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Abstract. In this paper we give a proof of the Schur–Horn theorem for Hermitian matri-
ces, which describes the possible diagonal entries of a Hermitian matrix with fixed eigen-
values.

0. Overview

Throughout this paper 𝑛 denotes a positive integer. Recall that an 𝑛 × 𝑛 complex matrix
is called Hermitian if it is equal to its conjugate transpose. By the spectral theorem [1, Cor.
8.6.7] all Hermitian matrices are diagonalizable and have real eigenvalues. In this paper we
are interested in determining the possible diagonal entries of 𝑛×𝑛Hermitian matrices with
a fixed set of real eigenvalues 𝜆1,… , 𝜆𝑛 ∈ 𝐑. It is clear that the sum of the diagonal entries of
a matrix with pre-specified eigenvalues needs to equal the sum of the eigenvalues, but not
much else is immediately obvious. To better understand the problem and the constraints
that the Hermitian assumption imposes, let us consider a few examples.
Example A. Consider the 2 × 2 case. Fix real numbers 𝜆1 ≤ 𝜆2 and consider an arbitrary
2 × 2Hermitian matrix of the form

𝐻 = (ℎ1 𝑐̄𝑐 ℎ2
) ,

with predetermined eigenvalues 𝜆1 and 𝜆2. Since 𝐻 has eigenvalues 𝜆1 and 𝜆2, its trace is
tr𝐻 = 𝜆1 + 𝜆2 and its determinant is det𝐻 = 𝜆1𝜆2. Writing out the trace and determinant
of𝐻 in terms of the entries of𝐻, we see that ℎ1 +ℎ2 = 𝜆1 +𝜆2 and ℎ1ℎ2 − |𝑐|2 = 𝜆1𝜆2. Since
|𝑐|2 is a nonnegative real number, in particular we see that ℎ1ℎ2 − 𝜆1𝜆2 ≥ 0. This inequality
along with the fact that ℎ1 + ℎ2 = 𝜆1 + 𝜆2 imply that ℎ1, ℎ2 ∈ [𝜆1, 𝜆2].

On the other hand, if we are given two real numbers 𝑎1 and 𝑎2 such that 𝑎1+𝑎2 = 𝜆1+𝜆2
and 𝑎1, 𝑎2 ∈ [𝜆1, 𝜆2] these conditions imply that 𝑎1𝑎2 − 𝜆1𝜆2 ≥ 0. Setting 𝛾 = 𝑎1𝑎2 − 𝜆1𝜆2
we see that the matrix

𝐴 = ( 𝑎1 √𝛾√𝛾 𝑎2
)

is Hermitian, tr 𝐴 = 𝜆1+𝜆2, and det 𝐴 = 𝜆1𝜆2, which implies that𝐴 has eigenvalues 𝜆1 ≤ 𝜆2.
Hence real numbers 𝑎1 and 𝑎2 occur as the diagonal entries of a 2×2Hermitianmatrix with
eigenvalues 𝜆1 ≤ 𝜆2 if and only if 𝑎1 + 𝑎2 = 𝜆1 + 𝜆2 and 𝑎1, 𝑎2 ∈ [𝜆1, 𝜆2].

To see why the Hermitian assumption makes the problem subtle, consider the following
2 × 2 example where we relax the Hermitian assumption.
Example B. Consider 2 × 2 real diagonalizable matrices with real eigenvalues 𝜆1 ≠ 𝜆2. For
any 𝑑1 ∈ 𝐑, the real matrix

(𝑑1 𝑑1(𝜆1 + 𝜆2 − 𝑑1) − 𝜆1𝜆21 𝜆1 + 𝜆2 − 𝑑1
)
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has trace 𝜆1 + 𝜆2 and determinant 𝜆1𝜆2, hence has eigenvalues 𝜆1 and 𝜆2. This shows that a
real diagonalizable 2× 2matrix with real eigenvalues 𝜆1 ≠ 𝜆2 can have any diagonal entries,
as long as they sum to 𝜆1 + 𝜆2.

Examples A and B illustrate that the Hermitian assumption greatly limits the possible
diagonal entries of a matrix with predetermined eigenvalues. Though the method we used
in Example A to solve the 2 × 2 problem relied on special properties of 2 × 2 matrices and
clearly does not generalize to higher dimensions, in very special cases we can use some tricks
to solve the problem, for example, in the case that all of the eigenvalues are the same.

Example C. Since Hermitian matrices are diagonalizable, any Hermitian matrix with only
one eigenvalue is a scalar multiple of the identity. Thus there is a single Hermitian matrix
with only one eigenvalue.

In the special cases of Examples A and C, the solutions to the problem of determining
the possible diagonal entries of a Hermitian matrix with predetermined eigenvalues have
simple geometric interpretations: a line segment and a point, respectively. In this paper we
show that this is true generally, namely, we show that the set of possible diagonal entries of
a Hermitian matrix with fixed eigenvalues is the convex hull of a certain finite set.

Definition. Suppose that 𝑛 is a positive integer and 𝑣1,… , 𝑣𝑚 are vectors in 𝐑𝑛. A convex
combination of 𝑣1,… , 𝑣𝑚 is a linear combination 𝛼1𝑣1 + ⋯ + 𝛼𝑚𝑣𝑚 such that 0 ≤ 𝛼𝑖 ≤ 1
for each 𝑖 and ∑𝑚𝑖=1 𝛼𝑖 = 1. The convex hull of a finite subset 𝑆 ⊂ 𝐑𝑛 is the set of all convex
combinations of elements of 𝑆.

The main point of this paper is to present a complete “from scratch” proof of a general-
ization of Example A to arbitrary dimension, originally due to Alfred Horn in 1954. This
result is known as the Schur–Horn theorem.

Schur–Horn Theorem ([3, Th. 5]). Let 𝑑1,… , 𝑑𝑛 and 𝜆1,… , 𝜆𝑛 be real numbers. There is
an 𝑛 × 𝑛 Hermitian matrix with diagonal entries 𝑑1,… , 𝑑𝑛 and eigenvalues 𝜆1,… , 𝜆𝑛 if and
only if the vector (𝑑1,… , 𝑑𝑛) lies in the convex hull of the set of vectors whose coordinates are
all possible permutations of (𝜆1,… , 𝜆𝑛).

Example A proved this in the case that 𝑛 = 2, and Example C showed a special case of
this when all of the eigenvalues are the same, but the methods used in these examples were
quite ad hoc. For more insight into the problem, consider the following rank one example
which illustrates a simplified version of our proof of the Schur–Horn theorem.

