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Abstract

Let 𝑃 be a poset. We define a new homotopy theory of suitably nice 𝑃-stratified topological
spaces with equivalences on strata and links inverted. We show that the exit-path construction
of MacPherson, Treumann, and Lurie defines an equivalence from our homotopy theory of 𝑃-
stratified topological spaces to the ∞-category of ∞-categories with a conservative functor to
𝑃. This proves a stratified form of Grothendieck’s homotopy hypothesis, verifying a conjecture
of Ayala–Francis–Rozenblyum. Our homotopy theory of stratified spaces has the added benefit
of capturing all examples of geometric interest: conically stratified spaces fit into our theory, and
the Ayala–Francis–Tanaka–Rozenblyum homotopy theory of conically smooth stratified spaces
embeds into ours.
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0 Introduction
Let 𝑇 be a topological space. Classically, there are two approaches to understanding the algebraic
topology of 𝑇. On the one hand, we can work directly with the genuine topological space 𝑇 and
think about homotopy classes of maps to 𝑇, homotopy groups, etc. On the other hand, we can work
with a more combinatorial object: the singular simplicial set or fundamental∞-groupoid of 𝑇. This
combinatorial object parametrizes points of 𝑇, paths in 𝑇, homotopies of paths, etc. Grothendieck’s
celebrated homotopy hypothesis, established by Kan and Quillen [29; 30; 31; 32; 33; 42], asserts that
these two perspectives are equivalent. The equivalence between the homotopy theories of topological
spaces and simplicial sets is at the foundation of modern homotopy theory for a good reason: both
perspectives are of great utility. Being able to think about homotopy types as topological spaces gives
access to many examples and structures coming from the geometry of manifolds. On the other hand,
the combinatorial framework of simplicial sets provides a rich context in which to do algebra in the
setting of homotopy theory (e.g., study structured ring spectra).

The purpose of this article is to put the homotopy theory of stratified spaces on a similarly good
footing. One peculiarity is that for a long time only a robust ‘combinatorial’ approach to the homotopy
theory of stratified spaces existed. The combinatorial approach originates from ideas of MacPherson
that came out of studying manifolds with singularities and constructible sheaves. MacPherson ob-
served that a constructible sheaf of vector spaces on a (nice) stratified space 𝑇 is equivalent to a a
representation of the exit-path category of 𝑇. To explain this, consider the simple example of the unit
interval [0, 1]with stratification {0} ⊂ [0, 1]. Let 𝐹 be a sheaf on [0, 1] that is locally constant on (0, 1],
i.e., constructible with respect to the stratification. Since 𝐹|(0,1] is locally constant, each path between
points 𝑠, 𝑡 ∈ (0, 1] defines an isomorphism between stalks 𝐹𝑠 ≅ 𝐹𝑡. Using these isomorphisms and the
fact that every open neighborhood of 0 intersects (0, 1], one can define a specalization map 𝐹0 → 𝐹1
relating the stalks of 𝐹 at 0 and 1. These three pieces of data completely determine the constructible
sheaf 𝐹. That is, constructible sheaves on {0} ⊂ [0, 1] are representations of the A2-quiver • → •.

More generally, if 𝑇 is a topological space with a suitably nice stratification by a poset 𝑃, then
we can associate to 𝑇 its exit-path∞-category with objects points of 𝑇, with 1-morphisms exit paths
flowing from lower to higher strata (and once they exit a stratum are not allowed to return), with
2-morphisms homotopies of exit-paths respecting stratifications, etc. The adjective ‘suitably nice’ is
quite important here because, while the construction of the fundamental∞-groupoid makes sense
for any topological space, if the stratification is not sufficiently nice, then exit paths can fail to suitably
compose and this informal description cannot be made to actually define an∞-category. This is part
of an overarching problem: there does not yet exist a homotopy theory of stratified spaces that is
simple to define, encapsulates examples from topology, and has excellent formal properties. One of
the goals of this paper is to resolve this matter.

Treumann [48], Woolf [50], Lurie [HA, Appendix A], and Ayala–Francis–Rozenblyum [3, §1]
have all worked to realizeMacPherson’s exit-path construction under a variety of point-set topological
assumptions. In various forms, Ayala–Francis–Rozenblyum [3, Conjectures 0.0.4 & 0.0.8], Barwick,
and Woolf have all conjectured that the exit-path construction defines a an equivalence of∞-cate-
gories from suitably nice stratified spaces (with stratified homotopies inverted) to∞-categories with
a conservative functor to a poset. The main goal of this paper is to prove this conjecture.

There is already strong evidence for the power of having both topological and combinatorial
approaches to stratified homotopy theory on the same footing. On the one hand, Ayala–Francis–
Tanaka–Rozenblyum have made extensive use of explicit topological methods to study manifolds
with singularities and their factorization homology [2; 3; 4; 5]. On the other hand, in joint work with
Barwick and Glasman [9], we used the combinatorial perspective on stratified spaces to associate to
each variety an ‘exit-path category’ for the étale topology. The combinatorial perspective is necessary
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here because ‘differential-topological’ constructions of exit-path ∞-categories are not available in
positive-characteristic algebraic geometry. This étale exit-path category is a powerful globalization of
the absolute Galois groups of a field. For example, it gives rise to a new and concrete definition of the
étale homotopy type of Artin–Mazur–Friedlander [1; 19]. Moreover, much like how the Neukirch–
Uchida theorem shows that the absolute Galois group is a complete invariant of number fields [39; 40;
49], the étale exit-path category is a complete invariant of the varieties that appear in Grothendieck’s
anabelian conjecture [21].

0.1 The stratified homotopy hypothesis
In order to state our stratified homotopy hypothesis, it is useful to get a better understanding of what
kind of data should determine a stratified space. A stratification of a topological space 𝑇 by the poset
{0 < 1} is given by a closed subspace 𝑇0 ⊂ 𝑇 and its open complement 𝑇1 ≔ 𝑇 ∖ 𝑇0. It is natural to
ask: given the topological spaces 𝑇0 and 𝑇1, what extra data do we need to reconstruct the stratified
space𝑇 (up to stratified homotopy equivalence)? Roughly, the answer is gluing information called the
(homotopy) link between the 0-th and 1-st strata. Introduced by Quinn [43], the link Link(𝑇0, 𝑇1) is
defined as the space of paths 𝛾∶ [0, 1] → 𝑇 such that 𝛾(0) ∈ 𝑇0 and for all 𝑠 > 0 we have 𝛾(𝑠) ∈ 𝑇1.
Evaluation at 0 and 1 define maps Link(𝑇0, 𝑇1) → 𝑇0 and Link(𝑇0, 𝑇1) → 𝑇1, respectively. In nice
situations, the stratified space 𝑇 can be recovered as a homotopy pushout of the resulting span

𝑇0 ← Link(𝑇0, 𝑇1) → 𝑇1

[43, §2]. For more general stratifications, the idea is that stratified spaces can be reconstructed from
the data of all of their strata and all possible links relating strata.

To state our result, we introduce somenotation.Given a poset𝑃, wewriteTop/𝑃 for the category of
𝑃-stratified topological spaces (see Definition 1.2.3). Lurie’s exit-path construction defines a functor
Sing𝑃 ∶ Top/𝑃 → sSet/𝑃 from 𝑃-stratified spaces the category of simplicial sets over (the nerve of) 𝑃
(see §1.2). Write Topex

/𝑃 ⊂ Top/𝑃 for the full subcategory of those 𝑃-stratified topological spaces 𝑇 for
which Lurie’s exit-path simplicial set Sing𝑃(𝑇) is an∞-category. The∞-categories that arise in this
way have a special property: the fibers of the structure morphism to 𝑃 are given by the fundamental
∞-groupoids of the strata. In particular, every morphism in each fiber is invertible. Equivalently, the
structure morphism is a conservative functor.We write Str𝑃 for the∞-category of∞-categories over
(the nerve of) 𝑃 such that the structure morphism is conservative. We refer to Str𝑃 as the∞-category
of abstract 𝑃-stratified homotopy types.

Our main result provides an affirmative answer to a conjecture of Ayala–Francis–Rozenblyum [3,
Conjectures 0.0.4 & 0.0.8]:

0.1.1 Theorem (stratified homotopy hypothesis; see Theorem 3.2.4 and Corollary 3.3.3). Let 𝑃 be a
poset. Lurie’s exit-path construction defines an equivalence of∞-categories

Sing𝑃 ∶ Top
ex
/𝑃 [(

maps inducing weak homotopy
equivalences on strata and links)

−1
] ⥲ Str𝑃

from the∞-category obtained from Topex
/𝑃 by inverting maps that induce weak homotopy equivalences

on strata and links to the∞-category Str𝑃 of abstract 𝑃-stratified homotopy types.

In particular, every∞-category with a conservative functor to a poset arises as the exit-path∞-cat-
egory of a stratified topological space.

A key consequence of our stratified homotopy hypothesis is that the Ayala–Francis–Tanaka–
Rozenblyum homotopy theory of conically smooth stratified spaces [3; 5, §3] embeds into ours. See
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Comparison 3.4.2 for details. A major benefit of our homotopy theory of stratified spaces is that all
conically stratified topological spaces fit into our framework (see (1.2.8)). Topologically stratified spaces
in the sense of Goresky–MacPherson [20, §1.1], in particular all Whitney-stratified spaces [35; 47],
are conically stratified. Thus our homotopy theory captures most, if not all, examples of differential-
topological interest. On the other hand, for a long time it was unknownwhether or not everyWhitney-
stratified space admits a conically smooth structure [3, Conjecture 0.0.7]. Only recently, Nocera and
Volpe have shown that Whitney-stratified spaces admit conically smooth atlases [41, Theorem 2.7].

