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Overview
The purpose of this note is to give a modern account of the classical fact that given a
space𝑋 equipped with a unital multiplication that has inverses in an appropriate sense,
the free loop space L𝑋 of 𝑋 splits as a product L𝑋 ≃ 𝑋 × Ω𝑋 of 𝑋 with the loop space
of 𝑋 based at the unit for the multiplication. Specifically, given an A2-algebra𝑀 in an
∞-category with finite limits, only using basic manipulations with limits we produce a
natural morphism

𝑐𝑀 ∶ 𝑀 × Ω𝑀 → L𝑀
(Construction 3.1). If, in addition, the shear map 𝑀×𝑀 → 𝑀×𝑀 informally de-
scribed by (𝑥, 𝑦) ↦ (𝑥, 𝑥𝑦) is an equivalence, then themorphism 𝑐𝑀 ∶ 𝑀 × Ω𝑀 → L𝑀
is an equivalence (Proposition 3.3). One example that fits into this framework is the 7-
sphere with A2-multiplication induced by the multiplication on the octonions (Exam-
ple 2.6).

In Section 1, we recall the definition of a free loop object in an∞-categorywith finite
limits and prove two results relating free loop objects to based loop objects (Lemma 1.4
and Corollary 1.5). In Section 2, we give a reminder on A2-structures and provide an
example showing that anA2-structure is not enough to guarantee that the free loop space
fibration splits (Example 2.6). Section 3 states and proves themain splitting result of this
note. We conclude with a result of Agudé [1] and Ziller [4, p. 21] that characterizes the
spheres for which the free loop space fibration splits (Theorem 3.7).

The reader familiar with A2-structures and free loop objects in this generality is ad-
vised to take a look at Definition 2.8, then skip straight to Section 3; once the basics are
set up, the proof of Proposition 3.3 is immediate.

1 Recollections on free loop objects
Let 𝑋 be a space. Since the circle S1 is the pushout ∗ ⊔S0 ∗ in the∞-category Spc, the
free loop space L𝑋 = Map(S1, 𝑋) is given by the pullback 𝑋 ×𝑋×𝑋 𝑋. The morphisms
𝑋 → 𝑋 × 𝑋 appearing in the pullback are both the diagonal. We use this description to
define free loop objects in any∞-category with finite limits.

1.1 Notation. Let 𝐶 be an∞-category with finite products and𝑋 ∈ 𝐶.
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(1) We write 1𝐶 ∈ 𝐶 for the terminal object.

(2) We write Δ𝑋 ∶ 𝑋 → 𝑋 × 𝑋 for the diagonal morphism.

(3) Given a point 𝑥∶ 1𝐶 → 𝑋, we write (𝑥, 𝑥) ∶ 1𝐶 → 𝑋 ×𝑋 for the point defined by
the composite

1𝐶 𝑋 𝑋 × 𝑋 .𝑥 Δ𝑋

1.2Definition. Let𝐶 be an∞-categorywith finite limits and𝑋 ∈ 𝐶.The free loop object
on𝑋 is the pullback

L𝑋 𝑋

𝑋 𝑋 × 𝑋 .

⌟
Δ𝑋

Δ𝑋

1.3 Observation. The natural commutative square

𝑋 𝑋

𝑋 𝑋 × 𝑋 .
Δ𝑋

Δ𝑋

provides a natural section 𝑠𝑋 ∶ 𝑋 → L𝑋 of the projections L𝑋 → 𝑋.
The following description of the based loop object of a pointed object in terms of

the diagonal allows us to relate the free loop object to the based loop object.

1.4 Lemma. Let 𝐶 be an∞-category with finite limits, 𝑋 ∈ 𝐶, and 𝑥∶ 1𝐶 → 𝑋 a point
of𝑋. There is a natural equivalence

fib(𝑥,𝑥)(Δ𝑋 ∶ 𝑋 → 𝑋 × 𝑋) ≃ Ω𝑥𝑋 .

Proof. Consider the commutative diagram

1𝐶 1𝐶 1𝐶

𝑋 1𝐶 𝑋

𝑋 𝑋 𝑋 .