Example D. Suppose that𝐻 is an (𝑛+1)×(𝑛+1)Hermitianmatrix with 2 distinct eigenval-
ues; an eigenvalue of 1with multiplicity 1, and an eigenvalue of 0with multiplicity 𝑛. By the
spectral theorem there exists a unitary matrix𝑈 such that𝐻 = 𝑈Λ𝑈⋆, where𝑈⋆ is the con-
jugate transpose of 𝑈 and Λ is the diagonal matrix of eigenvalues of𝐻, with the eigenvalue
1 in the upper-left hand corner. Computing the product𝑈Λ𝑈⋆ and comparing its diagonal
entries to the diagonal entries of𝐻, we see that ℎ𝑖,𝑖 = |𝑢𝑖,1|2. Since𝑈 is unitary, the rows and
columns of𝑈 have length 1, so∑𝑛𝑖=1 |𝑢𝑖,1|2 = 1. This shows that the vector (ℎ1,1,… , ℎ𝑛+1,𝑛+1)
of diagonal entries of𝐻 lies in the standard 𝑛-simplex

Δ𝑛 = {(𝛼1,… , 𝛼𝑛+1) ∈ 𝐑𝑛+1 | 𝛼𝑖 ≥ 0 and ∑𝑛+1𝑖=1 𝛼𝑖 = 1}
from topology. Notice that Δ𝑛 is the convex hull of the set of standard basis vectors for 𝐑𝑛+1.

Conversely, given an element (𝛼1,… , 𝛼𝑛+1) of Δ𝑛, choose a unitary matrix 𝑈 whose first
column has entries √𝛼1,… ,√𝛼𝑛+1. Notice that choosing such a unitary matrix 𝑈 is equiv-
alent to choosing an orthonormal basis for 𝐂𝑛+1 with (√𝛼1,… ,√𝛼𝑛+1) as a basis vector,
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which is trivially possible. Thus it is always possible to choose such a unitary matrix. By
simple matrix multiplication we see that the matrix 𝑈Λ𝑈⋆ has the desired diagonal entries.

Our proof of the Schur–Horn theorem goes as follows. In §1, we show that the vector of
diagonal entries of a Hermitian matrix can be written as the product of a bistochastic matrix
(i.e., a matrix of nonnegative real numbers where each row and each column sums to 1) with
the vector of eigenvalues; this generalizes the proof given in ExampleD for the rank one case.
We then finish the proof of this implication of the Schur–Horn theorem by applying the
Birkhoff–von Neumann theorem, which characterizes the set of bistochastic matrices as the
convex hull of the set of permutation matrices. In §2 we turn our attention toward dealing
with the other implication of the Schur–Horn theorem. To prove the remaining implication
we provide an algebraic characterization of elements of the convex hull of the set of vectors
whose coordinates are all possible permutations of a given vector.

Acknowledgments. We thank Hannah Alpert and Susan Ruff for their helpful comments
and advice.

1. All Diagonals lie in the Permutation Polytope

In this section we prove “half ” of the Schur–Horn theorem by proving that the vector of
diagonal entries of an 𝑛 × 𝑛Hermitian matrix with eigenvalues 𝜆1,… , 𝜆𝑛 lies in the convex
hull of of the set of vectors whose coordinates are some permutation of (𝜆1,… , 𝜆𝑛). One
of the key players in our approach to this problem is the action of the group Π𝑛 of 𝑛 × 𝑛
permutation matrices on 𝐑𝑛 by left multiplication of column vectors. This action allows us
to define a polytope constructed from the orbit of a fixed vector in 𝐑𝑛. We use this polytope
to relate the eigenvalues of a Hermitian matrix to its possible diagonal entries. We then use
this action to help transform the cumbersome geometry of this polytope into more tangible
algebra.

1.1. Notation. Suppose that 𝑛 is a positive integer. We write Π𝑛 for the group of 𝑛 × 𝑛 per-
mutation matrices.

1.2. Definition. Suppose that 𝑛 is a positive integer and 𝑥 is a column vector in 𝐑𝑛. Write
𝑂𝑥 for the orbit of 𝑥 under the action ofΠ𝑛 on𝐑𝑛, that is, the set of all points of the form 𝜎𝑥
for 𝜎 ∈ Π𝑛. We call the convex hull of𝑂𝑥 the permutation polytope generated by 𝑥, denoted
by 𝑃𝑥.
1.3. Example. Thepermutation polytope generated by any one of the standard basis vectors
in 𝐑𝑛+1 is the standard 𝑛-simplex Δ𝑛 (of Ex. D).

To simplify our notation and language we make the following convenient conventions,
some of which we have already alluded to.

1.4. Conventions.
(1.4.a) We regard elements of 𝐑𝑛 as column vectors, but for notational simplicity we write

them as (𝑥1,… , 𝑥𝑛) with no additional decoration.
(1.4.b) We often need to write the entries of a matrix out explicitly — we write𝐴 = (𝑎𝑖,𝑗) to

signify that 𝐴 is the matrix whose (𝑖, 𝑗) entry is 𝑎𝑖,𝑗.
(1.4.c) Given an 𝑛 × 𝑛matrix 𝐴 = (𝑎𝑖,𝑗), we call the vector (𝑎1,1,… , 𝑎𝑛,𝑛) the diagonal of 𝐴.
(1.4.d) Given a complex matrix 𝐴, we write 𝐴⋆ for the conjugate transpose of 𝐴.

Nonnegative matrices with the property that the sum along any row or column is equal
to 1, called bistochastic matrices, play key roles in many of our arguments throughout this
section.



4 SHEELA DEVADAS, PETER J. HAINE, & KEATON STUBIS

1.5. Definition. We call an 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖,𝑗) bistochastic if 𝐴 has nonnegative real
entries, and, in addition, ∑𝑛𝑖=1 𝑎𝑖,𝑗 = 1 for all 1 ≤ 𝑗 ≤ 𝑛 and ∑

𝑛
𝑗=1 𝑎𝑖,𝑗 = 1 for all 1 ≤ 𝑖 ≤ 𝑛.

Themain point of this section of the paper is to provide a complete “from scratch” proof of
the following proposition, which is one of the implications of the Schur–Horn theorem.The
last step of our proof of this proposition uses the Birkhoff–von Neumann theorem. Because
our application of the Birkhoff–von Neumann theorem is very straightforward, we prove
the proposition and defer the proof of the Birkhoff–von Neumann theorem for later.

