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Abstract. This note provides modern proofs of some classical results
in algebraic topology, such as the James Splitting, the Hilton–Milnor
Splitting, and the metastable EHP sequence. We prove fundamental
splitting results

ΣΩΣX ≃ ΣX ∨ (X ∧ ΣΩΣX)

and

Ω(X ∨ Y ) ≃ ΩX × ΩY × ΩΣ(ΩX ∧ ΩY )

in the maximal generality of an ∞-category with finite limits and
pushouts in which pushouts squares remain pushouts after basechange
along an arbitrary morphism (i.e., Mather’s Second Cube Lemma
holds). For connected objects, these imply the classical James and
Hilton–Milnor Splittings. Moreover, working in this generality shows
that the James and Hilton–Milnor splittings hold in many new con-
texts, for example in: elementary ∞-topoi, profinite spaces, and mo-
tivic spaces over arbitrary base schemes. The splitting results in
this last context extend Wickelgren and Williams’ splitting result for
motivic spaces over a perfect field. We also give two proofs of the
metastable EHP sequence in the setting of ∞-topoi: the first is a
new, non-computational proof that only utilizes basic connectedness
estimates involving the James filtration and the Blakers–Massey The-
orem, while the second reduces to the classical computational proof.
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1 Introduction

A classical result of James shows that given a pointed connected space X , the
homotopy type ΣΩΣX given by suspending the loopspace on the suspension
of X splits as a wedge sum

ΣΩΣX ≃
∨

i≥1

ΣX∧i (1.1)

of suspensions of smash powers of X [8,19]. Hilton and Milnor proved a related
splitting result [16; 17; 28, Theorem 3]: given pointed connected spaces X

and Y , they showed that there is a homotopy equivalence

ΩΣ(X ∨ Y ) ≃ ΩΣX × ΩΣY × ΩΣ




∨

i,j≥1

X∧i ∧ Y ∧j


 . (1.2)

In the classical setting, these splitting results follow from combining a con-
nectedness argument using the hypothesis that X and Y are connected with
the following more fundamental splittings: given any pointed spaces X and Y ,
there are natural equivalences

ΣΩΣX ≃ ΣX ∨ (X ∧ ΣΩΣX) (1.3)

and

Ω(X ∨ Y ) ≃ ΩX × ΩY × ΩΣ(ΩX ∧ ΩY ) . (1.4)

The first objective of this note is to provide clear, modern, and non-
computational proofs of the fundamental splittings (1.3) and (1.4). The only
property particular to the ∞-category of spaces that our proofs utilize is
Mather’s Second Cube Lemma [26]; this asserts that pushout squares remain
pushouts after basechange along an arbitrary morphism (see §2.1). Hence these
‘fundamental’ James and Hilton–Milnor Splittings hold in any ∞-category
where we can make sense of suspensions, loops, wedge sums, and smash prod-
ucts, and have access to Mather’s Second Cube Lemma:

Theorem 1.5 (Fundamental James Splitting; Theorem 2.10). Let X be an ∞-
category with finite limits and pushouts, and assume that Mather’s Second Cube
Lemma holds in X. Then for every pointed object X ∈ X∗, there is a natural
equivalence

ΣΩΣX ≃ ΣX ∨ (X ∧ ΣΩΣX) .

Moreover, for each integer n ≥ 1 then there is a natural equivalence

ΣΩΣX ≃




∨

1≤i≤n

ΣX∧i



 ∨ (X∧n ∧ ΣΩΣX) .

Documenta Mathematica 26 (2021) 1423–1464



Splittings & the metastable EHP sequence 1425

In general, the infinite splitting ΣΩΣX ≃
∨

i≥1 ΣX
∧i need not hold; roughly

speaking, the problem is that if X is not connected, then (X∧n ∧ ΣΩΣX)
need not vanish as n → ∞. However, there is always a natural map∨

i≥1 ΣX
∧i → ΣΩΣX.

Theorem 1.6 (Fundamental Hilton–Milnor Splitting; Theorem 3.1). Let X be
an∞-category with finite limits and pushouts, and assume that Mather’s Second
Cube Lemma holds in X. Then for every pair of pointed objects X,Y ∈ X∗ there
is an natural equivalence

Ω(X ∨ Y ) ≃ ΩX × ΩY × ΩΣ(ΩX ∧ ΩY ) .

In §4.2 we explain in what generality the the infinite James Splitting (1.1) and
Hilton–Milnor Splitting (1.2) hold, and how to deduce them from Theorems 1.5
and 1.6.
It might seem that knowing that the James and Hilton–Milnor Splittings in
this level of generality is of dubious advantage; the settings in which one is
most likely to want to apply these splittings are the ∞-category Spc of spaces
(where the results are already known), or an∞-topos (where the results follows
immediately from the results for Spc; see § 4.2). However, algebraic geometry
provides an example that does not immediately follow from the result for spaces:
motivic spaces. The obstruction is that the ∞-category of motivic spaces over
a scheme is not an ∞-topos; since motivic localization almost never commutes
with taking loops, knowing the James and Hilton–Milnor Splittings in the ∞-
topos of Nisnevich sheaves does not allow one to deduce that they hold in
motivic spaces.
Wickelgren and Williams used the James filtration to prove that the infinite
James Splitting (1.1) holds for A1-connected motivic spaces over a perfect field
[43, Theorem 1.5]. The reason for the restriction on the base is because their
proof relies on Morel’s unstable A1-connectivity Theorem [29, Theorems 5.46
and 6.1], which implies that motivic localization commutes with loops [4, Theo-
rem 2.4.1; 29, Theorem 6.46]. However, the unstable A1-connectivity property
does not hold for higher-dimensional bases [4, Remark 3.3.5; 5], so a different
method is needed if one wants to prove James and Hilton–Milnor Splittings
for motivic spaces over more general bases. This is where our generaliza-
tion pays off: work of Hoyois [18, Proposition 3.15] shows that, in particular,
Mather’s Second Cube Lemma holds in motivic spaces over an arbitrary base
scheme. Therefore, Theorems 1.5 and 1.6 apply in this setting. We use these
splittings to give a description of the motivic space ΣΩP1 in terms of wedges
of motivic spheres Si+1,i (Example 2.14), and also give a new description of
ΩΣ(P1

r {0, 1,∞}) (Example 3.3). Over a perfect field, we give a new de-
composition of ΩΣ2(P1

r {0, 1,∞}) in terms of motivic spheres of the form
S2m+1,m (Example 4.25).
The second goal of this note is to give a modern construction of the metastable
EHP sequence in an ∞-topos X. For every pointed connected object X ∈ X∗,
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the James Splitting provides Hopf maps

hn : ΩΣX → ΩΣ(X∧n) .

There is also a James filtration {Jm(X)}m≥0 on ΩΣX , and, moreover, the
composite

Jn−1(X) ΩΣX ΩΣX∧nhn (1.7)

is trivial. The sequence (1.7) is not a fiber sequence in general1, but is in the
metastable range:

Theorem 1.8 (metastable EHP sequence; Theorem 5.19). Let X be an ∞-
topos, k ≥ 0 an integer, and X ∈ X∗ a pointed k-connected object. Then for
each integer n ≥ 1, the morphism Jn−1(X) → fib(hn) is ((n + 1)(k + 1)− 3)-
connected.

We note here that a morphism is m-connected in our terminology if and only
if it is (m+ 1)-connected in the classical terminology (see Warning 4.9).
We provide two proofs of Theorem 1.8. The first proof is new and non-
computational; it only makes use of some basic connectedness estimates in-
volving the James filtration and the Blakers–Massey Theorem. In the second
proof we simply note that Theorem 1.8 for a general ∞-topos follows imme-
diately from the claim for the ∞-topos of spaces. In the case of spaces, we
provide a computational proof; we include this second proof because we were
unable to find the computational proof we were familiar with in the literature.

1.1 Linear overview

We have written this note with two audiences in mind: the student interested
in seeing proofs of Theorems 1.5, 1.6 and 1.8 in the classical setting of spaces,
and the expert homotopy theorist interested in applying these results to more
general contexts such as motivic spaces or profinite spaces. The student can
always take X to be the ∞-category of spaces, and the expert can safely skip
the background sections provided for the student. We also note that this text
should still be accessible to the reader familiar with homotopy (co)limits but
unfamiliar with higher categories, since all we use in our proofs are basic ma-
nipulations of homotopy (co)limits.
Section 2 is dedicated to proving Theorem 1.5. In §2.1, we provide background
on Mather’s Second Cube Lemma and the universality of pushouts. In § 2.2,
we provide a proof of the James Splitting. Our proof is roughly the same as
proofs presented elsewhere [15; 39, §17.2; 45], but it seems that the generality
of the argument we present here is not very well-known.
Section 3 provides a quick proof of Theorem 1.6. Again, shadows of the proof we
provide appear in the literature [11; 12, §2 & 3; 39, §17.8], but it seems that the

1When X is the ∞-category of spaces and X is a sphere, James and Toda proved that,
roughly, the sequence (1.7) becomes a fiber sequence after p-localization. See [20, 21, 40] for
a precise statement.

Documenta Mathematica 26 (2021) 1423–1464



Splittings & the metastable EHP sequence 1427

generality of the proof has not been completely internalized by the community.
As an application, we use work of Wickelgren [42, Corollary 3.2] to give a new
description of the motivic space ΩΣ(P1

r {0, 1,∞}) (Example 3.2).
Section 4 explains how to use a connectedness argument to prove the infinite
James Splitting (1.1) and Hilton–Milnor Splitting (1.2) for pointed connected
objects of an ∞-topos, and for pointed A1-connected motivic spaces over a
perfect field. In §4.1, we begin by recalling the basics of connectedness and the
Blakers–Massey Theorem in an ∞-topos; this material is also instrumental in
our proof of Theorem 1.8. Subsection 4.2 presents the connectedness argument
needed to deduce the infinite splittings and defines the Hopf maps appearing
in Theorem 1.8. As an application we give a new description of the motivic
space ΩΣ2(P1

r {0, 1,∞}) over a perfect field (Example 4.25).
Section 5 is dedicated to proving Theorem 1.8. In § 5.1, we provide the back-
ground on the James filtration needed to understand the statement of Theo-
rem 1.8, as well as some connectedness estimates we need to prove Theorem 1.8.
In §5.2, we give a refinement of the James Splitting in terms of the James filtra-
tion. In §5.3, we first provide a proof of Theorem 1.8 using the Blakers–Massey
Theorem (which we have not seen elsewhere), and then record for posterity
what we imagine is the standard computational proof of Theorem 1.8.
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1.2 Notation & background

In this subsection we set the basic notational conventions that we use through-
out this note as well as recall a bit of relevant background.