0.2 Proof outline
ProvingTheorem 0.1.1 requires workingwith explicitmodel categories of stratified topological spaces
and simplicial sets and reinterpreting the∞-category Str𝑃 in a way that relates to the links of stratified
topological spaces. To do this, we make use of Douteau’s recent thesis and subsequent work [13; 14;
15; 16]. Douteau’s works realizes the following key insight of Henriques [24, §4.7; 25]: while checking
equivalences after passing to exit-path∞-categories is only reasonable for suitably nice 𝑃-stratified
topological spaces, a morphism of suitably nice 𝑃-stratified topological spaces is an equivalence on
exit-path∞-categories if and only if it induces an equivalence on all spaces of sections over geometric
realizations of linearly ordered finite subsets of 𝑃. Moreover, the latter definition in terms of these
‘higher order links’ works well for all stratified topological spaces.

Precisely, let sd(𝑃) denote the subdivision of 𝑃, that is, the poset of linearly ordered finite subsets
Σ ⊂ 𝑃. There is a right adjoint ‘nerve’ functor

N𝑃 ∶ Top/𝑃 → Fun(sd(𝑃)op, sSet)
𝑇 ↦ [Σ ↦ SingMap/𝑃(|Σ| , 𝑇)]

from the category of 𝑃-stratified topological spaces to the category of simplicial presheaves on sd(𝑃);
see Notation 1.3.1. Douteau proves that the projective model structure transfers to Top/𝑃 along N𝑃,
so that a morphism 𝑓∶ 𝑇 → 𝑆 in Top/𝑃 is a weak equivalence (resp., fibration) if and only if for every
Σ ∈ sd(𝑃), the induced map

Map/𝑃(|Σ| , 𝑇) → Map/𝑃(|Σ| , 𝑆)
on topological spaces of sections over the realization ofΣ is a weak homotopy equivalence (resp., Serre
fibration). Even better, the resulting Quillen adjunction Fun(sd(𝑃)op, sSet) ⇄ Top/𝑃 is a simplicial
Quillen equivalence of combinatorial simplicial model categories (Theorem 1.3.5). This means that
the underlying∞-category of the Douteau–Henriques model structure on Top/𝑃 is equivalent to the
∞-category Fun(sd(𝑃)op,Gpd∞) of presheaves of∞-groupoids on the subdivision sd(𝑃).

In joint work with Barwick and Glasman, we proved that a similarly-defined ‘nerve’ functor

Str𝑃 → Fun(sd(𝑃)op,Gpd∞)
𝑋 ↦ [Σ ↦ Fun/𝑃(Σ,𝑋)]

expresses the∞-category Str𝑃 of abstract 𝑃-stratified homotopy types as an accessible localization of
Fun(sd(𝑃)op,Gpd∞) [9,Theorem 2.7.4].We also explicitly identify the essential image of this functor
(see §1.1). Combining these two works we show:

0.2.1 Theorem (Theorem 1.3.12). Let 𝑃 be a poset. Then the∞-category Str𝑃 of abstract 𝑃-stratified
homotopy types is equivalent to an ω-accessible localization of the underlying∞-category of the combi-
natorial simplicial model category Top/𝑃 in the Douteau–Henriques model structure.
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That is, the∞-category Str𝑃 can be obtained from the ordinary category Top/𝑃 of 𝑃-stratified topo-
logical spaces by inverting a class of weak equivalences.

To prove Theorem 0.1.1, we need to write down functors from homotopy theories of stratified
topological spaces into Str𝑃; to do so, it is convenient to present Str𝑃 as the underlying∞-category
of a model category. Consider the left Bousfield localization of the Joyal model structure inherited
on the overcategory sSet/𝑃 obtained by inverting all simplicial homotopies 𝑋 × Δ1 → 𝑌 respecting
the stratifications of 𝑋 and 𝑌 by 𝑃 (see Definition 2.1.2). We call the resulting model structure on
sSet/𝑃 the Joyal–Kanmodel structure. Surprisingly, the Joyal–Kanmodel structure sharesmany of the
excellent formal properties of the Kan model structure that the Joyal model structure lacks; namely,
the Joyal–Kan model structure is simplicial. The following results summarize the main features of the
Joyal–Kan model structure and its relation to the∞-category Str𝑃.

0.2.2Theorem. Let 𝑃 be a poset.

(0.2.2.1) The Joyal–Kanmodel structure on sSet/𝑃 is left proper, combinatorial, and simplicial. The cofi-
brations are the monomorphisms and the fibrant objects are the∞-categories 𝑋 over 𝑃 such
that the structure morphism 𝑋 → 𝑃 is a conservative functor (Propositions 2.1.3 and 2.2.4
andTheorem 2.5.10).

(0.2.2.2) If 𝑓∶ 𝑋 → 𝑌 a morphism in sSet/𝑃 and all of the fibers of 𝑋 and 𝑌 over points of 𝑃 are Kan
complexes (e.g.,𝑋 and 𝑌 are fibrant objects), then 𝑓 is an equivalence in the Joyal–Kan model
structure if and only if 𝑓 is an equivalence in the Joyal model structure (Proposition 2.5.4).

0.2.3Theorem (Corollary 2.5.11). Let 𝑃 be a poset. Then the underlying∞-category of the Joyal–Kan
model structure on sSet/𝑃 is the∞-category Str𝑃 of abstract 𝑃-stratified homotopy types.

The Joyal–Kan model structure gives us the explicit control we need to prove the straitifed homo-
topy hypothesis (Theorem 0.1.1).
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0.3 Terminology & notations
0.3.1. We use the language and tools of higher category theory, particularly in the model of quasicat-
egories, as defined by Boardman–Vogt and developed by Joyal and Lurie [HTT; HA].

(1) We write sSet for the category of simplicial sets and Map ∶ sSetop × sSet → sSet for the internal-
Hom in simplicial sets.

(2) To avoid confusion, we call weak equivalences in the Joyal model structure on sSet Joyal equiva-
lences and we call weak equivalences in the Kan model structure on sSet Kan equivalences.
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(3) We write sSet Joy for the model category of simplicial sets in the Joyal model structure.

(4) An∞-category here will always mean quasicategory; we write Cat∞ for the∞-category of∞-
categories. We write Gpd∞ ⊂ Cat∞ for the∞-category of∞-groupoids, i.e., the∞-category of
spaces. In order not to overload the term ‘space’, we use ‘∞-groupoid’ to refer to homotopy types,
and ‘space’ only in reference to topological spaces.

(5) If 𝐶 is an ordinary category, we simply write 𝐶 ∈ sSet for its nerve.

(6) For an∞-category 𝐶, we write 𝐶≃ ⊂ 𝐶 for the maximal sub-∞-groupoid contained in 𝐶.

(7) Let 𝐶 be an∞-category and𝑊 ⊂ Mor(𝐶) a class of morphisms in 𝐶. We write 𝐶[𝑊−1] for the
localization of 𝐶 at 𝑊, i.e., the initial∞-category equipped with a functor 𝐶 → 𝐶[𝑊−1] that
sends morphisms in𝑊 to equivalences [12, §7.1].

(8) The underlying quasicategory of a simplicial model category A is the homotopy-coherent nerve
of the full subcategory spanned by the fibrant–cofibrant objects (which forms a fibrant simplicial
category). In the quasicategory model, this is a presentation of the localization of A at its class of
weak equivalences.

(9) For every integer 𝑛 ≥ 0, we write [𝑛] for the linearly ordered poset {0 < 1 < ⋯ < 𝑛} of cardinality
𝑛 + 1 (whose nerve is the simplicial set Δ𝑛).

(10) We denote an adjunction of categories or∞-categories by 𝐹∶ 𝐶 ⇄ 𝐷 ∶𝐺, where 𝐹 is the left
adjoint and 𝐺 is the right adjoint.

(11) To fix a convenient category of topological spaces, we write Top for the category of numerically
generated topological spaces (also called Δ-generated or 𝐼-generated topological spaces) [17; 18;
22; 23, §3; 46], and use the term ‘topological space’ to mean ‘numerically generated topological
space’. For the presentwork, the category of numerically generated topological spaces is preferable
to the more standard category of compactly generated weakly Hausdorff topological spaces [36,
Chapter 5]: a poset in the Alexandroff topology is weakly Hausdorff if and only if it is discrete,
whereas every poset in is numerically generated.

0.3.2Definition. Let𝑃 be a poset.The category of𝑃-stratified simplicial sets is the overcategory sSet/𝑃
of simplicial sets over (the nerve of) 𝑃. Given a 𝑃-stratified simplicial set 𝑓∶ 𝑋 → 𝑃 and point 𝑝 ∈ 𝑃,
we write𝑋𝑝 ≔ 𝑓−1(𝑝) for the 𝑝-th stratum of𝑋.
0.3.3 Notation. Let 𝑃 be a poset. Write − ⋊𝑃 −∶ sSet/𝑃 × sSet→ sSet/𝑃 for the standard tensoring of
sSet/𝑃 over sSet, defined on objects by sending an object 𝑋 ∈ sSet/𝑃 and a simplicial set 𝐾 ∈ sSet to
the product𝑋⋊𝑃𝐾 ≔ 𝑋×𝐾 in sSetwith structure morphism induced by the projection𝑋 × 𝐾 → 𝑋.
When unambiguous we write ⋊ rather than ⋊𝑃, leaving the poset 𝑃 implicit.

We write Map/𝑃 ∶ sSet
op
/𝑃 × sSet/𝑃 → sSet for the standard simplicial enrichment, whose assign-

ment on objects is given by
Map/𝑃(𝑋, 𝑌) ≔ sSet/𝑃(𝑋 ⋊𝑃 Δ•, 𝑌) ,

and the assignment on morphisms is the obvious one.

1 Abstract stratified homotopy types, décollages, & stratified topo-
logical spaces

This section is dedicated to the proof of Theorem 0.2.1.
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1.1 Abstract stratified homotopy types as décollages
In work with Barwick and Glasman [9, §§2.6 & 2.7], we gave a complete Segal space style description
of the∞-category of abstract 𝑃-stratified homotopy types. In this subsection we recall this work and,
for completeness, include a proof of the main comparison result (Theorem 1.1.7).