1.6. Proposition. The diagonal of an 𝑛 × 𝑛Hermitian matrix with eigenvalues 𝜆1,… , 𝜆𝑛 lies
in the permutation polytope generated by (𝜆1,… , 𝜆𝑛).
Proof. Suppose that𝐻 = (ℎ𝑖,𝑗) is an 𝑛× 𝑛Hermitian matrix with eigenvalues 𝜆1,… , 𝜆𝑛 and
write 𝜆 ≔ (𝜆1,… , 𝜆𝑛). Let Λ denote the diagonal matrix with diagonal 𝜆. By the spectral
theorem there exists a unitary matrix 𝑈 = (𝑢𝑖,𝑗) so that 𝑈Λ𝑈⋆ = 𝐻. Carrying out the
multiplication 𝑈Λ𝑈⋆, we see that the diagonal entries of𝐻 can be expressed as

ℎ𝑖,𝑖 =
𝑛
∑
𝑗=1
𝜆𝑗|𝑢𝑖,𝑗|2,

for 1 ≤ 𝑖 ≤ 𝑛. Let𝐵 = (𝑏𝑖,𝑗) denote the 𝑛×𝑛matrix with entries 𝑏𝑖,𝑗 ≔ |𝑢𝑖,𝑗|2.Writing𝑑 for the
diagonal of𝐻, we see that 𝐵𝜆 = 𝑑. Since𝑈 is unitary, the rows and columns of𝑈 each have
length 1, so for each 1 ≤ 𝑗 ≤ 𝑛 we have ∑𝑛𝑖=1 |𝑢𝑖,𝑗|2 = 1, and, similarly, for each 1 ≤ 𝑖 ≤ 𝑛 we
have ∑𝑛𝑗=1 |𝑢𝑖,𝑗|2 = 1. Thus 𝐵 is bistochastic. The Birkhoff–von Neumann theorem says that
all bistochastic matrices can be written as a convex combination of permutation matrices,
so, in particular, 𝐵 is a convex combination of permutation matrices.Then by the definition
of the action ofΠ𝑛 on 𝐑𝑛, we see that 𝐵𝜆 is a convex combination of elements of the orbit of
𝜆, so 𝐵𝜆 lies in the permutation polytope generated by 𝜆. Thus, the equation 𝐵𝜆 = 𝑑 shows
that 𝑑 lies in the permutation polytope generated by 𝜆. □

Now we turn our attention to proving the Birkhoff–von Neumann theorem which char-
acterizes bistochastic matrices.

1.7. Theorem (Birkhoff–von Neumann theorem). Any 𝑛 × 𝑛 bistochastic matrix lies in the
convex hull of the group of permutation matrices Π𝑛.

As is turns out, the driving force behind the proof of the Birkhoff-vonNeumann theorem
is Hall’s perfect matching theorem (also known as Hall’s marriage theorem, or simply Hall’s
theorem) for bipartite graphs. In order to state Hall’s theorem, we first recall a little bit of
terminology from graph theory, as well as make a few notational conventions.

1.8. Recollection. Recall that a bipartite graph is a graph𝐺 = (𝑉, 𝐸)where𝑉 is partitioned
into two disjoint nonempty sets𝑉 = 𝑅⊔𝐶 such that every edge contains a vertex in 𝑅 and a
vertex in 𝐶. We write𝐺 = (𝑅⊔𝐶, 𝐸) to indicate that a graph is bipartite. A perfect matching
of a graph 𝐺 = (𝑉, 𝐸) is a subset𝑀 ⊂ 𝐸 of edges of 𝐺 such that every vertex of 𝐺 is incident
to exactly one edge in𝑀.
1.9. Notation. For a set 𝑆 we write #𝑆 for the size (cardinality) of 𝑆. For a nonempty subset
𝑇 of vertices of a graph𝐺 = (𝑉, 𝐸), we write𝑁(𝑇) for the (open) neighborhood of 𝑇 in𝐺, i.e.,
the subset of vertices in 𝑉 ∖ 𝑇 which are adjacent to some element of 𝑇.
1.10. Theorem (Hall’s perfect matching theorem). A finite bipartite graph 𝐺 = (𝑅 ⊔ 𝐶, 𝐸),
where 𝑅 and 𝐶 have the same size, has a perfect matching if and only if for every subset 𝑆 of
vertices in 𝑅 we have #𝑆 ≤ #𝑁(𝑆).



THE SCHUR–HORN THEOREM 5

Suppose that𝑀 is a bistochastic matrix. The idea behind the proof of Theorem 1.7 is to
take𝑀 and repeatedly subtract positive multiples of permutation matrices from it until we
are left with the zero matrix. Then𝑀 is equal to the sum of the matrices that we subtracted
off from 𝑀, which shows that 𝑀 can be written as a linear combination of permutation
matrices. Moreover, we show that it is possible to perform this subtraction procedure in
such a way that the linear combination is actually a convex combination.This motivates the
following lemma.

1.11. Lemma. Let 𝐴 be an 𝑛 × 𝑛 bistochastic matrix. Then there exists a permutation matrix
𝜎 ∈ Π𝑛 and a real number 𝑡 ∈ (0, 1] so that all of the entries of 𝐴 − 𝑡𝜎 are nonnegative.
Moreover, we may take 𝑡 to be the largest such real number, in which case 𝐴 − 𝑡𝜎 has at least
one more zero entry than 𝐴 does.

Proof. The second statement is obvious from the first statement, so we just prove the first
statement. Notice that if 𝐴 has (some set of) 𝑛 nonzero entries which all lie in distinct rows
and columns, then if we let 𝜎 be the permutation matrix with a 1 in the positions of these 𝑛
nonzero elements of𝐴, and 𝑡 be any number between 0 and theminimum of these 𝑛 chosen
entries (which is at most 1 since𝐴 is bistochastic), thematrix𝐴−𝑡𝜎 has nonnegative entries.
Thus it suffices to find 𝑛 nonzero entries of 𝐴 which all lie in distinct rows and columns.

Amazingly, it is now possible to reformulate our understanding of this lemma in terms
of perfect matchings. To do this, we construct a bipartite graph from thematrix𝐴 and apply
Theorem1.10. Let𝑅 ≔ {𝑟1,… , 𝑟𝑛} and𝐶 ≔ {𝑐1,… , 𝑐𝑛} be𝑛-element sets.The idea is to think
about the element 𝑟𝑖 of 𝑅 as the 𝑖th row of 𝐴 and 𝑐𝑖 as the 𝑖th column of 𝐴. Define a bipartite
graph 𝐺 in the following manner: the vertex set of 𝐺 is 𝑅 ⊔ 𝐶, and there is an edge between
𝑟𝑖 and 𝑐𝑗 if and only if the entry 𝑎𝑖,𝑗 of 𝐴 is nonzero. Finally, note that by the construction
of the bipartite graph 𝐺, choices of 𝑛 nonzero elements of 𝐴 that all lie in distinct rows and
columns correspond bijectively to choices of 𝑛 edges of the graph 𝐺 which yield a perfect
matching of 𝐺. Thus it suffices to demonstrate a perfect matching in the graph 𝐺. For an
example of this in the 3 × 3 case, see Figure 1.

Theorem 1.10 gives us the conditions under which a perfectmatching of a bipartite graph
exists, so if we can show that the hypotheses forTheorem 1.10 hold for the graph𝐺, then the
lemma follows. In particular, to apply Theorem 1.10 we must show that for each nonempty
subset 𝑆 of 𝑅 we have #𝑆 ≤ #𝑁(𝑆). Expanding #𝑆 in a convenient manner, we see that

#𝑆 = ∑
𝑟𝑖∈𝑆
1 = ∑
𝑟𝑖∈𝑆

𝑛
∑
𝑗=1
𝑎𝑖,𝑗

Now, notice that if 𝑐𝑗 ∉ 𝑁(𝑆), then 𝑎𝑖,𝑗 = 0 for any 𝑟𝑖 ∈ 𝑆Thus, we see that we can write #𝑆
as

#𝑆 = ∑
𝑟𝑖∈𝑆
∑
𝑐𝑗∈𝑁(𝑆)
𝑎𝑖,𝑗.