Notation 1.9. Let X be an ∞-category. If X has a terminal object, we write
∗ ∈ X for the terminal object and X∗ for the ∞-category of pointed objects
in X. If X∗ has coproducts and X,Y ∈ X∗, we write X ∨ Y for the coproduct
of X and Y in X∗. If X∗ has coproducts and products, note that there is a
natural comparison morphism X ∨ Y → X × Y induced by the morphisms

(idX , ∗) : X → X × Y and (∗, idY ) : Y → X × Y .
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We say that a morphism f : X → Y in X∗ is null if f factors through the zero
object ∗.

Notation 1.10. Let X be an ∞-category with pushouts. Given a span X ←
W → Y in X, we write X ⊔W Y for its pushout.

Recollection 1.11. Let X be an ∞-category with finite products and
pushouts, and X,Y ∈ X∗ pointed objects of X. The smash product X ∧ Y

of X and Y is the cofiber

X ∨ Y X × Y

∗ X ∧ Y
p

of the comparison morphism X ∨ Y → X × Y .

Recollection 1.12. Let X be an ∞-category with pushouts and a terminal
object. The suspension of an object X ∈ X is the pushout

X ∗

∗ ΣX .
p

Recollection 1.13. Let X be an ∞-category with finite limits. The loop
object of a pointed object X ∈ X∗ is the pullback

ΩX ∗

∗ X

y

in X∗.

We also make repeated use of the following easy fact. The unfamiliar reader
should consult [6, §2; 31].

Lemma 1.14. Let X be an ∞-category with pushouts and

X1 X0 X2

W1 W0 W2

Y1 Y0 Y2

(1.15)

a commutative diagram in X. Then the colimit of the diagram (1.15) exists and
is equivalent to both of the following two iterated pushouts:
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(1.14.1) Form the pushout of the rows of (1.15), then take the pushout of the
resulting span

X1

X0

⊔ X2 W1

W0

⊔ W2 Y1

Y0

⊔ Y2 .

(1.14.2) Form the pushout of the columns of (1.15), then take the pushout of
the resulting span

X1

W1

⊔ Y1 X0

W0

⊔ Y0 X2

W2

⊔ Y2 .

2 The James Splitting

In this section, we present a proof of the James Splitting which holds in any
∞-category with finite limits and pushouts, where pushout squares remain
pushouts after basechange along an arbitrary morphism. The argument we give
roughly follows the argument Hopkins gave in his course on stable homotopy
theory in the setting of spaces [15, Lecture 4, §3]; Hopkins attributes this proof
to James [19–21] and Ganea [10].

2.1 Universal pushouts and Mather’s Second Cube Lemma

The key property utilized in the proofs we present of the James and Hilton–
Milnor Splittings is that pushout squares are preserved by arbitrary basechange.
This implies that, in particular, the James and Hilton–Milnor Splittings hold
in any ∞-topos, but also in other situations (such as motivic spaces). In this
subsection, we provide the categorical context that we work in for the rest
of the paper and give a convenient reformulation of the stability of pullbacks
under basechange in terms of Mather’s Second Cube Lemma (Lemma 2.6).

Recollection 2.1. Let I be an ∞-category and let X be an ∞-category with
pullbacks and all I-shaped colimits. We say that I-shaped colimits in X are uni-
versal if I-shaped colimits in X are stable under pullback along any morphism.
That is, for every diagram F : I→ X and pair of morphisms colimi∈I F (i)→ Z

and Y → Z in X, the natural morphism

colim
i∈I

(F (i)×Z Y )→
(
colim
i∈I

F (i)
)
×Z Y

is an equivalence.

Example 2.2. Let 0 ≤ n ≤ ∞, and let X be an n-topos. One of the Giraud–
Lurie axioms for n-topoi guarentees that all small colimits in X are universal
[22, Theorem 6.1.0.6 & Proposition 6.4.1.5]. In particular, small colimits in the
category Set of sets and the ∞-category Spc of spaces are universal.
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Example 2.3. Let X be an elementary ∞-topos in the sense of [33, Defini-
tion 3.5]. Then all colimits that exist in X are universal [33, Corollary 3.12].
In particular, finite colimits are universal in X.

Example 2.4 (motivic spaces). Let S be a scheme. The ∞-category H(S)
of motivic spaces over S is defined as the A1-localization of the ∞-topos
Shnis(SmS) of sheaves of spaces on the category SmS of smooth schemes of
finite type over S equipped with the Nisnevich topology. Concretely, H(S)
is the full subcategory of Shnis(SmS) spanned by those Nisnevich sheaves F

on SmS with the property that for each smooth S-scheme X , the projection
pr1 : X ×S A1

S → X induces an equivalence

pr∗1 : F(X) ∼−→ F(X ×S A1
S) .

The inclusion H(S) ⊂ Shnis(SmS) admits a left adjoint Lmot : Shnis(SmS) →
H(S) called motivic localization. Motivic localization preserves finite products,
but not all finite limits. Moreover, the∞-category H(S) is not an∞-topos (see
[32, §4.3; 37, Remark 3.5]), and it is not immediately clear from the construction
if any colimits are universal in H(S). Nonetheless, Hoyois has shown that all
small colimits are universal in H(S) [18, Proposition 3.15].

Example 2.5 (profinite spaces). We say that a space X is π-finite if X is
truncated, has finitely many connected components, and πi(X, x) is finite for
every integer i ≥ 1 and point x ∈ X . Write Spcπ ⊂ Spc for the full sub-
category spanned by the π-finite spaces and Pro(Spcπ) for the ∞-category of
profinite spaces. Infinite coproducts in Pro(Spcπ) are not universal [24, Warn-
ing E.6.0.9], however, finite colimits and geometric realizations of simplicial
objects are universal in Pro(Spcπ) [24, Theorem E.6.3.1 & Corollary E.6.3.2].

The following result gives a reformulation of what it means for pushouts to be
universal in terms of Mather’s Second Cube Lemma, which Mather originally
proved in the ∞-category of spaces [26, Theorem 25]. See [25, Tag 011H] for
an elegant proof of Mather’s Second Cube Lemma in Spc.

Lemma 2.6. Let X be an∞-category with pullbacks and pushouts. The following
conditions are equivalent:

(2.6.1) Pushouts in X are universal.

(2.6.2) Mather’s Second Cube Lemma holds in X: Given a commutative cube

A0 A2

A1 A3

B0 B2

B1 B3
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in X where the bottom horizontal face is a pushout square and all vertical
faces are pullback squares, then the top horizontal square is a pushout
square.

Proof. The implication (2.6.1) ⇒ (2.6.2) is immediate. To see that (2.6.2) ⇒
(2.6.1), suppose that we are given a pushout square

B0 B2

B1 B3
p

(2.7)

in X and morphisms f : B3 → Z and g : Y → Z in X. For each i ∈ {0, 1, 2, 3},
define Ai := Bi ×Z Y , so that all the vertical squares in the diagram

A0 A2

A1 A3 Y

B0 B2

B1 B3 Z

g

f

(2.8)

are pullbacks. Since the bottom horizontal square of the cube in (2.8) is a
pushout, (2.6.2) implies that the top horizontal square is also a pushout. Thus
the pushout square (2.7) remains a pushout after base change along an arbitrary
morphism, as desired.

Since the main results of this note are about pointed objects, we make the
following mildly abusive convention:

Convention 2.9. We say that an ∞-category X has universal pushouts if X
has finite limits and pushouts, and pushouts in X are universal.

2.2 Statement of the James Splitting & Consequences

The James Splitting, originally proven in [19], provides a splitting of the space
ΩΣX after a single suspension. The goal of this subsection is to provide a
proof of the James Splitting that only relies on the universality of pushouts
and a few elementary computations involving the interaction between forming
suspensions, loop objects, and smash products.

Theorem 2.10 (Fundamental James Splitting). Let X be an ∞-category with
universal pushouts. For every pointed object X ∈ X∗, there is a natural equiv-
alence

ΣΩΣX ≃ ΣX ∨ Σ(X ∧ΩΣX) .
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Using the fact that Σ(X ∧ ΩΣX) ≃ X ∧ ΣΩΣX (Lemma 2.26) and iterating
the equivalence of Theorem 2.10, we see:

Corollary 2.11 (Fundamental James Splitting, redux). Let X be an ∞-
category with universal pushouts. For each pointed object X ∈ X∗ and integer
n ≥ 1, there is a natural equivalence

ΣΩΣX ≃




∨

1≤i≤n

ΣX∧i



 ∨ (X∧n ∧ ΣΩΣX) .

Notation 2.12. Let X be an∞-category with universal pushouts and X ∈ X∗

a pointed object. Assume that X∗ has countable coproducts. Passing to the
colimit as n→∞, the coproduct insertions

n∨

i=1

ΣX∧i → ΣΩΣX

provided by Corollary 2.11 provide a natural comparison morphism
∞∨

i=1

ΣX∧i → ΣΩΣX ,

which we denote by cX :
∨∞

i=1 ΣX
∧i → ΣΩΣX .

Warning 2.13. The comparison morphism cX need not be an equivalence. For
example, if X = Spc and X = S0 is the 0-sphere, then the map

cS0 :

∞∨

i=1

S1 → ΣΩΣS0 ≃
∨

i∈Z

S1

is not an equivalence. Even though both the source and target of cS0 are
countable wedges of copies of S1, the map cS0 is the summand inclusion induced
by the inclusion Z≥1 ⊂ Z.
We analyze when the comparison morphism cX is an equivalence in § 4.2.

