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Abstract
We sketch Ayala and Francis’ proof of Nonabelian Poincaré Duality from [1].

Nonabelian Poincaré Duality follows easily from the equivalence between 𝑛-disk
algebras andhomology theories formanifolds stated last time, sowe’ll really sketch a
proof of this equivalence.Themain ingredient that we’ll assume is that factorization
homology satisfies ⊗-excision (hence defines a homology theory for manifolds). If
time permits, we’ll also discuss why factorization homology satisfies ⊗-excision.

Contents

I Nonabelian Poincaré Duality 1

1 Nonabelian Poincaré Duality from the classification theorem 1

2 Compactly supported maps define a homology theory for manifolds 4

II The classification theorem 6

3 Factorization homology is symmetric monoidal 6

4 Proof of the classification theorem 8

Part I

Nonabelian Poincaré Duality
1 NonabelianPoincaréDuality from the classification the-

orem
In this sectionwe show howNonabelian Poincaré Duality follows from the classification
of homology theories for manifolds in terms of factorization homology stated last time
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(Theorem 1.4). First we recall some notation.

1.1Notation. For a nonnegative integer 𝑛, writeMfld𝑛 for the 1-category of 𝑛-manifolds
and embeddings. Write Disk𝑛 ⊂ Mfld𝑛 for the full subcategory spanned by those 𝑛-
manifolds isomorphic to a finite disjoint union of Euclidean spaces. Both Disk𝑛 and
Mfld𝑛 have symmetric monoidal structures given by disjoint union.

We write Mfld𝑛 for the∞-category associated to the topological category1 with ob-
jects 𝑛-manifolds and morphism spaces the spaces Emb(𝑀,𝑁) of embeddings𝑀↪ 𝑁
with the compact-open topology. We write Disk𝑛 ⊂ Mfld𝑛 for the full subcategory
spanned by those 𝑛-manfiolds isomorphic toa finite disjoint union of Euclidean spaces.

1.2 Definition. A symmetric monoidal ∞-category (𝑉, ⊗) is ⊗-presentable if the fol-
lowing conditions are satisfied:

(1.2.1) The underlying∞-category 𝑉 is presentable.

(1.2.2) The tensor product functor ⊗∶ 𝑉 × 𝑉 → 𝑉 preserves colimits separately in each
variable.

1.3 Remark. Many use the term presentably symmetric monoidal in lieu of ⊗-presentable
[2]. We’ll use the terminology of Ayala–Francis in this talk.

1.4Theorem ([1,Theorem3.24]). Let𝑉 be⊗-presentable symmetricmonoidal∞-category.
Then there is an equivalence of∞-categories

∫∶ Alg𝑛(𝑉) ⇄ 𝐇(Mfld𝑛, 𝑉) ∶ev𝐑𝑛 .

For Nonabelian Poincaré Duality, we’ll mostly be interested in the case that 𝑉 is the
∞-category of spaces with the cartesian monoidal structure.

1.5 Definition. Let𝑋 be a topolocial space and (𝑍, 𝑧0) a pointed topological space. The
support of a map 𝑓∶ 𝑋 → 𝑍 is the subspace

supp(𝑓) ≔ { 𝑥 ∈ 𝑋 | 𝑓(𝑥) ≠ 𝑧0 } .

We say that 𝑓 is compactly supported if the closure of supp(𝑓) is compact, and write

Map𝑐(𝑋, 𝑍) ⊂ Map(𝑋, 𝑍)

for the subspace of compactly supported maps.

1.6Theorem (NonabelianPoincaréDuality). Let𝑀 be an𝑛-manifold and𝑍 an𝑛-connective
pointed topological space. Then the natural map

∫
𝑀

Map𝑐(−, 𝑍) → Map𝑐(𝑀,𝑍)

is an equivalence in Spc.
1As a quasicategory, is the simplicial nerve of the fibrant simplicial category obtained from the topological

category by applying the singular simplicial set functor Sing ∶ Top→ 𝑠Set.
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1.7 Nonexample. If 𝑍 = 𝑆0, then for each 𝑈 ∈ Disk𝑛,/𝑀 we have

