Splitting free loop spaces

Peter J. Haine

April 17, 2021

Overview

The purpose of this note is to give a modern account of the classical fact that given a space *X* equipped with a unital multiplication that has inverses in an appropriate sense, the free loop space L*X* of *X* splits as a product $LX \simeq X \times \Omega X$ of *X* with the loop space of *X* based at the unit for the multiplication. Specifically, given an A₂-algebra *M* in an ∞ -category with finite limits, only using basic manipulations with limits we produce a natural morphism

$c_M \colon M \times \Omega M \to LM$

(Construction 3.1). If, in addition, the *shear map* $M \times M \to M \times M$ informally described by $(x, y) \mapsto (x, xy)$ is an equivalence, then the morphism $c_M : M \times \Omega M \to LM$ is an equivalence (Proposition 3.3). One example that fits into this framework is the 7-sphere with A₂-multiplication induced by the multiplication on the octonions (Example 2.6).

In Section 1, we recall the definition of a free loop object in an ∞ -category with finite limits and prove two results relating free loop objects to based loop objects (Lemma 1.4 and Corollary 1.5). In Section 2, we give a reminder on A₂-structures and provide an example showing that an A₂-structure is not enough to guarantee that the free loop space fibration splits (Example 2.6). Section 3 states and proves the main splitting result of this note. We conclude with a result of Agudé [1] and Ziller [4, p. 21] that characterizes the spheres for which the free loop space fibration splits (Theorem 3.7).

The reader familiar with A_2 -structures and free loop objects in this generality is advised to take a look at Definition 2.8, then skip straight to Section 3; once the basics are set up, the proof of Proposition 3.3 is immediate.

1 Recollections on free loop objects

Let *X* be a space. Since the circle S¹ is the pushout $* \sqcup^{S^0} *$ in the ∞ -category **Spc**, the free loop space $LX = Map(S^1, X)$ is given by the pullback $X \times_{X \times X} X$. The morphisms $X \to X \times X$ appearing in the pullback are both the diagonal. We use this description to define free loop objects in any ∞ -category with finite limits.

1.1 Notation. Let *C* be an ∞ -category with finite products and $X \in C$.

- (1) We write $1_C \in C$ for the terminal object.
- (2) We write $\Delta_X \colon X \to X \times X$ for the diagonal morphism.
- (3) Given a point $x: 1_C \to X$, we write $(x, x): 1_C \to X \times X$ for the point defined by the composite

$$1_C \xrightarrow{x} X \xrightarrow{\Delta_X} X \times X$$

1.2 Definition. Let *C* be an ∞ -category with finite limits and $X \in C$. The *free loop* object on *X* is the pullback

1.3 Observation. The natural commutative square

$$\begin{array}{c} X = & X \\ \parallel & & \downarrow^{\Delta_X} \\ X \xrightarrow{\Delta_X} & X \times X \end{array}$$

provides a natural section $s_X \colon X \to LX$ of the projections $LX \to X$.

The following description of the based loop object of a pointed object in terms of the diagonal allows us to relate the free loop object to the based loop object.

1.4 Lemma. Let C be an ∞ -category with finite limits, $X \in C$, and $x: 1_C \to X$ a point of X. There is a natural equivalence

$$\operatorname{fib}_{(x,x)}(\Delta_X \colon X \to X \times X) \simeq \Omega_x X$$
.

Proof. Consider the commutative diagram

Taking pullbacks vertically then horizontally yields

$$\lim \left(1_C \xrightarrow{x} X \xleftarrow{x} 1_C \right) = \Omega_x X,$$

and taking pullbacks horizontally then vertically yields

$$\lim \left(1_C \xrightarrow{(x,x)} X \times X \xleftarrow{\Delta_X} X \right) = \operatorname{fib}_{(x,x)}(\Delta_X).$$

The claim follows from the fact that limits commute.

1.5 Corollary. Let C be an ∞ -category with finite limits, $X \in C$, and $x: 1_C \to X$ a point of X. There is a natural pullback square

Proof. Express $fib_{(x,x)}(\Delta_X)$ as the iterated pullback

and apply Lemma 1.4.