Example 2.14. Let S be a scheme. Since colimits are universal in the ∞-
category H(S) of motivic spaces over S (Example 2.4), Theorem 2.10 implies
that for any pointed motivic space X ∈ H(S)∗ and integer n ≥ 1, we have
S1-James Splittings

ΣΩΣX ≃




∨

1≤i≤n

ΣX∧i



 ∨ (X∧n ∧ ΣΩΣX) .

Write Gm for the multiplicative group scheme over S. Since ΣGm ≃ P1
S ,

setting X = Gm we see that

ΣΩP1
S ≃




∨

1≤i≤n

ΣG∧i
m



 ∨ (G∧n
m ∧ ΣΩP1

S) . (2.15)
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Using the grading convention Sa,b := G∧b
m ∧ (S1)∧(a−b) for motivic spheres, we

can rewrite the equivalence (2.15) as

ΣΩP1
S ≃




∨

1≤i≤n

Si+1,i


 ∨ (Sn+1,n ∧ ΩP1

S) .

Remark 2.16. There is another suspension in motivic homotopy theory, given
by smashing with the multiplicative group scheme Gm. One would like an ana-
logue of the James Splitting in H(S)∗ for Gm-suspensions. For S = Spec(R),
Betti realization defines a functor H(Spec(R))→ SpcC2

to C2-spaces which
sends Gm to the sign representation circle Sσ and S1 to the circle with trivial
C2-action. Even though Betti realization is not an equivalence, it closely ties R-
motivic homotopy theory with C2-equivariant homotopy theory. In [14], Hill
studies the signed James construction in C2-equivariant unstable homotopy
theory, and shows that an analogue of the James Splitting holds for ΩσΣσX

after suspending by the regular representation sphere Sρ = S1 ∧ Sσ. This might
lead one to hope that there is an analogue of Hill’s result in motivic homotopy
theory which proves the James Splitting for ΩGm

ΣGm
X after P1-suspension;

at the moment, we are not aware of such a result.

2.3 Proof of the James Splitting

Before we prove Theorem 2.10, we need a few preliminary results. First, we give
a convenient expression for ΣΩΣX as the cofiber of the projection pr2 : X ×
ΩΣX → ΩΣX . This expression for ΣΩΣX is an immediate consequence of the
following:

Lemma 2.17. Let X be an ∞-category with universal pushouts. For every
pointed object X ∈ X∗, there exists a natural morphism aX : X×ΩΣX → ΩΣX
and a pushout square

X × ΩΣX ΩΣX

ΩΣX ∗ .

pr
2

aX

p

Proof. Write

X ∗

∗ ΣX
p

i2

i1

for the pushout square defining the suspension ΣX . The definition of ΣX
provides an equivalence between the points i1, i2 : ∗ → ΣX , hence there are
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natural pullback squares

X × ΩΣX ΩX ∗

X ∗ X

aX

y y

i2

i1

The claim now follows from Mather’s Second Cube Lemma applied to the cube

X × ΩΣX ΩΣX

ΩΣX ∗

X ∗

∗ ΣX .

pr
2

aX

i2

i2

i1

Warning 2.18. The morphism aX : X×ΩΣX → ΩΣX in Lemma 2.17 cannot
generally be identified with the second projection pr2 : X ×ΩΣX → ΩΣX . In-
deed, since X is assumed to have universal pushouts, there is a natural pushout
square

X × ΩΣX ΩΣX

ΩΣX ΣX × ΩΣX .

pr
2

pr
2

p

Moreover, the object ΣX × ΩΣX is not generally terminal in X.

Corollary 2.19. Let X be an ∞-category with universal pushouts. For every
pointed object X ∈ X∗, there is a natural equivalence

cofib(pr2 : X × ΩΣX → ΩΣX) ≃ ΣΩΣX .

Next, we give a convenient expression for the term Σ(X ∧ΩΣX) in the James
Splitting as the pushout of the span

X X × ΩΣX ΩΣX .
pr

1
pr

2

Our proof of this appeals to the following fact, which follows immediately from
the definitions.
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Lemma 2.20. Let X be an ∞-category with pushouts and a terminal object, and
let X,Y ∈ X∗ be pointed objects of X. Then the square

X ∨ Y Y

X ∗

(∗,idY )

(idX ,∗)

is a pushout square.

Proposition 2.21. Let X be an ∞-category with finite limits and pushouts.
Then for every pair of pointed objects X,Y ∈ X, there is a pushout square

X × Y Y

X Σ(X ∧ Y ) ,

pr
2

pr
1

where the morphisms X → Σ(X ∧ Y ) and Y → Σ(X ∧ Y ) are null.

Proof. Let C denote the pushout X ⊔X×Y Y ; we desire to show that C ≃
Σ(X ∧ Y ). We apply Lemma 1.14 to the commutative diagram

∗ ∗ ∗

X X ∨ Y Y

X X × Y Y .

(2.22)

Appealing to Lemma 2.20, taking pushouts of the rows of (2.22) results in the
span

C ∗ ∗ ,

which has pushout C. Alternatively, since the smash product X ∧ Y is the
cofiber of the comparison morphism X ∨ Y → X × Y , taking pushouts of the
columns of (2.22) results in the span

∗ X ∧ Y ∗ . (2.23)

By definition, the pushout of the span (2.23) is the suspension Σ(X ∧ Y ), so
Lemma 1.14 shows that

C ≃ Σ(X ∧ Y ) .

To conclude the proof, note that it follows from the definitions that the induced
morphisms

X → Σ(X ∧ Y ) and Y → Σ(X ∧ Y )

factor through the zero object ∗ ∈ X∗.
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Proposition 2.21 also provides a general formula for the cofiber cofib(pr2 : X ×
Y → Y ) that allows us to relate the expressions for ΣΩΣX and Σ(X ∧ ΩΣX)
from Corollary 2.19 and Proposition 2.21, respectively.

Corollary 2.24. Let X be an ∞-category with finite limits and pushouts.
Then, for every pair of pointed objects X,Y ∈ X∗:

(2.24.1) There is a natural equivalence cofib(pr2 : X × Y → Y ) ≃ ΣX ∨Σ(X ∧
Y ).

(2.24.2) There a natural equivalence Σ(X × Y ) ≃ Σ(X ∧ Y ) ∨ ΣX ∨ ΣY .

Proof. Consider the diagram

X × Y Y ∗

X Σ(X ∧ Y ) ΣY ∨ Σ(X ∧ Y )

∗ ΣX ∨ Σ(X ∧ Y ) ΣX ∨ ΣY ∨ Σ(X ∧ Y ) ,

pr
2

pr
1

p (2.25)

where the top-left square is the pushout square of Proposition 2.21 and all of
the morphisms in the bottom-right square are coproduct insertions. Since the
maps X → Σ(X∧Y ) and Y → Σ(X∧Y ) are null, the diagram (2.25) commutes
and the bottom-left and top-right squares of (2.25) are pushout squares. This
proves (2.24.1). To prove (2.24.2), note that the bottom-right square in the
diagram (2.25) is a pushout.

Corollaries 2.19 and 2.24 now combine to give the James Splitting.

Proof of Theorem 2.10. Combining Corollary 2.19 with Corollary 2.24 in the
case that Y = ΩΣX we see that there are natural equivalences

ΣΩΣX ≃ cofib(pr2 : X × ΩΣX → ΩΣX)

≃ ΣX ∨ Σ(X ∧ ΩΣX) .

The splitting

ΣΩΣX ≃




∨

1≤i≤n

ΣX∧i



 ∨ (X∧n ∧ ΣΩΣX)

of Corollary 2.11 is immediate from Theorem 2.10 combined with the following
elementary fact:

Lemma 2.26. Let X be an ∞-category with universal pushouts. For every pair
of pointed objects X,Y ∈ X∗, there is a natural equivalence

Σ(X ∧ Y ) ≃ X ∧ ΣY .
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Proof. Since pushouts in X are universal and colimits commute, the squares

X × Y X × ∗

X × ∗ X × ΣY

idX ×∗

idX ×∗ idX ×∗

idX ×∗

and

X ∨ Y X ∨ ∗

X ∨ ∗ X ∨ ΣY

idX ∨∗

idX ∨∗ idX ∨∗

idX ∨∗

are both pushouts in X∗. By the definition of the smash product and the facts
that colimits commute and X ∧ ∗ ≃ ∗, we see that

X ∧ ΣY = cofib(X ∨ ΣY → X × ΣY )

≃ cofib
(
(X ∨ ∗)

X∨Y
⊔ (X ∨ ∗)→ (X × ∗)

X×Y
⊔ (X × ∗)

)

≃ (X ∧ ∗)
X∧Y
⊔ (X ∧ ∗)

≃ Σ(X ∧ Y ) .

2.4 Ganea’s Lemma

Since the method of proof is similar to the arguments in this section, we close
with the following lemma of Ganea [9, Theorem 1.1]. This will not be used in
the sequel.

Lemma 2.27. Let X be an ∞-category with universal pushouts. Let f : X → Y

be a morphism in X∗, and write i : fib(f)→ X for the induced morphism from
the fiber of f . Then there is a natural equivalence

fib(cofib(i)→ Y ) ≃ Σ(ΩY ∧ fib(f)) .

Proof. By Proposition 2.21, it suffices to show that the square

ΩY × fib(f) fib(f)

ΩY fib(cofib(i)→ Y )

pr
2

pr
1

is a pushout. Consider the diagram

ΩY × fib(f) fib(f)

ΩY fib(cofib(i)→ Y ) ∗

fib(f) X

∗ cofib(i) Y ,

pr
2

pr
2

pr
1

i

(2.28)
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and note that each vertical square is a pullback square. The bottom horizontal
square in (2.28) is a pushout square by definition, so the assumption that
pushouts in X are universal implies that the top horizontal square is a pushout
as well.

3 The Hilton–Milnor Splitting

The main result of this section is the following:

Theorem 3.1 (Fundamental Hilton–Milnor Splitting). Let X be an∞-category
with universal pushouts and X,Y ∈ X∗. Then there is a natural equivalence

Ω(X ∨ Y ) ≃ ΩX × ΩY × ΩΣ(ΩX ∧ ΩY ) .