Map𝑐(𝑈, 𝑆0) = ∗ ,

so
∫
𝑀

Map𝑐(−, 𝑆0) = colim
Disk𝑛,/𝑀
∗ ≃ 𝐵(Disk𝑛,/𝑀) ,

where 𝐵(Disk𝑛,/𝑀) denotes the classifying space of the ∞-category Disk𝑛,/𝑀. In par-
ituclar, 𝐵(Disk𝑛,/𝑀) is connected. On the other hand, if𝑀 is compact, then

Map𝑐(𝑀, 𝑆0) = Map(𝑀, 𝑆0) ,

and Map(𝑀, 𝑆0) has at least two connected components. So the condition that 𝑍 be
𝑛-connective cannot be droped.

1.8 Remark (on 𝑛-connectivity). For any pointed space 𝑍, we have an equivalence

Map𝑐(𝐑𝑛, 𝑍) ≃ 𝛺𝑛𝑍 .

We conclude that ∫𝑀Map𝑐(−, 𝑍) only depends on the 𝑛-connective cover 𝜏≥𝑛𝑍 of 𝑍.
However, by choosing𝑀 appropriately, one can show that

Map𝑐(−, 𝑍)∶ Mfld𝑛 → Spc

does depend on 𝜏<𝑛𝑍. So the statement of Theorem 1.6 cannot be true without the 𝑛-
connectivity assumption.

Assuming Theorem 1.4, since factorization homology defines a homology theory
for 𝑛-manifolds, the proof of Theorem 1.6 follows once we knowfrom the following two
facts:

(1) For any pointed 𝑛-connective topological space 𝑍,

Map𝑐(−, 𝑍)∶ Mfld𝑛 → Spc

defines a homology theory for 𝑛-manifolds.

(2) Both ∫(−)Map𝑐(−, 𝑍) and Map𝑐(−, 𝑍) take the same value on 𝐑𝑛.

The second point is easy to see:

1.9 Observation. Since 𝐑𝑛 is the final object of Disk𝑛,/𝐑𝑛 , the factorization homology
of 𝐴 ∈ Alg𝑛(𝑉) evaluated on 𝐑𝑛 is given by

∫
𝐑𝑛
𝐴 ≃ 𝐴(𝐑𝑛) .
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2 Compactly supported maps define a homology theory
for manifolds

In this section we’ll sketch a proof that for any 𝑛-connective pointed space𝑍, compactly
supported maps

Map𝑐(−, 𝑍)∶ Mfld𝑛 → Spc

defines a homology theory for 𝑛-manifolds valued in the∞-category of spaces with the
cartesian symmetric monoidal structure. So that the statement of Nonabelian Poincaré
Duality makes sense, we record the following obvious fact:

2.1 Lemma. Let 𝑍 be a pointed space. Then the functor

Map𝑐(−, 𝑍)∶ Mfld𝑛 → Spc

is naturally symmetricmonoidal, whereMfld𝑛 is given the disjoint union symmetricmonoidal
structure and Spc is given the cartesian symmetric monoidal structure. In particular, the
restriction of Map𝑐(−, 𝑍) to Disk𝑛 defines an 𝑛-disk algebra

Map𝑐(−, 𝑍)∶ Disk𝑛 → Spc .

2.2 Proposition. Let 𝑍 be an 𝑛-connective pointed space. Then for any collar gluing𝑀 ≅
𝑀′ ∪𝑀0×𝐑𝑀″ of 𝑛-manifolds, the natural map

Map𝑐(𝑀′, 𝑍) ×Map𝑐(𝑀0×𝐑,𝑍) Map𝑐(𝑀″, 𝑍) → Map𝑐(𝑀,𝑍)

is an equivalence in Spc.

Proof sketch. Since 𝑀0 ↪ 𝑀 is proper, a compactly supported map 𝑀 → 𝑍 can be
restricted to a compactly supported map from𝑀0 (or𝑀 ∖𝑀′ or𝑀 ∖𝑀″). Thus we
have a commuative diagram

Map𝑐(𝑀′, 𝑍) ×Map𝑐(𝑀″, 𝑍) Map𝑐(𝑀″, 𝑍)

Map𝑐(𝑀,𝑍) Map𝑐(𝑀 ∖𝑀″, 𝑍)

Map𝑐(𝑀′, 𝑍) Map𝑐(𝑀 ∖𝑀′, 𝑍) Map𝑐(𝑀0, 𝑍) .

