 are in P.

Then the induced morphism

X0
W0
⊔ Y0 → X1

W1
⊔ Y1

is in P.

Proof of Proposition 2.11. For (1), for i = 0, 1, let Pi denote the pushout Xi ⊔Wi Yi . Consider the
commutative cube

W0 Y0

W1 Y1

X0 P0

X1 P1 .

w
y

x

By de�nition, the front and back vertical faces are pushout squares. By assumption, the left-hand
vertical face is also a pushout square. By the gluing lemma for pushouts, the right-hand vertical
face is also a pushout. Since y ∊ P and the class P is stable under pushout, we deduce that the
induced map on pushouts P0 → P1 is also in P.

Now we prove (2). First note that the natural morphism X0 ⊔W0 Y0 → X1 ⊔W1 Y1 factors as
a composite

X0
W0
⊔ Y0 X1

W0
⊔ Y1 X1

W1
⊔ Y1 .

Since P is stable under composition, it su�ces to prove that each of these morphisms is in P.
(That is, we need to show the claim in the special cases when w is the identity, and when x and
y are identities.)

9

For the left-hand morphism, note that the morphism X0 ⊔W0 Y0 → X1 ⊔W0 Y1 factors as a
composite

X0
W0
⊔ Y0 X1

W0
⊔ Y0 X1

W0
⊔ Y1 .

x⊔idY0 idX1 ⊔y

Since x, y ∊ P and P is stable under pushout, both of the above morphisms are in P.
That the right-hand morphism is in P follows from the fact that the natural square

W1
W0
⊔ W1 W1

X1
W0
⊔ Y1 X1

W1
⊔ Y1

∇w

is a pushout (a proof of which we’ll see in Equation (4.2)), the assumption that ∇w ∊ P, and the
assumption that P is stable under pushout.

2.12 Example. In light of Theorem 2.4, Proposition 2.11 applies when C = Cat∞ and P is the
class of fully faithful functors.

3 Mapping anima in pushouts
In this section, we use Theorem 2.4 and its proof to compute most of the mapping anima in a
pushout of∞-categories where one of the legs is fully faithful. Given a pushout square:

A C

ℬ D ,

g

f
⌜

f̄

ḡ

where f is fully faithful, there are four “types” of mapping anima to compute: those from objects
in the image of ℬ to objects in the image of C, those from objects in the image of C to objects
in the image of ℬ, those from objects in the image of ℬ to themselves, and �nally those from
objects in the image of C to themselves.

Theorem 2.4 concerns the last type, and all the “mixed” types can be computed from its proof.
Finally, the mapping anima between objects in the image of ℬ are more di�cult to access, and
indeed, the formula we obtain for them is more complex. We address them last, as the relevant
techniques are di�erent.

Let us, however, point out that in §5.1, we outline a simpler computation of this last type in
the case where the inclusion f∶ A↪ ℬ is a sieve.

3.1 The �rst three types of mapping anima
The �rst main result is:

3.1 Corollary. Let
A C

ℬ D ,

g

f
⌜

f̄

ḡ

10

be a pushout square of∞-categories where f is fully faithful. For all b ∊ ℬ and c, c′ ∊ C, we have
natural equivalences:

(1) MapD(f̄(c), f̄(c
′)) ≃ MapC(c, c

′).

(2) MapD(ḡ(b), f̄(c)) ≃ |ℬb∕ ×ℬA×C C∕c|.

(3) MapD(f̄(c), ḡ(b)) ≃ |Cc∕ ×CA×ℬ ℬ∕b|.

Proof. Item (1) is simply full faithfulness of f̄, so it follows from Theorem 2.4.
Now let us prove (2). We note that since left Kan extension preserves representable functors,

MapD(ḡ(b), f̄(c)) =
(
ḡ∗MapD(−, f̄(c))

)
(b) =

(
ḡ∗f̄!MapC(−, c)

)
(b) .

Thus, using Corollary 2.10 and the pointwise formula for left Kan extensions, we �nd

MapD(ḡ(b), f̄(c)) = f!g∗MapC(−, c)(b)
= colim

(A×ℬ ℬb∕)op
MapC(g(a), c) .

Now, in terms of right �brations, the functor

Aop → Ani , a ↦ MapC(g(a), c)

is represented by the right �bration A×C C∕c. Hence the same functor, restricted to A×ℬ ℬb∕ is
represented by the pullback right �bration, i.e., ℬb∕ ×ℬA×C C∕c. Thus its colimit is indeed the
realization of this∞-category.

Item (3) follows from (2) by dualizing. The functor (−)op ∶ Cat∞ → Cat∞ is an equivalence
of∞-categories, and hence preserves pushouts, and it also preserves full faithfulness. Thus, by
(2) applied to the opposite of the original square, we �nd

MapD(f̄(c), ḡ(b)) = MapDop(ḡop(b), f̄op(c))

=
|||||||
ℬop
b∕ ×

ℬop
Aop ×

Cop
Cop∕c

|||||||
= ||||Cc∕ ×C A ×ℬ ℬ∕b

|||| ,

as desired.

Using this formula we can detect when a square of fully faithful functors is a pushout square.

3.2 Corollary. A square of∞-categories

A C

ℬ D ,

g

f f̄

ḡ

where all functors are fully faithful is a pushout square if and only if the following conditions are
satis�ed:

(1) The functors f̄ and ḡ are jointly surjective.

11

(2) For all b ∊ ℬ ∖A and c ∊ C ∖A the maps

|ℬb∕ ×ℬ
A×

C
C∕c|⟶ MapD(ḡ(b), f̄(c)) and |Cc∕ ×C

A×
ℬ
ℬ∕b|⟶ MapD(f̄(c), ḡ(b))

are equivalences.

Proof. Let P denote the pushout - we obtain a functor F∶ P → D. Since the maps ℬ → P and
C→ P are jointly surjective, we see that F is essentially surjective if and only if (1) holds.

Furthermore, F is fully faithful on the image of ℬ and on the image of C. Hence F is fully
faithful if and only if F induces equivalences

MapP(b, c)⟶ MapD(b, c) and MapP(c, b)⟶ MapD(c, b)

for all b ∊ ℬ ∖A and c ∊ C ∖A. By Corollary 3.1, this is exactly equivalent to condition (2).

3.2 The fourth mapping anima
The goal of this subsection is to compute the missing “fourth” mapping anima that was not yet
described in Corollary 3.1. This requires Proposition 4.3 as an input, which we prove in the next
section using di�erent techniques.

3.3 Proposition. Let

A C

ℬ D ,

g

f
⌜

f̄

ḡ

be a pushout square of∞-categories where f is fully faithful. For all b0, b1 ∊ ℬ, there is a pushout
square of anima

|||||||
ℬb0∕ ×ℬ

A×
ℬ
ℬ∕b1

|||||||
Mapℬ(b0, b1)

|||||||
ℬb0∕ ×ℬ

A×
C
Ar(C) ×

C
A×

ℬ
ℬ∕b1

|||||||
MapD(ḡ(b0), ḡ(b1)) .

ḡ

Here, the left-hand vertical map is induced by

A⟶ A×
C
Ar(C) ×

C
A,

a⟼ (a, idg(a), a)

and the horizontal maps are de�ned by composing.