1.1.1 Definition. Let 𝑃 be a poset. The∞-category Str𝑃 of abstract 𝑃-stratified homotopy types is the
full subcategory of the overcategoryCat∞,/𝑃 spanned by those∞-categories over𝑃with conservative
structure morphism 𝐶 → 𝑃.

Note that the mapping∞-groupoid MapStr𝑃(𝑋, 𝑌) coincides with the∞-category Fun/𝑃(𝑋, 𝑌)
of functors𝑋 → 𝑌 over 𝑃.

1.1.2 Recollection. An ∞-category can be modeled as a simplicial ∞-groupoid. There is a nerve
functor N ∶ Cat∞ → Fun(𝚫op,Gpd∞) defined by

N(𝐶)𝑚 ≔ Fun(Δ𝑚, 𝐶)≃ .

The simplicial∞-groupoid N(𝐶) is an example of what Rezk called a complete Segal space [44], i.e., a
functor 𝐹∶ 𝚫op → Gpd∞ satisfying the following conditions:

(1.1.2.1) Segal condition: For each integer𝑚 ≥ 1, the natural map

𝐹𝑚 → 𝐹{0 < 1} ×𝐹{1}𝐹{1 < 2} ×𝐹{2}⋯ ×𝐹{𝑚−1}𝐹{𝑚 − 1 < 𝑚}

is an equivalence.

(1.1.2.2) Completeness condition: The natural morphism

𝐹0 → 𝐹3 ×
𝐹{0<2}×𝐹{1<3}

(𝐹0 × 𝐹0)

is an equivalence.

Joyal and Tierney showed that the nerve is fully faithful with essential image the full subcategory
CSS spanned by the complete Segal spaces [28].

We now give an analogous description of Str𝑃.

1.1.3 Notation. Let 𝑃 be a poset. We write sd(𝑃) for the poset of nonempty linearly ordered finite
subsetsΣ ⊂ 𝑃 ordered by containment.We call sd(𝑃) the subdivision of𝑃.We call a nonempty linearly
ordered finite subset Σ ⊂ 𝑃 of 𝑃 a chain in 𝑃.

1.1.4 Definition. Let 𝑃 be a poset. A functor 𝐹∶ sd(𝑃)op → Gpd∞ is a décollage (over 𝑃) if and only
if, for every chain {𝑝0 < ⋯ < 𝑝𝑚} ⊂ 𝑃, the map

𝐹{𝑝0 < ⋯ < 𝑝𝑚} → 𝐹{𝑝0 < 𝑝1} ×𝐹{𝑝1}
𝐹{𝑝1 < 𝑝2} ×𝐹{𝑝2}

⋯ ×
𝐹{𝑝𝑚−1}
𝐹{𝑝𝑚−1 < 𝑝𝑚}

is an equivalence. We write
Déc𝑃 ⊂ Fun(sd(𝑃)op,Gpd∞)

for the full subcategory spanned by the décollages. Note that Déc𝑃 is closed under limits and filtered
colimits in Fun(sd(𝑃)op,Gpd∞).

A nerve style construction provides an equivalence Str𝑃 ⥲ Déc𝑃.
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1.1.5Construction. Let𝑃 be a poset.Wehave a fully faithful functor sd(𝑃) ↪ Str𝑃 given by regarding
a chain Σ as an∞-category over 𝑃 via the inclusion Σ ↪ 𝑃. Define a functor

N𝑃 ∶ Str𝑃 → Fun(sd(𝑃)op,Gpd∞)

by the assignment

𝑋 ↦ [Σ ↦ MapStr𝑃(Σ,𝑋)] .

1.1.6. Since a chain {𝑝0 < ⋯ < 𝑝𝑛} is the iterated pushout

{𝑝0 < 𝑝1} ∪{𝑝1}⋯∪{𝑝𝑛−1} {𝑝𝑛−1 < 𝑝𝑛}

in Str𝑃, the functor N𝑃 lands in the full subcategory Déc𝑃.

1.1.7 Theorem [9, Theorem 2.7.4]. For any poset 𝑃, the functor N𝑃 ∶ Str𝑃 → Déc𝑃 is an equivalence
of∞-categories.

Proof. Let 𝚫/𝑃 denote the category of simplices of 𝑃. The Joyal–Tierney Theorem [28] implies that
the nerve functor

Cat∞,/𝑃 → Fun(𝚫op,Gpd∞)/N(𝑃) ≃ Fun(𝚫
op
/𝑃,Gpd∞)

𝑋 ↦ [Σ ↦ Fun/𝑃(Σ,𝑋)≃]

is fully faithful, with essential imageCSS/N(𝑃) those functors𝚫op/𝑃 → Gpd∞ that satisfy both the Segal
condition and the completeness condition. Now notice that left Kan extension along the inclusion
sd(𝑃) ↪ 𝚫/𝑃 defines a fully faithful functor Déc𝑃 ↪ CSS/N(𝑃) whose essential image consists of
those complete Segal spaces 𝐶 → N(𝑃) such that for any 𝑝 ∈ 𝑃, the complete Segal space 𝐶𝑝 is an
∞-groupoid.

1.1.8. Since Str𝑃 is presentable and Déc𝑃 ⊂ Fun(sd(𝑃)op,Gpd∞) is closed under limits and filtered
colimits, the Adjoint Functor Theorem shows that the nerve expresses the ∞-category Str𝑃 as an
ω-accessible localization of Fun(sd(𝑃)op,Gpd∞).

1.1.9. Theorem 1.1.7 implies that equivalences in Str𝑃 are checked on strata and links. That is, a
morphism 𝑓∶ 𝑋 → 𝑌 in Str𝑃 is an equivalence if and only if 𝑓 induces an equivalence on strata and
for each pair 𝑝 < 𝑞 in 𝑃, the induced map on links

MapStr𝑃({𝑝 < 𝑞}, 𝑋) → MapStr𝑃({𝑝 < 𝑞}, 𝑌)

is an equivalence in Gpd∞. (This can also be proven directly without appealing to Theorem 1.1.7.)

1.2 Recollections on stratified topological spaces
We now recall the relationship between 𝑃-stratified topological spaces and 𝑃-stratified simplicial sets.
Recall that we write Top for the category of numerically generated topological spaces (0.3.1).

1.2.1 Recollection. The Alexandroff topology on a poset 𝑃 is the topology on the underlying set of 𝑃
in which a subset 𝑈 ⊂ 𝑃 is open if and only if 𝑥 ∈ 𝑈 and 𝑦 ≥ 𝑥 implies that 𝑦 ∈ 𝑈.

1.2.2. Note that every poset in the Alexandroff topology is a numerically generated topological space.
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1.2.3 Definition. Let 𝑃 be a poset. We simply write 𝑃 ∈ Top for the set 𝑃 equipped with the Alexan-
droff topology. The category of 𝑃-stratified topological spaces is the overcategory Top/𝑃. If 𝑠 ∶ 𝑇 → 𝑃
is a 𝑃-stratified topological space, for each 𝑝 ∈ 𝑃 we write 𝑇𝑝 ≔ 𝑠−1(𝑝) for the 𝑝-th stratum of 𝑇.

1.2.4 Notation. Let 𝐵 be a topological space, and 𝑇, 𝑆 ∈ Top/𝐵. We write Map/𝐵(𝑇, 𝑆) for the topo-
logical space of maps 𝑇 → 𝑆 over 𝐵. If we need to clarify notation, we write MapTop/𝐵(𝑇, 𝑆) for this
topological space.

For any topological space𝑉, we write 𝑇⋊𝐵 𝑉 or simply 𝑇⋊𝑉 for the object of Top/𝐵 given by the
product 𝑇 × 𝑉 with structure morphism induced by the projection 𝑇 × 𝑉 → 𝑇.

1.2.5. Let 𝑃 be a poset. Then since the subdivision sd(𝑃) of 𝑃 is the category of nondegenerate sim-
plices of 𝑃, the poset 𝑃 is the colimit colimΣ∈sd(𝑃) Σ in the category of posets (equivalently, in sSet).

1.2.6 Recollection [HA, §A.6]. Let 𝑃 be a poset. There is a natural stratification

𝜋𝑃 ∶ |𝑃| → 𝑃

of the geometric realization of (the nerve of) 𝑃 by the Alexandroff space 𝑃. This is defined by ap-
pealing to (1.2.5), which implies that it suffices to give the standard topological 𝑛-simplex |Δ𝑛| a [𝑛]-
stratification natural in [𝑛]. This is given by the map |Δ𝑛| → [𝑛] defined by

(𝑡0,… , 𝑡𝑛) ↦ max { 𝑖 ∈ [𝑛] | 𝑡𝑖 ≠ 0 } .

If𝑋 is a𝑃-stratified simplicial set, thenwe can stratify the geometric realization |𝑋| by composing
the structure morphism |𝑋| → |𝑃| with 𝜋𝑃. This defines a left adjoint functor |−|𝑃 ∶ sSet/𝑃 → Top/𝑃
with right adjoint Sing𝑃 ∶ Top/𝑃 → sSet/𝑃 computed by the pullback of simplicial sets

Sing𝑃(𝑇) ≔ 𝑃 ×Sing(𝑃)
Sing(𝑇) ,

where the morphism 𝑃 → Sing(𝑃) is adjoint to 𝜋𝑃.

1.2.7. Let 𝑇 be a 𝑃-stratified topological space. Then for each 𝑝 ∈ 𝑃, the stratum Sing𝑃(𝑇)𝑝 is iso-
morphic to the Kan complex Sing(𝑇𝑝).

1.2.8. Lurie proves [HA, Theorem A.6.4] that if 𝑇 ∈ Top/𝑃 is conically stratified1, then the simplicial
set Sing𝑃(𝑇) is a quasicategory.

We will use the following observation repeatedly throughout this text.

