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0. Introduction

Let

W Y

X Z

f̄

ḡ
⌟

g

f

(0.1)

be a pullback square of locally compact Hausdorff topological spaces, and assume that the map g is proper. 
The classical Proper Basechange Theorem in topology [51, Tag 09V6]; [52, Exposé Vbis, Théorème 4.1.1] 
says that for any ring R, the induced square of bounded-above1 derived ∞-categories

D(W ;R)<∞ D(Y ;R)<∞

D(X;R)<∞ D(Z;R)<∞

Rf̄∗

Rḡ∗ Rg∗

Rf∗

(0.2)

is left adjointable. That is to say, for each object F ∊ D(Y ;R)<∞, the natural exchange morphism

Lf∗Rg∗(F ) → Rḡ∗ Lf̄∗(F )

is an equivalence. As Lurie remarks [39, Remark 7.3.1.19], the classical Proper Basechange Theorem follows 
from the Nonabelian Proper Basechange Theorem [39, Corollary 7.3.1.18]: the induced square of ∞-cate
gories of sheaves of spaces

Sh(W ; Spc) Sh(Y ; Spc)

Sh(X; Spc) Sh(Z; Spc)

f̄∗

ḡ∗ g∗

f∗

is left adjointable.
The goal of this paper is to expand on Lurie’s remark and explain when basechange results for sheaves of 

spaces imply basechange results for sheaves with coefficients in other presentable ∞-categories. Our inquiry 
is informed by the following observation: for a topological space T and ring R, the unbounded derived ∞
category D(T ;R) naturally embeds as a full subcategory of the Deligne–Lurie tensor product of presentable 
∞-categories

Sh(T ; D(R)) := Sh(T ; Spc) ⊗ D(R)

[41, Remark 1.3.1.6, Corollary 1.3.1.8, & Corollary 2.1.2.3]. That is, D(T ;R) embeds into the ∞-category 
of sheaves on T valued in the derived ∞-category of R. We note that here, D(T ;R) and Sh(T ; D(R)) are 

1 We use homological indexing. What we write as D(T ;R)<∞ is often written as D+(T ;R).
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defined in quite different ways: D(T ;R) is the ∞-category obtained from the 1-category of chain complexes 
of sheaves of R-modules by formally inverting the quasi-isomorphisms, and for presentable ∞-categories C
and D, the Deligne–Lurie tensor product C ⊗ D is the universal presentable ∞-category equipped with a 
functor C × D → C ⊗D that preserves colimits separately in each variable (see § 1.2).

Moreover:

(1) The essential image of this embedding D(T ;R) ↪→ Sh(T ; D(R)) is the full subcategory spanned by the 
D(R)-valued hypersheaves on T . In many situations the two ∞-categories coincide, e.g., if T admits a 
CW structure [31] or is sufficiently finite-dimensional [39, Corollary 7.2.1.12, Theorem 7.2.3.6 & Remark 
7.2.4.18]; [17, Theorem 3.12].

(2) There is a natural t-structure on the stable ∞-category Sh(T ; D(R)). Moreover, the embedding 
D(T ;R) ↪→ Sh(T ; D(R)) is t-exact and restricts to an equivalence

D(T ;R)<∞
∼→ Sh(T ; D(R))<∞

on bounded-above objects [41, Corollary 2.1.2.4].

These points raise a natural question:

Question 0.3. Does the Proper Basechange Theorem hold with the bounded-above dervied ∞-categories 
D(−;R)<∞ replaced by the larger ∞-categories Sh(−; D(R))? If so, can this extension of the be deduced 
from Lurie’s Nonabelian Proper Basechange Theorem by a ‘formal’ argument about the tensor product of 
presentable ∞-categories preserving adjointability?

We explain why the answer to both questions is affirmative. However, there are some important subtleties. 
The general setup we consider is a square of presentable ∞-categories and right adjoints

A C

B D

f̄∗

ḡ∗ g∗
σ⇐=

f∗

(0.4)

equipped with a (not necessarily invertible) natural transformation σ : g∗f̄∗ → ḡ∗f∗. We call such a square 
an oriented square. In this general setting, using the unit of the adjunction f̄∗ ⫞ f̄∗ and the counit of the 
adjuntion f∗ ⫞ f∗, one can define a natural exchange morphism

Exσ : f∗g∗ → ḡ∗f̄
∗

associated to the diagram (0.4). See § 1.1 for the precise definition. Let E be another presentable ∞-catego
ry. The main subtlety is that even if the exchange morphism f∗g∗ → ḡ∗f̄

∗ is an equivalence, the exchange 
morphism associated to the tensored-up diagram

A⊗ E C ⊗E

B ⊗E D ⊗ E

f̄∗⊗E

ḡ∗⊗E g∗⊗E
σ⊗E⇐=

f∗⊗E

(0.4) ⊗E

need not be an equivalence (see Example 1.17).
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However, there are many situations in which the left adjointability of (0.4) implies the left adjointability of 
(0.4)⊗E. The following is probably the most useful result in this direction; when E is compactly generated, 
this applies to squares of ∞-topoi and geometric morphisms.

Theorem 0.5 (Corollary   3.2 and Proposition   3.8). Consider an oriented square (0.4) of presentable ∞-cate
gories and right adjoints. Assume that the left adjoints f∗ and f̄∗ are left exact and that square (0.4) is left 
adjointable. Let E be a presentable ∞-category, and assume that one of the following conditions is satisfied:

(0.5.1) The ∞-category E is compactly generated.
(0.5.2) The ∞-category E is stable and the right adjoints g∗ and ḡ∗ preserve filtered colimits.

Then the induced square (0.4)⊗ E is left adjointable.

Throughout this paper, we also prove other adjointability results as well as results about the interaction 
between tensor products of presentable ∞-categories and various categorical constructions that are of inde
pendent interest. For example, we show that tensoring with a compactly generated presentable ∞-category 
preserves fully faithful or conservative left exact left adjoints (see Lemmas 2.13 and 2.15). We also show 
that tensoring with a presentable ∞-category that is compactly generated or stable preserves recollements 
(see Corollaries 2.19 and 2.30).

Example 0.6 (Example   3.18). Let us return to the setting of a pullback square of locally compact Hausdorff 
spaces (0.1) where the morphism g : Y → Z is proper. Lurie’s Nonabelian Proper Basechange Theorem and 
Theorem 0.5 show that if E is a presentable ∞-category which is compactly generated or stable, then the 
induced square of ∞-categories of E-valued sheaves

Sh(W ;E) Sh(Y ;E)

Sh(X;E) Sh(Z;E)

f̄∗

ḡ∗ g∗

f∗

(0.7)

is left adjointable. This generalizes the classical Proper Basechange Theorem in two important ways:

(1) Let R be an ordinary ring, and let E = D(R) be the unbounded derived ∞-category of R. The left 
adjointability of the square (0.7) generalizes the classical Proper Basechange Theorem to objects of 
Sh(T ; D(R)) that are not bounded-above, and answers Question 0.3 in the affirmative.

(2) A version of the Proper Basechange Theorem holds for sheaves of modules over any E1-ring spectrum 
R or animated ring (in the terminology of [10, Appendix A]; [14, §5.1.4]; these are also referred to as 
simplicial commutative rings).

Remark 0.8 (unbounded derived ∞-categories). There are two natural squares of right adjoints enlarging 
the square (0.2) appearing in the classical Proper Basechange Theorem: the square of classical unbounded 
derived ∞-categories

D(W ;R) D(Y ;R)

D(X;R) D(Z;R)

Rf̄∗

Rḡ∗ Rg∗

Rf∗

(0.9)

and the square of ∞-categories of D(R)-valued sheaves
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Sh(W ; D(R)) Sh(Y ; D(R))

Sh(X; D(R)) Sh(Z; D(R)) . 

f̄∗

ḡ∗ g∗

f∗

(0.10)

We have seen that the square (0.10) is left adjointable. Moreover, for a topological space T , the unbounded 
derived ∞-category D(T ;R) is the full subcategory of Sh(T ; D(R)) spanned by the hypersheaves. So the 
square (0.10) is really an enlargement of the square (0.9). However, the left adjointability of the square (0.10)
does not imply the left adjointability of the square (0.9), and the square (0.9) is not generally left adjointable. 
See [39, Counterexample 6.5.4.2 & Remark 6.5.4.3] where Lurie constructs an explicit counterexample using 
the Hilbert cube. The key point is the following: if F ∊ D(Y ;R) is not bounded-above, then the exchange 
transformation

Lf∗Rg∗(F ) → Rḡ∗ Lf̄∗(F ) (0.11)

associated to the square (0.9) does not agree with the exchange transformation

f∗g∗(F ) → ḡ∗f̄
∗(F )

associated to (0.10). The reason is that given a map of topological spaces p : T → S, the pullback functor

p∗ : Sh(S; D(R)) → Sh(T ; D(R))

does not generally carry D(S;R) to D(T ;R). The inclusion D(T ;R) ↪→ Sh(T ; D(R)) admits a t-exact left 
adjoint (−)hyp : Sh(T ; D(R)) → D(T ;R) called hypercompletion, and the left derived functor Lp∗ : D(S;R) →
D(T ;R) is the composite

D(S;R) Sh(S; D(R)) Sh(T ; D(R)) D(T ;R) . p∗ (−)hyp

This extra hypercompletion procedure is nontrivial and is what prevents the exchange transformation (0.11)
from being an equivalence in general.