3.4 Remark. If we have b0 ∊ A, then the top horizontal map in Proposition 3.3 is an equivalence.
In this case we can also rewrite the bottom left corner as

|Cg(b0)∕ ×C
A×

ℬ
ℬ∕b1 | ,

which recovers the formulas for the 2nd and 3rd mapping anima, so that the bottom map is an
equivalence, thus Proposition 3.3 in this case follows from Corollary 3.1. The same argument
applies if b1 ∊ A, so we could without loss of generality assume that b0, b1 ∉ A for the proof of
Proposition 3.3, but this wouldn’t lead to any simpli�cations.

12

We now prove Proposition 3.3 with a forward reference to the next section, where we use
necklaces to establish a certain pushout square of mapping anima.

Proof of Proposition 3.3. Fix b0, b1 ∊ ℬ. We interpret these as objects b0, b1 ∊ ℬ⊔Aℬ where b0
lives in the left and b1 in the right copy of ℬ ↪ ℬ⊔Aℬ, respectively. In the next section we
prove Proposition 4.3, which tells us that there is a pushout diagram of anima

Mapℬ⊔A ℬ(b0, b1) Mapℬ(b0, b1)

MapD⊔CD(g(b0), g(b1)) MapD(g(b0), g(b1))

∇ℬ

∇D

where the horizontal maps come from the fold functors ∇∶ ℬ⊔Aℬ → ℬ and ∇∶ D⊔CD→ D.
Using our computation of the second and third mapping anima in Corollary 3.1, we can

rewrite the left two terms as

Mapℬ⊔A ℬ(b0, b1) ≃ |ℬb0∕ ×ℬ
A×

ℬ
ℬ∕b1 |

and
MapD⊔CD(ḡ(b0), ḡ(b1)) ≃ |Dḡ(b0)∕ ×D

C×
D
D∕ḡ(b1)| .

While the �rst one is exactly what we need, the second one might not seem as useful because it
uses the∞-categoryD, which we are trying to compute. What we will show is that our under-
standing of the second and third mapping anima su�ces to describe the relevant �ber products
of slices ofD.

To start, consider the functor

F∶ ℬb0∕ ×ℬ
A×

C
Ar(C)⟶ Dḡ(b0)∕ ×D

C

(�∶ b0 → f(a), ∶ g(a)→ c)⟼ (f̄()◦ḡ(�)∶ ḡ(b0)→ f̄(c))

Then F is a map from a cocartesian �bration over C (indeed a free cocartesian �bration) to a
left �bration over C. By [8, Lemma A.1.8], F is itself a cocartesian �bration. (Condition (4) of [8,
Lemma A.1.8] is satis�ed as the cocartesian edges of Fc are precisely the equivalences and thus
are preserved by cocartesian transport along any c → c′.) Taking �bers over c ∊ C, the functor F
induces the functor

Fc ∶ ℬb0∕ ×ℬ
A×

C
C∕c⟶ MapD(ḡ(b0), f̄(c)) ,

which is a localization by Corollary 3.1. Therefore F is a cocartesian �bration with weakly con-
tractible �bers. By dual reasoning, the functor

G∶ Ar(C) ×
C
A×

C
ℬ∕b1 ⟶ C×

D
D∕ḡ(b1)

(�∶ c → g(a), ∶ f(a)→ b1)⟼ (ḡ()◦f̄(�)∶ f̄(c)→ ḡ(b1))

is a cartesian �bration with weakly contractible �bers.

13

In thus follows from Lemma 3.5 below (setting B = C, p0 = F, and p1 = G) that the top
functor in the following diagram is a weak equivalence:

ℬb0∕ ×ℬ
A×

C
Ar(C) ×

C
Ar(C) ×

C
A×

C
ℬ∕b1 Dḡ(b0)∕ ×D

C×
D
D∕ḡ(b1)

ℬb0∕ ×ℬ
A×

C
Ar(C) ×

C
A×

C
ℬ∕b1 MapD⊔CD(ḡ(b0), ḡ(b1)) .

F×G

Here the bottom functor is de�ned analogously to F and G by mapping to the pushoutD⊔CD
and composing all morphisms. The right vertical map is a weak equivalence by Corollary 3.1
applied to the pushout of the span D ← C → D, where both arrows are fully faithful. The left
functor has both adjoints because the composition functor

([1]
�1
,,→ [2])∗ ∶ Ar(C) ×

C
Ar(C) = Fun([2],C)⟶ Fun([1],C) = Ar(C)

has both adjoints and they are �berwise over C × C. In particular, the left functor is also a weak
equivalence and so we conclude that the bottom functor is a weak equivalence as well. This is
all that was left to show.

3.5 Lemma. Let p0 ∶ ℰ0 → ℬ0 be a cocartesian �bration with weakly contractible �bers and
let p1 ∶ ℰ1 → ℬ1 be a cartesian �bration with weakly contractible �bers. Then for any functors
ℬ0 → ℬ ← ℬ1 the functor

p0 × p1 ∶ ℰ0 ×ℬ ℰ1⟶ ℬ0 ×ℬ ℬ1

is a weak equivalence.

Proof. We can factor the functor as

ℰ0 ×ℬ ℰ1⟶ ℬ0 ×ℬ ℰ1⟶ ℬ0 ×ℬ ℬ1 .

The �rst functor is a cartesian �bration with weakly contractible �bers and the second functor
is a cocartesian �bration with weakly contractible �bers. (As they are basechanged from p0 and
p1, respectively.) Therefore both are weak equivalences and hence so is their composite.

4 Computing pushouts via necklaces
Given any pushout square of∞-categories

(4.1)
A ℬ

C D ,

g

f

⌜
ḡ

f̄

14

we can take the pushout in Fun([1] × [1],Cat∞) of the square (ḡ∶ idℬ → idD) with itself along
the above square to obtain another pushout square whose horizontal maps are fold maps:

(4.2)
ℬ

A
⊔ℬ ℬ

D
C
⊔D D .

∇

ḡ∪ḡ

⌜
ḡ

∇

The goal of this section is to use the Segali�cation formula of [1] to prove that whenever f is
fully faithful, this square has the following curious property.

4.3 Proposition. Consider a pushout square of ∞-categories (4.1) where f∶ A ↪ ℬ is fully
faithful. For all b0, b1 ∊ ℬ⊔Aℬ the square

Mapℬ⊔A ℬ(b0, b1) Mapℬ(b0, b1)

MapD⊔CD(ḡ(b0), ḡ(b1)) MapD(ḡ(b0), ḡ(b1))

∇

ḡ∪ḡ
⌜

ḡ

∇

induced by (4.2) on mapping anima is a pushout square.

Since the coproduct inclusions ℬ ↪ ℬ⊔Aℬ andD ↪ D⊔CD are both fully faithful, note
that if b0 and b1 both lie in the left or both lie in the right copy ofℬ the two horizontal maps are
equivalences. Therefore the new content of Proposition 4.3 lies in the case where the b0 and b1
are on opposite sides, and without loss of generality we will assume that b0 is in the left and b1
in the right copy.

4.1 Recollection on necklaces
To prove Proposition 4.3 we use the Segali�cation formula in terms of necklaces, proved by
Barkan and the third author in [1]. Their formula was inspired by Dugger and Spivak’s formula
for the coherent nerve [5].

4.4 Recollection. There is an adjunction

ac∶ sAni⇄ Cat∞ ∶N

where the associated category functor ac is left Kan extended from the full inclusion �↪ Cat∞.
The right adjoint N is the Rezk nerve, which assigns to an∞-category C the simplicial anima

Nn(C) = MapCat∞([n],C) = Fun([n],C)≃ .