2 Reminder on A₂-algebras

We now recall the definition of an A_2 -algebra and explain the variant of an A_2 -structure needed for the free loop space fibraion to split.

2.1 Recollection. Let *C* be an ∞ -category with finite products. An A₂-algebra in *C* consists of the following data:

- (1) An object $M \in C$.
- (2) A multiplication morphism $m: M \times M \to M$.
- (3) A *unit* morphism $u: 1_C \to M$.
- (4) Choices of 2-morphisms filling the diagrams

2.2 Remark. In the classical literature, an A₂-algebra in Spc is called an H-space.

2.3 Convention. Let *C* be an ∞ -category with finite limits and let *M* be an A₂-algebra in *C*. We write $\Omega M \coloneqq \Omega_u M$ for the loop object of *M* based at the unit $u: 1_C \to M$.

A counterexample

In the classical literature, various authors claim that the free loop space fibration of an A_2 -algebra in spaces splits. In this subsection we provide a counterexample to this claim (Example 2.6). The point is that for the free loop space fibration of M to split, at very least the based loop spaces of M at each point need to be equivalent. However, an A_2 -algebra structure is not enough to guarantee that all of the connected components of M have the same homotopy type: we can always adjoint a new point 0 that acts as an 'absorbing element' for the multiplication. That is, we can generalize the following construction for magmas (i.e., A_2 -sets).

2.4 Construction. Let (M, \cdot_M) be a magma. Write M_+ for the magma with underlying set $M_+ \coloneqq M \sqcup \{0\}$ with mutiplication defined by

$$x \cdot_{M_+} y \coloneqq \begin{cases} x \cdot_M y, & x, y \in M \\ 0, & x = 0 \text{ or } y = 0 \end{cases}$$

The following is the generalization of Construction 2.4 from sets to spaces:

2.5 Construction. Write $(-)_+$: Spc \rightarrow Spc_{*} for the left adjoint to the forgetful functor Spc_{*} \rightarrow Spc. Given spaces X_1, \ldots, X_n , there is a natural splitting

$$\prod_{i=1}^{n} X_{i,+} \simeq \bigvee_{\emptyset \neq I \subset \{1,...,n\}} \left(\prod_{i \in I} X_i \right)_{+}$$
$$\simeq \left(\prod_{i=1}^{n} X_i \right)_{+} \lor \bigvee_{\emptyset \neq I \subsetneq \{1,...,n\}} \left(\prod_{i \in I} X_i \right)_{+}$$

Using this splitting, one can give the functor $(-)_+$: Spc \rightarrow Spc_{*} a lax-monoidal structure with respect to the product. The structure morphisms

$$\left(\prod_{i=1}^{n} X_{i}\right)_{+} \lor \bigvee_{\emptyset \neq I \subsetneq \{1, \dots, n\}} \left(\prod_{i \in I} X_{i}\right)_{+} \longrightarrow \left(\prod_{i=1}^{n} X_{i}\right)_{+}$$

are given by the identity on the first factor and the constant map at the point on the second factor.¹

Since the forgetful functor $\operatorname{Spc}_* \to \operatorname{Spc}$ is naturally symmetric monoidal with respect to the product, this gives the composite $(-)_+ : \operatorname{Spc} \to \operatorname{Spc}$ a lax-monoidal structure with respect to the product. In particular, the functor $(-)_+ : \operatorname{Spc} \to \operatorname{Spc}$ preserves algebras over any operad. Hence, for each $1 \le n \le \infty$ the functor $(-)_+$ lifts to functors

$$(-)_+$$
: $\operatorname{Alg}_{A_n}(\operatorname{Spc}) \to \operatorname{Alg}_{A_n}(\operatorname{Spc})$ and $(-)_+$: $\operatorname{Alg}_{E_n}(\operatorname{Spc}) \to \operatorname{Alg}_{E_n}(\operatorname{Spc})$

¹There are several ways to make this precise. One is to give the functor $(-)_+$: Set^{fin} \rightarrow Set^{fin}_{*} a lax-monoidal structure and take the lax-monoidal left Kan extension of the composite functor $(-)_+$: Set^{fin} \rightarrow Set^{fin}_{*} \rightarrow Spc_{*}.