𝑥 𝑥

Taking pullbacks vertically then horizontally yields

lim ( 1𝐶 𝑋 1𝐶
𝑥 𝑥 ) = Ω𝑥𝑋 ,

and taking pullbacks horizontally then vertically yields

lim ( 1𝐶 𝑋 × 𝑋 𝑋(𝑥,𝑥) Δ𝑋 ) = fib(𝑥,𝑥)(Δ𝑋) .

The claim follows from the fact that limits commute.
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1.5 Corollary. Let 𝐶 be an∞-category with finite limits,𝑋 ∈ 𝐶, and 𝑥∶ 1𝐶 → 𝑋 a point
of𝑋. There is a natural pullback square

Ω𝑥𝑋 L𝑋

1𝐶 𝑋

⌟

𝑥

Proof. Express fib(𝑥,𝑥)(Δ𝑋) as the iterated pullback

fib(𝑥,𝑥)(Δ𝑋) L𝑋 𝑋

1𝐶 𝑋 𝑋 × 𝑋

⌟ ⌟
Δ𝑋

𝑥 Δ𝑋

and apply Lemma 1.4.

2 Reminder on A2-algebras
We now recall the definition of an A2-algebra and explain the variant of an A2-structure
needed for the free loop space fibraion to split.

2.1 Recollection. Let 𝐶 be an ∞-category with finite products. An A2-algebra in 𝐶
consists of the following data:

(1) An object𝑀 ∈ 𝐶.

(2) A multiplication morphism𝑚∶ 𝑀 ×𝑀 →𝑀.

(3) A unit morphism 𝑢∶ 1𝐶 →𝑀.

(4) Choices of 2-morphisms filling the diagrams

𝑀× 1𝐶 𝑀

𝑀×𝑀

pr1
∼

id ×𝑢 𝑚 and
1𝐶 ×𝑀 𝑀

𝑀×𝑀 .

pr2
∼

𝑢×id 𝑚

2.2 Remark. In the classical literature, an A2-algebra in Spc is called an H-space.

2.3 Convention. Let 𝐶 be an∞-category with finite limits and let𝑀 be an A2-algebra
in 𝐶. We writeΩ𝑀 ≔ Ω𝑢𝑀 for the loop object of𝑀 based at the unit 𝑢∶ 1𝐶 →𝑀.
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A counterexample
In the classical literature, various authors claim that the free loop space fibration of an
A2-algebra in spaces splits. In this subsection we provide a counterexample to this claim
(Example 2.6).The point is that for the free loop space fibration of𝑀 to split, at very least
the based loop spaces of𝑀 at each point need to be equivalent. However, an A2-algebra
structure is not enough to guarantee that all of the connected components of𝑀 have
the same homotopy type: we can always adjoint a new point 0 that acts as an ‘absorbing
element’ for the multiplication.That is, we can generalize the following construction for
magmas (i.e., A2-sets).

2.4 Construction. Let (𝑀, ⋅𝑀) be a magma. Write𝑀+ for the magma with underlying
set𝑀+ ≔ 𝑀 ⊔ {0} with mutiplicattion defined by

𝑥 ⋅𝑀+ 𝑦 ≔ {
𝑥 ⋅𝑀 𝑦, 𝑥, 𝑦 ∈ 𝑀
0, 𝑥 = 0 or 𝑦 = 0 .

The following is the generalization of Construction 2.4 from sets to spaces:

2.5 Construction. Write (−)+ ∶ Spc → Spc∗ for the left adjoint to the forgetful functor
Spc∗ → Spc. Given spaces𝑋1,… ,𝑋𝑛, there is a natural splitting

𝑛
∏
𝑖=1
𝑋𝑖,+ ≃ ⋁

∅≠𝐼⊂{1,…,𝑛}
(∏
𝑖∈𝐼
𝑋𝑖)
+

≃ (
𝑛
∏
𝑖=1
𝑋𝑖)
+
∨ ⋁
∅≠𝐼⊊{1,…,𝑛}

(∏
𝑖∈𝐼
𝑋𝑖)
+
.