(1) Since𝑀0 ⊂ 𝑀 has a regular neighborhood,

Map𝑐(𝑀 ∖𝑀′, 𝑍) → Map𝑐(𝑀0, 𝑍) and Map𝑐(𝑀 ∖𝑀″, 𝑍) → Map𝑐(𝑀0, 𝑍)

are Serre fibrations.

(2) The inner square is a (set-theoretic) pullback because𝑀 ≅ 𝑀′ ∪𝑀0×𝐑𝑀″, hence is
a homotopy pullback.
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(3) By point-set topology, the lower and right sequences are fiber sequences.

(4) There is a right homotopy coherent action of 𝛺Map𝑐(𝑀0, 𝑍) on Map𝑐(𝑀′, 𝑍) and
a left homotopy coherent action of 𝛺Map𝑐(𝑀0, 𝑍) on Map𝑐(𝑀″, 𝑍) and a map

Map𝑐(𝑀′, 𝑍) ×𝛺Map𝑐(𝑀0,𝑍) Map𝑐(𝑀″, 𝑍) .

Since𝑍 is 𝑛-connective and dim(𝑀0) = 𝑛−1, the space Map𝑐(𝑀0, 𝑍) is connected.
One sees that the above map is an equivalence. The result follows from the identifi-
cation

Map𝑐(𝑀0 × 𝐑,𝑍) ≃ Map𝑐(𝐑,Map𝑐(𝑀0, 𝑍)) ≃ 𝛺Map𝑐(𝑀0, 𝑍)

as grouplike 𝐸1-spaces.
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Part II

The classification theorem
In this part of the talk we sketch a proof of Theorem 1.4 assuming that factorization
homology satisfies ⊗-excision.

3 Factorization homology is symmetric monoidal
In this section we show that facotorization homology is symmetric monoidal (in the
manifold) and explore some consequences.

3.1 Lemma. Let𝑉 be a symmetric monoidal∞-category with colimits and assume that ⊗
preserves colimits seperately in each variable.Then for any 𝑛-disk algebra𝐴 ∈ Alg𝑛(𝑉),the
functor

∫
(−)
𝐴 ∈ Fun(Mfld𝑛, 𝑉)

has a natural symmetric monoidal structure.

Proof sketch. For anyfinite collection of𝑛-manifolds {𝑀𝑖}𝑖∈𝐼, taking 𝐼-fold disjoint unions
defines an equivalence of∞-categories

∏
𝑖∈𝐼

Disk𝑛,/𝑀𝑖 ⥲ Disk𝑛,/(∐𝑖∈𝐼𝑀𝑖) .

Since 𝐴 is an 𝑛-disk algebra, the square

∏
𝑖∈𝐼

Disk𝑛,/𝑀𝑖 Disk𝑛,/(∐𝑖∈𝐼𝑀𝑖)

𝑉×𝑘 𝑉

∼

𝐴×𝑘 𝐴

⊗

commutes. Hence

∫
∐𝑖∈𝐼𝑀𝑖
𝐴 ≃ colim( ∏

𝑖∈𝐼
Disk𝑛,/𝑀𝑖 𝑉×𝑘 𝑉𝐴×𝑘 ⊗ ) .

Since the symmetric monoidal structure on𝑉 preserves colimtis separately in each vari-
able, we see that

∫
∐𝑖∈𝐼𝑀𝑖
𝐴 ≃⨂
𝑖∈𝐼

colim ( Disk𝑛,/𝑀𝑖 𝑉𝐴 )

=⨂
𝑖∈𝐼
∫
𝑀𝑖
𝐴 .
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3.2 Remark. For every 𝑛-manifold𝑀, the∞-category Disk𝑛,/𝑀 is actually sifted [HA,
Proposition 5.5.2.15; 1, Corollary 3.22], so in Lemma 3.1 it is only necessary to assume
that the tensor product commutes with sifted colimits separately in each variable.