Since ac is a Bous�eld localization, we can compute a pushout of∞-categories by computing
the pushout of their nerves and then applying ac to the result. In order to compute the fourth
mapping anima we recall from [1] a formula for the mapping anima in the associated category
ac(X) of a simplicial anima X. This uses the notion of necklaces, which we now recall.

15

Figure 1. The necklace N = ∆1 ∨ ∆3 ∨ ∆2 ∨ ∆2, with its joints marked in pink. The alternative
notation for this necklace is ([8], {0, 1, 4, 6, 8}).

4.5 Recollection (Necklaces). Let sSet∗∗ ≔ sSet∗⊔∗∕ be the 1-category of bipointed simplicial
sets. Then sSet∗∗ has a monoidal structure de�ned by

(A, a0, a1) ∨ (B, b0, b1) ≔ (A ⊔a1=b0 B, a0, b1)

and we de�ne the 1-category of necklaces to be the smallest full subcategoryNec ⊂ sSet∗∗ that
contains all simplices ([n], 0, n) and is closed under the monoidal product. For every necklaceN
there is a unique, strictly monotone sequence of integers 0 = a0 < a1 <⋯ < ak = n such that

N ≅ ∆a1−a0 ∨⋯ ∨ ∆ak−ak−1 .

The simplices ∆ai−ai−1 ⊂ N are calledmaximal simplices and the subset {a0,… , an} ⊂ N is called
the set of joints of N, denoted J(N). The set of joints J(N)may equivalently be described as the
subset of those 0-simplices of N that do not appear as the middle vertex of a non-degenerate
2-simplex in N.

If [n] ∊ � andA ⊂ [n] is a subset containing 0 and n, then we let ([n], A) denote the necklace
de�ned as the unique subnecklace of ∆n with joints A. A morphism d∶ [n] → [m] in � to
induces a map of necklaces ([n], A)→ ([m], B) if and only if it satis�es d(A) ⊃ B. In particular,
d must be an active morphism. In other words, the functor

Nec⟶ �act , N = ([n], A)⟼ [n]

is a cocartesian �bration and its straightening sends [n] to the (opposite of the) poset of subsets
A ⊂ [n] that contain 0 and n.

4.6. For a simplicial anima X and two points x0, x1 ∊ X0 we would like to compute the mapping
animaMapac(X)(x0, x1). The triple (X, x0, x1) de�nes an object in the∞-category

sAni∗∗ ≔ sAni∗⊔∗∕

of bipointed simplicial anima. The main theorem of [1] now says that the mapping anima can
be computed as

Mapac(X)(x0, x1) ≃ colim
N∊Necop

Map∗∗(N, (X, x0, x1)) .

The unstraightening of the presheafMap∗∗(−, (X, x0, x1)) is given by

Necx0,x1(X) ≔ Nec ×
sAni∗∗

(sAni∗∗)∕(X,x0,x1) .

Therefore, the mapping anima in ac(X) can also be described as

Mapac(X)(x0, x1) ≃ |Necx0,x1(X)| .

We mainly apply this in the case where X = N(ℬ) ⊔N(A) N(C) for some span ℬ ↩ A → C.
However, while studying this situation, we also need to consider a few variants of this pushout.

16

4.2 A pushout in terms of constrained necklaces
In order to simplify the colimit over the necklace category we use the subpresheaf

Map(A)(−, X) ⊂ Map(−, X)

onNec of constrained necklaces, which is de�ned by requiring that the necklace passes through
A (with one of its joints).

4.7 De�nition. For a bipointed simplicial anima (X, x0, x1) ∊ sAni∗∗, a union of components
A ⊂ X0, and N ∊ Nec we de�ne the anima of A-constrained necklace maps

Map(A)∗∗ (N,X) ⊂ Map∗∗(N,X)

as the subanima of those maps f∶ N → X such that there is a joint j ∊ J(N) that is mapped to
f(j) ∊ A. Note that this de�nes a subpresheaf because if d∶ M → N is a map of necklaces, then
d(J(M)) ⊃ J(N) and hence we can �nd j′ ∊ M with d(j′) = j and f(d(j′)) = f(j) ∊ A.

4.8 Notation. Throughout the rest of this section, we �x a span of∞-categories ℬ ↩ A → C
where the left-hand functor is fully faithful.

4.9 Notation. We also introduce some notation for the simplicial anima P = N(ℬ) ⊔N(A) N(C)
that is the pushout of the nerves. SinceN(A)↪ N(ℬ) is levelwise amonomorphism,Nnℬ decom-
poses as a coproduct of NnA and its complement Qn ⊂ Nnℬ. We have a similar decomposition
of Pn with the same complement so that

Nnℬ = (NnA) ⊔ Qn and Pn = (NnC) ⊔ Qn .

Note, however, that Qn is not a simplicial anima. We further let Q′n ⊂ Qn denote the subanima
of those n-simplices where neither the 0th nor the n-th vertex is in N0A. (Here Q′0 = Q0.)

We can now write the fourth mapping anima as a pushout of other anima, which we will
have to study in more detail below.

4.10 Lemma. LetD be the pushout ofℬ ↩ A→ C and let P = N(ℬ) ⊔N(A) N(C) be the pushout
of nerves taken in sAni. For all b0, b1 ∊ ℬ there is a pushout square

colim
N∊Necop

Map(A)∗∗ (N,N(ℬ)) Mapℬ(b0, b1)

colim
N∊Necop

Map(C)∗∗ (N, P) MapD(g(b0), g(b1)) .
⌜

Proof. Consider the following square in Fun(Necop,Ani):

(4.11)

Map(A)∗∗ (−,N(ℬ)) Map∗∗(−,N(ℬ))

Map(C)∗∗ (−, P) Map∗∗(−, P) .

17

For a given necklace N = ∆n1 ∨⋯ ∨ ∆nk we have a decomposition

Map∗∗(N,N(ℬ)) = Nn1ℬ ×
N0ℬ

⋯ ×
N0ℬ

Nnkℬ

= Map(A)∗∗ (N,N(ℬ)) ⊔
(
Q′n1 ×Q0 ⋯ ×Q0 Q

′
nk

)

because the complement ofMap(A)∗∗ (N,N(ℬ)) ⊂ Map∗∗(N,N(ℬ)) consists of all those necklaces
in ℬ for which every joint is not in A and therefore each maximal simplex is in Q′ni ⊂ Nniℬ as
both its 0th and last vertex are in Q0. By the same argument we also have a decomposition

Map∗∗(N, P) = Map(C)∗∗ (N, P) ⊔
(
Q′n1 ×Q0 ⋯ ×Q0 Q

′
nk

)
.

Therefore, in the square (4.11) the two horizontal maps are monomorphisms and their comple-
ments are identi�ed by the vertical maps, so the square is a pushout square of presheaves of
anima onNec. Taking the colimit overNecop we obtain a pushout square

colim
N∊Necop

Map(A)∗∗ (N,N(ℬ)) colim
N∊Necop

Map∗∗(N,N(ℬ))

colim
N∊Necop

Map(C)∗∗ (N, P) colim
N∊Necop

Map∗∗(N, P) .
⌜

Since ac(N(ℬ)) = ℬ and ac(P) = D the two right-hand terms are, by the main theorem of [1],
equivalent toMapℬ(b0, b1) andMapD(g(b0), g(b1)), respectively.