1.2.9 Remark. Let 𝑃 be a poset. Then the adjunction |−|𝑃 ∶ sSet/𝑃 ⇄ Top/𝑃 ∶Sing𝑃 is simplicial.That
is, if 𝑋 is a 𝑃-stratified simplicial set and 𝑇 is a 𝑃-stratified topological space, then we have a natural
isomorphism of simplicial sets

Sing(MapTop/𝑃(|𝑋|𝑃, 𝑇)) ≅ MapsSet/𝑃
(𝑋, Sing𝑃(𝑇)) .

1.3 Stratified topological spaces as décollages
In this subsection we prove Theorem 0.2.1. First we set some notation for the adjunction relating 𝑃-
stratified topological spaces and simplicial presheaves on the subdivision of 𝑃 and recall Douteau’s
Transfer Theorem (Theorem 1.3.5).

1See [HA, Definitions A.5.3 & A.5.5] for the definition of a conically stratified topological space.
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1.3.1 Notation. Let 𝑃 be a poset. We write

N𝑃 ∶ sSet/𝑃 → Fun(sd(𝑃)op, sSet)

for the functor given by the assignment

𝑋 ↦ [Σ ↦ Map/𝑃(Σ,𝑋)] .

The functor N𝑃 admits a left adjoint L𝑃 ∶ Fun(sd(𝑃)op, sSet) → sSet/𝑃 given by the left Kan extension
of the Yoneda embedding sd(𝑃) ↪ Fun(sd(𝑃)op, sSet) along the fully faithful functor sd(𝑃) ↪ sSet/𝑃
given by Σ ↦ [Σ ⊂ 𝑃]. Thus L𝑃 is given by the coend formula2

L𝑃(𝐹) ≅ ∫
Σ∈sd(𝑃)
Σ ⋊ 𝐹(Σ) .

1.3.2 Remark. Let 𝑃 be a poset. Write Pair(𝑃) ⊂ sd(𝑃)op × sd(𝑃) for the full subposet spanned by
those pairs (Σ, Σ′) where Σ′ ⊂ Σ. The poset Pair(𝑃) is an explicit description of the opposite of the
twisted arrow category of sd(𝑃)op. Hence by the formula for a coend in terms of a colimit over twisted
arrow categories (see [34, Chapter XI, §5, Proposition 1]), the value of the left adjoint L𝑃 on a functor
𝐹∶ sd(𝑃)op → sSet is given by the colimit

L𝑃(𝐹) ≅ colim
(Σ,Σ′)∈Pair(𝑃)

Σ′ ⋊ 𝐹(Σ) .

1.3.3 Notation. Write D𝑃 ∶ Top/𝑃 → Fun(sd(𝑃)op, sSet) for the right adjoint functor given by the
composite N𝑃 ∘ Sing𝑃. It follows from Remark 1.2.9 that D𝑃 is given by the assignment

𝑇 ↦ [Σ ↦ SingMapTop/𝑃(|Σ|𝑃 , 𝑇)] .

1.3.4 Notation. Let𝑃 be a poset.Wewrite Fun(sd(𝑃)op, sSet)proj for category of simplicial presheaves
on sd(𝑃) given the projective model structure with respect to the Kan model structure on sSet.

The following is Douteau’s Transfer Theorem. For the proof, see [13, Théorèmes 7.2.1, 7.3.7, 7.3.8
& 7.3.10; 16, Theorems 2.12 & 2.15; 15, Theorem 3.15].

1.3.5Theorem (Douteau). Let 𝑃 be a poset.The projective model structure on Fun(sd(𝑃)op, sSet) right-
transfers to Top/𝑃 along the simplicial adjunction

(1.3.6) |−|𝑃 ∘ L𝑃 ∶ Fun(sd(𝑃)op, sSet)proj ⇄ Top/𝑃 ∶D𝑃 .

Moreover, with respect to these model structures, the adjunction (1.3.6) is a simplicial Quillen equiva-
lence of combinatorial simplicial model categories.

1.3.7 Warning. The proof of Theorem 1.1.7 that Douteau presented in [13, Théorèmes 7.2.1, 7.3.7,
7.3.8 & 7.3.10] and [16, Theorems 2.12 & 2.15] contains a gap. Douteau has since filled in this gap; see
[15, Theorem 3.15].

1.3.8Definition. Werefer to themodel structure onTop/𝑃 ofTheorem1.3.5 as theDouteau–Henriques
model structure.

1.3.9. The Douteau–Henriques model structure on Top/𝑃 admits the following explicit description:

2See [45, §1.5].
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(1.3.9.1) A morphism 𝑓∶ 𝑇 → 𝑆 in Top/𝑃 is a Douteau–Henriques fibration if and only if for every
chain Σ ⊂ 𝑃, the induced map of topological spaces

Map/𝑃(|Σ|𝑃 , 𝑇) → Map/𝑃(|Σ|𝑃 , 𝑆)

is a Serre fibration.

(1.3.9.2) A morphism 𝑓∶ 𝑇 → 𝑆 in Top/𝑃 is a Douteau–Henriques weak equivalence if and only if
for every chain Σ ⊂ 𝑃, the induced map of topological spaces

Map/𝑃(|Σ|𝑃 , 𝑇) → Map/𝑃(|Σ|𝑃 , 𝑆)

is a weak homotopy equivalence.

(1.3.9.3) The sets
{ |Σ ⋊ 𝜕Δ𝑛|𝑃 ↪ |Σ ⋊ Δ𝑛|𝑃 | Σ ∈ sd(𝑃), 𝑛 ≥ 0 }

and
{ |Σ ⋊ Λ𝑛𝑘|𝑃 ↪ |Σ ⋊ Δ𝑛|𝑃 | Σ ∈ sd(𝑃), 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛 }

are generating sets of Douteau–Henriques cofibrations and trivial cofibrations, respectively.

1.3.10. The∞-category Fun(sd(𝑃)op,Gpd∞) of presheaves of∞-groupoids on the subdivision sd(𝑃)
is the underlying∞-category of the combinatorial simplicial model category Fun(sd(𝑃)op, sSet)proj
[HTT, Proposition 4.2.4.4]. Hence the simplicial Quillen equivalence (1.3.6) provides an equivalence
of∞-categories between the underlying∞-category of Top/𝑃 and Fun(sd(𝑃)op,Gpd∞).

1.3.11. Theorem 1.1.7 and Remark 1.2.9 show that if 𝑓∶ 𝑇 → 𝑆 is a morphism in Top/𝑃 and both
Sing𝑃(𝑇) and Sing𝑃(𝑆) are quasicategories, then 𝑓 is a Douteau–Henriques equivalence if and only
if Sing𝑃(𝑓) is an equivalence when regarded as a morphism in the∞-category Str𝑃 of abstract 𝑃-
stratified homotopy types.

We now arrive at the main result of this section:

1.3.12Theorem. Let𝑃 be a poset.Then the∞-category Str𝑃 is equivalent to anω-accessible localization
of the underlying∞-category of the combinatorial simplicial model category Top/𝑃.

Proof. Since the underlying∞-category of Top/𝑃 is equivalent to Fun(sd(𝑃)op,Gpd∞) and Str𝑃 is an
ω-accessible localization of Fun(sd(𝑃)op,Gpd∞) (Theorem 1.1.7 and (1.1.8)), we deduce that Str𝑃 is
an ω-accessible localization of the underlying∞-category of Top/𝑃.

1.3.13. Since themodel category Fun(sd(𝑃)op, sSet)proj is left proper, there exists a left Bousfield local-
ization of the projective model structure presenting the∞-category Str𝑃 [HTT, Proposition A.3.7.8].
We do not, however, know whether or not the Douteau–Henriques model structure on Top/𝑃 is left
proper. So while there does exist a left Bousfield localization ofTop/𝑃 presenting the∞-category Str𝑃,
we only know that it exists as a left model category [7, 4.13; 11; 26, Theorem 7.3], and it may not exist
as a model category.

In any case, Theorem 1.3.12 shows that∞-category can be obtained from the ordinary category
Top/𝑃 of𝑃-stratified topological spaces by inverting a class ofweak equivalences (in the∞-categorical
sense).
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2 The Joyal–Kan model structure
In this section we define a combinatorial simplicial model structure on sSet/𝑃 that presents the∞-
category Str𝑃. Subsections 2.1 to 2.3 explore the basic properties of this model structure, and Subsec-
tions 2.4 and 2.5 are dedicated to proving it is simplicial.

2.1 Definition
In this subsection we define a Joyal–Kan model structure on simplicial sets stratified over a poset
𝑃 by taking the left Bousfield localization of the Joyal model structure that inverts those simplicial
homotopies𝑋 × Δ1 → 𝑌 over 𝑃 respecting stratifications.

2.1.1 Notation. Let 𝑃 be a poset. Write E𝑃 for the set of morphisms in sSet/𝑃 consisting of the end-
point inclusions Δ{0}, Δ{1} ⊂ Δ1 over 𝑃 for which the stratification 𝑓∶ Δ1 → 𝑃 is constant.

2.1.2 Definition. Let 𝑃 be a poset. The Joyal–Kan model structure on sSet/𝑃 is the sSet Joy-enriched
left Bousfield localization of the Joyal model structure on sSet/𝑃 with respect to the set E𝑃.

Since the Joyal model structure on sSet/𝑃 is sSet Joy-enriched, [7, Theorems 4.7 & 4.46] shows that
the Joyal–Kan model structure on sSet/𝑃 exists and satisfies the expected properties:

2.1.3 Proposition. Let 𝑃 be a poset. The Joyal–Kan model structure on sSet/𝑃 exists and satisfies the
following properties.

(2.1.3.1) The Joyal–Kan model structure on sSet/𝑃 is combinatorial.

(2.1.3.2) The Joyal–Kan model structure on sSet/𝑃 is sSet Joy-enriched.

(2.1.3.3) The cofibrations in the Joyal–Kan model structure are precisely the monomorphisms of simpli-
cial sets. In particular, the Joyal–Kan model structure is left proper.

(2.1.3.4) The fibrant objects in the Joyal–Kan model structure are precisely the fibrant objects in the
Joyal model structure on sSet/𝑃 that are also E𝑃-local.