Switching the order of summation we see that

#𝑆 = ∑
𝑐𝑗∈𝑁(𝑆)
∑
𝑟𝑖∈𝑆
𝑎𝑖,𝑗 ≤ ∑

𝑐𝑗∈𝑁(𝑆)

𝑛
∑
𝑖=1
𝑎𝑖,𝑗 = ∑

𝑐𝑗∈𝑁(𝑆)
1 = #𝑁(𝑆),

which is the condition for Theorem 1.10 to hold. Thus 𝐺 has a perfect matching, so there
exists a choice of 𝑛 nonzero entries of 𝐴 which all lie in distinct rows and columns. □

Now we are prepared to prove the Birkhoff–von Neumann theorem.
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1 2 3

1 2 3

(                                )
1 0 0
0 1/2 1/2
0 1/2 1/2

Figure 1. Given a bistochasticmatrix, the corresponding bipartite graph
has one edge for each nonzero entry in the matrix. In this 3×3 example, a
choice of 3 nonzero entries in different rows and columns, as well as their
corresponding edges in a perfect matching of the corresponding bipartite
graph are colored red.

Proof of Theorem 1.7. Let𝑀 be an 𝑛×𝑛 bistochastic matrix.The goal of this proof is to show
that𝑀 can be written as a convex combination of permutationmatrices. To do this wemake
rigorous the idea of repeatedly subtracting positive multiples of permutation matrices from
𝑀 by applying strong induction on the number of nonzero entries of𝑀.

Because a bistochastic matrix must have a nonzero entry in every row and column, the
base case is the case where the number of nonzero entries is exactly 𝑛. To prove the base
case, notice that in order for a bistochasticmatrix𝑀 to have exactly 𝑛 nonzero entries, those
entries must all lie in distinct rows and columns. Then since𝑀 is bistochastic, each of the
nonzero entries of𝑀 is necessarily equal to 1, so𝑀 is a permutation matrix.

Now we are ready for the induction step. Suppose that𝑀 is a bistochastic matrix with
𝑚 + 1 nonzero entries, with 𝑚 ≥ 𝑛. The (strong) inductive hypothesis is that every bis-
tochastic matrix with at most𝑚 nonzero entries can we be written as a convex combination
of permutation matrices. If such a matrix𝑀 exists†, then it follows from the Lemma 1.11
that there exists a permutation matrix 𝜎 ∈ Π𝑛 and real number 𝑡 ∈ (0, 1] so that all of the
entries of𝑀 − 𝑡𝜎 are nonnegative and at most 𝑚 of the entries of𝑀 − 𝑡𝜎 are nonzero. It
is obvious that each row and column of𝑀 − 𝑡𝜎 sums to 1 − 𝑡, thus, we have two cases to
consider.

Case 1 (𝑡 = 1). If 𝑡 = 1, then since𝑀−𝜎 is a matrix of nonnegative entries, and each of the
rows and columns of𝑀 − 𝜎 sum to 0, it follows that𝑀 − 𝜎 = 0. Hence𝑀 = 𝜎, so𝑀 is a
permutation matrix.

Case 2 (0 < 𝑡 < 1). If 𝑡 ≠ 1, then it follows that𝑀−𝑡𝜎may be written as (1−𝑡)𝐵, where 𝐵 is
a bistochastic matrix. Since 𝐵 has at most𝑚 nonzero entries, by the inductive hypothesis we
can express 𝐵 as a convex combination of permutation matrices, say 𝐵 = ∑𝛼∈Π𝑛 𝑐𝛼𝛼, where
the 𝑐𝛼 are nonnegative real numbers such that ∑𝛼∈Π𝑛 𝑐𝛼 = 1. Then it follows that

𝑀 = 𝑡𝜎 + (1 − 𝑡) ∑
𝛼∈Π𝑛
𝑐𝛼𝛼,

which expresses𝑀 as a convex combination of permutation matrices.

This completes the induction step, completing the proof of Theorem 1.7. □
†It turns out that for a given value of 𝑖, there need not exist an 𝑛 × 𝑛 bistochastic matrix with 𝑖 nonzero entries.

For example, there is no 3 × 3 bistochastic matrix with 4 nonzero entries. We ignore such cases in our proof, since
if for a given 𝑖 there are no bistochastic matrices, then it vacuously follows that they may all be written as convex
combinations of the desired form.
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This finishes off all of the technical details of the proof of Proposition 1.6, and one whole
implication of the Schur–Horn theorem. For the rest of this paper we are concerned with
the remaining implication of the Schur–Horn theorem, that is, the converse statement to
Proposition 1.6.

One might wonder if we can simply reverse the proof of Proposition 1.6 to prove the
remaining implication of the Schur–Horn theorem—unfortunately it is not that simple.The
main obstruction to doing this comes from the fact that we cannot reverse one of the final
steps of our proof.Wewere able to apply the Birkhoff–vonNeumann theorem by expressing
the diagonal of a Hermitianmatrix as the product of a bistochastic matrix with the vector of
eigenvalues. It is easy to reverse this step; by the definition of the permutation polytope, any
element of the permutation polytope generated by the vector of eigenvalues can be written
in this way. However, the bistochastic matrix 𝐵 from our proof of Proposition 1.6 is rather
special as its entries are 𝑏𝑖,𝑗 = |𝑢𝑖,𝑗|2 for some unitarymatrix𝑈 = (𝑢𝑖,𝑗). A bistochasticmatrix
which arises in this way is called unistochastic. In order to reverse the proof all bistochastic
matrices would have to be unistochastic. As it turns out, in general this is not the case.

1.12. Counterexample ([2,Th. 2]). Though all 1 × 1 and 2 × 2 bistochastic matrices are triv-
ially unistochastic, in higher dimensions this is not the case. Consider the 3 × 3 bistochasitc
matrix

𝐵 = 1
2
(
0 1 1
1 0 1
1 1 0

) .

We show that 𝐵 is not unistochastic. To see this, consider the constraints on a unitarymatrix
𝑈with the property that 𝑏𝑖,𝑗 = |𝑢𝑖,𝑗|2 for all 𝑖 and 𝑗. Let𝑈1 and𝑈2 denote the first and second
column of 𝑈, respectively. Then since |𝑢1,1|2 = |𝑢2,2|2 = 0 we see that

⟨𝑈1, 𝑈2⟩ = 𝑢1,1𝑢1,2 + 𝑢2,1𝑢2,2 + 𝑢3,1𝑢3,2 = 𝑢3,1𝑢3,2,

where ⟨−, −⟩ denotes the Hermitian inner product.Then since |𝑢3,1|2 = |𝑢3,2|2 = 1/2, we see
that ⟨𝑈1, 𝑈2⟩ is nonzero, showing that 𝑈1 and 𝑈2 are not orthogonal, which contradicts the
fact that 𝑈 is unitary. Thus there can be no such unitary matrix, i.e., 𝐵 is not unistochastic.
This example also generalizes to higher dimensions — in the case where 𝑛 > 3 we just take
the the block diagonal matrix

𝐵𝑛 = (
𝐵 0
0 𝐼𝑛−3
) ,

where 𝐼𝑛−3 denotes the the (𝑛 − 3) × (𝑛 − 3) identity matrix.