Using this splitting, one can give the functor (−)+ ∶ Spc → Spc∗ a lax-monoidal struc-
ture with respect to the product. The structure morphisms

(
𝑛
∏
𝑖=1
𝑋𝑖)
+
∨ ⋁
∅≠𝐼⊊{1,…,𝑛}

(∏
𝑖∈𝐼
𝑋𝑖)
+
⟶ (

𝑛
∏
𝑖=1
𝑋𝑖)
+

are given by the identity on the first factor and the constant map at the point on the
second factor.1

Since the forgetful functor Spc∗ → Spc is naturally symmetric monoidal with re-
spect to the product, this gives the composite (−)+ ∶ Spc→ Spc a lax-monoidal struc-
ture with respect to the product. In particular, the functor (−)+ ∶ Spc → Spc preserves
algebras over any operad. Hence, for each 1 ≤ 𝑛 ≤ ∞ the functor (−)+ lifts to functors

(−)+ ∶ AlgA𝑛(Spc) → AlgA𝑛(Spc) and (−)+ ∶ AlgE𝑛(Spc) → AlgE𝑛(Spc) .

1There are several ways to make this precise. One is to give the functor (−)+ ∶ Setfin → Setfin∗
a lax-monoidal structure and take the lax-monoidal left Kan extension of the composite functor
(−)+ ∶ Setfin → Setfin∗ ↪ Spc∗.
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2.6 Example. The free loop space fibration for the A2-space S1+ does not split. To see
this, note that

LS1+ ≃ LS1 ⊔ L{0}
≃ S1 × ΩS1 ⊔ {0}
≃ S1 × 𝐙 ⊔ {0} .

On the other hand,

S1+ × ΩS1 ≃ S1 × ΩS1 ⊔ ΩS1

≃ S1 × 𝐙 ⊔ 𝐙 .

Notice that no amount of commutativity helps here. Since S1 has an E∞-structure,
S1+ also has an E∞-structure.The problem here is that the multiplication on an A2-space
𝑀 needs to have inverses in order for the connected components of𝑀 to be equivalent.

The necessary structure
To formulate what itmeans for anA2-algebra in an∞-categorywith finite limits to ‘have
inverses’, we make the following observation.

2.7 Observation. Let𝑀 be a monoid. Then𝑀 is a group if and only if the shear maps
𝑀×𝑀 →𝑀×𝑀 defined by

(𝑥, 𝑦) ↦ (𝑥, 𝑥𝑦) and (𝑥, 𝑦) ↦ (𝑥𝑦, 𝑦)

are bijections.

In fact, for the free loop space fibration to split, the we do not need a full A2-structure,
but just a right (or left) unital multiplication ‘with inverses’.

2.8 Definition. Let 𝐶 be an ∞-category with finite limits. A right A1½-algebra2 in 𝐶
consists of the following data:

(1) An object𝑀 ∈ 𝐶.

(2) A multiplication morphism𝑚∶ 𝑀 ×𝑀 →𝑀.

(3) A unit morphism 𝑢∶ 1𝐶 →𝑀.

(4) A choice of 2-morphism filling the diagram

𝑀× 1𝐶 𝑀

𝑀×𝑀 .

pr1
∼

id ×𝑢 𝑚

2.9 Definition. Let 𝐶 be an ∞-category with finite limits and let 𝑀 be a right A1½-
algebra in 𝐶. The shear map associated to𝑀 is the morphism

sh ≔ (pr1, 𝑚)∶ 𝑀 ×𝑀 →𝑀×𝑀 .
2We would be grateful to know if there is a better name for this structure.
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3 Splitting the fiber sequence
Given an A1½-algebra𝑀, we now easily construct a morphism𝑀×Ω𝑀 → L𝑀 that is
an equivalence if the shear map associated to𝑀 is.

3.1 Construction. Let 𝐶 be an∞-category with finite limits and let𝑀 be an right A1½-
algebra in 𝐶. The right A1½-algebra structure on𝑀 defines a commutative diagram

𝑀× 1𝐶 𝑀×𝑀 𝑀× 1𝐶

𝑀 𝑀×𝑀 𝑀 .

id ×𝑢

pr1 ≀ sh

id ×𝑢

pr1≀

Δ𝑀 Δ𝑀

We denote the induced morphism on pullbacks by 𝑐𝑀 ∶ 𝑀 × Ω𝑀 → L𝑀. Note that the
morphism 𝑐𝑀 is natural in morphisms of right A1½-algebras.