The t-exact inclusion D(T ;R) ↪→ Sh(T ; D(R)) restricts to an equivalence on hearts; hence the ∞-category 
Sh(T ; D(R)) is not generally the derived ∞-category of an abelian category. Thus, if one wants a version 
of the Proper Basechange Theorem for unbounded complexes, one is forced to leave the world of classical 
derived categories and needs to work with ∞-categories. These comments are the reason Spaltenstein [50] 
was unable to prove a version of the Proper Basechange Theorem for arbitrary unbounded complexes. 
They also highlight a major advantage of working with the ∞-categories Sh(−; D(R)) over the ∞-categories 
D(−;R).

Remark 0.12. We have been aware of Theorem 0.5 for some time, and certainly results of this form are 
known to experts. However, we were unable to locate a source explaining the relationship between left 
adjointability and tensoring with a presentable ∞-category. We have written this paper because we need to 
use results of this form in forthcoming work; we hope that others will also find the results presented here 
useful.

0.1. Linear overview

In §§ 1 and 2, we recall the background we need about adjointability and tensor products of presentable 
∞-categories. We also collect key examples of when tensoring with a presentable ∞-category does or does 
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not preserve left adjointability. Setting up the notation and explaining explicit descriptions of the tensor 
product we need takes a bit of time, but once everything is in place Theorem 0.5 is elementary. The key 
insight is that tensoring with a compactly generated ∞-category has additional unexpected functoriality: 
it is functorial not only in adjunctions, but also arbitrary left exact functors. We also use these explicit 
descriptions to show that the tensor product preserves many properties of functors (§ 2.3), tensoring with 
a compactly generated ∞-category preserves limits of diagrams of left exact left adjoints (§ 2.4), and that, 
in most situations that arise in nature, the tensor product preserves recollements (§ 2.5). In § 3, we prove 
Theorem 0.5 and derive some consequences. Section 4 deals with situations where we only know that the 
exchange morphism is an equivalence when restricted to a (not necessarily presentable) subcategory.

Acknowledgments. We thank Clark Barwick, Marc Hoyois, and Lucy Yang for insightful discussions. We 
thank Mauro Porta and Jean-Baptiste Teyssier for helpful correspondence and for encouraging us to include 
§ 2.5. Special thanks are due to Jacob Lurie for explaining Examples 1.10 and 1.17.

We gratefully acknowledge support from the MIT Dean of Science Fellowship, the NSF Graduate Research 
Fellowship under Grant #112237, UC President’s Postdoctoral Fellowship, and NSF Mathematical Sciences 
Postdoctoral Research Fellowship under Grant #DMS-2102957.

0.2. Terminology and notations

We use the terms ∞-category and (∞, 1)-category interchangeably. We write Spc for the ∞-category of 
spaces. Given ∞-categories C and D with limits, we write Funlim(C,D) ⊂ Fun(C,D) for the full subcategory 
spanned by the limit-preserving functors C → D.

In this paper, we use a small amount of the theory of (∞, 2)-categories, which can be modeled using 
the theory of enriched ∞-categories [23, §6]; [27]. All of the (∞, 2)-categories we use in this paper are 
subcategories of the (∞, 2)-category Cat∞ of locally small but potentialy large (∞, 1)-categories, func
tors, and natural transformations. Moreover, all functors of (∞, 2)-categories are subfunctors of the functor 
(C,D) �→ Fun(C,D). We write PrR ⊂ Cat∞ for the sub-(∞, 2)-category of presentable (∞, 1)-categories, 
right adjoints, and all natural tranformations. We write PrL ⊂ Cat∞ for the sub-(∞, 2)-category of pre
sentable (∞, 1)-categories, left adjoints, and all natural tranformations. Given an (∞, 2)-category C, we 
write ι1C for the maximal sub-(∞, 1)-category of C, obtained by discarding the non-invertible 2-morphisms.

1. Preliminaries on adjointability & tensor products

In this section we recall the basics of left adjointable squares and tensor products with presentable ∞
categories. Subsection 1.1 fixes our conventions on adjointability and gives some examples of adjointable 
squares. Subsection 1.2 recalls tensor products of presentable ∞-categories. Subsection 1.3 gives an example 
explaining why tensoring does not generally preserve left adjointable squares of presentable ∞-categories 
(Example 1.17). We also provide a class of left adjointable squares that are preserved by tensoring with any 
presentable ∞-category (Lemma 1.19).

1.1. Oriented squares & adjointability

We begin by fixing conventions for adjointability in an (∞, 2)-category.

Definition 1.1. Let C be an (∞, 2)-category, and A, B, C, and D objects of C. We exhibit data of 1
morphisms f∗ : B → D, g∗ : C → D, ḡ∗ : A → B, and f̄∗ : A → C, along with a 2-morphism σ : g∗f̄∗ → ḡ∗f∗
by a single square
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A C

B D . 

f̄∗

ḡ∗ g∗
σ⇐=

f∗

(1.2)

We refer to such a square as an oriented square in C.

Definition 1.3. Let C be an (∞, 2)-category and consider an oriented square (1.2) in C.

(1.3.1) Assume that the 1-morphisms f∗ and f̄∗ admit left adjoints f∗ and f̄∗, respectively. Write cf : f∗f∗ →
idB for the counit and uf̄ : idC → f̄∗f̄

∗ for the unit. The left exchange transformation associated to the 
oriented square (1.2) is the composite 2-morphism

Exσ : f∗g∗ f∗g∗f̄∗f̄
∗ f∗f∗ḡ∗f̄

∗ ḡ∗f̄
∗ . 

f∗g∗uf̄ f∗σf̄∗ cf ḡ∗f̄
∗

We say that the square (1.2) is (horizontally) left adjointable if the exchange transformation 
Exσ : f∗g∗ → ḡ∗f̄

∗ is an equivalence.
(1.3.2) Assume that the 1-morphisms g∗ and ḡ∗ admit right adjoints g� and ḡ�, respectively. Write cḡ : ḡ∗ḡ� →

idB for the counit and ug : idC → g�g∗ for the unit. The right exchange transformation associated to 
the oriented square (1.2) is the composite 2-morphism

f̄∗ḡ
� g�g∗f̄∗ḡ

� g�f∗ḡ∗ḡ
� g�f∗ . ug f̄∗ḡ

�
g�σḡ� g�f∗cḡ

We say that the square (1.2) is (vertically) right adjointable if the exchange transformation f̄∗ḡ� → g�f∗
is an equivalence.

Remark 1.4. We follow Hoyois [30]; [32] in calling the morphism Exσ the exchange transformation. The 
natural transformation Exσ is often referred to as a Beck–Chevalley transformation [7]; [13, §2.2]; [29, 
Notation 4.1.1], basechange transformation [5, Definition 7.1.1], or mate transformation [15, §1]; [28]; [37, 
§2.2]. Instead of Ex, the notations BC (for Beck–Chevalley or basechange) and β are often used [5, Definition 
7.1.1]; [37, §2.2]; [29, Notation 4.1.1].

Remark 1.5 (on notation). The notation we have chosen is meant to provide an easy way to remember the 
specifics of left exchange transformations: the left exchange transformation goes from a composite with no 
bars to a composite with bars, and an oriented square is left adjointable if we can ‘exchange f∗ and g∗’ at 
the cost of adding bars.

In this paper, we are mostly concerned with left adjointability, but right adjointability will also appear 
due to the following.

Observation 1.6. 

(1.6.1) Since functors of (∞, 2)-categories preserve adjunctions and their (co)units, functors of (∞, 2)
categories preserve left/right adjointable oriented squares.

(1.6.2) If in the square (1.2) f∗ and f̄∗ admit left adjoints and g∗ and ḡ∗ admit right adjoints, then (1.2) is 
horizontally left adjointable if and only if (1.2) is vertically right adjointable.
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Notation 1.7. For the rest of this paper, we fix an oriented square of ∞-categories

A C

B D , 

f̄∗

ḡ∗ g∗
σ⇐=

f∗

(�)

where the functors f∗ and f̄∗ admit left adjoints f∗ and f̄∗, respectively.

Convention 1.8. Unless explicitly stated otherwise, adjointability of an oriented square of (presentable) ∞
categories (�) refers to adjointability in the (∞, 2)-category Cat∞.

We finish this subsection with two examples of left adjointable squares. The first is an easy-to-state 
version of the Smooth and Proper Basechange Theorem in algebraic geometry.

Example 1.9. Let k be an algebraically closed field and let

W Y

X Z

f̄

ḡ
⌟

g

f

be a pullback square of quasiprojective k-schemes. Let � be a prime number different from the characteristic 
of k. The Smooth and Proper Basechange Theorem in étale cohomology says that if the morphism f is 
smooth or the morphism g is proper, then the induced square

Shét(W ;Z�) Shét(Y ;Z�)

Shét(X;Z�) Shét(Z;Z�)

f̄∗

ḡ∗ g∗

f∗

of ∞-categories of �-adic étale sheaves is left adjointable. See [21, Theorem 2.4.2.1] for this precise statement, 
or [53, Exposé XII, Corollaire 1.2 & Théorème 5.1] for the original references.

Example 1.10. Let X and Y be spaces, and consider the canonically commutative square of presentable 
∞-categories and right adjoints

Spc Spc

Spc Spc . 