4.3 Segal conditions away from subsets
The remainder of the proof of Proposition 4.3 is about identifying the left two terms in the
pushout square in Lemma 4.10. For this we need the following criterion:

4.12De�nition. For a simplicial animaX we say that a simplicial subanimaA ⊂ X is full if each
An ↪ Xn is a monomorphism and an n-simplex is in An if and only if all its vertices are in A0.
We say X is Segal away from A if it satis�es the following: for any map of necklaces d∶ N → N′

that is a bijection on vertices, the restriction map

d∗ ∶ Map(N′, X)⟶ Map(N,X)

has contractible �bers at all those points f∶ N = ([n], J)→ X with d(f−1(A0)∩J) ⊂ J′. In other
words, if f∶ ([n], J) → X is a necklace in X and j ∊ J ∖ {⊥,⊤} is an inner joint with f(j) ∉ A0,
then f extends uniquely to ([n], J ∖ {j}).

4.13 Observation. A simplicial anima X is Segal away from a full subanima A if and only if for
every necklace N = ([n], J) the map

MapsAni(∆
n, X)⟶ MapsAni(N,X)

has contractible �bers over all those f∶ N → X that send no inner joints to A, i.e.,

f(J ∖ {⊥,⊤}) ⊂ X0 ∖ A0 ,

18

or equivalently f−1(A0) ∩ J ⊂ {⊥,⊤}. Indeed, this implies the general condition because if
d∶ N → N′ is a more general map we can write N′ = ∆n1 ∨ ⋯ ∨ ∆nk and this induces a
decomposition N = N1 ∨⋯ ∨Nk by taking preimages. Therefore, the map d can be written as
d = d1 ∨⋯ ∨ dk such that each di has a full simplex as its target. We know that each of the d∗i
have contractible �bers at the relevant points and writing d∗ as an iterated pullback of the d∗i in
Ar(Ani) we get that d∗ also has contractible �bers at the points in question.

We have plenty of examples of this property because it has the following stability under
pushouts.

4.14 Lemma. Let A ⊂ X be a full simplicial subanima and A → C any map. If X is Segal away
from A, then C ⊔A X is Segal away from C.

Proof. We can make a level-wise decomposition Xn = An ⊔Qn. WriteN = ∆n1 ∨⋯∨∆nk . Then
the anima of necklace maps N → X that send no inner joints to A is

Qn1 ×X0
Q′n2 ×X0

… ×
X0
Q′nk−1 ×X0

Qnk ⊂ Xn1 ×X0
Xn2 ×X0

… ×
X0
Xnk = MapsAni(N,X) .

After taking the pushout we still have a decomposition (C ⊔A X)n = Cn ⊔ Qn and so the anima
of necklaces in P = C ⊔A X that send no inner vertices to C is

Qn1 ×
(C⊔AX)0

Q′n2 ×
(C⊔AX)0

… ×
(C⊔AX)0

Q′nk−1 ×
(C⊔AX)0

Qnk ⊂ MapsAni(N,C ⊔
A X) .

In both cases the �ber products overX0 or (C⊔AX)0 really only map to the subanimaQ0, so that
the map X → C ⊔A X identi�es these two subanima ofMapsAni(N,X) andMapsAni(N,C ⊔

A X).
As it also identi�es the subanima of

Qn ⊂ Map(∆n, X) and Qn ⊂ Map(∆n, C ⊔A X) ,

the claim follows from Observation 4.13.

4.15 Example.

(1) If X is Segal, then X is Segal away from any full simplicial subanima A ⊂ X, since the map
N → ∆n is local with respect to Segal anima. In fact, X is Segal if and only if it is Segal away
from ∅.

(2) If P = N(ℬ) ⊔N(A) N(C) as before, then P is Segal away from N(C). This follows from
Lemma 4.14 because, by the previous example, Nℬ is Segal away from NA.

(3) If A ⊂ X is a full simplicial subanima such X is Segal away from A, then X ⊔A X is Segal
away from A. Indeed, if f∶ N → X ⊔A X is a necklace sending no inner joints to A, then f
must land entirely in one of the copies of X. In other words, f does not send any inner joints
to the other copy X ⊂ X ⊔A X, but by Lemma 4.14 X ⊔A X is Segal away from X, so we are
done.

4.4 Constrained necklaces and fold maps
Under the assumption of Segalness away from A ⊂ X we have a concrete interpretation of the
colimit of theNec-presheafMap(A)∗∗ (−, X). This involves the fold/codiagonal map

∇X ∶ X ⊔A X⟶ X .

19

4.16 Lemma. Let X be a simplicial anima and let A ⊂ X be a full simplicial subanima such that
X is Segal away from A. Let xL, xR ∊ (X ⊔A X)0 be vertices such that xL is in the left copy of X and
xR is in the right copy of X. Then there are equivalences

colim
N∊Necop

Map(A)∗∗ (N, (X ⊔A X, xL, xR)) colim
N∊Necop

Map(A)∗∗ (N, (X, xL, xR))

Mapac(X)⊔ac(A)ac(X)(xL, xR) .

∼
∇X

≀

To prove this we need some auxilliary versions of the category of necklaces in X.

4.17 De�nition. For a simplicial anima X, a full simplicial subanimaA ⊂ X, and x, y ∊ X0 ∖A0
we de�ne the full subcategories

NecAx,y(X) ⊂ Nec[A]x,y (X) ⊂ Nec(A)x,y (X) ⊂ Necx,y(X)

where, as illustrated in Figure 2, an object (f∶ N → X) ∊ Necx,y(X) is:

(1) InNec(A)x,y (X) if it maps at least one joint to A, i.e., J(N) ∩ f−1(A) ≠ ∅.

(2) InNec[A]x,y (X) if f ∊ Nec(A)x,y (X) and f maps all inner joints to A, i.e., f(J(N) ∖ {⊥,⊤}) ⊂ A.

(3) InNecAx,y(X) if f ∊ Nec(A)x,y (X) and f maps all inner vertices to A, i.e., f(N0 ∖ {⊥,⊤}) ⊂ A.

Note thatNec(A)x,y (X)→ Nec is the right �bration that straightens to the presheafMap(A)Nec(−, (X, x, y)).

Figure 2. Four necklaces that are in NecAx,y(X), Nec[A]x,y (X), Nec(A)x,y (X) and Necx,y(X), respec-
tively. (They are chosen such that each of them is not in any of the smaller subcategories.)

4.18 Lemma. For any full simplicial subanima A ⊂ X the full inclusion

NecAx,y(X)↪ Nec[A]x,y (X)

admits a right adjoint. If we additionally assume thatX is Segal away fromA, then the full inclusion

Nec[A]x,y (X)↪ Nec(A)x,y (X)

admits a left adjoint. In particular, under these assumptions, both inclusions are weak equivalences.

20

Figure 3. The left arrow depicts the counit of the colocalization NecAx,y(X) ⇄ Nec[A]x,y (X). The
right arrow depicts the unit of the localizationNec(A)x,y (X)⇄ Nec[A]x,y (X).

Proof. The right adjoint to the �rst inclusion is de�ned by sending (f∶ N = ([n], J) → X) to
(f|N′ ∶ N′ → X) where N′ ⊂ N is the full subnecklace spanned by the vertices {⊥,⊤} ∪ f−1(A).
This is well-de�ned because we know that f already sends all inner joints to A, so all of the
joints in N are still contained in N′. Figure 3 depicts both the counit of this adjunction and the
unit of the adjunction we are about to construct.