(2.1.3.5) The weak equivalences in the Joyal–Kan model structure are the E𝑃-local weak equivalences.

(2.1.3.6) Given a morphism 𝑓∶ 𝑋 → 𝑌 in sSet/𝑃, if 𝑋 and 𝑌 are Joyal–Kan fibrant, then 𝑓 is a Joyal–
Kan fibration if and only if 𝑓 is a Joyal fibration.

(2.1.3.7) Given a morphism 𝑓∶ 𝑋 → 𝑌 in sSet/𝑃, if 𝑋 and 𝑌 are Joyal–Kan fibrant, then 𝑓 is a Joyal–
Kan weak equivalence if and only if 𝑓 is a Joyal weak equivalence.

For points (2.1.3.6) and (2.1.3.7), see [6, Propositions 4.1.7 & 4.1.8].

2.1.4 Remark. When 𝑃 = ∗ is the terminal poset, the Joyal–Kan model structure on sSet = sSet/∗
coincides with the Kan model structure.

2.2 Fibrant objects in the Joyal–Kan model structure
We now identify the fibrant objects in the Joyal–Kan model structure.

2.2.1 Recollection. By [HTT, Corollary 2.4.6.5] if𝐶 is a quasicategory, then amorphism of simplicial
sets𝑓∶ 𝑋 → 𝐶 is a fibration in the Joyalmodel structure on sSet if and only if the following conditions
are satisfied:

12

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.2.4.6.5


(2.2.1.1) The morphism 𝑓 is an inner fibration.

(2.2.1.2) For every equivalence 𝑒∶ 𝑐 ⥲ 𝑐′ in 𝐶 and object ̃𝑐 ∈ 𝑋 such that 𝑓( ̃𝑐) = 𝑐, there exists an
equivalence ̃𝑒 ∶ ̃𝑐 ⥲ ̃𝑐′ in𝑋 such that 𝑓( ̃𝑒) = 𝑒.

A morphism of simplicial sets satisfying (2.2.1.1) and (2.2.1.2) is called an isofibration. (See also [10,
§2].)

We make use of the following immediate consequence of the definitions.

2.2.2 Lemma. Let 𝐶 be a quasicategory whose equivalences are precisely the degenerate edges (e.g., a
poset). Then a morphism of simplicial sets 𝑓∶ 𝑋 → 𝐶 is an isofibration if and only if 𝑓 is an inner
fibration.

2.2.3 Proposition. Let 𝑃 be a poset. An object 𝑋 of sSet/𝑃 is fibrant in the Joyal–Kan model structure
if and only if the structure morphism 𝑋 → 𝑃 is an inner fibration and for every 𝑝 ∈ 𝑃 the stratum 𝑋𝑝
is a Kan complex.

Proof. Since the Joyal–Kan model structure on sSet/𝑃 is the left Bousfield localization of the Joyal
model structure on sSet/𝑃 with respect to E𝑃, the fibrant objects in the Joyal–Kan model structure on
sSet/𝑃 are the fibrant objects in the Joyal model structure on sSet/𝑃 that are also E𝑃-local. An object
𝑋 ∈ sSet/𝑃 is fibrant in the Joyal model structure if and only if the structure morphism 𝑋 → 𝑃 is an
isofibration, or, equivalently the structure morphism𝑋 → 𝑃 is an inner fibration (Lemma 2.2.2).

Now we analyze the E𝑃-locality condition. A Joyal-fibrant object 𝑋 ∈ sSet/𝑃 is E𝑃-local if and
only if for every 1-simplex 𝜎∶ Δ1 → 𝑃 such that 𝜎(0) = 𝜎(1), evaluation morphisms

ev𝑖 ∶ Map/𝑃(Δ1, 𝑋) → Map/𝑃(Δ{𝑖}, 𝑋)

for 𝑖 = 0, 1 are isomorphisms in the homotopy category of sSet Joy. Let 𝑝 ∈ 𝑃 be such that 𝜎(0) =
𝜎(1) = 𝑝. Then

Map/𝑃(Δ1, 𝑋) ≅ Map(Δ1, 𝑋𝑝)
and

Map/𝑃(Δ{𝑖}, 𝑋) ≅ Map(Δ{𝑖}, 𝑋𝑝) ,
for 𝑖 = 0, 1. Under these identifications, the evaluation morphisms

ev𝑖 ∶ Map/𝑃(Δ1, 𝑋) → Map/𝑃(Δ{𝑖}, 𝑋)

are identified with the evaluation morphisms

ev𝑖 ∶ Map(Δ1, 𝑋𝑝) → Map(Δ{𝑖}, 𝑋𝑝) ≅ 𝑋𝑝 ,

for 𝑖 = 0, 1. Since the strata of 𝑋 are quasicategories, 𝑋 is E𝑃-local if and only if for every 𝑝 ∈ 𝑃, the
evaluation morphisms

ev𝑖 ∶ Map(Δ1, 𝑋𝑝) → Map(Δ{𝑖}, 𝑋𝑝) ≅ 𝑋𝑝 ,
for 𝑖 = 0, 1, are Joyal equivalences. To conclude, recall that for a quasicategory 𝐶, the evaluation
morphisms ev0, ev1 ∶ Map(Δ1, 𝐶) → 𝐶 are Joyal equivalences if and only if 𝐶 is a Kan complex.

Combining Proposition 2.2.3 with [HTT, Proposition 2.3.1.5] we deduce:

2.2.4 Proposition. Let 𝑃 be a poset, 𝑋 a simplicial set, and 𝑓∶ 𝑋 → 𝑃 a morphism of simplicial sets.
The following are equivalent:
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(2.2.4.1) The object 𝑓∶ 𝑋 → 𝑃 of sSet/𝑃 is fibrant in the Joyal–Kan model structure.

(2.2.4.2) The morphism 𝑓∶ 𝑋 → 𝑃 is an inner fibration with all fibers Kan complexes.

(2.2.4.3) The simplicial set𝑋 is a quasicategory and all of the fibers of 𝑓 are Kan complexes.

(2.2.4.4) The simplicial set𝑋 is a quasicategory and𝑓 is a conservative functor between quasicategories.

2.2.5 Corollary. Let 𝑃 be a poset. Amorphism in sSet/𝑃 between fibrant objects in the Joyal–Kanmodel
structure is a conservative functor.

Proof. Note that if a composite functor𝑔𝑓 is conservative and𝑔 is conservative, then𝑓 is conservative.

2.3 Stratified horn inclusions
In this subsection we characterize the horn inclusions in sSet/𝑃 that are Joyal–Kan equivalences. We
will use these horn inclusions in our proof that the Joyal–Kan model structure is simplicial (see §2.4).

2.3.1 Proposition. Let 𝑃 be a poset. A horn inclusion 𝑖 ∶ Λ𝑛𝑘 ↪ Δ𝑛 over 𝑃 stratified by a morphism
𝑓∶ Δ𝑛 → 𝑃 is a Joyal–Kan equivalence in sSet/𝑃 if and only if one of the following conditions holds:

(2.3.1.1) 0 < 𝑘 < 𝑛.

(2.3.1.2) 𝑘 = 0 and 𝑓(0) = 𝑓(1).

(2.3.1.3) 𝑘 = 𝑛 and 𝑓(𝑛 − 1) = 𝑓(𝑛).

Proof. First we show that the class of horn inclusions (2.3.1.1)–(2.3.1.3) are Joyal–Kan equivalences.
It is clear that inner horn inclusionsΛ𝑛𝑘 ↪ Δ𝑛 are weak equivalences in the Joyal–Kanmodel structure
on sSet/𝑃 as they are already weak equivalences in the Joyal model structure. If 𝑛 = 1, then the
endpoint inclusions Λ10, Λ11 ↪ Δ1 where 𝑓(0) = 𝑓(1) are Joyal–Kan equivalences by the definition of
the Joyal–Kan model structure.

Now we treat the case of higher outer horns. We treat the case of left horns Λ𝑛0 ↪ Δ𝑛 where the
stratification 𝑓∶ Δ𝑛 → 𝑃 has the property that 𝑓(0) = 𝑓(1) (i.e., the class specified by (2.3.1.2)); the
case of right horns is dual. We prove the claim by induction on 𝑛.

For the base case where 𝑛 = 2, write 𝐷20 for the (nerve of the) preorder given by 0 ≤ 1 ≤ 2 along
with 0 ≥ 1, and stratify 𝐷20 by the unique extension of 𝑓 to 𝐷20 . All stratifications will be induced
by 𝑓 via inclusions into 𝐷20 . We prove the claim by showing that the inclusions Λ20, Δ2 ↪ 𝐷20 are
Joyal–Kan equivalences and conclude by the 2-of-3 property. Write 𝐸 for the walking isomorphism
category 0 ≅ 1 and consider the cube

(2.3.2)

Δ{0} Δ{0<2}

Δ{0} Δ{0<2}

Δ{0<1} Λ20

𝐸 𝐿20 ,

≀

⌜

≀

≀

⌜
≀
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where the front face is a pushout defining the simplicial set 𝐿20 and the back face is a pushout square.
Since 𝑓(0) = 𝑓(1), the inclusion Δ{0} ↪ Δ{0<1} is a trivial Joyal–Kan cofibration; the fact that the back
face of (2.3.2) is a pushout then shows that the inclusionΔ{0<2} ↪ Λ20 is a trivial Joyal–Kan cofibration.
Since the inclusion Δ{0} ↪ 𝐸 is a trivial Joyal cofibration and the front face of (2.3.2) is a pushout,
the inclusion Δ{0<2} ↪ 𝐿20 is a trivial Joyal cofibration. By the 2-of-3 property, the induced map on
pushouts Λ20 ↪ 𝐿20 is a trivial Joyal–Kan cofibration. Similarly, the inclusion

Λ21 ↪ 𝐿21 ≔ 𝐸 ∪Δ
{1} Δ{1<2}

is a trivial Joyal–Kan cofibration. The inclusions 𝐿20, 𝐿21 ↪ 𝐷20 are trivial Joyal cofibrations, so in
particular the composite inclusion

Λ20 ↪ 𝐿20 ↪ 𝐷20
is a trivial Joyal–Kan cofibration. Finally, to see that the inclusionΔ2 ↪ 𝐷20 is a Joyal–Kan equivalence
note that we have a commutative square

Λ21 Δ2

𝐿21 𝐷20 ,

≀

∼

∼

where the horizontal morphisms are trivial Joyal cofibrations and the inclusion Λ21 ↪ 𝐿21 is a Joyal–
Kan equivalence. This concludes the base case.