2.6 Example. The free loop space fibration for the A_2 -space S^1_+ does not split. To see this, note that

$$\begin{split} LS^1_+ &\simeq LS^1 \sqcup L\{0\} \\ &\simeq S^1 \times \Omega S^1 \sqcup \{0\} \\ &\simeq S^1 \times \mathbf{Z} \sqcup \{0\} \;. \end{split}$$

On the other hand,

$$\begin{split} S^1_+ &\times \Omega S^1 \simeq S^1 \times \Omega S^1 \sqcup \Omega S^1 \\ &\simeq S^1 \times \mathbf{Z} \sqcup \mathbf{Z} \,. \end{split}$$

Notice that no amount of commutativity helps here. Since S¹ has an E_{∞} -structure, S¹₊ also has an E_{∞} -structure. The problem here is that the multiplication on an A₂-space *M* needs to have *inverses* in order for the connected components of *M* to be equivalent.

The necessary structure

To formulate what it means for an A_2 -algebra in an ∞ -category with finite limits to 'have inverses', we make the following observation.

2.7 Observation. Let *M* be a monoid. Then *M* is a group if and only if the *shear maps* $M \times M \rightarrow M \times M$ defined by

$$(x, y) \mapsto (x, xy)$$
 and $(x, y) \mapsto (xy, y)$

are bijections.

In fact, for the free loop space fibration to split, the we do not need a full A_2 -structure, but just a right (or left) unital multiplication 'with inverses'.

2.8 Definition. Let *C* be an ∞ -category with finite limits. A *right* $A_{1\frac{1}{2}}$ -algebra² in *C* consists of the following data:

- (1) An object $M \in C$.
- (2) A multiplication morphism $m: M \times M \to M$.
- (3) A *unit* morphism $u: 1_C \to M$.
- (4) A choice of 2-morphism filling the diagram

$$\begin{array}{ccc} M \times 1_C & \stackrel{\operatorname{pr}_1}{\longrightarrow} & M \\ & \stackrel{\operatorname{id} \times u}{\longrightarrow} & & \\ M \times M \end{array}$$

2.9 Definition. Let *C* be an ∞ -category with finite limits and let *M* be a right $A_{1\frac{1}{2}}$ -algebra in *C*. The *shear map* associated to *M* is the morphism

$$\mathrm{sh} \coloneqq (\mathrm{pr}_1, m) \colon M \times M \to M \times M$$
.

²We would be grateful to know if there is a better name for this structure.

3 Splitting the fiber sequence

Given an $A_{1\frac{1}{2}}$ -algebra M, we now easily construct a morphism $M \times \Omega M \to LM$ that is an equivalence if the shear map associated to M is.

3.1 Construction. Let *C* be an ∞ -category with finite limits and let *M* be an right $A_{1\frac{1}{2}}$ -algebra in *C*. The right $A_{1\frac{1}{2}}$ -algebra structure on *M* defines a commutative diagram

We denote the induced morphism on pullbacks by $c_M \colon M \times \Omega M \to LM$. Note that the morphism c_M is natural in morphisms of right $A_{1\frac{1}{2}}$ -algebras.

3.2 Observation. By construction, the composite of the section $M \simeq M \times 1_C \rightarrow M \times \Omega M$ given by the basepoint of ΩM with c_M is the section $s_M : M \rightarrow LM$ of Observation 1.3.

The following is immediate:

3.3 Proposition. Let C be an ∞ -category with finite limits and let M be a right $A_{1\frac{1}{2}}$ -algebra in C. If the shear map sh : $M \times M \to M \times M$ is an equivalence, then the natural morphism c_M : $M \times \Omega M \to LM$ is an equivalence.

3.4 Remark. Note that Construction 3.1 and Proposition 3.3 have variants for objects with a left unital multiplication (i.e., 'left $A_{11/2}$ -algebras').

Free loop spaces of spheres

We conclude by characterizing the spheres for which the free loop space fibration splits.