Before giving the proof of Theorem 3.1, we discuss some applications.

Example 3.2. Let S be a scheme. Since colimits are universal in the ∞-
category H(S) of motivic spaces over S (Example 2.4), Theorem 3.1 implies
that for any pointed motivic spaces X,Y ∈ H(S)∗ we have an equivalence

Ω(X ∨ Y ) ≃ ΩX × ΩY × ΩΣ(ΩX ∧ ΩY ) .

The Hilton–Milnor Splitting allows us to give a new description of the motivic
space ΩΣ(P1

r {0, 1,∞}):

Example 3.3. Let S be a quasicompact quasiseparated scheme. Write
{0, 1,∞} ⊂ P1

S for the closed subscheme given by the union of the images
of the closed embeddings S →֒ P1

S at 0, 1, and ∞, respectively. Using the
Morel–Voevodsky motivic purity Theorem [3, Theorem 7.6; 18, §7.5; 30, §3,
Theorem 2.23], Wickelgren [42, Corollary 3.2] showed that there is an equiva-
lence

Σ(P1
S r {0, 1,∞}) ≃ Σ(Gm ∨Gm)

in the ∞-category H(S)∗. Since ΣGm ≃ P1
S , setting X = Y = ΣGm in

Example 3.2 we see that there are equivalences

ΩΣ(P1
S r {0, 1,∞}) ≃ ΩΣ(Gm ∨Gm)

≃ ΩΣGm × ΩΣGm × ΩΣ(ΩΣGm ∧ ΩΣGm)

≃ ΩP1
S × ΩP1

S × ΩΣ(ΩP1
S ∧ ΩP1

S) .

Applying the James Splitting of Example 2.14 we see that for each integer
n ≥ 1, we can also express ΩΣ(P1

S r {0, 1,∞}) as

ΩP1
S × ΩP1

S × Ω








∨

1≤i≤n

ΩP1
S ∧ Si+1,i



 ∨
(
Sn+1,n ∧ (ΩP1

S)
∧2
)


 .
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We now turn to the proof of the Hilton–Milnor Splitting. We first show that
there is a fiber sequence

Σ(ΩY ∧ ΩX) X ∨ Y X × Y . (3.4)

We then show that the sequence (3.4) splits after taking loops. To do this, we
construct a section

Ω(X × Y )→ Ω(X ∨ Y ) ,

and use the fact that a fiber sequence of group objects with a section splits on
the level of underlying objects. After proving that (3.4) is a fiber sequence we
give a quick review of group objects and deduce Theorem 3.1 from the Splitting
Lemma (Lemma 3.12).
We start with the following observation:

Lemma 3.5. Let X be an ∞-category with finite limits and X,Y ∈ X∗. Then
there is a natural equivalence

fib((idX , ∗) : X → X × Y ) ≃ ΩY .

Next, we prove the existence of the fiber sequence (3.4).

Lemma 3.6. Let X be an ∞-category with universal pushouts and X,Y ∈ X∗.
Then there is a natural equivalence

fib(X ∨ Y → X × Y ) ≃ Σ(ΩY ∧ΩX) .

Proof. Write F := fib(X ∨ Y → X × Y ). By Proposition 2.21, it suffices to
show that there is a pushout square

ΩY × ΩX ΩX

ΩY F .

pr
2

pr
1

Consider the diagram

ΩY × ΩX ΩX

ΩY F ∗

∗ Y

X X ∨ Y X × Y .

pr
2

pr
1

(3.7)
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The right-most vertical square in (3.7) is a pullback by definition, and the front
and right vertical squares in the cube appearing in (3.7) are pullback squares by
Lemma 3.5. The back and left vertical squares in the cube appearing in (3.7)
are pullback squares by the Gluing Lemma for pullback squares. The bottom
horizontal square in (3.7) is a pushout square by definition, so the assumption
that pushouts in X are universal implies that the top horizontal square is a
pushout as well.

3.1 Reminder on group objects & the Splitting Lemma

In order to split the fiber sequence (3.4) after taking loops, we need a few basic
facts about group objects (also called E1-groups or grouplike E1-algebras) in
∞-categories, which we now review. We begin with a little motivation for the
definition of group objects as deloopings. For the genesis of these ideas, we
refer the reader to [1, 34, 35]. The reader should consult [23, §§4.1.2 & 5.2.6]
for a modern treatment.

Notation 3.8. We write ∆ for the category of nonempty linearly ordered finite
sets. As usual, given a simplicial object X : ∆op → X, we write Xn := X([n])
for the n-simplices of X .

Recall that the bar construction is a fully faithful functor from the category
of monoids to the category of simplicial sets. The essential image of the bar
construction consists of those simplicial sets X : ∆op → Set satisfying the
following conditions:

(1) We have X0 ≃ ∗.

(2) Segal condition: For each n > 0 and t ∈ [n], the square

X([n]) X({t < · · · < n})

X({0 < · · · < t}) X({t})

is a pullback square.

The face map d1 : X1 ×X1 ≃ X2 → X1 provides a multiplication on X1 with
unit given by the degeneracy map s0 : ∗ ≃ X0 → X1.
Since groups form a full subcategory of the category of monoids, the bar con-
struction also identifies the category of groups with a full subcategory of the
category of simplicial sets. For this it is better to use an alternative character-
ization of the existence of inverses: a monoid M is a group if and only if the
shear maps

M ×M →M ×M and M ×M →M ×M

(m,n) 7→ (m,mn) (m,n) 7→ (mn, n)
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are bijections. Translating this into simplicial sets one sees that the category of
groups is equivalent to the full subcategory of Fun(∆op,Set) spanned by the
simplicial sets X satisfying (1), (2), and:

(3) The induced squares

X({0 < 1 < 2}) X({0 < 2})

X({0 < 1}) X({0})

d1

d2

and

X({0 < 1 < 2}) X({0 < 2})

X({1 < 2}) X({0})

d1

d0

are pullback squares.

We emphasize that condition (3) is not implied by the Segal condition (2).
The following is the correct generalization of a group object in an arbitrary∞-
category. The point is to replace the Segal condition with a stronger condition
that also encompasses condition (3). See [22, Definitions 6.1.2.7 & 7.2.2.1].

Definition 3.9. Let X be an ∞-category. A group object in X is a simplicial
object G : ∆op → X such that:

(3.9.1) The object G0 is a terminal object of X.

(3.9.2) For each object S ∈∆op and partition S = T∪T ′ such that T∩T ′ = {t}
consists of a single element, the induced square

G(S) G(T ′)

G(T ) G({t})

is a pullback square in X.

In this case, we call G1 ∈ X the underlying object of G. We often identify a
group object by its underlying object. We write Grp(X) ⊂ Fun(∆op,X) for the
full subcategory spanned by the group objects.

The key example of a group object is loops on a pointed object. As a simplicial
object, ΩX can be written as the Čech nerve of the basepoint ∗ → X ; since we
use Čech nerves in § 4.1, we recall the definition here.
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Recollection 3.10. Let X be an∞-category with pullbacks, and let e : W →
X be a morphism in X. The Čech nerve Č(e) of e is the simplicial object

· · · W ×
X
W ×

X
W W ×

X
W W

in X. Here Č(e)n is the (n+1)-fold fiber product of W over X , each degeneracy
map is a diagonal morphism, and each face map is a projection. Note that the
morphism e : W → X defines a natural augmentation Č(e)→ X .

Lemma 3.11. Let X be an ∞-category with finite limits and X ∈ X∗. Then
ΩX naturally admits the structure of a group object of X.

Proof. Let U(X) denote the Čech nerve of the basepoint ∗ → X . Since
U(X)0 ≃ ∗, [22, Proposition 6.1.2.11] shows that the Čech nerve U(X) is
a group object of X. Since U(X)1 ≃ ΩX , it follows that the loop functor
Ω: X∗ → X∗ factors as the composite

X∗ Grp(X) X∗
U

of the functor given by the assignment X 7→ U(X) followed by the forgetful
functor Grp(X)→ X∗.

We leave the following Splitting Lemma as an amusing exercise for the reader.

Lemma 3.12 (Splitting Lemma). Let X be an ∞-category with finite limits, let

A B C
i p

be a fiber sequence of group objects in X, and write m : B × B → B for the
multiplication on B. For any section s : C → B of p on the level of underlying
pointed objects of X, the composite

A× C B ×B B
i×s m

is an equivalence in X∗.

We now prove the Fundamental Hilton–Milnor Splitting.

Proof of Theorem 3.1. By Lemmas 3.6 and 3.11, there is a fiber sequence

Ωfib(X ∨ Y → X × Y ) Ω(X ∨ Y ) ΩX × ΩY (3.13)

of group objects of X. Note that the map Ω(X ∨Y )→ ΩX ×ΩY has a section
defined by the composite

ΩX × ΩY Ω(X ∨ Y )× Ω(X ∨ Y ) Ω(X ∨ Y ) ,Ωi1×Ωi2 m
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where i1 : X → X ∨ Y and i2 : Y → X ∨ Y are the coproduct insertions,
and m is the multiplication coming from the group structure on Ω(X ∨ Y ).
By Lemma 3.12 the fiber sequence (3.13) splits, so applying Lemma 3.6 we see
that there are equivalences

Ω(X ∨ Y ) ≃ ΩX × ΩY × Ωfib(X ∨ Y → X × Y )

≃ ΩX × ΩY × ΩΣ(ΩX ∧ ΩY ) .

4 Connectedness & the James Splitting

The purpose of this section is explain how to use a connectedness argument to
show that if X is a pointed connected object of an ∞-topos, then the compar-
ison morphism

cX :

∞∨

i=1

ΣX∧i → ΣΩΣX

is an equivalence. To do this, we start by reviewing the basics of connectedness
in an ∞-topos (§ 4.1). We also prove some basic connectedness results that
we need in our proof of the metastable EHP sequence in Section 5. Subsec-
tion 4.2 proves the infinite James and Hilton–Milnor Splittings for connected
objects and explains how to deduce Wickelgren and William’s James Splitting
in motivic spaces over a perfect field from these results.