Map(X,−)

Map(Y,−) Map(Y,−)

Map(X,−)

(1.11)

The left adjoints to the horizontal functors are given by X×(−), and the left adjoints to the vertical functors 
are given by Y ×(−). Unwinding the definitions of the unit and counit of the adjunction X×(−)⫞Map(X,−), 
we see that the associated exchange morphism

X × Map(Y,−) −→ Map(Y,X × (−)) � Map(Y,X) × Map(Y,−) (1.12)
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is the product of the diagonal map X → Map(Y,X) with the identity map on Map(Y,−). In particular, 
the exchange morphism (1.12) is an equivalence if and only if the diagonal map X → Map(Y,X) is an 
equivalence.

1.13. One version of the Sullivan Conjecture (proven by Carlsson [11], Lannes [38], and Miller [43]; [44]; 
[45]; [46]) says that if X is a finite space and Y is a connected πfinite space, then the diagonal map 
X → Map(Y,X) is an equivalence. Thus, under these hypotheses, the square (1.11) is left adjointable.

1.2. Tensor products of presentable ∞-categories

Recollection 1.14. Let S and E be presentable ∞-categories. The tensor product of presentable ∞-categories 
S ⊗E along with the functor

⊗ : S × E → S ⊗ E

are characterized by the following universal property: for any presentable ∞-category T , restriction along 
⊗ defines an equivalence

Funcolim(S ⊗E, T ) ∼→ Funcolim,colim(S × E, T )

between colimit-preserving functors S ⊗ E → T and functors S × E → T that preserve colimits separately 
in each variable. The tensor product of presentable ∞-categories defines a functor

⊗ : PrL × PrL → PrL

and can be used to equip PrL with the structure of a symmetric monoidal (∞, 2)-category. See [22, Chapter 
1, §6.1]; [33, §4.4] for this statement for presentable stable ∞-categories; the proof is exactly the same 
without the stability hypothesis.

Since the (∞, 2)-category PrR of presentable ∞-categories and right adjoints are obtained from PrL by 
reversing 1-morphisms and 2-morphisms, the tensor product also defines a symmetric monoidal structure on 
PrR. In this note, we are more interested in the tensor product on PrR. This has a very explicit description: 
there is a natural equivalence of ∞-categories

S ⊗E � Funlim(Eop, S)

[40, Proposition 4.8.1.17]. Moreover, there is a natural equivalence

(−) ⊗E � Funlim(Eop,−)

of functors of (∞, 2)-categories PrR → PrR. In particular, if p∗ : S → T is a right adjoint functor of 
presentable ∞-categories, then the induced right adjoint

p∗ ⊗E : S ⊗E � Funlim(Eop, S) → Funlim(Eop, T ) � T ⊗ E

is given by post-composition with p∗. For the purposes of this work, it suffices to take

Funlim(Eop,−) : PrR → PrR

as the definition of the tensor product (−) ⊗E.
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Example 1.15. Let S0 be a small ∞-category and let E be a presentable ∞-category. By the universal 
property of presheaves of spaces on S0, we see that there are natural equivalences

Fun(Sop
0 ,Spc) ⊗ E � Funlim(Fun(Sop

0 ,Spc)op, E) � Fun(Sop
0 , E) . 

Observation 1.16. Let h : S → S′ and v : E → E′ be functors between presentable ∞-categories which are 
both left adjoints or both right adjoints. Then the square

S ⊗ E S′ ⊗ E

S ⊗ E′ S′ ⊗ E′

h⊗E

S⊗v S′⊗v

h⊗E′

canonically commutes: both composites are identified with h⊗ v.

1.3. Interaction between tensor products and adjointability

Now we give an example showing that the functor (−)⊗E : PrR → PrR need not preserve left adjointabil
ity of oriented squares (so that Theorem 0.5 is not completely trivial). The problem here is that we are 
interested in adjointability in Cat∞, rather the much stronger notions of adjointability in PrR or PrL. Said 
differently, the composite functors f∗g∗ and ḡ∗f̄∗ involved in the exchange transformation are not generally 
right or left adjoints. Hence the condition that the exchange morphism f∗g∗ → ḡ∗f̄

∗ be an equivalence is 
not expressible internally to PrR or PrL, thus need not be preserved by the functor of (∞, 2)-categories 
(−) ⊗ E.

The following example is a variant of Example 1.10; we learned of it from Lurie.

Example 1.17 (Lurie). Let p be a prime number and write BCp for the classifying space of the cyclic group 
Cp of order p. Let X be a connected finite space such that π1(X) ∼ = Cp. (For example, take p = 2 and 
X = RP2.) As a special case of 1.13, the square of presentable ∞-categories

Spc Spc

Spc Spc

Map(X,−)

Map(BCp,−) Map(BCp,−)

Map(X,−)

(1.18)

is left adjointable. We claim that the induced square of presentable ∞-categories

Spc≤1 Spc≤1

Spc≤1 Spc≤1

Map(τ≤1X,−)

Map(BCp,−) Map(BCp,−)

Map(τ≤1X,−)

(1.18) ⊗ Spc≤1

is not left adjointable. To see this, note that by the same argument as in Example 1.10 describing the 
exchange transformation, the square (1.18)⊗ Spc≤1 is left adjointable if and only if the diagonal morphism

δ : BCp � τ≤1X −→ Map(BCp, τ≤1X) � Map(BCp,BCp)
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is an equivalence. However, the morphism δ is not an equivalence: π0BCp � ∗ and

π0Map(BCp,BCp) ∼ = HomAb(Cp,Cp) ∼ = Cp . 

When the functors g∗ and ḡ∗ are left adjoints, the requirement that the exchange transformation f∗g∗ →
ḡ∗f̄

∗ be an equivalence is expressible internally to PrL, hence is preserved by tensoring with any presentable 
∞-category:

Lemma 1.19. Let E be a presentable ∞-category. Assume that:

(1.19.1) (�) is an oriented square in PrR.
(1.19.2) The right adjoints g∗ : C → D and ḡ∗ : A → B admit right adjoints g� and ḡ�, respectively.
(1.19.3) The oriented square (�) is left adjointable.

Then the functors g∗ ⊗ E and ḡ∗ ⊗E are left adjoints and the oriented square (�) ⊗E is left adjointable.

Proof. Assumption (1.19.2) implies that g∗ ⊗ E and ḡ∗ ⊗ E are left adjoint to g� ⊗ E and ḡ� ⊗ E, respec
tively. Also note that by assumption g∗ and ḡ∗ admit right adjoints in the (∞, 2)-category PrR. In light 
of Observation 1.6, assumption (1.19.3) implies that the square (�) is vertically right adjointable in the 
(∞, 2)-category PrR. Since functors of (∞, 2)-categories preserve right adjointability, the square (�) ⊗ E

is vertically right adjointable in the (∞, 2)-category PrR. Hence (�) ⊗ E is vertically right adjointable in 
the (∞, 2)-category Cat∞. Again applying Observation 1.6, we conclude that the square is horizontally left 
adjointable in the (∞, 2)-category Cat∞. �
2. Compactly generated ∞-categories

In this section we recall a few facts about compactly generated ∞-categories (§ 2.1) and give an explicit 
description of the tensor product with a compactly generated ∞-category (§ 2.2). We then give two useful 
applications of this description:

(1) In § 2.3, we show that many properties of a left adjoint between presentable ∞-categories are preserved 
by tensoring with a compactly generated ∞-category.

(2) In § 2.4, we show that tensoring with a compactly generated ∞-category preserves limits of diagrams 
of presentable ∞-categories and left exact left adjoints.

(3) In § 2.5, we show that recollements of presentable ∞-categories are preserved by tensoring with a 
compactly generated or stable presentable ∞-category.

2.1. Notations & definitions

Notation 2.1. Let E be an ∞-category with filtered colimits. We write Ec ⊂ E for the full subcategory 
spanned by the compact objects.

Recall that if E is compactly generated, then Ec ⊂ E is closed under finite colimits and retracts. Moreover, 
E is the Ind-completion of Ec. That is, E is obtained from Ec by freely adjoining filtered colimits.

Recollection 2.2. If C and D are compactly generated presentable ∞-categories, then the tensor product 
C ⊗D is compactly generated by the image of

Cc ×Dc C ×D C ⊗D . ⊗
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See [40, Lemma 5.3.2.11]. In particular, for any small ∞-category C0 and compactly generated presentable 
∞-category D, the ∞-category

Fun(Cop
0 , D) � Fun(Cop

0 ,Spc) ⊗D

is compactly generated.

We are also interested in an enlargement of the class of compactly generated ∞-categories.

Recollection 2.3 (compactly assembled ∞-categories). A presentable ∞-category E is compactly assembled if 
E is a retract in ι1PrL of a compactly generated ∞-category [41, Definition 21.1.2.1 & Theorem 21.1.2.18]. 
As a consequence of [41, Theorem 21.1.2.10], in a compactly assembled ∞-category, filtered colimits are left 
exact.

2.4. There are many important examples of presentable ∞-categories which are compactly assembled but not 
compactly generated. For example, let M be a noncompact positive-dimensional topological manifold. Then 
the initial object is the only compact object of the ∞-topos Sh(M). (See [26, Theorem 2.6]; [47] for the 
stable variant of this statement.) However, the ∞-topos of sheaves on a locally compact Hausdorff space is 
always compactly assembled [41, Proposition 21.1.7.1].