2. All Elements of the Permutation Polytope are Diagonals

In this section we prove the remaining implication of the Schur–Horn theorem, namely
that any element of the permutation polytope generated by (𝜆1,… , 𝜆𝑛) is the diagonal of an
𝑛×𝑛Hermitianmatrixwith eigenvalues𝜆1,… , 𝜆𝑛.We prove this by describing the geometry
of the permutation polytope through a few elementary algebraic operations which aremuch
more manageable to deal with than the pure geometry. In particular, we show that we can
move from one of the vertices of the permutation polytope generated by (𝜆1,… , 𝜆𝑛) to any
other vector in the permutation polytope by a finite sequence of algebraic operations. We
then show that each of the vectors we get along the way is the diagonal of some Hermitian
matrix with eigenvalues 𝜆1,… , 𝜆𝑛. Combining these facts we can then prove the remaining
implication of the Schur–Horn theorem.
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We now turn out attention to describing the permutation polytope generated by a given
vector. To simplify language, we introduce the following terminology which is important in
this key description of the permutation polytope.

2.1. Definition. We say that (𝑥1,… , 𝑥𝑛) ∈ 𝐑𝑛 is weakly decreasing if 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛.

2.2. Lemma ([4, Lm. 5]). Suppose that 𝑥 = (𝑥1,… , 𝑥𝑛) and 𝑦 = (𝑦1,… , 𝑦𝑛) are weakly
decreasing vectors in 𝐑𝑛 and that ∑𝑛𝑖=1 𝑥𝑖 = ∑

𝑛
𝑖=1 𝑦𝑖. Then the following are equivalent.

(2.2.a) The vector 𝑦 is in the permutation polytope 𝑃𝑥.
(2.2.b) There are vectors 𝑣1,… , 𝑣𝑛 such that 𝑣1 = 𝑥, 𝑣𝑛 = 𝑦, for each 1 ≤ 𝑚 < 𝑛, there is a

transposition matrix 𝜏𝑚 ∈ Π𝑛 and real number 𝑡𝑚 ∈ [0, 1] such that
𝑣𝑚+1 = 𝑡𝑚𝑣𝑚 + (1 − 𝑡𝑚)𝜏𝑚𝑣𝑚,

and for𝑚 > 1 the first𝑚 coordinates of 𝑣𝑚+1 agree with the first𝑚 coordinates of 𝑦.

The proof of Lemma 2.2 is more technical than one would hope, so we leave it for the
appendix, but describe the main ideas of the proof here. In particular, there is an impor-
tant geometric interpretation of (2.2.b) which motivates the algebraic operation of taking a
convex combination of a two vectors in the permutation polytope related by a transposition
matrix.

Geometrically a transposition matrix 𝜏 ∈ Π𝑛 acts on 𝐑𝑛 by reflection about a certain hy-
perplane. The equivalent characterization (2.2.b) of the permutation polytope says that we
can obtain any weakly decreasing element of 𝑃𝑥 by starting at 𝑥, using some transposition
matrix 𝜏 to go to another vertex of 𝑃𝑥, drawing a line segment between 𝑥 and 𝜏𝑥 to change
the first coordinate of 𝑥 to agree with the first coordinate of 𝑦, and then iterating this proce-
dure, at each step reflecting about a certain hyperplane, drawing a line between a point and
its reflection, and then adjusting a coordinate to agree with a coordinate of 𝑦. Example 2.3
provides a more concrete illustration of this.

2.3. Example. Let 𝑥 = (3, 2, 1) and consider the permutation polytope generated by 𝑥. The
vector

𝑦 = 1
3
(3, 2, 1) + 1

3
(2, 1, 3) + 1

3
(1, 2, 3) = (2, 2, 2)

lies in 𝑃𝑥 and is weakly decreasing. To move from 𝑥 to 𝑦 in a sequence of steps as in (2.2.b),
we first set 𝑣1 = 𝑥. To construct 𝑣2, we want to find a real number 𝑡1 ∈ [0, 1] and a transpo-
sition 𝜏1 so that the first coordinate of

𝑡1𝑥 + (1 − 𝑡1)𝜏1𝑥
agrees with the first coordinate of 𝑦, as we want to “adjust” the vector 𝑥 coordinate-by-
coordinate to agree with 𝑦. Since the second coordinate of 𝑥 already agrees with the first
coordinate of 𝑦, if we let 𝜏1 be the transposition matrix which interchanges the first and
second coordinates, and 𝑡1 = 0 so that

𝑡1𝑥 + (1 − 𝑡1)𝜏1𝑥 = (2, 3, 1).
Now we set 𝑣2 = (2, 3, 1) and repeat this process. The first coordinates of 𝑦 and 𝑣2 already
agree, so we just need to adjust the second coordinate of 𝑣2 to agree with 𝑦, and then the
last coordinate will be strictly determined by the first two coordinates. Since 2 = (3 + 1)/2,
it is easy to see that if we let 𝑡2 = 1/2 and 𝜏2 be the transposition matrix which interchanges
the second and third coordinates, then

𝑡2𝑣2 + (1 − 𝑡2)𝜏2𝑣2 =
1
2
(2, 3, 1) + 1

2
(2, 1, 3) = (2, 2, 2) = 𝑦.
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Geometrically all that we have done is drawn a line segment between 𝑣2 and 𝜏2𝑣2 and deter-
mined where 𝑦 lies on this line segment, as illustrated in Figure 2.

1

2 2

3

1 12

Figure 2. The hexagon represents the permutation polytope generated
by (3, 2, 1) of Example 2.3. The red line segment through the center of
the hexagon represents the line segment drawn between 𝑣2 and 𝜏2𝑣2 to
construct 𝑣3.

A very important point to notice about Lemma 2.2 is that with some (cumbersome) ad-
justments to the statement of the lemma, we can phrase the result without the assumption
that 𝑥 and 𝑦 are weakly decreasing. This simply comes from the fact that if 𝑦 is in the per-
mutation polytope of any 𝑥 ∈ 𝐑𝑛, then 𝜎𝑦 is also in the permutation polytope of 𝑥 for any
𝜎 ∈ Π𝑛. Since there is always a permutationmatrix 𝜎̄ so that 𝜎̄𝑦 is weakly decreasing we can
first permute coordinates to get something that is weakly decreasing, and then work with
that. Similarly, for any vector 𝑥, any element of the orbit of 𝑥 generates the same permuta-
tion polytope, so if 𝑥 is not weakly decreasing to begin with, we can replace 𝑥 with some
weakly decreasing element of its orbit.