4.1 Connectedness and the Blakers–Massey Theorem

In this subsection, we review the basic properties of k-truncated and k-
connected morphisms in an∞-topos. We also recall the Blakers–Massey Theo-
rem (Theorem 4.15) and Freudenthal Suspension Theorem (Corollary 4.16) in
an ∞-topos, since our proof of the metastable EHP sequence in § 5 relies on
these results.
The reader interested in the details of the results reviewed here should consult
[2, §3.3; 22, §6.5.1] for connectedness results, and [2] for the Blakers–Massey
Theorem.

Definition 4.1. Let X be an ∞-topos. For each integer k ≥ −2, define k-
truncatedness for morphisms in X recursively as follows.

(4.1.1) A morphism f is (−2)-truncated if f is an equivalence.

(4.1.2) For k ≥ −1, a morphism f : X → Y is k-truncated if the diagonal
∆f : X → X ×Y X is (k − 1)-truncated.

An object X ∈ X is k-truncated if the unique morphism X → ∗ is k-truncated.
Write X≤k ⊂ X for the full subcategory spanned by the k-truncated objects.
The inclusion X≤k ⊂ X admits a left adjoint which we denote by τ≤k : X →
X≤k.
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Example 4.2. Let C be a small ∞-category equipped with a Grothendieck
topology τ , and let k ≥ −2 be an integer. Then a sheaf F ∈ Shτ (C) of spaces
on C with respect to τ is k-truncated if and only if F(c) is a k-truncated space for
every c ∈ C. That is, F is k-truncated if and only if F is a sheaf of k-truncated
spaces.

Remark 4.3. If X is an ∞-topos, then the full subcategory X≤0 spanned by
the 0-truncated objects is an ordinary topos, i.e., a category of sheaves of sets
on a Grothendieck site.

Recollection 4.4. Let X be an ∞-topos. A morphism f : X → Y in X is an
effective epimorphism if the augmentation Č(f)→ Y exhibits Y as the colimit
of the Čech nerve of f (see Recollection 3.10). Equivalently, f is an effective
epimorphism if and only if τ≤0(f) : τ≤0(X) → τ≤0(Y ) is an effective epimor-
phism in the ordinary topos X≤0 of 0-truncated objects of X [22, Proposition
7.2.1.14].

Example 4.5. A morphism f : X → Y in the ∞-topos Spc of spaces is an
effective epimorphism if and only if π0(f) : π0(X) → π0(Y ) is a surjection of
sets.

Definition 4.6. Let X be an ∞-topos. For each integer k ≥ −2, define k-
connectedness for morphisms in X recursively as follows.

(4.6.1) Every morphism is (−2)-connected.

(4.6.2) For k ≥ −1, a morphism f : X → Y is k-connected if f is an effective
epimorphism and the diagonal ∆f : X → X ×Y X is (k− 1)-connected.

A morphism f is ∞-connected if f is k-connected for all k ≥ −2.
An object X ∈ X is k-connected if the unique morphism X → ∗ is k-connected.

Remark 4.7. A morphism f is (−1)-connected if and only if f is an effective
epimorphism.

Definition 4.8. An ∞-topos X is hypercomplete if every ∞-connected mor-
phism in X is an equivalence.

Warning 4.9. Our conventions for connectedness follow those of Anel, Bieder-
mann, Finster, and Joyal [2, §3.3]. For k ≥ 0, a homotopy type X is k-connected
in our sense if and only if X is k-connected in the classical terminology [13, p.
346; 27, Chapter 10, §4; 41, §6.7]. In particular, X is 0-connected if and only if
X is path-connected. This convention differs from the classical one for maps:
an n-connected map in our sense is an (n+ 1)-connected map in the classical
sense.
Comparing to Lurie’s terminology [22, §6.5.1], an object or morphism is n-
connected in our sense if and only if it is (n+1)-connective in Lurie’s sense. One
of the benefits of our terminological choice is that the constant factors in many
connectedness estimates are eliminated (see Theorem 4.15 and Corollary 4.16).
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The following basic properties of k-connected morphisms are proven in [22,
§6.5.1].

Proposition 4.10. Let X be an ∞-topos and k ≥ −2 be an integer. Then:

(4.10.1) The class of k-connected morphisms in X is stable under composition.

(4.10.2) The class of k-connected morphisms in X is stable under pushout along
any morphism.

(4.10.3) The class of k-connected morphisms in X is stable under pullback along
any morphism.

(4.10.4) The class of k-connected objects in X is stable under finite products.

(4.10.5) Given morphisms f : X → Y and g : Y → Z in X where f is k-
connected, the morphism g is k-connected if and only if gf is k-
connected.

(4.10.6) Given a morphism f : X → Y in X with a section s : Y → X, the
morphism f is (k + 1)-connected if and only if the section s is k-
connected.

(4.10.7) An object X ∈ X is k-connected if and only if the k-truncation τ≤k(X)
of X is terminal in X.

Since the k-truncation functor τ≤k : X → X preserves filtered colimits, from
(4.10.7) we deduce:

Corollary 4.11. Let X be an ∞-topos and k ≥ −2 be an integer. Then the
class of k-connected objects of X is stable under filtered colimits.

In the ∞-topos of spaces, the following connectedness estimates are usually
done by appealing to cell structures. Such arguments are unavailable in an
arbitrary ∞-topos, so we deduce these connectedness estimates from Proposi-
tion 4.10.

Proposition 4.12. Let X be an ∞-topos, X,Y ∈ X∗ pointed objects, and
k, ℓ ≥ 0 integers. If X is k-connected and Y is ℓ-connected, then:

(4.12.1) The suspension ΣX is (k + 1)-connected.

(4.12.2) The coproduct insertion X → X ∨ Y is (ℓ− 1)-connected.

(4.12.3) The natural morphism X ∨ Y → X × Y is (k + ℓ)-connected.

(4.12.4) The smash product X ∧ Y is (k + ℓ+ 1)-connected.

(4.12.5) For each postive integer n, the n-fold smash product X∧n is (n(k +
1)− 1)-connected.
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Proof. For (4.12.1) note that since k-connected morphisms are stable under
pushout (4.10.2), the definition of the suspension ΣX as a pushout shows that
the basepoint ∗ → ΣX is k-connected. Hence ΣX is (k+1)-connected (4.10.6).
Second, (4.12.2) follows from the fact that the basepoint ∗ → Y is (ℓ − 1)-
connected (4.10.6), combined with the fact that (ℓ − 1)-connected morphisms
are stable under pushout (4.10.2). Third, (4.12.3) follows from the fact that
the basepoints ∗ → X and ∗ → Y are (k − 1)-connected and (ℓ− 1)-connected
(4.10.6), respectively, and a general fact about pushout-products of connected
morphisms [2, Corollary 3.3.7(4)].
Now we prove (4.12.4). Since (k + ℓ)-connected morphisms are stable under
pushout (4.10.2), by (4.12.1) and the pushout square

X ∨ Y X × Y

∗ X ∧ Y
p

defining the smash product X ∧ Y , we see that the basepoint ∗ → X ∧ Y is
(k + ℓ)-connected. Hence X ∧ Y is (k + ℓ+ 1)-connected (4.10.6).
Finally, (4.12.5) follows from (4.12.4) by induction.

Now we record a convenient fact about the interaction between connectedness
and pullbacks that we need in out proof of the metastable EHP sequence.

Proposition 4.13. Let X be an ∞-topos, ℓ ≥ −2 be an integer, and

A C B

A′ C′ B′

f

a c b

g

f ′ g′

be a commutative diagram in X. If a and b are ℓ-connected and c is (ℓ + 1)-
connected, then the induced morphism on pullbacks a×c b : A×CB → A′×C′ B′

is ℓ-connected.

Proof. Since ℓ-connected morphisms are stable under composition, by factor-
ing the induced morphism A ×C B → A′ ×C′ B′ as a composite of induced
morphisms

A×C B A′ ×C′ B A′ ×C′ B′ ,a×cid id×idb

it suffices to prove the claim in the special case B = B′ and the morphism
b : B → B′ is the identity. To prove the claim when b is the identity, first write
(idA, f) : A→ A×C′ C for the section of the projection A×C′ C → A induced
by the commutative square

A C

A C′ .

f

c

f ′a
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Consider the following commutative diagram of pullback squares

A×C B A×C′ B A′ ×C′ B B

A A×C′ C A′ ×C′ C C

A A′ C′ ,

y y y
g

(idA,f)
y y

c

a f ′

and notice that the composite middle horizontal map A→ C is f . Since c : C →
C′ is (ℓ+1)-connected, the projection A×C′C → A is (ℓ+1)-connected (4.10.3).
Hence the section (idA, f) : A→ A×C′C is ℓ-connected (4.10.6). Consequently,
the induced morphism A×C B → A×C′ B is ℓ-connected. Now note that since
a : A → A′ is ℓ-connected, the induced morphism A ×C′ B → A′ ×C′ B is ℓ-
connected. Hence the composite morphism A×C B → A′×C′ B is ℓ-connected,
as desired.

In particular, Proposition 4.13 shows that the class of ℓ-connected morphisms
in an ∞-topos is closed under finite products. Setting B = B′ = ∗ in Proposi-
tion 4.13 we deduce:

Corollary 4.14. Let X be an ∞-topos, ℓ ≥ −2 be an integer, and

A C

A′ C′

f

a c

f ′

be a commutative square in X. If a is ℓ-connected and c is (ℓ + 1)-connected,
then for every point x : ∗ → C, the induced morphism fibx(f) → fibcx(f

′) on
fibers is ℓ-connected.

We conclude this subsection by recalling the Blakers–Massey and Freudenthal
Suspension Theorems in the setting of ∞-topoi.

Theorem 4.15 (Blakers–Massey [2, Corollary 4.3.1]). Let X be an ∞-topos
and let

A C

B D

g

f

p

be a pushout square in X. If f is k-connected and g is ℓ-connected, then the
induced morphism A→ B ×D C is (k + ℓ)-connected.
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As in the classical setting, applying the Blakers–Massey Theorem to the
pushout defining the suspension immediately implies the Freudenthal Suspen-
sion Theorem.