Now we prove the induction step with 𝑛 ≥ 3 and Λ𝑛0 ↪ Δ𝑛 an outer horn inclusion over 𝑃 where
the stratification 𝑓∶ Δ𝑛 → 𝑃 has the property that 𝑓(0) = 𝑓(1). Write

Λ𝑛{0<2} ≔ ⋃
𝑗∈[𝑛]∖{0<2}

Δ{0<⋯<𝑗−1,𝑗+1<⋯<𝑛} ⊂ Δ𝑛

and note that by [8, Lemma 12.13] the inclusion Λ𝑛{0<2} ↪ Δ𝑛 is inner anodyne. Since we have a
factorization of the inclusion Λ𝑛{0<2} ↪ Δ𝑛 as a composite

Λ𝑛{0<2} ↪ Λ𝑛0 ↪ Δ𝑛 ,

the claim is equivalent to showing that the inclusionΛ𝑛{0<2} ↪ Λ𝑛0 is a Joyal–Kan equivalence in sSet/𝑃.
To see this, note that we have a pushout square in sSet/𝑃

(2.3.3)
Λ{0<1<3<⋯<𝑛}0 Δ{0<1<3<⋯<𝑛}

Λ𝑛{0<2} Λ𝑛0 ,
⌜

∼

∼

where the inclusion Λ{0<1<3<⋯<𝑛}0 ↪ Δ{0<1<3<⋯<𝑛} is a trivial Joyal–Kan cofibration by the induction
hypothesis.

Now we prove the horn inclusions given by the classes (2.3.1.1)–(2.3.1.3) are the only horn inclu-
sions over 𝑃 that are trivial Joyal–Kan cofibrations. Equivalently, if 𝑖 ∶ Λ𝑛𝑘 ↪ Δ𝑛 is an outer horn and
either 𝑘 = 0 and 𝑓(0) ≠ 𝑓(1), or 𝑘 = 𝑛 and 𝑓(𝑛−1) ≠ 𝑓(𝑛), then 𝑖 is not a Joyal–Kan equivalence. We
treat the case that 𝑘 = 0; the case that 𝑘 = 𝑛 is dual. The cases where 𝑛 = 1 and 𝑛 = 2 require slightly
different (but easier) arguments than when 𝑛 ≥ 3, so we treat those first.
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When 𝑛 = 1, we need to show that the endpoint inclusion Δ{0} ↪ Δ1 is not a Joyal–Kan equiva-
lence, where the stratification 𝑓∶ Δ1 → 𝑃 is a monomorphism. In this case, by Proposition 2.2.4 both
Δ{0} and Δ1 are fibrant in the Joyal–Kan model structure, so by (2.1.3.7) we just need to check that the
inclusion 𝑖 ∶ Δ{0} ↪ Δ1 is not a Joyal equivalence, which is clear.

For 𝑛 = 2, note that the simplicial set Λ20 is a 1-category. Since 𝑓(0) ≠ 𝑓(1), we have 𝑓(0) ≠ 𝑓(2),
so the functor 𝑓∶ Λ20 → 𝑃 is conservative; applying Proposition 2.2.4 shows that Λ20 is fibrant in the
Joyal–Kan model structure. To see that the inclusion Λ20 ↪ Δ2 is not a trivial Joyal–Kan cofibration,
note that the lifting problem

Λ20 Λ20

Δ2 𝑃

𝑓

𝑓

does not admit a solution because the inclusion of simplicial setsΛ20 ↪ Δ2 does not admit a retraction.
To prove the claim for 𝑛 ≥ 3, one can easily construct a 1-category 𝐶𝑛0,𝑓 along with a natural

inclusion 𝜙𝑓 ∶ Λ𝑛0 ↪ 𝐶𝑛0,𝑓 that does not extend to Δ𝑛 as follows: adjoin a new morphism 𝑎∶ 1 → 𝑛 to
Δ𝑛 so that 𝑎 and the unique morphism 1 → 𝑛 are equalized by the unique morphism 0 → 1, then
formally adjoin inverses to all morphisms 𝑖 → 𝑗 such that 𝑓(𝑖) = 𝑓(𝑗). The inclusion 𝜙𝑓 ∶ Λ𝑛0 ↪ 𝐶𝑛0,𝑓
is not the standard one, but one with the property that the edgeΔ{1<𝑛} is sent to the morphism 𝑎. Thus
𝜙𝑓 does not extend to Δ𝑛. The morphism 𝑓|Λ𝑛0 extends to a stratification ̄𝑓 ∶ 𝐶𝑛0,𝑓 → 𝑃 that makes
𝐶𝑛0,𝑓 a fibrant object in the Joyal–Kan model structure, and the inclusion Λ𝑛0 ↪ Δ𝑛 is not a trivial
Joyal–Kan cofibration in sSet/𝑃 since the lifting problem

Λ𝑛0 𝐶𝑛0,𝑓

Δ𝑛 𝑃

𝜙𝑓

̄𝑓

𝑓

does not admit a solution.

2.3.4 Notation. Let𝑃 be a poset.Write J𝑃 ⊂ Mor(sSet/𝑃) for the set of all horn inclusions 𝑖 ∶ Λ𝑛𝑘 ↪ Δ𝑛
over 𝑃 that are Joyal–Kan equivalences.

We can use the set J𝑃 to identify fibrations between fibrant objects of the Joyal–Kan model struc-
ture on sSet/𝑃. First we record a convenient fact.

2.3.5 Lemma. Let 𝑓∶ 𝑋 → 𝑌 be a conservative functor between quasicategories. The following are
equivalent:

(2.3.5.1) For every equivalence 𝑒∶ 𝑦 ⥲ 𝑦′ in 𝑌 and object ̃𝑦 ∈ 𝑋 such that 𝑓( ̃𝑦) = 𝑦, there exists an
equivalence ̃𝑒 ∶ ̃𝑦 ⥲ ̃𝑦′ in𝑋 such that 𝑓( ̃𝑒) = 𝑒.

(2.3.5.2) For every equivalence 𝑒∶ 𝑦 ⥲ 𝑦′ in 𝑌 and object ̃𝑦 ∈ 𝑋 such that 𝑓( ̃𝑦) = 𝑦, there exists a
morphism ̃𝑒 ∶ ̃𝑦 → ̃𝑦′ in𝑋 such that 𝑓( ̃𝑒) = 𝑒.

2.3.6 Proposition. Let 𝑃 be a poset and 𝑓∶ 𝑋 → 𝑌 a morphism in sSet/𝑃 between fibrant objects in
the Joyal–Kan model structure. Then the following are equivalent:

(2.3.6.1) The morphism 𝑓 is a Joyal–Kan fibration.
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(2.3.6.2) The morphism 𝑓 is a Joyal fibration, equivalently, an isofibration.

(2.3.6.3) The morphism 𝑓 satisfies the right lifting property with respect to J𝑃.

(2.3.6.4) Themorphism𝑓 is an inner fibration and the restriction of𝑓 to each stratum is a Kan fibration.

(2.3.6.5) Themorphism 𝑓 is an inner fibration and satisfies the right lifting property with respect to E𝑃.

Proof. The equivalence (2.3.6.1)⇔(2.3.6.2) is the content of (2.1.3.6).
Now we show that (2.3.6.2)⇒(2.3.6.3). Assume that 𝑓 is an isofibration. Since 𝑓 is an isofibration,
𝑓 is an inner fibration, hence lifts against inner horns in J𝑃. Now consider the lifting problem

(2.3.7)
Δ{𝑖} 𝑋

Δ1 𝑌

ℎ

𝑓

ℎ′

where the inclusion Δ{𝑖} ↪ Δ1 is in J𝑃. Since 𝑌 is fibrant in the Joyal–Kan model structure, the edge
ℎ′(Δ1) is an equivalence in 𝑌. Lemma 2.3.5 (and its dual) now shows that the lifting problem (2.3.7)
admits a solution. Finally, if 𝑛 ≥ 2 and 𝑘 = 0 or 𝑘 = 𝑛, then given a lifting problem

Λ𝑛𝑘 𝑋

Δ𝑛 𝑌

ℎ

𝑓

ℎ′

where the horn inclusionΛ𝑛𝑘 ↪ Δ𝑛 is in J𝑃, since𝑋 and𝑌 are fibrant in the Joyal–Kanmodel structure:

(1) If 𝑘 = 0, then ℎ(Δ{0<1}) and ℎ′(Δ{0<1}) are equivalences.

(2) If 𝑘 = 𝑛, then ℎ(Δ{𝑛−1<𝑛}) and ℎ′(Δ{𝑛−1<𝑛}) are equivalences.

In either case, the desired lift exists because 𝑓 is an inner fibration and the outer horn is “special” [27,
Theorem 2.2; 45, p. 236].

The fact that (2.3.6.3) implies (2.3.6.4) is clear from the identification of J𝑃 (Proposition 2.3.1).
The fact that (2.3.6.4) implies (2.3.6.5) is clear from the definition of E𝑃 and the fact that the

restriction of 𝑓 to each stratum is a Kan fibration.
Now we show that (2.3.6.5) implies (2.3.6.2). Assume that 𝑓 is an inner fibration and satisfies the

right lifting property with respect to E𝑃. Since𝑓 is conservative (Corollary 2.2.5) and the equivalences
in 𝑌 lie in individual strata, Lemma 2.3.5 combined with the fact that 𝑓 satisfies the right lifting
property with respect to E𝑃 show that 𝑓 is an isofibration.