Recollection 2.5 (projectively generated ∞-categories). Let E be an ∞-category with filtered colimits and 
geometric realizations of simplicial objects, and let X ∊ E. We say that X is projective if MapE(X,−) : E →
Spc preserves geometric realizations of simplicial objects. We say that X is compact projective if X is 
compact and projective, i.e., MapE(X,−) : E → Spc preserves geometric realizations and filtered colimits. 
If E has all colimits, then X is compact projective if and only if MapE(X,−) preserves sifted colimits [39, 
Corollary 5.5.8.17]. We write Ecpr ⊂ E for the full subcategory spanned by the compact projective objects.

We say that E is projectively generated if there is a small collection of compact projective objects of 
E that generate E under small colimits [39, Definition 5.5.8.23]. In this case, Ecpr is closed under finite 
coproducts and retracts in E. Moreover, E is the nonabelian derived ∞-category of Ecpr. That is, E is 
obtained from Ecpr by freely adjoining sifted colimits. See [39, Propositions 5.5.8.15 & 5.5.8.25].

Example 2.6. The following ∞-categories are projectively generated: the ∞-category of spaces, the ∞-cat
egory of connective modules over a connective E1-ring spectrum [40, Proposition 7.1.4.15], the ∞-cate
gory of animated (aka simplicial commutative) rings, and (up to set-theoretic issues) the ∞-category of 
condensed/pyknotic spaces [5, §13.3]; [6]; [49].

Definition 2.7. We say that a presentable ∞-category E is projectively assembled if E is a retract in ι1PrL

of a projectively generated ∞-category.

2.2. Tensor products with compactly generated ∞-categories

Now we provide alternative models for tensor products with compactly generated ∞-categories. The key 
point is that these alternative models give us access to an explicit description of the action of the tensor 
product on a left adjoint functor. These observations are known to experts (see [2, §2.3.1]; [36, §B.1]); we 
have included the material here because we were unable to locate a reference saying everything we need.

We begin with some terminology.

Definition 2.8. Let K be a collection of ∞-categories.
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(2.8.1) We say that an ∞-category I admits K-shaped limits if for each K ∊ K, the ∞-category I admits 
limits of K-shaped diagrams.

(2.8.2) Given ∞-categories I and S that admit K-shaped limits, we say that a functor F : I → S preserves 
limits of K-shaped diagrams if for each K ∊ K, the functor F preserves limits of K-shaped diagrams.

(2.8.3) Given ∞-categories I and S that admit K-shaped limits, we write FunK-lim(I, S) ⊂ Fun(I, S) for 
the full subcategory spanned by those functors that preserve limits of K-shaped diagrams.

(2.8.4) We write CatK-lim
∞ ⊂ Cat∞ for the (non-full) sub-(∞, 2)-category of ∞-categories admitting K

shaped limits, functors preserving K-shaped limits, and all natural transformations.
(2.8.5) If K is the collection of finite ∞-categories, we write

Funlex := FunK-lim and Catlex
∞ := CatK-lim

∞ . 

(2.8.6) If K is the collection of finite sets, we write

Fun× := FunK-lim and Catfp
∞ := CatK-lim

∞ . 

Observation 2.9. Let S and E be presentable ∞-categories.

(2.9.1) If E is compactly generated, then by the universal property of Ind-completion, restriction along the 
inclusion Ec,op ↪→ Eop defines an equivalence of ∞-categories

Funlim(Eop, S) ∼→ Funlex(Ec,op, S) . 

Hence the tensor product (−) ⊗E fits into a commutative square of functors of (∞, 2)-categories

PrR PrR

Catlex
∞ Catlex

∞ . 

(−)⊗E

Funlex(Ec,op,−)

Here the vertical functors are inclusions of non-full subcategories.
(2.9.2) If E is projectively generated, then by the universal property of the nonabelian derived ∞-category, 

restriction along the inclusion Ecpr,op ↪→ Eop defines an equivalence of ∞-categories

Funlim(Eop, S) ∼→ Fun×(Ecpr,op, S) . 

Hence the tensor product (−) ⊗E fits into a commutative square of functors of (∞, 2)-categories

PrR PrR

Catfp
∞ Catfp

∞ . 

(−)⊗E

Fun×(Ecpr,op,−)

Here the vertical functors are inclusions of non-full subcategories.

Observation 2.10. Let E be a compactly generated ∞-category and p∗ : T → S be a left exact left adjoint 
between presentable ∞-categories with right adjoint p∗. Note that we have a commutative diagram of 
∞-categories
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S ⊗E Funlim(Eop, S) Funlex(Ec,op, S)

T ⊗E Funlim(Eop, T ) Funlex(Ec,op, T ) . 

p∗⊗E

∼

p∗◦−

∼

p∗◦−

∼ ∼

Moreover, since p∗ is left exact, the functor

p∗ ◦ − : Funlex(Ec,op, T ) → Funlex(Ec,op, S)

given by post-composition with p∗ is left adjoint to the functor given by post-composition with p∗. Hence 
we have a commutative square of ∞-categories

T ⊗E Funlex(Ec,op, T )

S ⊗E Funlex(Ec,op, S) . 

p∗⊗E

∼

p∗◦−

∼

Variant 2.11. Let E be a projectively generated ∞-category and p∗ : T → S be a left adjoint functor between 
presentable ∞-categories that preserves finite products. Then we have a commutative square of ∞-categories

T ⊗E Fun×(Ecpr,op, T )

S ⊗E Fun×(Ecpr,op, S) . 

p∗⊗E

∼

p∗◦−

∼

Observations 2.9 and 2.10 and Variant 2.11 highlight that tensoring with a compactly or projectively 
generated ∞-category has (unexpected) additional functoriality.

2.3. Application: properties of left adjoints

We now give two applications of Observation 2.10 and Variant 2.11 to the question of when tensoring 
with a presentable ∞-category preserves the property of an adjoint being conservative or fully faithful. First 
note that if p∗ is a conservative or fully faithful right adjoint, then Recollection 1.14 immediately implies 
that for any presentable ∞-category E, the functor p∗ ⊗ E is conservative or fully faithful (see also [12, 
Lemma 5.2.1]). The following example shows that the analogous claim for left adjoints is false:

Example 2.12 ([12, Remark 5.2.2]). Let Spt denote the ∞-category of spectra and Spt≥0 ⊂ Spt the full 
subcategory spanned by the connective spectra. The inclusion Spt≥0 ⊂ Spt admits a right adjoint given by 
taking the connective cover. For any presentable 1-category E, the tensor product Spt⊗ E is the terminal 
category. In particular, Spt⊗Set � ∗. On the other hand, one can identify Spt≥0 ⊗Set with the category of 
abelian groups (as the heart of the standard t-structure on Spt). Hence tensoring the inclusion Spt≥0 ↪→ Spt
with Set yields the zero functor Ab → ∗; this functor is not conservative.

Note that the ∞-categories Spt≥0, Spt, and Set are all compactly generated. However, the inclusion 
Spt≥0 ⊂ Spt is not left exact, so we cannot apply Observation 2.10. This is the only obstruction to the 
preservation of conservativity or full faithfulness:

Lemma 2.13. Let {p∗i : T → Si}i∊I be a jointly conservative family of left adjoint functors between presentable 
∞-categories, and let E be a presentable ∞-category. Assume that one of the following conditions holds:
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(2.13.1) The ∞-category E is compactly assembled and the functors {p∗i }i∊I are left exact.
(2.13.2) The ∞-category E is projectively assembled and the functors {p∗i }i∊I preserve finite products.

Then the family of left adjoints {p∗i ⊗E : T ⊗ E → Si ⊗ E}i∊I is jointly conservative.

Proof. Since conservative functors are closed under retracts, by writing E as a retract in ι1PrL of a com
pactly or projectively assembled ∞-category, it suffices to treat the cases where E is compactly or projectively 
assembled. By Observation 2.10, in situation (2.13.1) it suffices to show that the collection of functors

{
p∗i ◦ − : Funlex(Ec,op, T ) → Funlex(Ec,op, Si)

}
i∊I

is jointly conservative. Similarly, by Variant 2.11, in situation (2.13.2) it suffices to show that the collection 
of functors

{
p∗i ◦ − : Fun×(Ecpr,op, T ) → Fun×(Ecpr,op, Si)

}
i∊I

is jointly conservative. These assertions are immediate from the assumption that the functors {p∗i }i∊I are 
jointly conservative. �

For the next example, we remind the reader that given an ∞-topos X, a point of X is a left exact left 
adjoint x∗ : X → Spc.

Example 2.14. Given a jointly conservative family of points of an ∞-topos, the family remains jointly 
conservative after tensoring with a compactly assembled ∞-category.

Since fully faithful functors are closed under retracts, by the same style of argument we deduce:

Lemma 2.15. Let p∗ : T ↪→ S be a fully faithful left adjoint functor between presentable ∞-categories, and 
let E be a presentable ∞-category. Assume that one of the following conditions holds:

(2.15.1) The ∞-category E is compactly assembled and p∗ is left exact.
(2.15.2) The ∞-category E is projectively assembled and p∗ preserves finite products.

Then the left adjoint p∗ ⊗ E : T ⊗E → S ⊗E fully faithful.

2.4. Application: commuting tensors past limits

Given a sheaf of presentable ∞-categories on an ∞-site, one is often interested in knowing if the sheaf 
condition is still satisfied after tensoring with another presentable ∞-category. Since the sheaf condition 
asks that certain diagrams be limit diagrams, it is useful to have an answer to the more general question of 
when tensoring with a presentable ∞-category preserves limits in ι1PrL.