Corollary 4.16 (Freudenthal Suspension Theorem). Let X be an ∞-topos,
and X ∈ X∗ a pointed k-connected object. Then the unit morphism X → ΩΣX
is 2k-connected.

4.2 The infinite James and Hilton–Milnor Splittings

We now explain how to use a connectedness argument to show that if X is a
pointed 0-connected object of an ∞-topos, then the comparison morphism

cX :

∞∨

i=1

ΣX∧i → ΣΩΣX

introduced in Notation 2.12 is an equivalence (Proposition 4.18). The James
Splitting gives us access to generalized Hopf invariants in this very general
setting, and implies the stable Snaith Splitting for ΩΣX [36]. We also prove the
infinite version of the Hilton–Milnor Splitting (Example 4.22). Using Morel’s
unstable A1-connectivity Theorem, we explain why these infinite splittings hold
in motivic spaces over a perfect field (Corollary 4.24). As an application, we
give a new description of ΩΣ2(P1

r {0, 1,∞}) (Example 4.25).
The key tool to prove all of these results is the following lemma about how
infinite James Splittings interact with localizations.

Lemma 4.17. Let Y be an∞-category, j : X →֒ Y a full subcategory, and assume
that the inclusion j admits a left adjoint L : Y→ X. Assume that:

(4.17.1) The∞-categories X and Y have universal pushouts and the∞-category
Y∗ has countable coproducts.

(4.17.2) The functor L : Y → X commutes with finite products and the forma-
tion of loop objects (e.g. L is left exact).

If X ∈ X∗ is a pointed object with the property that the comparison morphism

cj(X) :
∨

i≥1

ΣYj(X)∧i → ΣYΩYΣYj(X)

is an equivalence in Y∗, then the comparison morphism

cX :
∨

i≥1

ΣXX
∧i → ΣXΩXΣXX

is an equivalence in X∗.
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Proof. Since the localization L : Y→ X preserves the terminal object, the func-
tor L descends to the level of pointed objects. Moreover, since L preserves
finite products, the functor L : Y∗ → X∗ commutes with smash products. Since
the functor L : Y∗ → X∗ also commutes with the formation of loop objects, we
see that the morphism cX is equivalent to L(cj(X)). The assumption that the
morphism cj(X) is an equivalence completes the proof.

Proposition 4.18 (James Splitting). Let X be an ∞-topos. Then for each
0-connected pointed object X ∈ X∗, the natural comparison morphism

cX :
∨

i≥1

ΣX∧i → ΣΩΣX

is an equivalence in X∗.

Proof. Since every ∞-topos is a left exact localization of a presheaf ∞-topos
and presheaf ∞-topoi are hypercomplete (see Definition 4.8), by Lemma 4.17
we are reduced to the case that X is hypercomplete. That is, it suffices to show
that the morphism cX is ∞-connected.
To see this, notice that for each integer n ≥ 1, the summand inclusions of∨n

i=1 ΣX
∧i into

∨∞

i=1 ΣX
∧i and

ΣΩΣX ≃




∨

1≤i≤n

ΣX∧i


 ∨ (X∧n ∧ ΣΩΣX)

(Corollary 2.11) fit into a commutative triangle

∨n
i=1 ΣX

∧i
∨∞

i=1 ΣX
∧i

ΣΩΣX .

cX
(4.19)

Since X is 0-connected, combining (4.12.1), (4.12.4), (4.12.5) and Corollary 4.16
we see that X∧n ∧ΣΩΣX is n-connected. Hence (4.12.2) shows that the sum-
mand inclusion

n∨

i=1

ΣX∧i → ΣΩΣX

is (n − 1)-connected. Similarly, since X is 0-connected, combining (4.12.1),
(4.12.5), and Corollary 4.11 we see that the object

∨∞

i≥n+1 ΣX
∧i is (n + 1)-

connected. Again applying (4.12.2), we see that the summand inclusion

n∨

i=1

ΣX∧i →
∞∨

i=1

ΣX∧i
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is n-connected. The commutativity of the triangle (4.19) combined with
(4.10.5) show that the morphism

cX :
∨

i≥1

ΣX∧i → ΣΩΣX

is (n − 1)-connected. Since this is true for each integer n ≥ 1, we have shown
that morphism cX is ∞-connected, as desired.

Remark 4.20. Of course, in the proof of Proposition 4.18 we can further reduce
to the case X = Spc and the claim follows from the classical James Splitting.
The purpose of our proof is to provide an explaination that does not appeal to
the classical result but, rather, only uses basic manipulations available in an
∞-topos.

Proposition 4.21 (Hilton–Milnor Splitting, general version). Let X be an ∞-
category with universal pushouts and countable coproducts, and let X,Y ∈ X∗

be pointed objects.

(4.21.1) If the comparison morphism cY is an equivalence, then there is a nat-
ural equivalence of pointed objects

ΩX × ΩΣY × Ω


ΣΩX ∧

∨

j≥1

Y ∧j


 ∼−→ Ω(X ∨ ΣY ) .

(4.21.2) If the comparison morphisms cX and cY are equivalences, then there
is a natural equivalence of pointed objects

ΩΣX × ΩΣY × ΩΣ




∨

i,j≥1

X∧i ∧ Y ∧j



 ∼−→ ΩΣ(X ∨ Y ) .

Proof. For (4.21.1), first note that the Hilton–Milnor Splitting of Theorem 3.1
provides an equivalence

Ω(X ∨ ΣY ) ≃ ΩX × ΩΣY × ΩΣ(ΩX ∧ ΩΣY ) .

The claim now follows from the natural natural equivalences

Ω



ΣΩX ∧
∨

j≥1

Y ∧j



 ≃ Ω



ΩX ∧
∨

j≥1

ΣY ∧j



 (Lemma 2.26)

∼−→ Ω(ΩX ∧ΣΩΣY ) (cY is an equivalence)

≃ ΩΣ(ΩX ∧ΩΣY ) (Lemma 2.26)

Similarly, (4.21.2) follows from Lemma 2.26, (4.21.1), and the assumption that
cX :

∨
i≥1 ΣX

∧i → ΣΩΣX is an equivalence
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Example 4.22 (Hilton–Milnor Splitting). Let X be an∞-topos and let X,Y ∈
X∗ be pointed objects. By Proposition 4.18, the hypotheses of (4.21.1) are
satisfied if Y is 0-connected, and the hypotheses of (4.21.2) are satisfied if
both X and Y are 0-connected.

The next application is that the infinite James and Hilton–Milnor Splittings
hold for A1-0-connected motivic spaces over a perfect field. The infinite James
Splitting was first proven by Wickelgren and Williams using the James filtration
[43, Theorem 1.5]; the infinite Hilton–Milnor Splittings in this context is new.

Recollection 4.23. Let S be a scheme and n ≥ 0 an integer. A motivic space
X ∈ H(S) ⊂ Shnis(SmS) is A1-n-connected if X is an n-connected object of
the Nisnevich ∞-topos Shnis(SmS).

Corollary 4.24. Let k be a perfect field and let X and Y be pointed motivic
spaces over k.

(4.24.1) If X is A1-0-connected, then the natural comparison morphism

cX :
∨

i≥1

ΣX∧i → ΣΩΣX

is an equivalence in H(Spec(k))∗.

(4.24.2) If Y is A1-0-connected, then there is a natural equivalence of pointed
motivic spaces

ΩX × ΩΣY × Ω


ΣΩX ∧

∨

j≥1

Y ∧j


 ∼−→ Ω(X ∨ ΣY ) .

(4.24.3) If X and Y are A1-0-connected, then there is a natural equivalence of
pointed motivic spaces

ΩΣX × ΩΣY × ΩΣ




∨

i,j≥1

X∧i ∧ Y ∧j


 ∼−→ ΩΣ(X ∨ Y ) .

Proof. First note that (4.24.2) and (4.24.3) follow from Proposition 4.21 and
(4.24.1). To verify (4.24.1), note that since pushouts are universal in the ∞-
category H(Spec(k)) of motivic spaces over k (Example 2.4) and H(Spec(k))
is a localization of the ∞-topos Shnis(Smk) of Nisnevich sheaves on Smk, it
suffices to check that the motivic localization functor

Lmot : Shnis(Smk)→ H(Spec(k))

satisfies the hypotheses of Lemma 4.17. To see this, first note that over any
base scheme the motivic localization commutes with finite products [18, Corol-
lary 3.5]. Second, since the field k is perfect, Morel’s unstable A1-connectivity
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Theorem [29, Theorems 5.46 and 6.1] implies that motivic localization com-
mutes with the formation of loop objects [4, Theorem 2.4.1; 29, Theorem
6.46].

Example 4.25. Let k be a perfect field. Corollary 4.24 gives the following
variant on Example 3.3. Since ΣGm ≃ P1 is A1-0-connected, (4.24.3) provides
equivalences of pointed motivic spaces over k

ΩΣ2(P1
k r {0, 1,∞}) ≃ ΩΣ

(
P1

k ∨P1
k

)

≃ ΩΣP1
k × ΩΣP1

k × ΩΣ




∨

i,j≥1

(
P1

k

)∧(i+j)





≃ ΩS3,1 × ΩS3,1 × Ω




∨

i,j≥1

S2(i+j)+1,i+j



 .

We complete this section by constructing the Hopf maps that appear in the
metastable EHP sequence.

Construction 4.26 (Hopf maps). Let X be an ∞-topos and X a pointed
0-connected object of X. For each integer n ≥ 1, we define the Hopf map
hn : ΩΣX → ΩΣX∧n as the adjoint to the collapse map

ΣΩΣX ≃
∨

i≥1

ΣX∧i → ΣX∧n

induced by the James Splitting of Proposition 4.18.