Now assume that X is Segal away from A. For any (f∶ N = ([n], J) → X) ∊ Nec(A)x,y (X) we
need to construct a localization ontoNec[A]x,y (X). Let

J0 ≔ {⊥,⊤} ∪ (f−1(A) ∩ J) ⊂ J

be the set of the two extremal vertices and those inner joints that are mapped to A. We can
de�ne a new necklace byN′ ≔ ([n], J0) and the identity on [n] induces an inclusion �∶ N ↪ N′.
Because X is Segal away from A the map f∶ N → X extends uniquely a map f′ ∶ N′ → X. We
thus have a map

�∶ (f∶ N → X)⟶ (f′ ∶ N′ → X)

in Nec(A)x,y (X) and (f′ ∶ N′ → X) ∊ Nec[A]x,y (X) because we have forgotten all inner joints of N
that did not map to A.

It remains to check that f′ is indeed a localization of f. We need to show that for any object
in the subcategory (g∶ L → X) ∊ Nec[A]x,y (X), precomposition by � induces an equivalence of
mapping anima into g. We can write these mapping anima as �bers, so that the map in question
is the left map in the diagram

MapNecx,y(X)
(f′, g) MapNec(N

′, L) MapsAni(N
′, X)

MapNecx,y(X)
(f, g) MapNec(N, L) MapsAni(N,X)

−◦�

g◦−

−◦� −◦�

g◦−

whose horiztonal lines are �ber sequences. Consider a morphism f → g given by d∶ N → L
and a homotopy g◦d ≃ f. The middle map is injective because N ↪ N′ is an epimorphism
in Nec. Its �ber over d is nonempty because if j ∊ N is a joint with f(j) ≃ g(d(j)) ∉ A, then
d(j) ∊ L cannot be an inner joint of L (as the inner joints of L are sent toA) and thus d also yields
a well-de�ned map N′ → L after deleting those joints. The right map has contractible �bers on
the component of f because we showed that f extends uniquely (as X is Segal away from A).
This shows that the left map has a contractible �ber over d∶ f → g; since d was arbitary, we
conclude that the left map is an equivalence.

21

With this tool in hand we are ready to prove Lemma 4.16.

Proof of Lemma 4.16. First, we note that for a necklace in X ⊔A X to start at xL and end at xR it
must have an at least one joint in A0. Either xL ∊ A0, or xR ∊ A0, or they are in distinct copies of
X0 ∖ A0 and to get from one to the other we need a joint in A0 as every maximal simplex of the
necklace must entirely map to one copy of X. In formulas we have

Map(A)∗∗ (−, (X ⊔A X, xL, xR)) = Map∗∗(−, (X ⊔A X, xL, xR)) .

After taking colimits, by the main theorem of [1], the right term computes the mapping anima

colim
N∊Necop

Map∗∗(N, (X ⊔A X, xL, xR)) ≃ Mapac(X⊔AX)(xL, xR) .

Since ac(X ⊔A X) ≃ ac(X) ⊔ac(A) ac(X), this proves the horizontal equivalence in the statement
of Lemma 4.16.

To show the vertical equivalence, we use thatwe can compute the colimits by unstraightening
and inverting all morphisms. In these terms, we need to show that the right vertical map in the
square

NecAxL ,xR (X ⊔A X) Nec(A)xL ,xR (X ⊔A X)

NecAxL ,xR (X) Nec(A)xL ,xR (X)

∇X ∇X

is a weak equivalence. Since X is Segal away from A and X ⊔A X is Segal away from A by
Example 4.15, Lemma 4.18 shows that the horizontal maps are weak equivalences. It remains
to show that the left map is a weak equivalence, and in fact we show that it is an equivalence of
∞-categories.

The left functor is obtained by restricting the map of right �brations

NecxL ,xR (X ⊔A X)→ NecxL ,xR (X)

over Nec to certain full subcategories. Therefore, it su�ces to check that it induces an equiva-
lence on the �bers over each N ∊ Nec. The induced map on �bers is the map

∇X◦−∶ MapA∗∗(N, (X ⊔A X, xL, xR))⟶ MapA∗∗(N, (X, xL, xR)) .

If N = ∆n1 ∨⋯ ∨ ∆nk then because all inner vertices have to map to A both sides evaluate to
(here we use that A ⊂ X and A ⊂ X ⊔A X are full)

{xL} ×X0
Xn1 ×

Xn1−1
An1−1 ×X0

An2 ×X0
⋯ ×

X0
Ank−1 ×X0

Ank−1 ×
Xnk−1

Xnk ×X0
{xR}

and the map ∇X◦− described above is an equivalence, completing the proof.

22

4.5 Proof of Proposition 4.3
By Lemma 4.10 the lower square in the diagram

colim
N∊Necop

Map∗∗(N, (Nℬ
NA
⊔ Nℬ, bL0 , b

R
1)) colim

N∊Necop
Map∗∗(N, (P

NC
⊔ P, g(bL0), g(b

R
1)))

colim
N∊Necop

Map(A)∗∗ (N, (Nℬ, b0, b1)) colim
N∊Necop

Map(C)∗∗ (N, (P, g(b0), g(b1))

Mapℬ(b0, b1) MapD(g(b0), g(b1))

∇≀ ∇≀

⌜

is a pushout square and by Lemma 4.16 the vertical maps in the top square are equivalences. The
top-most terms compute mapping anima in the associated categories. Because ac(−) commutes
with colimits we compute

ac(P
NC
⊔ P) ≃ ac(P)

ac(NC)
⊔ ac(P) ≃ D

C
⊔D .

Therefore we can rewrite the outside square in the above diagram as

Mapℬ⊔A ℬ(b
L
0 , b

R
1) MapD⊔CD(g(b

L
0), g(b

R
1)))

Mapℬ(b0, b1) MapD(g(b0), g(b1))

∇
⌜

∇

which is exactly the pushout square claimed in Proposition 4.3.

5 Examples and applications
The goal of this section is to give sample applications and examples of the main results in this
paper. Subsection 5.1 has examples involving pushouts along sieve inclusions, §5.2 concerns
Dwyer functors, and §5.3 concerns pushout products. Subsection 5.4 is lengthier and concerns
examples involving Reedy∞-categories.

5.1 Sieves
In this example, we start by giving a simpler proof of the result of Subsection 3.2whenf∶ A↪ ℬ
is a sieve inclusion. Recall that a sieve is a full subcategoryA ⊂ ℬ such that for every f∶ b → a
in ℬ with a ∊ A we also have b ∊ ℬ.

5.1 Proposition. Let

A C

ℬ D

g

f
⌜

f̄

ḡ

23

be a pushout square of∞-categories where f is fully faithful. Let b, b′ ∊ ℬ and assume that b does
not map to any a ∊ A. Then the mapMapℬ(b, b

′)→ MapD(ḡ(b), ḡ(b
′)) is an equivalence.

Proof. Consider the functor M̃ap(b,−)∶ D→ Ani de�ned onℬ byMapℬ(b,−), onC by the con-
stant functor∅, and their unique equivalence onA (they are equivalent onA by the assumption
that b has no map to any a ∊ A).

Let F∶ D → Ani be any functor. Using the Yoneda lemma and the fact that a constant
diagram with value the empty set is initial a presheaf∞-category, we compute

Map(M̃ap(b,−), F) ≃ MapFun(ℬ,Ani)(Mapℬ(b,−), F◦ḡ) ×
MapFun(A,Ani)(∅,F◦ḡf)

MapFun(C,Ani)(∅, F◦f̄)

≃ MapFun(ℬ,Ani)(Mapℬ(b,−), F◦g) ≃ F(g(b)) .