In this subsection, we provide a useful situation in which tensoring with a compactly assembled ∞-catego
ry commutes past limits in ι1PrL. As motivation, recall that a stable presentable ∞-category E is compactly 
assembled if and only if E is dualizable in the ∞-category ι1PrL

st of stable presentable ∞-categories and 
left adjoints [41, Proposition D.7.3.1]. Since the symmetric monoidal structure on ι1PrL

st is closed, if E is 
dualizable, then it is immediate that E⊗(−) : ι1PrL

st → ι1PrL
st preserves limits. The following is the unstable 

refinement of this fact:
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Lemma 2.16. Let E be a presentable ∞-category and C• : Iop → ι1PrL a diagram. Assume one of the 
following:

(2.16.1) The ∞-category E is compactly assembled and for each morphism f : i → j in I, the induced functor 
f∗ : Cj → Ci is left exact.

(2.16.2) The ∞-category E is projectively assembled and for each morphism f : i → j in I, the induced 
functor f∗ : Cj → Ci preserves finite products.

Then the natural left adjoint functor

E ⊗ lim 
i∊Iop

Ci → lim 
i∊Iop

(E ⊗ Ci)

is an equivalence. Here the limits are formed in ι1PrL.

Proof. Since the proof is essentially the same in both cases, we only prove (2.16.1). Since equivalences 
are closed under retracts, it suffices to treat the case where E is compactly generated. Since the forgetful 
functors ι1PrL → ι1Cat∞ and ι1Catlex

∞ → ι1Cat∞ preserve limits and the composite

Iop ι1PrL ι1Cat∞
C•

factors through ι1Catlex
∞ , it suffices to prove the claim for limits computed in ι1Catlex

∞ . Applying Observa
tions 2.9 and 2.10, we see that

E ⊗ lim 
i∊Iop

Ci � Funlex(Ec,op, limi∊Iop Ci)

∼→ lim 
i∊Iop

Funlex(Ec,op, Ci)

� lim 
i∊Iop

(E ⊗ Ci) . �
Warning 2.17. In the statement of Lemma 2.16, the assumption that the transition functors be left exact 
cannot generally be removed. For example, let E = Spt be the ∞-category of spectra and consider the limit 
diagram

Spc ∼→ lim
(

· · · Spc≤n+1 Spc≤n · · ·τ≤n+1 τ≤n τ≤n−1
)

. 

We have Spt ⊗ Spc � Spt. On the other hand, Spt ⊗ Spc≤n is the terminal ∞-category. Hence the limit 
limn∊Nop Spt ⊗ Spc≤n is also the terminal ∞-category.

2.5. Application: recollements

Let X be an ∞-category with finite limits. Recall that fully faithful functors

i∗ : Z ↪→ X and j∗ : U ↪→ X

are said to exhibit X as the recollement of Z and U if2:

(1) The functors i∗ and j∗ admit left exact left adjoints i∗ and j∗, respectively.

2 Here we use the convention for the open and closed pieces of a recollement from the theory of constructible sheaves.
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(2) The functor j∗i∗ : Z → U is constant with value the terminal object of U .
(3) The functors i∗ : X → Z and j∗ : X → U are jointly conservative.

See [40, §A.8]; [4]. Primarily due to the requirement that i∗ and j∗ are jointly conservative, given a recolle
ment of presentable ∞-categories, it is not obvious if it remains a recollement after tensoring with another 
presentable ∞-category. We finish this section by showing that tensoring with a compactly generated or 
stable ∞-category preserves recollements (Corollary 2.19 and Proposition 2.27).

We have the following easy consequence of the definitions.

Proposition 2.18. Let K be a collection of ∞-categories, let I be a small ∞-category with K-shaped limits, 
and let i∗ : Z ↪→ X and j∗ : U ↪→ X be fully faithful right adjoints between ∞-categories that admit K-shaped 
limits. Assume that i∗ and j∗ exhibit X as the recollement of Z and U and that the left adjoints i∗ and j∗

preserve K-shaped limits. Then the functors

i∗ ◦ − : FunK-lim(I, Z) ↪→ FunK-lim(I,X) and j∗ ◦ − : FunK-lim(I, U) ↪→ FunK-lim(I,X)

exhibit FunK-lim(I,X) as the recollement of FunK-lim(I, Z) and FunK-lim(I, U).

Proof. We first prove the claim when K is empty, i.e., we claim that the functors

i∗ ◦ − : Fun(I, Z) ↪→ Fun(I,X) and j∗ ◦ − : Fun(I, U) ↪→ Fun(I,X)

exhibit Fun(I,X) as the recollement of Fun(I, Z) and Fun(I, U). To see this, first note that the adjunctions 
i∗ ⫞ i∗ and j∗ ⫞ j∗ induce adjunctions

i∗ ◦ − : Fun(I,X) ⇄ Fun(I, Z) :i∗ ◦ − and j∗ ◦ − : Fun(I,X) ⇄ Fun(I, U) :j∗ ◦ − . 

Since i∗ and j∗ are fully faithful, the functors given by post-composition with i∗ and j∗ are also fully faithful. 
Moreover, since j∗i∗ is constant with value the terminal object, the composite

(j∗ ◦ −) ◦ (i∗ ◦ −) = (j∗i∗) ◦ −

is constant with value the terminal object. Similarly, since i∗ and j∗ are jointly conservative, it immediately 
follows that the functors given by post-composition with i∗ and j∗ are jointly conservative. Since limits in 
functor categories are computed pointwise and both i∗ and j∗ are left exact, it follows that i∗ ◦− and j∗ ◦−
are both left exact.

Now we prove the claim for general K. For this, note that since i∗, i∗, j∗, and j∗ all preserve K-shaped 
limits, the above adjunctions restrict to adjunctions

i∗ ◦ − : FunK-lim(I,X) ⇄ FunK-lim(I, Z) :i∗ ◦ −

and

j∗ ◦ − : FunK-lim(I,X) ⇄ FunK-lim(I, U) :j∗ ◦ −

on the full subcategories of functors that preserve K-shaped limits. With the exception of the left exactness 
of i∗ ◦− and j∗ ◦−, everything about the claim that i∗ ◦− and j∗ ◦− determine a recollement is clear from 
the case where K = ∅. For the left exactness of i∗ ◦− and j∗ ◦−, simply note that since limits commute and 
limits in functor categories are computed pointwise, for any ∞-category Y with finite limits and K-shaped 
limits, the full subcategory
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FunK-lim(I, Y ) ⊂ Fun(I, Y )

is closed under finite limits. �
The following consequence was previously recorded by Aizenbud and Carmeli [1, Lemma 3.0.10].

Corollary 2.19. Let E be a presentable ∞-category, and let i∗ : Z ↪→ X and j∗ : U ↪→ X be fully faithful 
right adjoints of presentable ∞-categories that exhibit X as the recollement of Z and U . If E is compactly 
generated, then i∗ ⊗ E and j∗ ⊗ E exhibit X ⊗ E as the recollement of Z ⊗E and U ⊗ E.

Proof. Combine Observations 2.9 and 2.10 with Proposition 2.18 in the case that K is the collection of finite 
∞-categories and I = Ec,op. �

Now we use Corollary 2.19 and properties of recollements of stable ∞-categories to show that tensoring 
with a presentable stable ∞-category preserves recollements.

Recollection 2.20. Recall that the ∞-category Spt of spectra is compactly generated, and for any presentable 
stable ∞-category E, there is a natural equivalence

Ω∞
E : Spt ⊗ E ∼→ E . 

See [40, Proposition 1.4.2.21 & Example 4.8.1.23].

Observation 2.21. Let E be a presentable stable ∞-category and let p∗ : S → T be a right adjoint between 
presentable ∞-categories with left adjoint p∗. Since E is stable, p∗ ⊗ Spt ⊗ E � p∗ ⊗ E. Thus, if p∗ ⊗ Spt
admits a right adjoint, then p∗ ⊗E admits a right adjoint. Similarly, if p∗ ⊗ Spt admits a left adjoint, then 
p∗ ⊗E admits a left adjoint.

Recollection 2.22. Let i∗ : Z ↪→ X and j∗ : U ↪→ X be functors that exhibit X as the recollement of Z and 
U . If the ∞-category Z has an initial object, then j∗ admits a fully faithful left adjoint j! : U ↪→ X [40, 
Corollary A.8.13]. If, moreover, X has a zero object, then i∗ admits a right adjoint i! : X → Z defined by 
taking the fiber

i! := fib(idX → j∗j
∗)

of the unit idX → j∗j
∗ [40, Remark A.8.5].

If X is stable, then Z and U are also stable. Moreover, there is a canonical fiber sequence

j!j
∗ idX i∗i

∗ , (2.23)

where the first morphism is the counit and the second is the unit [40, Proposition A.8.17]; [48, 1.17].

Note that given the adjunctions of stable ∞-categories j! ⫞ j∗ and i∗ ⫞ i∗, the existence of a fiber sequence 
(2.23) implies that i∗ and j∗ are jointly conservative. To show that tensoring with a presentable stable 
∞-category E preserves recollements, we prove that such a fiber sequence always exists by embedding E in 
a compactly generated stable ∞-category. We first check that the relevant adjoints exist.