3.3 Corollary. Let 𝑉 be a symmetric monoidal ∞-category with colimits and assume
that ⊗ preserves colimits seperately in each variable. Then factorization homology defines
a functor

∫∶ Alg𝑛(𝑉) → Fun⊗(Mfld𝑛, 𝑉) .

3.4 Observation. Let 𝑉 be a symmetric monoidal∞-category. Then precomposition
with the fully faithful symmetric monoidal functor 𝑖 ∶ Disk𝑛 ↪ Mfld𝑛 defines a functor

𝑖⋆ ∶ Fun⊗(Mfld𝑛, 𝑉) → Fun⊗(Disk𝑛, 𝑉) = Alg𝑛(𝑉) .

If 𝑉 is ⊗-presentable, then 𝑖⋆ admists a left adjoint

𝑖⊗! ∶ Alg𝑛(𝑉) → Fun⊗(Mfld𝑛, 𝑉)

given by symmetricmonoidal leftKan extension: for𝐴 ∈ Alg𝑛(𝑉), the symmetricmonoidal
functor 𝑖!(𝐴) is the universal symmetric monoidal functor fitting into a diagram

Disk𝑛 𝑉

Mfld𝑛 .
𝑖

𝐴

⇓
𝑖⊗! (𝐴)

Since 𝑖 is fully faithful, the natural transformation 𝐴 → 𝑖⊗! (𝐴) ∘ 𝑖 is an equivalence.
Since 𝑉 is presentable, the (ordinary) left Kan extension 𝑖!(𝐴) of 𝐴 along 𝑖 has value

at𝑀 given by

𝑖!(𝐴)(𝑀) ≃ colim( Disk𝑛,/𝑀 Disk𝑛 𝑉𝐴 )

≃ ∫
𝑀
𝐴 .

We’ve already seen that the factorization homology ∫(−) 𝐴 of 𝐴 has a natural symmet-
ric monoidal structure (Lemma 3.1) by checking things explicitly. One can use this to
deduce that the ordinary left Kan extension ∫(−) 𝐴 agrees with the symmetric monoidal
left Kan extension 𝑖⊗! (𝐴). (See [1, Proposition 3.7].)

This shows that we have an adjunction

∫∶ Alg𝑛(𝑉) ⇄ Fun⊗(Mfld𝑛, 𝑉) ∶𝑖⋆ .

Moreover, taking facotrization homology is fully faithful: if 𝑈 ∈ Disk𝑛, then since 𝑖 is
fully faithful,

𝐴(𝑈) ⥲ 𝑖⋆ (∫𝑈 𝐴) .
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In summary, we’ve shown:

3.5 Proposition. Let 𝑉 be ⊗-presentable symmetric monoidal∞-category. Then we have
an adjunction

∫∶ Alg𝑛(𝑉) ⇄ Fun⊗(Mfld𝑛, 𝑉) ∶𝑖⋆ .

Moreover, the left adjoint ∫∶ Alg𝑛(𝑉) → Fun⊗(Mfld𝑛, 𝑉) is fully faithful.

4 Proof of the classification theorem
Thenext question is what is the essential image of ∫∶ Alg𝑛(𝑉) ↪ Fun⊗(Mfld𝑛, 𝑉)?We’ll
take the following as given:

4.1 Proposition ([1, Lemma 3.18]). Let 𝑉 be ⊗-presentable symmetric monoidal ∞-
category. Then factorization satisfies ⊗-excisition, hence defines a functor

∫∶ Alg𝑛(𝑉) ↪ 𝐇(Mfld𝑛, 𝑉)

landing in homology theories for 𝑛-manifolds.

4.2. Assuming Proposition 4.1, we’ll now prove Theorem 1.4. The idea of the proof is to
use handelbody decompositions and collar gluings to build up from the case of disks.

Proof of Theorem 1.4. Fix a homology theory for 𝑛-manifolds 𝐹 ∈ 𝐇(Mfld𝑛, 𝑉). We
want to show that for any 𝑛-manifold𝑀, the counit

∫
𝑀
𝑖⋆(𝐹) → 𝐹(𝑀)

is an equivalence.