Now we want to relate Lemma 2.2 to Hermitian matrices. Specifically, given 𝑛 real num-
bers 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 and a weakly decreasing vector 𝑦 in the permutation polytope generated
by (𝜆1,… , 𝜆𝑛), we want to show that each of the vectors 𝑣1,… , 𝑣𝑛 from Lemma 2.2 (2.2.b)
is the diagonal of a Hermitian matrix with eigenvalues 𝜆1,… , 𝜆𝑛. Each of these vectors is
related to the previous one by the same algebraic operation, namely, taking a convex combi-
nation of two vectors related by a transpositionmatrix. If we can show that the set of possible
diagonals of a Hermitan matrix with a fixed set of eigenvalues is closed under this algebraic
operation, then we can apply a simple induction argument to show that each of the vectors
𝑣1,… , 𝑣𝑛 does indeed occur as the diagonal of some 𝑛×𝑛Hermitanmatrix with eigenvalues
𝜆1,… , 𝜆𝑛.The following lemma shows that the set of possible diagonals is closed under this
operation.
2.4.Lemma. Suppose that𝑑 = (𝑑1,… , 𝑑𝑛) occurs as the diagonal of an 𝑛×𝑛Hermitianmatrix
𝐻 with eigenvalues 𝜆1,… , 𝜆𝑛. Then for any real number 𝑡 ∈ [0, 1] and any transposition
matrix 𝜏 ∈ Π𝑛, there exists a Hermitian matrix with eigenvalues 𝜆1,… , 𝜆𝑛 and diagonal
𝑡𝑑 + (1 − 𝑡)𝜏𝑑.
Proof. In the case that 𝑛 = 1 this is trivial, so suppose that 𝑛 > 1. Write 𝐻 = (ℎ𝑖,𝑗) and
suppose that 𝜏 ∈ Π𝑛 transposes the 𝑘th and ℓth coordinates. The idea behind this proof is to
construct a unitary matrix𝑈 so that𝑈𝐻𝑈⋆ has 𝑡𝑑+ (1− 𝑡)𝜏𝑑 as a diagonal.This matrix will
have the same eigenvalues as𝐻 because we are simply changing basis. We find this matrix
𝑈 by reducing to the case where 𝑛 = 2.
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When 𝑛 > 2, by conjugating𝐻 by an appropriate permutation matrix 𝑃, without loss of
generality we can assume that 𝑘 = 1 and ℓ = 2. Thus we have reduced to the case of finding
a Hermitian matrix with diagonal (𝑡𝑑1 + (1 − 𝑡)𝑑2, 𝑡𝑑2 + (1 − 𝑡)𝑑1, 𝑑3,… , 𝑑𝑛). Let 𝑈 be a
2 × 2 unitary matrix and consider the 𝑛 × 𝑛 block-diagonal unitary matrix

𝑉 = (𝑈 00 𝐼𝑛−2
) ,

where 𝐼𝑛−2 denotes the (𝑛 − 2) × (𝑛 − 2) identity matrix. We see that the diagonal entries of
𝑉𝐻𝑉⋆ are exactly the diagonal entries of the matrix

𝑈( 𝑑1 ℎ1,2ℎ2,1 𝑑2
)𝑈⋆

followed by ℎ3,3 = 𝑑3,… , ℎ𝑛,𝑛 = 𝑑𝑛. In light of this, the problem of finding a Hermitian
matrix with diagonal (𝑡𝑑1 + (1 − 𝑡)𝑑2, 𝑡𝑑2 + (1 − 𝑡)𝑑1, 𝑑3,… , 𝑑𝑛) reduces to the case 𝑛 = 2.
Thus we may then assume that

𝐻 = ( 𝑑1 ℎ1,2ℎ2,1 𝑑2
) ,

where ℎ1,2 = ℎ2,1 since𝐻 is Hermitian.
Define a complex number 𝜁 by

𝜁 ≔ {𝑖ℎ1,2/|ℎ1,2|, ℎ1,2 ≠ 0
1, otherwise .

Then
𝜁ℎ1,2 = −𝜁ℎ1,2

and |𝜁| = 1. Now let

𝑈 = ( 𝜁
√𝑡 −√1 − 𝑡
𝜁√1 − 𝑡 √𝑡 ) .

It is clear by the definitions of the complex number 𝜁 and the entries of 𝑈 that 𝑈 is unitary.
The matrix 𝐴 = 𝑈𝐻𝑈⋆ has the same eigenvalues as𝐻, and, moreover the diagonal of 𝐴 is
(𝑡𝑑1 + (1 − 𝑡)𝑑2, 𝑡𝑑2 + (1 − 𝑡)𝑑1), as desired. □

We are now ready to prove the remaining implication of the Schur–Horn theorem, ex-
pressed in the following proposition.

2.5. Proposition. Suppose that 𝑑 = (𝑑1,… , 𝑑𝑛) and 𝜆 = (𝜆1,… , 𝜆𝑛) are vectors in 𝐑𝑛. If 𝑑
lies in the permutation polytope 𝑃𝜆 then there exists an 𝑛 × 𝑛Hermitian matrix with diagonal
𝑑 and eigenvalues 𝜆1,… , 𝜆𝑛.

Proof. Suppose that 𝑑 lies in the permutation polytope generated by the vector 𝜆. As re-
marked earlier, if 𝑑 or 𝜆 is not weakly decreasing, we may replace it by a weakly decreas-
ing element, so, without loss of generality, assume that both 𝑑 and 𝜆 are weakly decreas-
ing. Then by the equivalence of (2.2.b) and (2.2.a) given in Lemma 2.2, there exist vectors
𝑣1,… , 𝑣𝑛 ∈ 𝑃𝜆 with 𝑣1 = 𝜆, 𝑣𝑛 = 𝑑, and for each integer 1 ≤ 𝑚 < 𝑛,
(2.5.1) 𝑣𝑚+1 = 𝑡𝑚𝑣𝑚 + (1 − 𝑡𝑚)𝜏𝑚𝑣𝑚.
for some 𝑡𝑚 ∈ [0, 1] and some transposition matrix 𝜏𝑚. Let 𝑉1 denote the diagonal matrix
with diagonal 𝑣1 = 𝜆. Since 𝑉1 is Hermitian and the vectors 𝑣𝑘 satisfy the relation (2.5.1),
by repeated application of Lemma 2.4 we see that there are Hermitian matrices 𝑉2,… ,𝑉𝑛
with diagonals 𝑣2,… , 𝑣𝑛, respectively. Since 𝑣𝑛 = 𝑑, this shows that𝑉𝑛 is a Hermitianmatrix
with diagonal 𝑑, which proves the result.
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It is worthwhile to note that that if the vector 𝑑 which we started with was not weakly
decreasing, a simple reordering of the basis, i.e., conjugating 𝑉𝑛 by a permutation matrix,
gives us a matrix whose diagonal is this (non-weakly decreasing) vector. Moreover, since
the property of being Hermitian is invariant under conjugation by a unitary matrix, and
permutation matrices are, in particular, unitary matrices, this new matrix is Hermitian too.