By the Yoneda lemma again, it follows that M̃ap(b,−) ≃ MapD(g(b),−), and one easily checks
that the desired map is the canonical one.

5.2 Corollary. Let
A C

ℬ D ,

g

f
⌜

f̄

ḡ

be a pushout square of∞-categories where f is a sieve inclusion. Then for all b, b′ ∊ ℬ, exactly one
of the two following situations happens:

(1) We have b ∊ A. In this case,

MapD(ḡ(b), ḡ(b
′)) ≃ MapD(f̄(g(b)), ḡ(b

′)) ≃ |Cg(b)∕ ×C
A×

ℬ
ℬ∕b′ | .

(2) We have b ∉ A. In which caseMapD(ḡ(b), ḡ(b
′)) ≃ Mapℬ(b, b

′).

We also obtain:

5.3 Corollary. Let C be an∞-category and let C0,C1 ⊂ C be sieves. Then the natural square

C0 ∩ C1 C1

C0 C0 ∪ C1

is a pushout square of∞-categories.

Proof. By Corollary 3.2 it su�ces to inspect the “cross terms”MapC(c0, c1) andMapC(c1, c0) for
c0 ∊ C0 ∖ C0 ∩ C1 and c1 ∊ C1 ∖ C0 ∩ C1. But these anima are empty because C0 and C1 are sieves,
and thus every map into these anima is an equivalence.

5.4 Remark. Corollary 5.3 can often be used to compute pushouts of posets.

24

5.2 Dwyer functors
While studying the homotopy theory of 1-categories, Thomason introduced a class of fully faith-
ful functors called Dwyer functors [13]. There, Thomason began the study of pushouts along
Dwyer functors.

5.5 De�nition. A functor f∶ A → ℬ is called a Dwyer functor if the following conditions are
satis�ed:

(1) The functor f is fully faithful, with essential image a sieve.

(2) For all b ∊ ℬ such that A×ℬ ℬ∕b is nonempty, the∞-categoryA×ℬ ℬ∕b admits a terminal
object, that is, a local counit map fRb → b.

One of the key results regarding Dwyer functors is that (homotopy) pushouts of 1-categories
along Dwyer functors remain 1-categories [6, Theorem 1.6]. Using Corollaries 3.1 and 5.2, we
are able to give a conceptual proof, as well as generalize this fact:

5.6 Corollary. Let P ⊂ Ani be a full subcategory of anima containing the empty set, and consider
a pushout square of∞-categories

(5.7)
A C

ℬ D ,

g

f
⌜

f̄

ḡ

where f is a Dwyer functor, and all mapping anima of A, ℬ, and C lie in P. Then all mapping
anima ofD also lie in P.

Proof. By Corollaries 3.1 and 5.2, except for the “cross-terms”, all mapping anima in D are
mapping anima in ℬ or C, so it su�ces to examine the cross-terms. So let b ∊ ℬ, c ∊ C, we have
to consider |ℬb∕ ×ℬA×C C∕c| and |Cc∕ ×CA×ℬ ℬ∕b|.

For the former, we note that if it is not empty, then A being a sieve implies that b ∊ A, and
so the relevant anima becomes |Ab∕ ×C C∕c| which is equivalent, by an elementary co�nality
argument, toMapC(g(b), c) and is thus in P. Since ∅ ∊ P, we are done either way.

For the latter, using the notation from De�nition 5.5 we note that again, either this anima is
empty, or by assumption,

A×
ℬ
ℬ∕b ≃ A∕Rb .

Hence the relevant anima becomes |Cc∕ ×CA∕Rb| which, again by an elementary co�nality ar-
gument, is simplyMapC(c, gRb).

Let n ≥ 0 be an integer. Recall that an∞-category C is an n-category if all mapping anima in
C are (n−1)-truncated. WriteCatn ⊂ Cat∞ for the full subcategory spanned by the n-categories.

5.8 Corollary. For each n ≥ 0, the inclusion Catn ↪ Cat∞ preserves pushouts along Dwyer
functors

Proof. Immediate from Corollary 5.6 for P be the∞-category of (n − 1)-truncated anima.

25

5.3 Pushout products
5.9 Corollary. Let C0 ⊂ C andD0 ⊂ D be full subcategories. Then the natural square

C0 ×D0 C0 ×D

C ×D0 (C ×D0) ∪ (C0 ×D)

is a pushout square of ∞-categories. Equivalently, the functor from the pushout product to the
product is fully faithful.

Proof. Note that all functors in the square are fully faithful and the bottom right-hand∞-cate-
gory is a full subcategory of C ×D. Thus by Corollary 3.2 we only have to show that map

(C ×D0)(c,d0)∕ ×
C×D0

(C0 ×D0) ×
C0×D

(C0 ×D)∕(c0,d)⟶ MapC×D((c, d0), (c0, d))

is a weak equivalence for all (c, d0) ∊ C ×D0 and (d0, d) ∊ C0 ×D. (The other case follows by
symmetry.) We can rewrite the left∞-category as

(Cc∕ ×C
(C0)∕c0) × ((D0)d0∕ ×D

D∕d)

which is indeed weakly equivalent toMapC(c, c0) × MapD(d0, d), as claimed.

5.4 Reedy categories
Classically, a Reedy 1-category ℛ has objects in bijection withN and the Reedy structure allows
for inductive arguments on the degree, where the step from degree n−1 to degree n is controlled
by the n-th latching andmatching objects. Themost fundamental instance of this is that to extend
a functor X∶ ℛ≤n−1 → V to X′ ∶ ℛ≤n → V is equivalent to specifying a factorization

LnX → X′(n)→ MnX

of the canonical map LnX → MnX from the n-th latching to the n-th matching object of X. See,
for example, [HTT, Corollary A.2.9.15]. In this subsection we propose a notion of Reedy extension
that generalizes the situation ℛ≤n−1 ↪ ℛ≤n. We then use the pushout formulas discussed
earlier, to show that functors out ofℛ≤n admit a latching-matching description analogous to the
1-categorical situation.

5.10 De�nition. We say that a fully faithful functor A ↪ ℬ is a Reedy extension if there is a
complementary subcategory C ⊂ ℬ such that

(1) The map A≃ ⊔ C≃ → ℬ≃ is an equivalence.

(2) For all c0, c1 ∊ C the map given by composition and inclusion

|ℬc0∕ ×ℬ
A×

ℬ
ℬ∕c1 | ⊔MapC(c0, c1)⟶ Mapℬ(c0, c1)

is an equivalence.

26

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.A.2.9.15

5.11 Remark. Equivalently, we have that A↪ ℬ is a Reedy extension if it satis�es

(1) For all c ∊ (ℬ≃ ∖A≃) the identity idc does not factor through any object in A.

(2) If twomorphisms f∶ c0 → c1 and g∶ c1 → c2 with ci ∊ (ℬ≃ ∖A≃) each do not factor through
an object in A, then neither does their composite.

(3) For any two c0, c1 ∊ (ℬ≃ ∖A≃) the composition map

|ℬc0∕ ×ℬ
A×

ℬ
ℬ∕c1 |⟶ Mapℬ(c0, c1)

is a monomorphism.