2.3.8 Corollary. Let 𝑃 be a poset and 𝑋 an object of sSet/𝑃. Then 𝑋 is fibrant in the Joyal–Kan model
structure if and only if the stratification𝑋 → 𝑃 satisfies the right lifting property with respect to J𝑃.

2.4 Simpliciality of the Joyal–Kan model structure
Unlike the Kanmodel structure on sSet, the Joyal model structure is not simplicial. As a result, it does
not follow formally from the definition that the Joyal–Kan model structure on sSet/𝑃 is simplicial. In
this subsection we recall three criteria that guarantee that a model structure is simplicial, and verify
the first two of them. We verify the third in §2.5.
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2.4.1 Remark. Let 𝑃 be a poset, 𝑖 ∶ 𝑋 → 𝑌 a morphism in sSet/𝑃, and 𝑗∶ 𝐴 → 𝐵 a morphism of
simplicial sets. Then on underlying simplicial sets, the pushout-tensor

𝑖 ⋊̂ 𝑗 ∶ (𝑋 ⋊ 𝐵)
𝑋⋊𝐴
⊔ (𝑌 ⋊ 𝐴) → 𝑌 ⋊ 𝐵

is simply the pushout-product

𝑖 ×̂ 𝑗 ∶ (𝑋 × 𝐵)
𝑋×𝐴
⊔ (𝑌 × 𝐴) → 𝑌 × 𝐵

in sSet. Since the pushout-product of monomorphisms in sSet is a monomorphism and the forget-
ful functor sSet/𝑃 → sSet detects monomorphisms, if 𝑖 and 𝑗 are monomorphisms, then 𝑖 ⋊̂ 𝑗 is a
monomorphism.

2.4.2. By appealing to [HTT, Proposition A.3.1.7], we can prove that the Joyal–Kan model structure
is simplicial by proving the following three claims:

(2.4.2.1) Given amonomorphism of simplicial sets 𝑗∶ 𝐴 ↣ 𝐵 and a Joyal–Kan cofibration 𝑖 ∶ 𝑋 ↣ 𝑌
in sSet/𝑃, the pushout-tensor

𝑖 ⋊̂ 𝑗 ∶ (𝑋 ⋊ 𝐵)
𝑋⋊𝐴
⊔ (𝑌 ⋊ 𝐴) → 𝑌 ⋊ 𝐵

is a Joyal–Kan cofibration.

(2.4.2.2) For every 𝑛 ≥ 0 and every object𝑋 ∈ sSet/𝑃, the natural map

𝑋 ⋊ Δ𝑛 → 𝑋 ⋊ Δ0 ≅ 𝑋

is a Joyal–Kan equivalence.

(2.4.2.3) The collection of weak equivalences in the Joyal–Kan model structure on sSet/𝑃 is stable
under filtered colimits.

Note that (2.4.2.1) follows from Remark 2.4.1 and the fact that cofibrations in the Joyal–Kan model
structure are monomorphisms of simplicial sets (Proposition 2.1.3).

We first concern ourselves with (2.4.2.2). Since the natural map

𝑋 ⋊ Δ𝑛 → 𝑋 ⋊ Δ0 ≅ 𝑋

admits a section 𝑋 ≅ 𝑋 ⋊ Δ{0} ↪ 𝑋 ⋊ Δ𝑛, it suffices to show that this section is a trivial Joyal–Kan
cofibration. In fact, we prove a more precise claim.

2.4.3 Notation. Let 𝑃 be a poset.

(1) Write IH𝑃 ⊂ J𝑃 for the inner horn inclusions in J𝑃.

(2) Write LH𝑃 ⊂ J𝑃 for those horn inclusions Λ𝑛𝑘 ↪ Δ𝑛 in J𝑃 where 𝑛 ≥ 1 and 0 ≤ 𝑘 < 𝑛, i.e., the left
horn inclusions in J𝑃.

Note that Proposition 2.3.1 gives complete characterizations of IH𝑃 and LH𝑃.
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2.4.4 Proposition. Let 𝑃 be a poset and 𝑛 ≥ 0 an integer. For any object 𝑋 ∈ sSet/𝑃, the inclusion

𝑋 ≅ 𝑋 ⋊ Δ{0} ↪ 𝑋 ⋊ Δ𝑛

is in the weakly saturated class generated by LH𝑃, in particular, a trivial Joyal–Kan cofibration in sSet/𝑃.

Thenext proposition (and its proof) is a stratified variant of [HTT, Propositions 2.1.2.6 & 3.1.1.5].
We use it to prove Proposition 2.4.4.

2.4.5 Proposition. Let 𝑃 be a poset. Consider the following classes of morphisms in sSet/𝑃:

(2.4.5.1) All inclusions

(𝜕Δ𝑚 ⋊ Δ1)
𝜕Δ𝑚⋊Δ{0}
⊔ (Δ𝑚 ⋊ Δ{0}) ↪ Δ𝑚 ⋊ Δ1 ,

where𝑚 ≥ 0 and Δ𝑚 ∈ sSet/𝑃 is any𝑚-simplex over 𝑃.

(2.4.5.2) All inclusions

(𝐴 ⋊ Δ1)
𝐴⋊Δ{0}
⊔ (𝐵 ⋊ Δ{0}) ↪ 𝐵 ⋊ Δ1 ,

where 𝐴 ↪ 𝐵 is any monomorphism in sSet/𝑃.

The classes (2.4.5.1) and (2.4.5.2) generate the same weakly saturated class of morphisms in sSet/𝑃.
Moreover, this weakly saturated class of morphisms generated by (2.4.5.1) or (2.4.5.2) is contained in the
weakly saturated class of morphisms generated by LH𝑃.

Proof. Since the inclusions 𝜕Δ𝑚 ↪ Δ𝑚 in sSet/𝑃 generate the monomorphisms in sSet/𝑃, to see that
each of the morphisms specified in (2.4.5.2) is contained in the weakly saturated class generated by
(2.4.5.1), it suffices to work simplex-by-simplex with the inclusion𝐴 ↪ 𝐵. The converse is clear since
the class specified by (2.4.5.1) is contained in the class specified by (2.4.5.2).

To complete the proof, we show that for each 𝑃-stratified𝑚-simplex Δ𝑚 ∈ sSet/𝑃, the inclusion

(2.4.6) (𝜕Δ𝑚 ⋊ Δ1)
𝜕Δ𝑚⋊Δ{0}
⊔ (Δ𝑚 ⋊ Δ{0}) ↪ Δ𝑚 ⋊ Δ1

belongs to the weakly saturated class generated by LH𝑃. The proof of this is verbatim the same as the
proof of [HTT, Proposition 2.1.2.6], which writes the inclusion (2.4.6) as a composite of pushouts of
horn inclusions, all of which are in LH𝑃.

2.4.7Corollary. Let𝑃 be a poset. For any𝑃-stratified simplicial set𝑋 ∈ sSet/𝑃, the inclusion𝑋 ⋊ Δ{0} ↪
𝑋 ⋊ Δ1 is in the weakly saturated class generated by LH𝑃.

Proof. In (2.4.5.2), set 𝐴 = ∅ and 𝐵 = 𝑋.

2.4.8 Notation. Let 𝑛 ≥ 0 be an integer. Write Spn𝑛 ⊂ Δ𝑛 for the spine of Δ𝑛, defined by

Spn𝑛 ≔ Δ{0<1} ∪Δ{1} ⋯∪Δ{𝑛−1} Δ{𝑛−1<𝑛} .

Now we use Corollary 2.4.7 and the fact that the spine inclusion Spn𝑛 ↪ Δ𝑛 is inner anodyne to
address Proposition 2.4.4.

2.4.9 Lemma. Let 𝑃 be a poset and 𝑛 ≥ 0 an integer. For any 𝑃-stratified simplicial set𝑋 ∈ sSet/𝑃, the
inclusion𝑋 ⋊ Δ{0} ↪ 𝑋 ⋊ Spn𝑛 is in the weakly saturated class generated by LH𝑃.
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Proof. Noting that Spn1 = Δ1, factor the inclusion𝑋 ⋊ Δ{0} ↪ 𝑋 ⋊ Spn𝑛 as a composite

𝑋 ⋊ Δ{0} 𝑋 ⋊ Δ1 𝑋 ⋊ Spn2 ⋯ 𝑋 ⋊ Spn𝑛 .

The inclusion𝑋 ⋊ Δ{0} ↪ 𝑋 ⋊ Δ1 is in the weakly saturated class generated by LH𝑃 (Corollary 2.4.7),
so it suffices to show that for 1 ≤ 𝑘 ≤ 𝑛 − 1, the inclusion 𝑋 ⋊ Spn𝑘 ↪ 𝑋 ⋊ Spn𝑘+1 is in the weakly
saturated class generated by LH𝑃. To see this, note that the inclusion𝑋 ⋊ Spn𝑘 ↪ 𝑋 ⋊ Spn𝑘+1 is given
by the pushout

𝑋 ⋊ Δ{𝑘} 𝑋 ⋊ Δ{𝑘<𝑘+1}

𝑋 ⋊ Spn𝑘 𝑋 ⋊ Spn𝑘+1 ,
⌜

and byCorollary 2.4.7 the inclusion𝑋 ⋊ Δ{𝑘} ↪ 𝑋 ⋊ Δ{𝑘<𝑘+1} is in theweakly saturated class generated
by LH𝑃.

Proof of Proposition 2.4.4. The inclusion𝑋 ⋊ Δ{0} ↪ 𝑋 ⋊ Δ𝑛 factors as a composite

𝑋 ⋊ Δ{0} 𝑋 ⋊ Spn𝑛 𝑋 ⋊ Δ𝑛 .