Notation 2.24. Let T be a presentable ∞-category and let i∗ : Z ↪→ X and j∗ : U ↪→ X be fully faithful right 
adjoints of presentable ∞-categories that exhibit X as the recollement of Z and U . We write i∗T := i∗ ⊗ T

and j∗T := j∗ ⊗ T , and write iT∗ := i∗ ⊗ T and jT∗ := j∗ ⊗ T . If iT∗ admits a right adjoint, we denote this 
adjoint by i!T ; if j∗T admits a left adjoint, we denote this adjoint by jT! .
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Lemma 2.25. Let E be a presentable ∞-category, and let i∗ : Z ↪→ X and j∗ : U ↪→ X be fully faithful right 
adjoints of presentable ∞-categories that exhibit X as the recollement of Z and U . If E is stable, then:

(2.25.1) The functor iE∗ admits a right adjoint i!E.
(2.25.2) The functor j∗E admits a left adjoint jE! .
(2.25.3) The composite j∗Ei

E
∗ : Z ⊗E → U ⊗ E is constant with value the terminal object of U ⊗E.

Proof. By Corollary 2.19, iSpt
∗ and jSpt

∗ exhibit X ⊗ Spt as the recollement of Z ⊗ Spt and U ⊗ Spt. Thus 
(2.25.1) and (2.25.2) follow from Observation 2.21. For (2.25.3), note that since E is stable, we have a 
commuative diagram of right adjoints

Funlim(Eop, Z ⊗ Spt) Funlim(Eop, X ⊗ Spt) Funlim(Eop, U ⊗ Spt)

Z ⊗ Spt ⊗E X ⊗ Spt ⊗E U ⊗ Spt ⊗ E

Z ⊗E X ⊗E U ⊗ E . 

i∗
Spt◦− j∗Spt◦−





 Ω∞
Z⊗E

i∗
Spt⊗E





 Ω∞
X⊗E

j∗Spt⊗E





Ω∞
U⊗E

i∗
E j∗E

By Corollary 2.19 the composite j∗Spti
Spt
∗ is constant with value the terminal object of U ⊗ Spt, completing 

the proof. �
Recollection 2.26 ([40] Proposition 1.4.4.9). An ∞-category E is presentable and stable if and only if there 
exists a small ∞-category E0 such that E is equivalent to an accessible exact localization of Fun(E0,Spt). 
Since Fun(E0,Spt) is compactly generated (Recollection 2.2) and stable [40, Proposition 1.1.3.1], we deduce 
that every presentable stable ∞-category is an exact localization of a compactly generated stable ∞-cate
gory.

Proposition 2.27. Let E be a presentable ∞-category, and let i∗ : Z ↪→ X and j∗ : U ↪→ X be fully faithful 
right adjoints of presentable ∞-categories that exhibit X as the recollement of Z and U . If E is stable, then 
i∗ ⊗E and j∗ ⊗E exhibit X ⊗ E as the recollement of Z ⊗E and U ⊗E.

Proof. Since X ⊗ E, Z ⊗ E, and U ⊗ E are stable, the left adjoints i∗E and j∗E are exact. In light of 
Lemma 2.25, the remaining point to check is that the functors i∗E and j∗E are jointly conservative. To do 
this, use Recollection 2.26 to choose a compactly generated stable ∞-category E′ and fully faithful right 
adjoint E ↪→ E′ with exact left adjoint L : E′ → E. For a presentable ∞-category T , write LT := T ⊗ L.

By Corollary 2.19, iE′
∗ and jE

′
∗ exhibit X⊗E′ as the recollement of Z⊗E′ and U⊗E′. Since E′ is stable, 

there is a fiber sequence

jE
′

! j∗E′ idX⊗E′ iE
′

∗ i∗E′ (2.28)

of left adjoint functors. Applying Observation 1.16 and Lemma 2.25, we see that

LXjE
′

! j∗E′ � jE! LU j
∗
E′ � jE! j∗ELX

and

LX iE
′

∗ i∗E′ � iE∗ LZi
∗
E′ � iE∗ i

∗
ELX . 
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Thus the fiber sequence (2.28) localizes to a fiber sequence of left adjoints

jE! j∗E idX⊗E iE∗ i
∗
E . (2.29)

To see that i∗E and j∗E are jointly conservative, note that if F ∊ X ⊗E and j∗E(F ) = 0 and i∗E(F ) = 0, then 
the fiber sequence (2.29) shows that F = 0. �
Corollary 2.30. Let E be a presentable ∞-category, and let i∗ : Z ↪→ X and j∗ : U ↪→ X be fully faithful 
right adjoints of presentable ∞-categories that exhibit X as the recollement of Z and U . If X is stable, then 
i∗ ⊗E and j∗ ⊗E exhibit X ⊗ E as the recollement of Z ⊗E and U ⊗E.

Proof. Since X is stable, both Z and U are stable (Recollection 2.22) and we have a commutative diagram

Z ⊗ Spt X ⊗ Spt U ⊗ Spt

Z X U . 


 Ω∞
Z

i∗⊗Sp


 Ω∞
X 
Ω∞

U

j∗⊗Sp

i∗ j∗

Hence the claim is equivalent to showing that i∗ ⊗ (Spt ⊗E) and j∗ ⊗ (Spt ⊗E) exhibit X ⊗ (Spt ⊗E) as 
the recollement of Z ⊗ (Spt ⊗ E) and U ⊗ (Spt ⊗ E). Since Spt ⊗ E is stable, Proposition 2.27 completes 
the proof. �
Remark 2.31. Contemporaneously with the first version of this work, Carmeli, Schlank, and Yanovski [12, 
Proposition 5.2.3] provided a different proof of Corollary 2.30.

Remark 2.32. If i∗ : Z ↪→ X and j∗ : U ↪→ X form a recollement of presentable ∞-categories, and X is 
an ∞-topos, then Z and U are ∞-topoi [40, Proposition A.8.15]. Moreover, if E is another ∞-topos, then 
i∗ ⊗E and j∗ ⊗E exhibit X ⊗E as the recollement of Z ⊗E and U ⊗E [39, Remark 6.3.5.8 & Proposition 
7.3.2.12]; [40, Example 4.8.1.19 & Proposition A.8.15]. In light of this and Corollaries 2.19 and 2.30 and 
Proposition 2.27, in many situations one naturally runs into, the tensor product preserves recollements.

3. Adjointability results

In this section, we use the explicit descriptions of the tensor product with a compactly generated ∞-cat
egory from § 2.2 to explain which operations on an oriented square (�) of presentable ∞-categories preserve 
left adjointability. In particular, we prove Theorem 0.5.

In § 3.1, we make a general observation (Proposition 3.1) that immediately takes care of the compactly 
generated case of Theorem 0.5. Proposition 3.1 also has some other useful consequences; see Example 3.5
and Corollary 3.6. In § 3.2, we take care of the stable case of Theorem 0.5. In § 3.3, we explain consequences 
of Theorem 0.5 and Lurie’s Nonabelian Proper Basechange Theorem.

3.1. Adjointability & ∞-categories of functors

To prove the compactly generated case of Theorem 0.5, we appeal to the improved functoriality of the 
tensor product explained in Observation 2.9.

Proposition 3.1. Let K be a collection of ∞-categories and let I be a small ∞-category. Assume that:

(3.1.1) The ∞-category I admits K-shaped limits and (�) is an oriented square in CatK-lim
∞ .
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(3.1.2) The left adjoints f∗ : D → B and f̄∗ : C → A preserve K-shaped limits.
(3.1.3) The oriented square (�) is left adjointable.

Then the induced oriented square

FunK-lim(I, A) FunK-lim(I, C)

FunK-lim(I,B) FunK-lim(I,D)

f̄∗◦−

ḡ∗◦− g∗◦−
σ◦−⇐=

f∗◦−

FunK-lim(I, (�))

is left adjointable.

Proof. By the assumptions, the functors f∗ and f̄∗ admit left adjoints in the (∞, 2)-category CatK-lim
∞ . The 

fact that functors of (∞, 2)-categories preserve left adjointable squares (Observation 1.6) completes the 
proof. �
Corollary 3.2. Let E be a compactly generated ∞-category. Assume that:

(3.2.1) (�) is an oriented square in PrR.
(3.2.2) The left adjoints f∗ : D → B and f̄∗ : C → A are left exact.
(3.2.3) The oriented square (�) is left adjointable.

Then the oriented square (�) ⊗E is left adjointable.

Proof. Combine Observations 2.9 and 2.10 with Proposition 3.1 in the case that K is the collection of finite 
∞-categories and I = Ec,op. �
Warning 3.3. Note that the ∞-category Spc≤1 of 1-truncated spaces is compactly generated. Hence Exam
ple 1.17 shows that the assumption (3.2.2) cannot be removed.

For the next result, recall from Definition 2.8 that we write Catfp
∞ for the (∞, 2)-category of ∞-categories 

with finite products, functors that preserve finite products, and natural transformations.

Corollary 3.4. Let I be a small ∞-category with finite products. Assume that:

(3.4.1) (�) is an oriented square in Catfp
∞.

(3.4.2) The left adjoints f∗ : D → B and f̄∗ : C → A preserve finite products.
(3.4.3) The oriented square (�) is left adjointable.

Then the oriented square Fun×(I, (�)) is left adjointable.