5 The James filtration & metastable EHP sequence

In classical algebraic topology, the metastable EHP sequence is the statement
that the composite

X ΩΣX ΩΣX∧2h2

is a fiber sequence in a range depending on the connectedness of X , known as
the metastable range. Here the first map X → ΩΣX is the unit and h2 is the
Hopf map (Construction 4.26). For the higher Hopf maps hn : ΩΣX → ΩΣX∧n,
there is an analogous fiber sequence in a range

Jn−1(X) ΩΣX ΩΣX∧n ,hn

where Jn−1(X) is the (n− 1)st piece of the James filtration on ΩΣX .
This section is dedicated to a non-computational proof of the metastable EHP
sequence in an ∞-topos that only makes use of the Blakers–Massey Theorem
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and some basic connectedness results (see Theorem 5.19). In § 5.1 we review
the James filtration. In § 5.2 we refine the James Splitting to a splitting

ΣJn(X) ≃
n∨

i=1

ΣX∧i .

In § 5.3, we give our non-computational proof of the metastable EHP sequence
via the Blakers–Massey Theorem, and also record a computational proof for
posterity.

5.1 The James filtration

Classically, the James filtration {Jn(X)}n≥0 provides a multiplicative filtration
on the free monoid J(X) on a pointed space X , in the homotopical sense. At
the point-set level, J(X) can be presented as the free topological monoid on X ,
and Jn(X) can be identified the subspace of words of length at most n in
J(X). Concatenation of words then supplies {Jn(X)}n≥0 with the structure
of a filtered monoid. Since the trivial monoid and trivial group coincide, if X
is connected, then the free monoid J(X) on X coincides with the free group
ΩΣX on X .
In a general ∞-category, we can define the James filtration as follows. This
definition is provided in [7, Section 3] in the context of homotopy type theory;
the arguments made in [7, Section 3] are formal and valid in any ∞-topos.

Construction 5.1 (James filtration). Let X be an ∞-category with finite
products and pushouts, and let X ∈ X∗ be a pointed object. For each integer
n ≥ 0 we define a pointed object Jn(X) ∈ X∗ as well as morphisms

in : Jn(X)→ Jn+1(X) and αn : X × Jn(X)→ Jn+1(X)

in X∗ recursively as follows.

(5.1.1) We define J0(X) := ∗, J1(X) := X , the morphism i0 : ∗ → X is the
basepoint, and the morphism α0 : X×∗ → X is the projection pr1 : X×
∗ ∼−→ X .

(5.1.2) For n ≥ 2, we define Jn(X), in−1, and αn−1 by the pushout square

X × Jn−2(X)
Jn−2(X)
⊔ Jn−1(X) Jn−1(X)

X × Jn−1(X) Jn(X) ,p

in−1

αn−1

(5.2)

where: the top horizontal morphism is induced by the universal prop-
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erty of the pushout by the commutative square

Jn−2(X) Jn−1(X)

X × Jn−2(X) Jn−1(X) ,

in−2

(∗,id)

αn−2

and the left vertical morphism is induced by the universal property of
the pushout by the commutative square

Jn−2(X) Jn−1(X)

X × Jn−2(X) X × Jn−1(X) .

in−2

(∗,id) (∗,id)

id×in−2

For each positive integer n, define a morphism an : X
×n → Jn(X) as the com-

posite

X×n ≃ X×n−1 × J1(X) X×n−2 × J2(X) · · · Jn(X) .id×α1 id×α2
αn−1

Finally, define J(X) := colimn≥0 Jn(X).

Definition 5.3. Let X be an ∞-category with finite products and pushouts,
and let X ∈ X∗ be a pointed object. For each integer n ≥ 0 define a morphism
un : Jn(X)→ ΩΣX recursively as follows. The morphism u0 is the basepoint,
and the morphism u1 : X → ΩΣX is the unit. For n ≥ 2, the morphism un is
induced by the commutative square

X × Jn−2(X)
Jn−2(X)
⊔ Jn−1(X) Jn−1(X)

X × Jn−1(X) ΩΣX

un−1

m◦(u1×un−1)

where m : ΩΣX × ΩΣX → ΩΣX is the group multiplication.
The morphisms un induce a morphism u : J(X)→ ΩΣX .

Theorem 5.4 ([7, Section 6]). Let X be an ∞-topos and X ∈ X∗ a pointed
object. If X is 0-connected, then the morphism u : J(X)→ ΩΣX is an equiva-
lence.

Brunerie [7] gives an elementary proof of the following connectedness estimate.

Lemma 5.5 ([7, Proposition 4]). Let X be an ∞-topos, k ≥ 0 an integer, and
X ∈ X∗ a pointed k-connected object. Then the morphism in−1 : Jn−1(X) →
Jn(X) is (n(k + 1)− 2)-connected.
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Corollary 5.6. Let X be an ∞-topos, k ≥ 0 an integer, and X ∈ X∗ a
pointed k-connected object. Then for each integer n ≥ 0, the object Jn(X) is
k-connected.

Proof. If n = 0, then the claim is clear since J0(X) = ∗. If n > 0, then by
Lemma 5.5 the morphisms i0, . . . , in−1 are all (k − 1)-connected. Hence the
basepoint

in−1 · · · i0 : ∗ → Jn(X)

is (k − 1)-connected; equivalently, Jn(X) is k-connected (4.10.6).

Lemma 5.7 ([7, Proposition 6]). Let X be an ∞-topos, k ≥ 0 an integer, and
X ∈ X∗ a pointed k-connected object. Then the morphism un : Jn(X)→ ΩΣX
is ((n+ 1)(k + 1)− 2)-connected.

5.2 Splitting the James filtration

The purpose of this subsection is to prove the following splitting of the James
filtration, which we use in our proof of the metastable EHP sequence (Theo-
rem 5.19).

Proposition 5.8. Let X be an ∞-category with universal pushouts, and let
X ∈ X∗. Then there is a splitting

ΣJn(X) ≃
∨

1≤i≤n

ΣX∧i . (5.9)

If X is an ∞-topos and X is 0-connected, then under the map Σun : ΣJn(X)→
ΣΩΣX, the splitting (5.9) is an equivalence onto the first n factors of the
splitting ΣΩΣX ≃

∨
i≥1 ΣX

∧i of Proposition 4.18.

The proof of Proposition 5.8 requires some preliminaries. We need to relate the
cofiber of in to smash powers of X ; before doing so we need some preparatory
lemmas.

Lemma 5.10. Let X be an ∞-category with finite products and pushouts, and
let X,Y ∈ X∗. Then there is a cofiber sequence

Y cofib((idX , ∗) : X → X × Y ) X ∧ Y .

Proof. There is a map of cofiber sequences

X X ∗

X ∨ Y X × Y X ∧ Y ,

(idX ,∗) (5.11)

where the leftmost vertical map is the coproduct insertion. The cofiber of
the coproduct insertion X → X ∨ Y is Y , and the cofiber of the basepoint
∗ → X ∧ Y is X ∧ Y . To conclude, note that taking vertical cofibers in (5.11)
results in a cofiber sequence.
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The following is a straightforward application of Lemma 1.14.

Lemma 5.12. Let X be an ∞-category with pushouts and a terminal object and
let

A B

C D

be a commutative square in X∗. Then there is a natural equivalence

cofib
(
B ⊔A C → D

)
≃ cofib

(
cofib(A→ C)→ cofib(B → D)

)
.

We are now ready to show that cofib(in) ≃ X∧n+1.

Proposition 5.13. Let X be an ∞-category with universal pushouts, and let
X ∈ X∗. Then for each integer n ≥ 0, there is a natural equivalence

cofib(in : Jn(X)→ Jn+1(X)) ≃ X∧n+1 .

Moreover, the composite

X×n+1 Jn+1(X) X∧n+1an

is equivalent to the canonical map X×n+1 → X∧n+1.

Proof. We prove the claim by induction on n. For the base case, note that
since the morphism i0 is the basepoint ∗ → X , the cofiber of i0 is X . For the
inductive step we assume that cofib(in) ≃ X∧n+1 and show that cofib(in+1) ≃
X∧n+2. From the defining pushout square (5.2), we see that

cofib(in+1) ≃ cofib
(
X × Jn(X) ⊔Jn(X) Jn+1(X)→ X × Jn+1(X)

)
.

Applying Lemma 5.12 shows that

cofib(in+1) ≃ cofib




cofib(Jn(X)→ X × Jn(X))

cofib(Jn+1(X)→ X × Jn+1(X))




,

where the map of cofibers is induced by the map in : Jn(X) → Jn+1(X). By
Lemma 5.10, there is a cofiber sequence

X → cofib(Jn(X)→ X × Jn(X))→ X ∧ Jn(X) ;

moreover, the map in : Jn(X)→ Jn+1(X) induces a map of cofiber sequences

X cofib(Jn(X)→ X × Jn(X)) X ∧ Jn(X)

X cofib(Jn+1(X)→ X × Jn+1(X)) X ∧ Jn+1(X) .

idX ∧in (5.14)
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Since the leftmost vertical map is the identity, taking vertical cofibers in the
map of cofiber sequences (5.14) produces an equivalence between the vertical
cofibers of the middle and right vertical maps. Since the cofiber of the middle
vertical map is cofib(in+1), we find that

cofib(in+1) ≃ cofib
(
idX ∧in : X ∧ Jn(X)→ X ∧ Jn+1(X)

)
.

Since pushouts in X are universal we have a natural equivalence

cofib(idX ∧in : X∧Jn(X)→ X∧Jn+1(X)) ≃ X∧cofib(in : Jn(X)→ Jn+1(X))

By the inductive hypothesis, cofib(in) ≃ X∧n+1, so cofib(in+1) ≃ X∧n+2, as
desired.

Next we split the term

Σ
(
X × Jn−1(X)

Jn−1(X)
⊔ Jn(X)

)

in the pushout square (5.2) defining ΣJn+1(X) and prove Proposition 5.8.

Lemma 5.15. Let X be an ∞-category with universal pushouts, X ∈ X∗, and
n ≥ 1 an integer. Then there is a natural equivalence

Σ
(
X × Jn−1(X)

Jn−1(X)
⊔ Jn(X)

)
≃ Σ(X ∧ Jn−1(X)) ∨ ΣX ∨ ΣJn(X) .