3.2Observation. By construction, the composite of the section𝑀 ≃ 𝑀 × 1𝐶 →𝑀×Ω𝑀
given by the basepoint ofΩ𝑀 with 𝑐𝑀 is the section 𝑠𝑀 ∶ 𝑀 → L𝑀 of Observation 1.3.

The following is immediate:

3.3 Proposition. Let 𝐶 be an ∞-category with finite limits and let 𝑀 be a right A1½-
algebra in 𝐶. If the shear map sh ∶ 𝑀 ×𝑀 → 𝑀×𝑀 is an equivalence, then the natural
morphism 𝑐𝑀 ∶ 𝑀 × Ω𝑀 → L𝑀 is an equivalence.

3.4 Remark. Note that Construction 3.1 and Proposition 3.3 have variants for objects
with a left unital multiplication (i.e., ‘left A1½-algebras’).

Free loop spaces of spheres
We conclude by characterizing the spheres for which the free loop space fibration splits.

3.5 Example. Let 𝑛 = 0, 1, or 3.Then the 𝑛-sphere S𝑛 has an E1-group structure induced
by regarding S𝑛 as the norm 1 real numbers (𝑛 = 0), complex numbers (𝑛 = 1), or
quaternions (𝑛 = 3). Hence Proposition 3.3 implies that the free loop space fibration for
S𝑛 splits.

3.6 Example. The 7-sphere S7 ∈ Spc has an A2-structure given by regarding the topo-
logical 7-sphere as the norm 1 octonions. Since the octonions 𝐎 form an alternative
division algebra over 𝐑, the shear map

𝐎 × 𝐎 → 𝐎 × 𝐎 , (𝑥, 𝑦) ↦ (𝑥, 𝑥𝑦)

is a homeomorphism. Hence, the shear map S7 × S7 → S7 × S7 is an equivalence. Propo-
sition 3.3 provides a splitting

LS7 ≃ S7 × ΩS7 .

The following characterization of the spheres for which the free loop space fibration
splits follows from combining work of Aguadé [1] and Ziller [4, p. 21]. We summarize
the proof below.
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3.7Theorem. Let 𝑛 be a positive integer. The following conditions are equivalent:

(1) 𝑛 = 0, 1, 3, or 7.

(2) The free loop space fiber sequence ΩS𝑛 → LS𝑛 → S𝑛 splits.

(3) There exists an equivalence of spaces S𝑛 × ΩS𝑛 ⥲ LS𝑛.

3.8 Observation. Let 𝑛 ≥ 0 be an integer. The Serre spectral sequence computing the
homology of ΩS𝑛 and the Künneth formula show that for each positive integer 𝑘, the
homology group

H𝑘(S𝑛 × ΩS𝑛; 𝐙) ≅ ⨁
𝑖+𝑗=𝑘

H𝑖(S𝑛; 𝐙) ⊗𝐙 H𝑗(ΩS𝑛; 𝐙)

is a free abelian group.

Proof Summary. The implication (1)⇒(2) is the content of Examples 3.5 and 3.6, and the
implication (2)⇒(3) is clear. Note that the remaining implication (3)⇒(1) is equivalent
to the claim:

(∗) If 𝑛 ∉ {0, 1, 3, 7}, then there does not exist an equivalence S𝑛 × ΩS𝑛 ⥲ LS𝑛.

To prove (∗), it suffices to assume that 𝑛 ≥ 2. We treat the cases of 𝑛 even and odd
separately. If 𝑛 is even, then Ziller [4, p. 21] shows that for each𝑚 ≥ 1 we have

H2𝑚(𝑛−1)(LS𝑛; 𝐙) ≅ 𝐙/2 .

Thus Observation 3.8 shows there does not exist an equivalence S𝑛 × ΩS𝑛 ⥲ LS𝑛.
For 𝑛 odd, Ziller [4, p. 21] shows that

H∗(S𝑛 × ΩS𝑛; 𝐙) ≅ H∗(LS𝑛; 𝐙) ,

hence a different method is needed to complete the proof of (∗). Aguadé [1] shows that
for odd 𝑛, there exists an equivalence 𝑓∶ S𝑛 × ΩS𝑛 ⥲ LS𝑛 if and only if a certain map of
spheres associated to 𝑓 has Hopf invariant 1. Aguadé then uses the solution to the Hopf
invariant 1 problem to complete the proof of (∗).
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