Step 1 (disks). Let 𝑈 ∈ Disk𝑛. Then since Disk𝑛,/𝑈 has a final object, by the definition
of the restriction 𝑖⋆(𝐹) of 𝐹 to Disk𝑛, the counit

∫
𝑈
𝑖⋆(𝐹) → 𝐹(𝑈)

is an equivalence.

Step 2 (thickened spheres 𝑆𝑘 × 𝐑𝑛−𝑘). Using induction we’ll prove the claim when𝑀 ≅
𝑆𝑘 × 𝐑𝑛−𝑘 is a thickened sphere. The base case where 𝑘 = 0 follows from Step 1.

For the inductive step, assume the result for 𝑆𝑘−1 ×𝐑𝑛−𝑘+1, and we’ll prove the result
for 𝑆𝑘×𝐑𝑛−𝑘. Choose the standard collar gluing𝑓∶ 𝑆𝑘 → [−1, 1]with𝑓−1(0) = 𝑆𝑘−1 ⊂ 𝑆𝑘
the equator. By taking the product with𝐑𝑛−𝑘, this gives rise to a collar gluing of 𝑆𝑘×𝐑𝑛−𝑘.
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By our induction hypothesis and Step 1 we see that

∫
𝑆𝑘×𝐑𝑛−𝑘
𝑖⋆(𝐹) ≃ (∫𝐑𝑘−1×𝐑𝑛−𝑘 𝑖

⋆(𝐹)) ⨂
∫𝑆𝑘−1×𝐑𝑛−𝑘+1 𝑖

⋆(𝐹)
(∫
𝐑𝑘+1×𝐑𝑛−𝑘

𝑖⋆(𝐹)) (⊗-excision)

≃ 𝐹(𝐑𝑘−1 × 𝐑𝑛−𝑘) ⨂
𝐹(𝑆𝑘−1×𝐑𝑛−𝑘+1)

𝐹(𝐑𝑘+1 × 𝐑𝑛−𝑘) (induction)

≃ 𝐹(𝑆𝑘 × 𝐑𝑛−𝑘) (⊗-excision) .

Step 3 (use handelbody decompositions for 𝑛 ≠ 4). We’ll prove the claim for 𝑛 ≠ 4 by
using the fact that when 𝑛 ≠ 4, all topological 𝑛-manifolds admit a handelbody decom-
position. We prove the claim by inducting on the handel decomposition; the base case
is Step 2.

For the inductive step, suppose that𝑀 is obtained from𝑀′ by attaching a handel
of index 𝑞, so that there is a collar gluing

𝑀 ≅ 𝑀′ ∪𝑆𝑞×𝐑𝑛−𝑞 𝐑𝑛 ,

where 𝐑𝑛 is an open neighborhood of the (𝑞 + 1)-handel in𝑀. Since 𝐹 and ∫(−) 𝑖
⋆(𝐹)

agree on𝑀′ (by induction), 𝑆𝑞 × 𝐑𝑛−𝑞 (by Step 2), and 𝐑𝑛 (by Step 1) and both statisfy
⊗-excision, we deduce that

∫
𝑀
𝑖⋆(𝐹) ⥲ 𝐹(𝑀) .

This completes the proof when 𝑛 ≠ 4.
Step 4 (topological 4-manifolds). Now we treat the case of topological 4-manifolds.
Without loss of generality we can assume that𝑀 is connected. Then for any point 𝑥 ∈
𝑀, there exists a smooth structure on𝑀 ∖ {𝑥}, hence a handelbody decomposition of
𝑀∖ {𝑥}. By the handelbody argument from Step 3, we deduce that

∫
𝑀∖{𝑥}
𝑖⋆(𝐹) ⥲ 𝐹(𝑀 ∖ {𝑥}) .

Applying ⊗-excision to the collar gluing

𝑀 ≅ (𝑀 ∖ {𝑥}) ∪𝑆𝑛−1×𝐑 𝐑𝑛

proves the claim.
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