Proof. Combine Observation 2.9 and Variant 2.11 with Proposition 3.1 in the case that K is the collection 
of finite sets. �

Corollary 3.4 has some nice consequences:

Example 3.5 (algebras over Lawvere theories). Let L be a Lawvere theory in the ∞-categorical sense [8]; [9]; 
[18, Chapter 3]. In the setting of Corollary 3.4, the induced square of ∞-categories of L-algebras
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AlgL(A) AlgL(C)

AlgL(B) AlgL(D) , 
⇐=

is left adjointable. In particular, letting L = Span(Setfin) be the (2, 1)-category of spans of finite sets [3, §3], 
we see that the formation of commutative monoid objects preserves left adjointability of oriented squares 
in which all functors preserve finite products.

Another special case of Corollary 3.4 is given by tensoring with a projectively generated ∞-category:

Corollary 3.6. Let E be a projectively generated ∞-category. Assume that:

(3.6.1) (�) is an oriented square in PrR.
(3.6.2) The left adjoints f∗ : D → B and f̄∗ : C → A preserve finite products.
(3.6.3) The oriented square (�) is left adjointable.

Then the oriented square (�) ⊗E is left adjointable.

Proof. Combine Observations 2.9 and 2.10 with Proposition 3.1 in the case that K is the collection of 
finite sets and I = Ecpr,op is the opposite of the full subcategory of E spanned by the compact projective 
objects. �
3.2. Adjointability & preservation of filtered colimits

In many ∞-categories that arise in algebra and sheaf theory, filtered colimits commute with finite limits. 
For example, filtered colimits commute with finite limits in: compactly generated ∞-categories, Grothendieck 
abelian categories [51, Tag 079A]; [40, Definition 1.3.5.1]; [24], Grothendieck prestable ∞-categories [41, 
Definition C.1.4.2], stable ∞-categories, and n-topoi for each 0 ≤ n ≤ ∞ [39, Example 7.3.4.7]. The goal of 
this subsection is to show that in these situations, if the vertical right adjoints g∗ and ḡ∗ preserve filtered 
colimits and (�) becomes left adjointable after tensoring with the ∞-category of spectra, then (�) becomes 
left adjointable after tensoring with any stable presentable ∞-category. Combined with Corollary 3.2, this 
allows us to generalize the Proper Basechange Theorem in topology to sheaves with values in presentable 
∞-categories which are compactly generated or stable (Example 3.18).

In order to state this result, we recall some terminology.

Recollection 3.7. Let S be an ∞-category with finite limits and filtered colimits. We say that filtered colimits 
in S are left exact if for each small filtered ∞-category I, the functor

colimI : Fun(I, S) → S

is left exact.

Proposition 3.8. Let E be a stable presentable ∞-category. Assume that:

(3.8.1) The ∞-categories A, B, C, and D in the oriented square (�) are presentable and filtered colimits 
are left exact in each ∞-category. Moreover, all functors in (�) are right adjoints.

(3.8.2) The right adjoints g∗ and ḡ∗ preserve filtered colimits.
(3.8.3) The oriented square (�) ⊗ Spt is left adjointable.
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Then the functors g∗ ⊗ E and ḡ∗ ⊗E are left adjoints and the oriented square (�) ⊗E is left adjointable.

Remark 3.9. Since the ∞-category Spt is compactly generated, Corollary 3.2 shows that if the oriented 
square (�) is left adjointable and the left adjoints f∗ and f̄∗ are left exact, then (3.8.3) is satisfied. In 
particular, hypotheses (3.8.1) and (3.8.3) are satisfied for left adjointable squares of ∞-topoi and geometric 
morphisms.

To prove Proposition 3.8, we begin with a few basic lemmas. The key point is that the assumption that 
g∗ and ḡ∗ preserve filtered colimits implies that g∗ ⊗ Spt and ḡ∗ ⊗ Spt are left adjoints (see Corollary 3.12). 
Thus we are in the situation to apply Lemma 1.19.

The following is immediate from the definitions.

Lemma 3.10. Let I be an ∞-category with finite limits and let S be an ∞-category with finite limits and 
filtered colimits. If filtered colimits in S are left exact, then Funlex(I, S) ⊂ Fun(I, S) is closed under filtered 
colimits.

Corollary 3.11. Let p∗ : S → T be a right adjoint between presentable ∞-categories in which filtered colimits 
are left exact. Let E be a compactly generated ∞-category. If p∗ preserves filtered colimits, then p∗ ⊗ E

preserves filtered colimits.

Proof. Consider the commutative diagram of ∞-categories

S ⊗E Funlex(Eop, S) Fun(Ec,op, S)

T ⊗E Funlex(Eop, T ) Fun(Ec,op, T ) . 

p∗⊗E

∼

p∗◦− p∗◦−

∼

Since p∗ preserves filtered colimits, the rightmost vertical functor preserves filtered colimits. The claim now 
follows from Lemma 3.10. �
Corollary 3.12. Let p∗ : S → T be a right adjoint between presentable ∞-categories in which filtered colimits 
are left exact. Let E be a stable presentable ∞-category. If p∗ preserves filtered colimits, then the right 
adjoint functor p∗ ⊗ E is also a left adjoint.

Proof. By Observation 2.21, it suffices to show that p∗ ⊗ Spt is a left adjoint. Since S ⊗ Spt and T ⊗ Spt
are stable and p∗ ⊗ Spt is exact, by the Adjoint Functor Theorem [39, Corollary 5.5.2.9], it suffices to show 
that p∗ ⊗ Spt preserves filtered colimits. Corollary 3.11 completes the proof. �
Proof of Proposition 3.8. Corollary 3.12 shows that g∗⊗Spt and ḡ∗⊗Spt are left adjoints. Since E is stable, 
(�) ⊗ Spt ⊗E � (�) ⊗E; applying Lemma 1.19 to the oriented square (�) ⊗ Spt completes the proof. �
3.3. Consequences of the nonabelian proper basechange theorem

We finish by explaining how Corollary 3.2 and Proposition 3.8 answer Question 0.3. To do this, we first 
explain how our results apply to proper geometric morphisms of ∞-topoi.

Recall that the ∞-category of ∞-topoi is the non-full subcategory of the ∞-category of presentable ∞
categories and right adjoints with objects the ∞-topoi and morphisms the geometric morphisms, i.e., right 
adjoints f∗ : X → Y whose left adjoint f∗ : Y → X is left exact. The ∞-category of ∞-topoi admits all 
limits and colimits [39, Proposition 6.3.2.3 & Corollary 6.3.4.7].
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Recollection 3.13 (proper geometric morphisms; see [39, Definition 7.3.1.4] or [42, §3]). Let g∗ : Y → Z be 
a geometric morphism of ∞-topoi. We say that g∗ is proper if for every commutative diagram of ∞-topoi

W ′ W Y

X ′ X Z

f̄∗
′

ḡ∗
′

⌟
f̄∗

ḡ∗

⌟
g∗

f∗
′ f∗

in which both squares are pullback squares, the left-hand square is left adjointable. (Note that, as a con
sequence, the right-hand square is also left adjointable.) In particular, proper geometric morphisms are 
stable under pullback. Moreover, if g∗ is proper, then g∗ preserves filtered colimits [39, Remark 7.3.1.5]; [42, 
Theorem 3.1.6]

Example 3.14. Let

W Y

X Z

f̄∗

ḡ∗

⌟
g∗

f∗

(3.15)

be a pullback square in the ∞-category of ∞-topoi and geometric morphisms. Let E be a presentable ∞
category which is stable or compactly generated. If the geometric morphism g∗ is proper, then applying 
Corollary 3.2 and Proposition 3.8, we see that the square (3.15) ⊗ E is left adjointable.

Now we explain how the theory applies to topology.

Recollection 3.16 (proper maps in topology). Let g : Y → Z be a map of topological spaces. We say that g is 
universally closed if for every map of topological spaces X → Z, the induced map X ×Z Y → X is closed. 
We say that g is separated if the diagonal Y → Y ×Z Y is a closed immersion. Note that if Y is Hausdorff, 
then g is automatically separated. We say that g is proper if g is universally closed and separated.3

If g : Y → Z is a map between locally compact Hausdorff spaces, then g is proper if and only if g is closed 
with compact fibers.

Example 3.17. Generalizing a result of Lurie [39, Theorem 7.3.1.16], Martini and Wolf showed that if g : Y →
Z is a proper map between arbitrary topological spaces, then the induced geometric morphism g∗ : Sh(Y ) →
Sh(Z) is proper [42, Theorem 3.5.1].

Example 3.18. Let

W Y

X Z

f̄

ḡ
⌟

g

f

be a pullback square of sober topological spaces (e.g., locally compact Hausdorff topological spaces), and 
assume that the map g is proper. Then the induced square of ∞-topoi

3 We use slightly different terminology than Martini–Wolf [42, §3.5]. They call universally closed maps proper; ‘proper maps’ in 
our terminology are the same as ‘proper separated maps’ in their terminology.
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Sh(W ) Sh(Y )

Sh(X) Sh(Z)

f̄∗

ḡ∗

⌟
g∗

f∗

is a pullback square [42, Corollary 3.5.4]. Since the geometric morphism g∗ : Sh(Y ) → Sh(Z) is proper, as 
a special case of Example 3.14, we see that if E is a presentable ∞-category which is stable or compactly 
generated, then the induced square of ∞-categories of E-valued sheaves

Sh(W ;E) Sh(Y ;E)

Sh(X;E) Sh(Z;E)

f̄∗

ḡ∗ g∗

f∗

is left adjointable.