In this case there is a well-de�ned and unique complementary∞-category C ⊂ ℬ that contains
those objects not equivalent to objects in A and those morphisms that do not factor through an
object of A.

The idea of Reedy extensions is that we can describe functors out of ℬ in terms of a functor
out of A and a factorization of the map from the matching to the latching functor over C. Let

i∶ A↪ ℬ and j∶ C→ ℬ

denote the inclusions.

5.12 Theorem (Reedy extension theorem). Suppose we have a Reedy extension A ↪ ℬ with
complementary subcategory j∶ C→ ℬ. Then for any presentable∞-category V the square

Fun(ℬ,V) Fun([2],Fun(C,V))

Fun(A,V) Fun({0 < 2},Fun(C,V))

i∗

(j∗i!i∗→j∗→j∗i∗i∗)

ev0<2

(j∗i!→j∗i∗)

is cartesian.

5.13 Remark. Theorem 5.12 was discovered independently by Krannich–Kupers, who give
a more direct proof (based on ideas of Ayala–Mazel-Gee–Rozenblyum) in [9, Theorem 3.8].
Notably, they also establish the functoriality of the square in Theorem 5.12 with respect to
certain functors of pairs A ⊂ ℬ.

In the case that the Reedy extension arises from a Reedy (1-)category, the statement of Theo-
rem 5.12 follows from [HTT, Corollary A.2.9.15 and Remark A.2.9.16].

5.14 Remark. One can show a priori that

i∗ ∶ Fun(ℬ,V)⟶ Fun(A,V)

is both a cartesian and a cocartesian �bration. Theorem 5.12 shows that the �ber of i∗ is canoni-
cally identi�ed with the factorization category

(i∗)−1(F) ≃ {
G

j∗i!F j∗i∗F�

∊ Fun(C,V)}

27

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.A.2.9.15
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.A.2.9.16

of the canonical map �∶ j∗i!F → j∗i∗F. In this sense, Theorem 5.12 says that Fun(ℬ,V) is a
bigluing category as de�ned in the 1-categorical case in [12, De�nition 3.1]. Thus, Theorem 5.12
is an∞-categorical version of [12, Theorem 5.12]. Note that in Shulman’s version, the condition
is roughly that for every morphism c0 → c1 its category of factorizations through A is either
empty or connected, whereas for us the condition becomes that the∞-category of factorizations
is either empty or weakly contractible.

5.15 Remark (Reedy∞-categories). Based on Berger and Moerdijk’s de�nition of generalized
Reedy (1-)categories [3, De�nition 1.1], we propose the following de�nition. A Reedy∞-category
is an ∞-category C with a factorization system (CL,CR) and a map d∶ C≃ → N such that d
induces conservative functors

d∶ (CL)op⟶ N and d∶ CR⟶ N .

In this situation, we have that for all n ∊ N the full inclusion

i∶ C≤n−1 ↪ C≤n

is a Reedy extension with complementary∞-category

C≃n =
∐

[x]∊π0(C≃n)
BAut(x) ⊂ C≃ .

Moreover, the matching and latching objects can be computed more easily in this situation, as
by a co�nality argument we can write left and right Kan extension along i as:

i!(F)(x) = colim
y∊(C∕x)≤n

F(y) ≃ colim
y∊(CR∕x)≤n

F(y) and i∗(F)(x) = colim
y∊(Cx∕)≤n

F(y) ≃ colim
y∊(CLx∕)≤n

F(y) .

This yields an inductive description of Fun(C,V) = limn∊Nop Fun(C≤n,V) where in each step is
given by a pullback square as in Theorem 5.12.

Proof of the Reedy extension theorem

We �rst consider the special case where there is a functor �∶ ℬ → [2] such that A = ℬ02 and
C = ℬ1. The general case will then follow via a pushout computation in Lemma 5.19.

5.16 Notation. De�ne a poset over [2] by

P ≔ {0 < L < 1 < R < 2}→ [2]

where L, R ↦ 1 and i ↦ i otherwise. For any subset S ⊂ P we writeℬS ≔ S ×[2] ℬ. For example,
ℬL1R ≃ ℬ1 × [2].

5.17 Lemma. For any functor �∶ ℬ → [2] and any presentable∞-category V , the square

Fun(ℬ,V) Fun([2],Fun(ℬ1,V))

Fun(ℬ02,V) Fun({0 < 2},Fun(ℬ1,V))

i∗

(j∗i!i∗→j∗→j∗i∗i∗)

ev0<2

(j∗i!→j∗i∗)

is cartesian.

28

Proof. We �rst show that there is a pushout square

ℬLR ℬ0LR2

ℬL1R ℬ0L1R2 .

By Corollary 3.2 all we need to check is thatMapℬ((x, 1), (y, i)) andMapℬ((y, i), (x, 1)) are com-
puted correctly for i = 0, 2. (Without loss of generality it su�ces to only consider the former.)
We compute

|(ℬL1R)(x,1)∕ ×ℬLR (ℬ0LR2)∕(y,0)| = ∅⥲ Mapℬ0L1R2((x, 1), (y, 0))

and

|(ℬL1R)(x,1)∕ ×ℬLR (ℬ0LR2)∕(y,2)| ≃ |ℬx∕ ×ℬ
ℬ∕y| ≃ Mapℬ(x, y)

⥲ Mapℬ0L1R2((x, 1), (y, 2)) .

so the square is a pushout.
Mapping into V we get that the right-most square in the diagram

Fun(ℬ012,V) Fun(ℬ0L12,V) Fun(ℬ0L1R2,V) Fun(ℬL1R,V)

Fun(ℬ02,V) Fun(ℬ0L2,V) Fun(ℬ0LR2,V) Fun(ℬLR,V)

Lan Ran

Lan Ran

is cartesian. The horizontal functors in the left-most square are given by left Kan extension
along the full inclusions ℬ012 ↪ ℬ0L12 and ℬ02 ↪ ℬ0L2, respectively. This square is cartesian:
both horizontal functors are fully faithful and by inspecting the pointwise formula for left Kan
extension we see that a functor F∶ ℬ0L12 → V is left Kan extended from ℬ012 if and only if
F|ℬ0L2 ∶ ℬ0L2 → V is left Kan extended from ℬ02. The same argument shows that the middle
square, in which the horizontal functors are given by right Kan extension, is cartesian. The claim
now follows by using pullback pasting to combine the three squares to the desired pullback
square.

5.18 Notation. Let i∶ A ↪ ℬ be a Reedy extension with complementary∞-category C. Let
D ⊂ ℬ × [2] be the (non-full) subcategory uniquely described by the properties:

(1) D≃ ≃ A≃ × {0 < 2} ⊔ C≃ × {1} .

(2) A × {0 < 2} ⊂ D is full and C × {1} ⊂ D is full.

(3) MapD((a, 0), (c, 1)) = Mapℬ(a, c) and MapD((c, 1), (a, 2)) = Mapℬ(c, a) for all a ∊ A and
c ∊ C.

We denote the canonical projections by �∶ D → [2] and p∶ D → ℬ, and the full inclusion
A × {0 < 2}↪ D by k.

29

5.19 Lemma. With Notation 5.18, the square

A × {0 < 2} D

A ℬ

prA

k

p

i

is a pushout square.

Proof. As in the proof of Corollary 3.2, let let P denote the pushout and consider the natural
functorF∶ P → ℬ. Sincep∶ D→ ℬ is essentially surjective,F∶ P → ℬ is essentially surjective.
In order to show thatF is fully faithful we use the formulas formapping anima fromCorollary 3.1
and Proposition 3.3.