□

Proposition 2.5 together with Proposition 1.6 prove the Schur–Horn theorem, restated
below.

2.6.Theorem ([3, Th. 5]). Let 𝑑 = (𝑑1,… , 𝑑𝑛) and 𝜆 = (𝜆1,… , 𝜆𝑛) be vectors in 𝐑𝑛. There
is an 𝑛 × 𝑛 Hermitian matrix with diagonal entries 𝑑 and eigenvalues 𝜆1,… , 𝜆𝑛 if and only if
𝑑 lies in the permutation polytope generated by 𝜆.

Appendix: The Proof of a Technical Result

Here we present a proof of Lemma 2.2. First we recall the statement of the lemma.

A.1. Lemma (Lm. 2.2). Suppose that 𝑥 = (𝑥1,… , 𝑥𝑛) and 𝑦 = (𝑦1,… , 𝑦𝑛) are weakly de-
creasing vectors in 𝐑𝑛 and that ∑𝑛𝑖=1 𝑥𝑖 = ∑

𝑛
𝑖=1 𝑦𝑖. Then the following are equivalent.

(A.1.a) The vector 𝑦 is in the permutation polytope 𝑃𝑥.
(A.1.b) There are vectors 𝑣1,… , 𝑣𝑛 such that 𝑣1 = 𝑥, 𝑣𝑛 = 𝑦, for each 1 ≤ 𝑚 < 𝑛, there is a

transposition matrix 𝜏𝑚 ∈ Π𝑛 and real number 𝑡𝑚 ∈ [0, 1] such that
𝑣𝑚+1 = 𝑡𝑚𝑣𝑚 + (1 − 𝑡𝑚)𝜏𝑚𝑣𝑚,

and for𝑚 > 1 the first𝑚 coordinates of 𝑣𝑚+1 agree with the first𝑚 coordinates of 𝑦.

Proof. We first prove that (A.1.b) implies (A.1.a), so suppose that (A.1.b) holds. First notice
that by the definition of 𝑃𝑥 as the convex hull of the orbit 𝑂𝑥 of 𝑥, it is clear that for any
point 𝑧 ∈ 𝑃𝑥 and any permutation 𝜎 ∈ Π𝑛, the element 𝜎𝑧 is in 𝑃𝑥. Moreover, a convex
combination of elements of 𝑃𝑥 is in 𝑃𝑥. Since 𝑥 ∈ 𝑃𝑥, the obvious induction argument shows
that 𝑣𝑖 ∈ 𝑃𝑥 for all integers 1 ≤ 𝑖 ≤ 𝑛. Since 𝑣𝑛 = 𝑦, this shows that 𝑦 ∈ 𝑃𝑥.

Now we prove that (A.1.a) implies (A.1.b). We set 𝑣1 = 𝑥, and construct a vector 𝑣2 such
that

(A.1.1) 𝑣2 = 𝑡1𝑣1 + (1 − 𝑡1)𝜏1𝑣1
for some 𝑡1 ∈ [0, 1] and transpositionmatrix 𝜏1 ∈ Π𝑛 so that the first coordinate of 𝑣2 agrees
with the first coordinate of 𝑦. Then given vectors 𝑣1,… , 𝑣𝑚, such that

(a.1) for all 1 ≤ 𝑗 < 𝑚,
𝑣𝑗+1 = 𝑡𝑗𝑣𝑗 + (1 − 𝑡𝑗)𝜏𝑗𝑣𝑗

for some 𝑡𝑗 ∈ [0, 1] and transposition 𝜏𝑗 ∈ Π𝑛,
(a.2) for all 𝑖 < 𝑗 ≤ 𝑚, writing 𝑣𝑗 = (𝑣𝑗,1,… , 𝑣𝑗,𝑛), we have 𝑣𝑗,𝑖 = 𝑦𝑖 so that the first 𝑗 − 1

coordinates of 𝑣𝑗 agree with the first 𝑗 − 1 coordinates of 𝑦,
(a.3) and ∑𝑘𝑖=1 𝑦𝑖 ≤ ∑

𝑘
𝑖=1 𝑣𝑗,𝑖 for all 𝑗 ≤ 𝑚 and 𝑘 < 𝑛 and ∑

𝑛
𝑖=1 𝑦𝑖 = ∑

𝑛
𝑖=1 𝑣𝑗,𝑖,

we construct a vector 𝑣𝑚+1 such that
(b.1) 𝑣𝑚+1 = 𝑡𝑚𝑣𝑚 + (1 − 𝑡𝑚)𝜏𝑚𝑣𝑚 for some 𝑡𝑚 ∈ [0, 1] and transposition 𝜏𝑚 ∈ Π𝑛,
(b.2) for all 𝑖 < 𝑚 + 1 we have 𝑣𝑚+1,𝑖 = 𝑦𝑖 so that the first 𝑚 coordinates of 𝑣𝑚+1 agree

with the first𝑚 coordinates of 𝑦,
(b.3) and ∑𝑘𝑖=1 𝑦𝑖 ≤ ∑

𝑘
𝑖=1 𝑣𝑚+1,𝑖 for all integers 𝑘 < 𝑛 and ∑

𝑛
𝑖=1 𝑦𝑖 = ∑

𝑛
𝑖=1 𝑣𝑚+1,𝑖
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We begin by making the following observation which is necessary to construct 𝑣2 from
𝑣1. We want to construct the convex combination (A.1.1) so that the first coordinate of 𝑣2 as
a convex combination of the first and ℓ1th coordinates of 𝑣1 for some integer ℓ1, and then let
𝜏1 be the transposition which interchanges the first and ℓ1th coordinates. It suffices to find
an integer ℓ such that 𝑥ℓ ≤ 𝑦1. Since 𝑥 is weakly decreasing, for any integer 𝑘, with 1 ≤ 𝑘 ≤ 𝑛,
and any permutation 𝜎 ∈ Π𝑛,

𝑘
∑
𝑖=1
(𝜎𝑥)𝑖 ≤

𝑘
∑
𝑖=1
𝑥𝑖.

Therefore, if 𝑧 = (𝑧1,… , 𝑧𝑛) is a convex combination of elements of the orbit 𝑂𝑥 of 𝑥, for
any integer 𝑘, with 1 ≤ 𝑘 ≤ 𝑛,

𝑘
∑
𝑖=1
𝑧𝑖 ≤
𝑘
∑
𝑖=1
𝑥𝑖.