4. Adjointability and stabilization

The following situation commonly arises in sheaf theory: we often only know that the exchange morphism

Exσ : f∗g∗ → ḡ∗f̄
∗

associated to an oriented square (�) of some ∞-categories of sheaves is an equivalence when restricted to 
a (not necessarily presentable) subcategory C ′ ⊂ C. Such is the case for the Proper Basechange Theorem 
for étale cohomology: the relevant exchange morphism is an equivalence for torsion sheaves, but fails to be 
an equivalence in general [53, Exposé XII, §2]. In these situations, the adjointability results proven in the 
previous sections do not immediately allow one to conclude that basechange results for a class of sheaves of 
spaces imply basechange results with other coefficients.

The purpose of this section is to explain how to use knowledge that the exchange morphism associated 
to an oriented square is an equivalence when restricted to a subcategory to deduce adjointability results 
after stabilization or tensoring with the ∞-category of modules over an E1-ring. See Proposition 4.7 and 
Corollary 4.10. The results of this section generalize our work with Barwick and Glasman [5, §7.4].

We begin with the case of stabilization. For convenience, we work in the more general setting of ∞-cat
egories with finite limits. First we recall how stabilization works in this setting.

Recollection 4.1 (stabilization ([40] Definition 1.4.2.8)). Write Spcfin ⊂ Spc for the ∞-category of finite 
spaces: the smallest full subcategory of Spc containing the terminal object and closed under finite coproducts 
and pushouts. Let S be an ∞-category with finite limits. Recall that the stabilization of S is the full 
subcategory

Sp(S) ⊂ Fun(Spcfin
∗ , S)

spanned by those functors that preserve the terminal object and carry pushout squares in Spcfin
∗ to pullback 

squares in S. Also recall that the functor Ω∞
S : Sp(S) → S is defined by evaluation on the 0-sphere S0 ∊ Spcfin

∗ . 
Stabilization defines a functor of (∞, 2)-categories

Sp: Catlex
∞ → Catlex

∞ ; 

it is a subfunctor of the functor Fun(Spcfin
∗ ,−).
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If S is a presentable ∞-category, then the stabilization Sp(S) has another description: there is a natural 
equivalence

Sp(S) � S ⊗ Spt

[40, Example 4.8.1.23]. Similarly to (2.9.1), the tensor product (−)⊗ Spt fits into a commutative square of 
functors of (∞, 2)-categories

PrR PrR

Catlex
∞ Catlex

∞ . 

(−)⊗Spt

Sp

Here the vertical functors are inclusions of non-full subcategories.

Stabilization behaves well with respect to the functors Ω∞ and exchange morphisms:

Observation 4.2. Let p : S → T be a left exact functor between ∞-categories with finite limits. It is immediate 
from the definitions that the square

Sp(S) Sp(T )

S T

Ω∞
S

Sp(p)

Ω∞
T

p

canonically commutes.

Observation 4.3 (stabilization and naural transformations). Let p, p′ : S → T be left exact functors between 
∞-categories with finite limits, and let σ : p → p′ be a natural transformation. It is immediate from the 
definitions that the natural transformation Sp(σ) is compatible with σ in the following sense: we have a 
natural identification Ω∞

T Sp(σ) = σΩ∞
S of natural tranformations

pΩ∞
S = Ω∞

T Sp(p) Ω∞
T Sp(p′) = p′Ω∞

S . 

Observation 4.4 (stabilization and exchange morphisms). Consider an oriented square (�) in Catlex
∞ and 

assume that the left adjoints f∗ : D → B and f̄∗ : C → A are left exact. From Observation 4.3 we see that 
there is a natural identification

Ω∞
B ExSp(σ) = Exσ Ω∞

C

of natural transformations

f∗g∗Ω∞
C = Ω∞

B Sp(f∗) Sp(g∗) Ω∞
B Sp(ḡ∗) Sp(ḡ∗) = ḡ∗ḡ∗Ω∞

C . 

In order to state the main result, it is convenient to give a name to the largest subcategory on which the 
exchange morphism is an equivalence.

Notation 4.5. Given an oriented square (�), we write CEx ⊂ C for the full subcategory spanned by those 
objects X ∊ C such that the exchange morphism
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Exσ(X) : f∗g∗(X) → ḡ∗f̄
∗(X)

is an equivalence.

Observation 4.6. In the setting of Observation 4.4, the subcategory CEx ⊂ C is closed under finite limits. 
In this case, the stabilization Sp(CEx) of CEx is the full subcategory spanned by those X ∊ Sp(C) such that 
for each n ∊ Z, we have Ω∞−n

C (X) ∊ CEx.

Proposition 4.7. Assume that:

(4.7.1) (�) is an oriented square in Catlex
∞ .

(4.7.2) The left adjoints f∗ : D → B and f̄∗ : C → A are left exact.

Then the exchange morphism associated to the oriented square of stable ∞-categories

Sp(A) Sp(D)

Sp(B) Sp(C) , 

Sp(f̄∗)

Sp(ḡ∗) Sp(g∗)⇐=

Sp(f∗)

Sp (�)

is an equivalence when restricted to Sp(CEx).

Proof. Let X ∊ Sp(CEx). To see that Ex(X) is an equivalence, it suffices to show that for each integer n ∊ Z, 
the morphism

Ω∞−n
B Ex(X) : Ω∞−n

B f∗g∗(X) → Ω∞−n
B ḡ∗f̄

∗(X)

is an equivalence. Since all functors in question are left exact, applying Observation 4.4 we see that the 
morphism Ω∞−n

B Ex(X) is equivalent to the morphism

Ex(Ω∞−n
C X) : f∗g∗(Ω∞−n

C X) → ḡ∗f̄
∗(Ω∞−n

C X) . 

The assumption that X ∊ Sp(CEx) guarantees that for all integers n ∊ Z, we have Ω∞−n
C X ∊ CEx. �

4.1. Adjointability and R-modules

Now we explain how to bootstrap from Proposition 4.7 to deduce analagous results when tensoring with 
the ∞-category of modules over an E1-ring.

Notation 4.8. Let S be a presentable ∞-category and R an E1-ring spectrum.

(4.8.1) We write Mod(R) for the ∞-category of left R-module spectra and U : Mod(R) → Spt for the 
forgetful functor. Note that U is conservative as well as both a left and right adjoint. (Writing S for 
the sphere spectrum and ⊗S for the tensor product of spectra, its left adjoint is the extension of scalars 
functor R⊗S (−) and its right adjoint is the coextension of scalars functor HomS(R,−).)

(4.8.2) We write ModR(S) := S ⊗ Mod(R) and US for the conservative left and right adjoint functor 
S ⊗ U : ModR(S) → Sp(S).
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4.9. Let p∗ : S → T be a right adjoint between presentable ∞-categories. As a consequence of Observa
tion 1.16, the induced functors after tensoring with R-module spectra commute with the forgetful functors 
in the sense that we have canonical identifications

UT ◦ ModR(p∗) = Sp(p∗) ◦ US and UT ◦ ModR(p∗) = Sp(p∗) ◦ US . 

Corollary 4.10. Let R be an E1-ring. Assume that:

(4.10.1) (�) is an oriented square in PrR.
(4.10.2) The left adjoints f∗ : D → B and f̄∗ : C → A are left exact.

Then the exchange morphism associated to the oriented square of stable ∞-categories

ModR(A) ModR(D)

ModR(B) ModR(C) , 

ModR(f̄∗)

ModR(ḡ∗) ModR(g∗)⇐=

ModR(f∗)

ModR (�)

is an equivalence when restricted to those objects X ∊ ModR(C) such that UC(X) ∊ Sp(CEx).

Proof. Since the forgetful functor UB : ModR(B) → Sp(B) is conservative, it suffices to show that for all 
X ∊ ModR(C) such that UC(X) ∊ Sp(CEx), the morphism

UB Ex(X) : UB ◦ ModR(f∗) ◦ ModR(g∗)(X) → UB ◦ ModR(ḡ∗) ◦ ModR(f̄∗)(X)

is an equivalence. In light of 4.9, we see that the morphism UB Ex(X) is equivalent to the morphism

Ex(UCX) : Sp(f∗) ◦ Sp(g∗)(UCX) → Sp(f̄∗) ◦ Sp(ḡ∗)(UCX)

in Sp(B). Proposition 4.7 completes the proof. �
Example 4.11. The Gabber–Illusie basechange theorem for oriented fiber product squares of coherent topoi 
[35, Exposé XI, Théorème 2.4] is an immediate consequence of Proposition 4.7 combined with our non
abealian version [5, Theorem 7.1.7]. See [5, Proposition 7.4.11].

Example 4.12 (Proper Basechange for étale cohomology). As in the topological setting, Corollary 4.10 and 
the Nonabelian Proper Basechange Theorem for torsion étale sheaves of spaces [16, Theorem 1.2 & Remark 
1.6]; [25, Corollary 3.21] imply the classical result for torsion abelian sheaves [53, Exposé XII, Théorème 
5.1]. Moreover, this allows one to generalize the coefficients to torsion sheaves of spectra.

Similar results hold for other basechange theorems in algebraic geometry, including the Smooth 
Basechange Theorem [53, Exposé XII, Corollaire 1.2], Gabber–Huber A˙ine Analogue of the Proper 
Basechange Theorem [20]; [34], and the Fujiwara–Gabber Rigidity Theorem [19, Corollary 6.6.4]. See our 
paper Holzschuh and Wolf [25], in particular [25, Remark 2.38] for details.
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