Proof. Since suspension preserves pushouts, we have a pushout square

ΣJn−1(X) ΣJn(X)

Σ(X × Jn−1(X)) Σ
(
X × Jn−1(X)⊔Jn−1(X) Jn(X)

)
.

p

(5.16)

Under the equivalence

Σ(X × Jn−1(X)) ≃ Σ(X ∧ Jn−1(X)) ∨ ΣX ∨ ΣJn−1(X)

of Corollary 2.24, the left vertical map in (5.16) is the coproduct insertion.
Hence on pushouts we see that

Σ
(
X × Jn−1(X)

Jn−1(X)
⊔ Jn(X)

)
≃ Σ(X ∧ Jn−1(X)) ∨ ΣX ∨ ΣJn(X) .

Proof of Proposition 5.8. We prove the claim by induction on n. The base
case where n = 1 is obvious. For the inductive step, assume that n ≥ 1 and
ΣJn(X) ≃

∨n
i=1 ΣX

∧n. By Proposition 5.13 we have a cofiber sequence

Jn(X) Jn+1(X) X∧n+1 ,in
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so the inductive hypothesis and the duals of Lemmas 3.11 and 3.12, it suffices
to define a retraction

rn : ΣJn+1(X)→ ΣJn(X)

of the map Σin.
We construct the retractions rn : ΣJn+1(X) → ΣJn(X) inductively. For the
base case, the retraction r0 : ΣX → ∗ of Σi0 is the unique morphism. For
the inductive step, assume that n ≥ 1 and we have constructed a retraction
rn−1 : ΣJn(X)→ ΣJn−1(X) of Σin−1; we use this to construct a retraction rn
of Σin. Since suspension preserves pushouts, suspending the defining pushout
square (5.2) yields a pushout square

Σ
(
X × Jn−1(X)

Jn−1(X)
⊔ Jn(X)

)
ΣJn(X)

Σ(X × Jn(X)) ΣJn+1(X) .
p

Σin

Σαn

(5.17)

In order to define a retraction of Σin, it suffices to define a retraction of the
left vertical map in (5.17), i.e., it suffices to define a retraction

Σ(X × Jn(X))→ Σ
(
X × Jn−1(X)

Jn−1(X)
⊔ Jn(X)

)
.

By Corollary 2.24 and Lemma 5.15, we have equivalences

Σ(X × Jn(X)) ≃ Σ(X ∧ Jn(X)) ∨ ΣX ∨ ΣJn(X)

and

Σ
(
X × Jn−1(X)

Jn−1(X)
⊔ Jn(X)

)
≃ Σ(X ∧ Jn−1(X)) ∨ ΣX ∨ ΣJn(X) .

Moreover, the left vertical map in (5.17) is induced by the suspensions of the
identity on X , identity on Jn(X), and the map in : Jn−1(X)→ Jn(X). Under
the identifications

Σ(X ∧ Jn−1(X)) ≃ X ∧ ΣJn−1(X) and Σ(X ∧ Jn(X)) ≃ X ∧ΣJn(X)

of Lemma 2.26, we see that the map

Σ(X ∧ Jn−1(X)) ≃ X ∧ ΣJn−1(X) X ∧ ΣJn(X) ≃ Σ(X ∧ Jn(X))
idX ∧rn−1

is a retraction of Σ(idX ∧in−1). Hence the map

Σ(X ∧ Jn(X)) ∨ΣX ∨ ΣJn(X)

Σ(X ∧ Jn−1(X)) ∨ΣX ∨ ΣJn(X)

(idX ∧rn−1)∨id∨ id

supplies the desired retraction of the left vertical map in (5.17).
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5.3 Proofs of the metastable EHP sequence

In this subsection, we present two proofs of the metastable EHP sequence in
the setting of ∞-topoi. Before making a precise statement of the main result,
we need the following easy lemma.

Lemma 5.18. Let X be an ∞-topos, X ∈ X∗ be a pointed 0-connected object,
and n ≥ 1 an integer. Then the composite

Jn−1(X) ΩΣX ΩΣX∧nun hn

is null. Here hn is the Hopf map of Construction 4.26.

Proof. It suffices to prove the corresponding statement on adjoints: in other
words, we need to show that the composite

ΣJn−1(X) ΣΩΣX ΣX∧nΣun

is null. This is an immediate consequence of Proposition 5.8.

We can now state the metastable EHP sequence.

Theorem 5.19 (metastable EHP sequence). Let X be an ∞-topos, k ≥ 0 an
integer, and X ∈ X∗ a pointed k-connected object. Then for every integer n ≥ 1,
the morphism Jn−1(X)→ fib(hn) induced by Lemma 5.18 is ((n+1)(k+1)−3)-
connected.

Remark 5.20. The metastable EHP sequence for ∞-topoi of hypersheaves
on an ordinary site with enough points proven by Asok–Wickelgren–Williams
[4, Proposition 3.1.4] is a special case of Theorem 5.19.

The first proof of Theorem 5.19 we present is internal to ∞-topoi, and only
uses basic facts about connectedness and the James construction, as well as the
Blakers–Massey Theorem. The second reduces to the ∞-topos Spc of spaces,
then uses the homology Whitehead Theorem and Serre spectral sequence to give
a calculational proof of the metastable EHP sequence in the classical setting.
Both perspectives are valuable, and we present the second here in part because
the calculational proof of the metastable EHP sequence does not seem to be
easy to locate in the literature.

Internal proof of Theorem 5.19. First we show that it suffices to prove the
claim where we replace fib(hn) by the fiber of the natural morphism Jn(X)→
X∧n. Observe that we have a commutative square

Jn(X) X∧n

ΩΣX ΩΣX∧n ,

un

hn

(5.21)
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where the right vertical morphism is the unit. Since X is k-connected, the
morphism

un : Jn(X)→ ΩΣX

is ((n + 1)(k + 1) − 2)-connected (Lemma 5.7) and X∧n is (n(k + 1) − 1)-
connected (4.12.5). By the Freudenthal Suspension Theorem (Corollary 4.16)
the unit morphism X∧n → ΩΣX∧n is 2(n(k + 1)− 1)-connected. Since n ≥ 1,
we have that

2(n(k + 1)− 1) ≥ (n+ 1)(k + 1)− 2 ,

so that both of the vertical morphisms in (5.21) are ((n+1)(k+1)−2)-connected.
Applying Corollary 4.14 to the square (5.21), we see that the induced morphism
on horizontal fibers

fib(Jn(X)→ X∧n)→ fib(hn)

is ((n + 1)(k + 1) − 3)-connected. Therefore, to prove that the morphism
Jn−1(X) → fib(hn) is ((n + 1)(k + 1) − 3)-connected, it suffices to show that
the induced morphism

Jn−1(X)→ fib(Jn(X)→ X∧n) (5.22)

is ((n+ 1)(k + 1)− 3)-connected.
Since X is k-connected, Jn−1(X) is k-connected (Corollary 5.6) and the mor-
phism

in−1 : Jn−1(X)→ Jn(X)

is (n(k+1)−2)-connected (Lemma 5.5). Applying the Blakers–Massey Theorem
(Theorem 4.15) to the cofiber sequence

Jn−1(X) Jn(X)

∗ X∧n

in−1

p

provided by Proposition 5.13, we see that morphism (5.22) is ((n+1)(k+1)−3)-
connected.

Computational proof of Theorem 5.19. Let m := (n+1)(k+1)− 3; we need to
show that the map

Jn−1(X)→ fib(hn)

is m-connected. The following two facts allow us to reduce to proving the claim
in the case that X = Spc.

(1) If the conclusion of Theorem 5.19 holds for the∞-topos Spc, then it holds
for any presheaf ∞-topos.

(2) If L : Y→ X is a left exact left adjoint between ∞-topoi, then L preserves:
suspensions, loops, smash products, fibers, the James filtration, and m-
connectedness (this last fact is [22, Proposition 6.5.1.16]).
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Now we prove the claim for X = Spc. The claim is trivial if n = 1, so assume
that n ≥ 2. Since X is k-connected by assumption, the smash power X∧n is
(nk + n− 1)-connected (4.12.5). Since ΩΣX∧n is simply-connected, the Serre
spectral sequence for (integral) homology has E2-page

E2
p,q = Hp(ΩΣX

∧n; Hq(fib(hn))) ∼= Hp(ΩΣX
∧n)⊗Hq(fib(hn)) .

Since
Hp(ΩΣX

∧n) ∼=
⊕

i≥0

H̃p(X
∧n)⊗i ,

and H̃p(X
∧n)⊗i becomes nontrivial in degree i(nk + n+ 2), we find that

Hp(ΩΣX
∧n) ∼= Hp(X

∧n) for p < 2(nk + n+ 2) .

In particular, E2
p,0 = Hp(X

∧n) for p < 2(nk + n+ 2). Consequently, the Serre
spectral sequence has no nontrivial differentials off bidegrees (p, 0) with p <

2(nk + n+ 2).
The E2-page of this spectral sequence is very simple if p+ q < (n+ 1)(k + 1):
in this range, E2

p,q vanishes unless one of p or q is zero, in which case

E2
p,0 = Hp(X

∧n) and E2
0,q = Hq(fib(hn))

(note that (n+ 1)(k + 1) ≤ 2(nk + n+ 2)). Recall that for p < 2(nk + n+ 2),
the Serre spectral sequence has no nontrivial differentials off bidegrees (p, 0).
Moreover, for q < (n + 1)(k + 1) − 1, are also no nontrivial differentials with
target in bidegree (0, q). Consequently, for

p+ q < (n+ 1)(k + 1)− 2 ,

we find that the Serre spectral sequence collapses at the E2-page, and therefore
that

H̃∗(ΩΣX) ∼= H̃∗(fib(hn))⊕ H̃∗(ΩΣX
∧n) for ∗ < (n+ 1)(k + 1)− 2 .

The map Jn−1(X) → fib(hn) then induces a homology equivalence in degrees
< (n+ 1)(k + 1)− 2. We conclude by the homology Whitehead Theorem.

Remark 5.23. In the case that n = 2 and X = Spc, the computational proof
of the metastable EHP sequence given here reduces to the proof presented in
[4, Proposition 3.1.2].
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