Let a ∊ A and (c, 1) ∊ C × {1} ⊂ D. Then we compute

MapP(i(a), p(c, 1)) ≃ |Aa∕ ×A
(A × {0 < 2}) ×

D
D∕(c,1)|

≃ |(A × {0})(a,0)∕ ×D
D∕(c,1)|

≃ MapC(i(a), p(c, 1)) ,

and similarly for the mapping animaMapP(p(c, 1), i(a)). It remains to compute the fourth map-
ping anima, i.e., to show that for (c0, 1), (c1, 1) ∊ C × {1} ⊂ D the square

|||||||
D(c0,1)∕ ×D

(A × {0 < 2}) ×
D
D∕(c1,1)

|||||||
MapD((c0, 1), (c1, 1))

|||||||
D(c0,1)∕ ×D

(A × {0 < 2}) ×
A
Ar(A) ×

A
(A × {0 < 2}) ×

D
D∕(c1,1)

|||||||
Mapℬ(c0, c1)

ḡ

is a pushout square. The top left anima is empty as we cannot factor the identity id1 through
{0, 2} ⊂ [2]. The top right anima is MapC(c0, c1). The bottom left anima can be simpli�ed as
the second factor must be in A × {2} and the forth factor must be in A × {0}. In summary, the
condition becomes that the map

|||||||
D(c0,1)∕ ×D

(A × {2}) ×
A
Ar(A) ×

A
(A × {0}) ×

D
D∕(c1,1)

|||||||
⊔MapC(c0, c1)⟶ Mapℬ(c0, c1)

is an equivalence. After further rewriting, the left term becomes ||||ℬc0∕ ×ℬA×ℬ ℬ∕c1
|||| and thus

the map is an equivalence exactly be the de�nition of Reedy extension in De�nition 5.10.

Proof of Theorem 5.12. Applying Lemma 5.17 to �∶ D→ [2], we see that the right square in the
diagram is

Fun(ℬ,V) Fun(D,V) Fun(C × [2],V)

Fun(A,V) Fun(A × {0 < 2},V) Fun(C × {0 < 2},V)

i∗

p∗

k∗ ev0<2

pr∗A

is cartesian. By Lemma 5.19, the left square is also cartesian. Hence the large outer square is
cartesian, as desired.

30

References
HTT J. Lurie, Higher topos theory, Annals of Mathematics Studies. Princeton University Press, Prince-

ton, NJ, 2009, vol. 170, pp. xviii+925, isbn: 978-0-691-14049-0; 0-691-14049-9. doi: 10.1515/
9781400830558, math.ias.edu/~lurie/papers/HTT.pdf.

HA , Higher algebra, Sep. 2017, math.ias.edu/~lurie/papers/HA.pdf.

Ker , Kerodon, Mar. 2025, kerodon.net.

1. S. Barkan and J. Steinebrunner, Segali�cation and the Boardmann–Vogt tensor product, Jan. 2023,
arXiv:2301.08650.

2. J. Bénabou and J. Roubaud,Monades et descente, C. R. Acad. Sci. Paris Sér. A-B, vol. 270, A96–A98,
1970.

3. C. Berger and I. Moerdijk, On an extension of the notion of Reedy category, Math. Z., vol. 269,
no. 3-4, pp. 977–1004, 2011. doi: 10.1007/s00209-010-0770-x, arXiv:0809.3341.

4. S. Carmeli, T. M. Schlank, and L. Yanovski, Ambidexterity and height, Adv. Math., vol. 385, Paper
No. 107763, 90, 2021. doi: 10.1016/j.aim.2021.107763, arXiv:2007.13089.

5. D. Dugger and D. I. Spivak, Rigidi�cation of quasi-categories, Algebr. Geom. Topol., vol. 11, no. 1,
pp. 225–261, 2011. doi: 10.2140/agt.2011.11.225, arXiv:0910.0814.

6. P. Hackney, V. Ozornova, E. Riehl, and M. Rovelli, Pushouts of Dwyer maps are (∞, 1)-categorical,
Algebr. Geom. Topol., vol. 24, no. 4, pp. 2171–2183, 2024. doi: 10.2140/agt.2024.24.2171,
arXiv:2205.02353.

7. R. Haugseng, F. Hebestreit, S. Linskens, and J. Nuiten, Lax monoidal adjunctions, two-variable
�brations and the calculus of mates, Proc. Lond. Math. Soc. (3), vol. 127, no. 4, pp. 889–957, 2023.
doi: 10.1112/plms.12548, arXiv:2011.08808.

8. R. Haugseng, V.Melani, and P. Safronov, Shifted coisotropic correspondences, J. Inst.Math. Jussieu,
vol. 21, no. 3, pp. 785–849, 2022. doi: 10.1017/S1474748020000274, arXiv:1904.11312.

9. M. Krannich and A. Kupers,∞-operadic foundations for embedding calculus, Sep. 2024, arXiv:
2409.10991.

10. L. Martini, Yoneda’s lemma for internal higher categories, Apr. 2022, arXiv:2103.17141.

11. L. Martini and S.Wolf, Colimits and cocompletions in internal higher category theory, High. Struct.,
vol. 8, no. 1, pp. 97–192, 2024, arXiv:2111.14495.

12. M. Shulman, Reedy categories and their generalizations, Sep. 2015, arXiv:1507.01065.

13. R. W. Thomason, Cat as a closed model category, Cahiers Topologie Géom. Di�érentielle, vol. 21,
no. 3, pp. 305–324, 1980.

31

https://doi.org/10.1515/9781400830558
https://doi.org/10.1515/9781400830558
http://www.math.ias.edu/~lurie/papers/HTT.pdf
http://www.math.ias.edu/~lurie/papers/HA.pdf
https://kerodon.net
https://arxiv.org/abs/2301.08650
https://doi.org/10.1007/s00209-010-0770-x
https://arxiv.org/abs/0809.3341
https://doi.org/10.1016/j.aim.2021.107763
https://arxiv.org/abs/2007.13089
https://doi.org/10.2140/agt.2011.11.225
https://arxiv.org/abs/0910.0814
https://doi.org/10.2140/agt.2024.24.2171
https://arxiv.org/abs/2205.02353
https://doi.org/10.1112/plms.12548
https://arxiv.org/abs/2011.08808
https://doi.org/10.1017/S1474748020000274
https://arxiv.org/abs/1904.11312
https://arxiv.org/abs/2409.10991
https://arxiv.org/abs/2409.10991
https://arxiv.org/abs/2103.17141
https://arxiv.org/abs/2111.14495
https://arxiv.org/abs/1507.01065

	0 Introduction
	0.1 Related work
	0.2 Linear overview
	0.3 Notational conventions
	0.4 Acknowledgments

	1 Characterizations of fully faithful functors
	2 Stability properties of fully faithful functors
	3 Mapping anima in pushouts
	3.1 The first three types of mapping anima
	3.2 The fourth mapping anima

	4 Computing pushouts via necklaces
	4.1 Recollection on necklaces
	4.2 A pushout in terms of constrained necklaces
	4.3 Segal conditions away from subsets
	4.4 Constrained necklaces and fold maps
	4.5 Proof of Proposition 4.3

	5 Examples and applications
	5.1 Sieves
	5.2 Dwyer functors
	5.3 Pushout products
	5.4 Reedy categories
	Proof of the Reedy extension theorem

	References