3.5 Example. Let n = 0, 1, or 3. Then the *n*-sphere S^{*n*} has an E₁-group structure induced by regarding S^{*n*} as the norm 1 real numbers (n = 0), complex numbers (n = 1), or quaternions (n = 3). Hence Proposition 3.3 implies that the free loop space fibration for S^{*n*} splits.

3.6 Example. The 7-sphere $S^7 \in Spc$ has an A_2 -structure given by regarding the topological 7-sphere as the norm 1 octonions. Since the octonions **O** form an *alternative division algebra* over **R**, the shear map

$$\mathbf{O} \times \mathbf{O} \to \mathbf{O} \times \mathbf{O}$$
, $(x, y) \mapsto (x, xy)$

is a homeomorphism. Hence, the shear map $S^7 \times S^7 \to S^7 \times S^7$ is an equivalence. Proposition 3.3 provides a splitting

$$\mathrm{LS}^7 \simeq \mathrm{S}^7 \times \mathrm{\Omega}\mathrm{S}^7$$
.

The following characterization of the spheres for which the free loop space fibration splits follows from combining work of Aguadé [1] and Ziller [4, p. 21]. We summarize the proof below.

3.7 Theorem. Let *n* be a positive integer. The following conditions are equivalent:

- (1) n = 0, 1, 3, or 7.
- (2) The free loop space fiber sequence $\Omega S^n \to LS^n \to S^n$ splits.
- (3) There exists an equivalence of spaces $S^n \times \Omega S^n \simeq LS^n$.

3.8 Observation. Let $n \ge 0$ be an integer. The Serre spectral sequence computing the homology of ΩS^n and the Künneth formula show that for each positive integer k, the homology group

$$\mathbf{H}_{k}(\mathbf{S}^{n} \times \Omega \mathbf{S}^{n}; \mathbf{Z}) \cong \bigoplus_{i+j=k} \mathbf{H}_{i}(\mathbf{S}^{n}; \mathbf{Z}) \otimes_{\mathbf{Z}} \mathbf{H}_{j}(\Omega \mathbf{S}^{n}; \mathbf{Z})$$

is a free abelian group.

Proof Summary. The implication $(1) \Rightarrow (2)$ is the content of Examples 3.5 and 3.6, and the implication $(2) \Rightarrow (3)$ is clear. Note that the remaining implication $(3) \Rightarrow (1)$ is equivalent to the claim:

(*) If $n \notin \{0, 1, 3, 7\}$, then there does not exist an equivalence $S^n \times \Omega S^n \simeq LS^n$.

To prove (*), it suffices to assume that $n \ge 2$. We treat the cases of *n* even and odd separately. If *n* is even, then Ziller [4, p. 21] shows that for each $m \ge 1$ we have

$$\mathbf{H}_{2m(n-1)}(\mathrm{LS}^n;\mathbf{Z})\cong\mathbf{Z}/2\;.$$

Thus Observation 3.8 shows there does not exist an equivalence $S^n \times \Omega S^n \simeq LS^n$. For *n* odd, Ziller [4, p. 21] shows that

$$H_*(S^n \times \Omega S^n; \mathbb{Z}) \cong H_*(LS^n; \mathbb{Z}),$$

hence a different method is needed to complete the proof of (*). Aguadé [1] shows that for odd *n*, there exists an equivalence $f : S^n \times \Omega S^n \cong LS^n$ if and only if a certain map of spheres associated to *f* has Hopf invariant 1. Aguadé then uses the solution to the Hopf invariant 1 problem to complete the proof of (*).

References

- J. Aguadé, On the space of free loops of an odd sphere, Publ. Sec. Mat. Univ. Autònoma Barcelona, no. 25, pp. 87–90, 1981.
- Math Overflow Question 207844: When does the free loop space fibration split? MO:207844, 2015.
- 3. *Math Overflow Question 332943: The free loop space of spheres*, MO:332943, 2019.
- 4. W. Ziller, *The free loop space of globally symmetric spaces*, Invent. Math., vol. 41, no. 1, pp. 1–22, 1977. DOI: 10.1007/BF01390161.