In particular, this is true for 𝑦 since 𝑦 ∈ 𝑃𝑥. Using this observation we can show that there
exists an integer ℓ, with 2 ≤ ℓ ≤ 𝑛, such that 𝑥ℓ ≤ 𝑦1. To see this, suppose, for the sake of
contradiction, that there exists no such integer. Then

𝑛
∑
𝑖=1
𝑦𝑖 <
𝑛
∑
𝑖=1
𝑥𝑖,

which contradicts the assumption that ∑𝑛𝑖=1 𝑦𝑖 = ∑
𝑛
𝑖=1 𝑥𝑖. Let ℓ1 be the least greater than 1

such that 𝑥ℓ1 ≤ 𝑦1.
Now we are ready to construct 𝑣2. Since 𝑥ℓ1 ≤ 𝑦1 ≤ 𝑥1, there exists some real number
𝑡1 ∈ [0, 1] such that

𝑦1 = 𝑡1𝑥1 + (1 − 𝑡1)𝑥ℓ1 .
Let 𝜏1 ∈ Π𝑛 be the transposition matrix which interchanges the first and ℓ1th coordinates.
Set 𝑣1 ≔ 𝑥 and define

𝑣2 ≔ 𝑡1𝑣1 + (1 − 𝑡1)𝜏1𝑣1.
Write the components of 𝑣2 as 𝑣2 = (𝑣2,1,… , 𝑣2,𝑛). The key feature of 𝑣2 is that 𝑣2,1 = 𝑦1.
Then by the construction of 𝑣2 and the minimality of ℓ1, for every integer 1 ≤ 𝑘 ≤ ℓ1,

𝑘
∑
𝑖=1
𝑦𝑖 ≤
𝑘
∑
𝑖=1
𝑣2,𝑖.

Moreover, by the construction of 𝑣2, the fact that 𝑣1 = 𝑥, and the assumptions of the lemma
we see that

𝑛
∑
𝑖=1
𝑣2,𝑖 =

𝑛
∑
𝑖=1
𝑣1,𝑖 =

𝑛
∑
𝑖=1
𝑥𝑖 =
𝑛
∑
𝑖=1
𝑦𝑖.

Now suppose that we have constructed vectors 𝑣1,… , 𝑣𝑚 ∈ 𝑃𝑥 satisfying conditions
(a.1)–(a.3).We need to construct a vector 𝑣𝑚+1 ∈ 𝑃𝑥 such that (b.1)–(b.3) hold. In particular
from the construction of 𝑣1,… , 𝑣𝑚 we see that

𝑚
∑
𝑖=1
𝑦𝑖 ≤
𝑚
∑
𝑖=1
𝑣𝑚,𝑖 =

𝑚−1
∑
𝑖=1
𝑦𝑖 + 𝑣𝑚,𝑚,

so subtracting ∑𝑚−1𝑖=1 𝑦𝑖 shows that 𝑦𝑚 ≤ 𝑣𝑚,𝑚. Moreover, since both ∑𝑛𝑖=1 𝑣𝑚,𝑖 = ∑
𝑛
𝑖=1 𝑦𝑖 and

∑𝑛−1𝑖=1 𝑦𝑖 ≤ ∑
𝑛−1
𝑖=1 𝑣𝑚,𝑖, we see that 𝑣𝑚,𝑛 ≤ 𝑦𝑛 ≤ 𝑦𝑚.

Similarly to the construction of 𝑣2 from 𝑣1, we want to find a coordinate of 𝑣𝑚 so that
a convex combination of this coordinate with the 𝑚th coordinate of 𝑣𝑚 is equal to the 𝑚th
coordinate of 𝑦. Notice that since∑𝑛𝑖=1 𝑣𝑚,𝑖 = ∑

𝑛
𝑖=1 𝑦𝑖 there exists an integer ℓ > 𝑚 such that
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𝑣𝑚,ℓ ≤ 𝑦𝑚, otherwise ∑𝑛𝑖=1 𝑣𝑚,𝑖 < ∑
𝑛
𝑖=1 𝑦𝑖 which contradicts (a.3). Let ℓ𝑚 be the least such

integer. Then
(A.1.2) 𝑦𝑗 ≤ 𝑦𝑚 ≤ 𝑣𝑚,𝑗
for𝑚+1 ≤ 𝑗 ≤ ℓ𝑚 − 1. Since 𝑣𝑚,ℓ𝑚 ≤ 𝑦𝑚 ≤ 𝑣𝑚,𝑚, there is a real number 𝑡𝑚 ∈ [0, 1] such that

𝑦𝑚 = 𝑡𝑚𝑣𝑚,𝑚 + (1 − 𝑡𝑚)𝑣𝑚,ℓ𝑚 .
Let 𝜏𝑚 ∈ Π𝑛 be the transposition matrix which interchanges the 𝑚th and ℓ𝑚th coordinates.
Define

𝑣𝑚+1 ≔ 𝑡𝑚𝑣𝑚 + (1 − 𝑡𝑚)𝜏𝑚𝑣𝑚.
Writing 𝑣𝑚+1 = (𝑣𝑚+1,1,… , 𝑣𝑚+1,𝑛)we see that 𝑣𝑚+1,𝑗 = 𝑦𝑗 for 1 ≤ 𝑗 ≤ 𝑚. Thus 𝑣𝑚+1 satisfies
conditions (b.1) and (b.2) by construction.

Now all that remains to be shown is that 𝑣𝑚+1 satisfies condition (b.3). When 1 ≤ 𝑘 ≤ 𝑚,
this is obvious because 𝑣𝑚+1,𝑗 = 𝑦𝑘 for 1 ≤ 𝑗 ≤ 𝑚. If𝑚 + 1 ≤ 𝑘 < ℓ𝑚, then by (A.1.2) we see
that

𝑘
∑
𝑖=1
𝑦𝑖 ≤
𝑚
∑
𝑖=1
𝑦𝑖 +

𝑘
∑
𝑖=𝑚+1
𝑣𝑚,𝑖 =

𝑘
∑
𝑖=1
𝑣𝑚+1,𝑖,

so the inequality holds in this range. If ℓ𝑚 ≤ 𝑘 < 𝑛, then
𝑘
∑
𝑖=1
𝑦𝑖 ≤
𝑘
∑
𝑖=1
𝑣𝑚,𝑖 =

𝑘
∑
𝑖=1
𝑣𝑚+1,𝑖.

Lastly, by the construction of 𝑣𝑚 and the hypothesis (a.3), we see that
𝑛
∑
𝑖=1
𝑣𝑚+1,𝑖 =

𝑛
∑
𝑖=1
𝑣𝑚,𝑖 =

𝑛
∑
𝑖=1
𝑦𝑖,

which completes the proof that (b.3) holds.
Finally notice that when 𝑚 + 1 = 𝑛 we have 𝑣𝑛,𝑗 = 𝑦𝑗 for all 1 ≤ 𝑗 < 𝑛, and the fact that
∑𝑛𝑖=1 𝑣𝑛,𝑖 = ∑

𝑛
𝑖=1 𝑦𝑖 shows that 𝑣𝑛,𝑛 = 𝑦𝑛, so 𝑣𝑛 = 𝑦. □
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