To conclude, first note that by Lemma 2.4.9 the inclusion𝑋 ⋊ Δ{0} ↪ 𝑋 ⋊ Spn𝑛 is in the weakly satu-
rated class generated by LH𝑃. Second, since the inclusion Spn𝑛 ↪ Δ𝑛 is inner anodyne, the inclusion

𝑋 × Spn𝑛 = 𝑋 ⋊ Spn𝑛 𝑋 ⋊ Δ𝑛 = 𝑋 × Δ𝑛

is inner anodyne [HTT, Corollary 2.3.2.4], hence in the weakly saturated class generated by LH𝑃.

2.5 Stability of weak equivalences under filtered colimits
In this subsection we explain how to fibrantly replace simplicial sets over 𝑃 whose strata are Kan
complexes without changing their strata, and use this to deduce that Joyal–Kan equivalences between
such objects are Joyal equivalences (Proposition 2.5.4).We leverage this to show that Joyal–Kan equiv-
alences are stable under filtered colimits (Proposition 2.5.9), verifying the last criterion to show that
the Joyal–Kan model structure is simplicial (Theorem 2.5.10). We deduce that the Joyal–Kan model
structure presents the∞-category Str𝑃 (Corollary 2.5.11).

2.5.1 Notation. Let 𝑃 be a poset. Write IHnv
𝑃 ⊂ IH𝑃 for those inner horn inclusions Λ𝑛𝑘 ↪ Δ𝑛 over 𝑃

that are not vertical in the sense that the stratification Δ𝑛 → 𝑃 is not a constant map.

2.5.2 Lemma. Let 𝑓∶ 𝑋 → 𝑌 be a morphism in sSet/𝑃. Then there exists a commutative square

𝑋 𝑌

𝑋 �̃� ,

𝑖

𝑓

𝑗

̃𝑓

in sSet/𝑃 where:

(2.5.2.1) The morphisms 𝑖 and 𝑗 are IHnv
𝑃 -cell maps.
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(2.5.2.2) The morphism ̃𝑓 satisfies the right lifting property with respect to IHnv
𝑃 .

(2.5.2.3) The morphisms 𝑖 and 𝑗 restrict to isomorphisms on strata, i.e., for all 𝑝 ∈ 𝑃 the morphisms 𝑖
and 𝑗 restrict to isomorphisms of simplicial sets 𝑖 ∶ 𝑋𝑝 ⥲ 𝑋𝑝 and 𝑗∶ 𝑌𝑝 ⥲ �̃�𝑝.

(2.5.2.4) If, in addition, all of the strata of𝑋 and 𝑌 are quasicategories, then𝑋 and �̃� can be chosen to
be quasicategories.

In particular, if all of the strata of 𝑋 and 𝑌 are Kan complexes, then 𝑋 and �̃� can be chosen to be
fibrant in the Joyal–Kan model structure on sSet/𝑃.

Proof. Since the morphisms in IHnv
𝑃 all have small domains, we can apply the small object argument

to construct a square

(2.5.3)
𝑋 𝑌

𝑋 �̃� ,

𝑖

𝑓

𝑗

̃𝑓

where 𝑖 and 𝑗 are IHnv
𝑃 -cell maps and ̃𝑓 has the right lifting property with respect to IHnv

𝑃 , which
proves (2.5.2.1) and (2.5.2.2).

To prove (2.5.2.3) we examine the constructions of 𝑋 and �̃� via the small object argument. Both
morphisms 𝑖 and 𝑗 are obtained by a transfinite composite of pushouts of inner horn inclusionsΛ𝑛𝑘 ↪
Δ𝑛 in IHnv

𝑃 . Hence to prove (2.5.2.3) it suffices to show that given an object𝐴 ∈ sSet/𝑃 and amorphism
𝑓∶ Λ𝑛𝑘 → 𝐴, where Λ𝑛𝑘 ∈ sSet/𝑃 is the domain of a morphism 𝑔∶ Λ𝑛𝑘 ↪ Δ𝑛 in IHnv

𝑃 , the morphism ̄𝑔
in the pushout square

Λ𝑛𝑘 𝐴

Δ𝑛 𝐴′⌜
𝑔

𝑓

̄𝑔

̄𝑓

induces an isomorphism (of simplicial sets) on strata. To see this, let 𝜎∶ Δ𝑛 → 𝑃 denote the stratifi-
cation of the target of 𝑔. Since 𝑔 ∈ IHnv

𝑃 , the stratification 𝜎 is not a constant map. We claim that for
all 𝑝 ∈ 𝑃 and𝑚 ≥ 0, the𝑚-simplices of 𝐴𝑝 ⊂ 𝐴′𝑝 and 𝐴′𝑝 coincide. If 𝑝 ∉ 𝜎(Δ𝑛) or𝑚 < 𝑛 − 1, this is
clear. Let us consider the remaining cases.

(1) If 𝑚 = 𝑛 − 1, then note that the only additional (𝑛 − 1)-simplex adjoined to 𝐴 in the pushout
defining 𝐴′ is the image of the face

Δ{0<⋯<𝑘−1<𝑘+1<⋯<𝑛} ⊂ Δ𝑛 .

Since the horn Λ𝑛𝑘 ⊂ Δ𝑛 is an inner horn, both vertices Δ{0} and Δ{𝑛} are contained in the face
Δ{0<⋯<𝑘−1<𝑘+1<⋯<𝑛}. Since the stratification 𝜎∶ Δ𝑛 → 𝑃 is not constant, the image of the face
Δ{0<⋯<𝑘−1<𝑘+1<⋯<𝑛} in 𝐴′ intersects more than one stratum. Hence for each 𝑝 ∈ 𝑃, the (𝑛 − 1)-
simplices of the strata 𝐴𝑝 and 𝐴′𝑝 coincide.

(2) If𝑚 = 𝑛, thennote that the only additional nondegenerate𝑛-simplex adjoined to𝐴 in the pushout
defining 𝐴′ is the unique nondegenerate 𝑛-simplex of Δ𝑛. Since the stratification 𝜎∶ Δ𝑛 → 𝑃
is non-constant, the image of this top-dimensional simplex under ̄𝑓 intersects more than one
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stratum. Similarly, note that since the image of the face Δ{0<⋯<𝑘−1<𝑘+1<⋯<𝑛} in𝐴′ intersects more
than one stratum (by the previous point), all of its degeneracies intersect more than one stratum.
But the image of Δ𝑛 and images of the degeneracies of Δ{0<⋯<𝑘−1<𝑘+1<⋯<𝑛} under ̄𝑓 are the only
𝑛-simplices adoined to 𝐴 in the pushout defining 𝐴′. Hence for each 𝑝 ∈ 𝑃, the 𝑛-simplices of
the strata 𝐴𝑝 and 𝐴′𝑝 coincide.

(3) If 𝑚 > 𝑛, then the claim follows from the fact that the ℓ-simplices of 𝐴𝑝 and 𝐴′𝑝 coincide for all
ℓ ≤ 𝑛 and the 𝑛-skeletality of Δ𝑛.

Now we prove (2.5.2.4); assume that the strata of 𝑋 and 𝑌 are quasicategories. To see that �̃� is a
quasicategory, note that by the construction of the factorization (2.5.3) via the small object argument,
�̃� is given by factoring the unique morphism 𝑌 → 𝑃 to the final object as a composite

𝑌 �̃� 𝑃𝑗 ℎ

of the IHnv
𝑃 -cell map 𝑗 followed by a morphism ℎ with the right lifting property with respect to IHnv

𝑃 .
To show that �̃� is a quasicategory, we prove that ℎ is an inner fibration. By the definition of IHnv

𝑃 ,
the morphism ℎ lifts against all inner horns Λ𝑛𝑘 ↪ Δ𝑛 over 𝑃 where the stratification of Δ𝑛 is not
constant. Thus to check that ℎ∶ �̃� → 𝑃 is an inner fibration, it suffices to check that for every inner
horn Λ𝑛𝑘 ↪ Δ𝑛 over 𝑃 where the stratification 𝜎∶ Δ𝑛 → 𝑃 is constant at a vertex 𝑝 ∈ 𝑃, every lifting
problem

Λ𝑛𝑘 �̃�

Δ𝑛 𝑃

ℎ

𝜎

admits a solution. The desired lift exists by (2.5.2.3) because the stratum �̃�𝑝 ≅ 𝑌𝑝 is a quasicategory
by assumption.

We conclude that 𝑋 is a quasicategory by showing that the stratification 𝑋 → 𝑃 is an inner
fibration. First, note that since ̃𝑓 ∶ 𝑋 → �̃� and ℎ∶ �̃� → 𝑃 have the right lifting property with respect
to IHnv
𝑃 , so does the stratification ℎ ̃𝑓∶ 𝑋 → 𝑃. Hence to show that the stratification 𝑋 → 𝑃 is an

inner fibration, it suffices to show that 𝑋 → 𝑃 lifts against inner horns Λ𝑛𝑘 ↪ Δ𝑛 over 𝑃 where the
stratification 𝜎∶ Δ𝑛 → 𝑃 is constant. Again, the desired lift exists by (2.5.2.3) because the strata of 𝑋
are quasicategories.

2.5.4 Proposition. Let 𝑃 be a poset and 𝑓∶ 𝑋 → 𝑌 a morphism in sSet/𝑃. If the strata of𝑋 and 𝑌 are
all Kan complexes, then 𝑓 is a Joyal–Kan equivalence if and only if 𝑓 is a Joyal equivalence.

Proof. Since the Joyal–Kan equivalences between fibrant objects of the Joyal–Kan model structure
on sSet/𝑃 are precisely the Joyal equivalences (2.1.3.7), by 2-of-3 it suffices to show that there exists a
commutative square

𝑋 𝑌

𝑋 �̃� ,

𝑖 ≀

𝑓

𝑗≀

̃𝑓

in sSet/𝑃, where𝑋 and �̃� are Joyal–Kan fibrant objects, and 𝑖 ∶ 𝑋 ⥲ 𝑋 and 𝑗∶ 𝑌 ⥲ �̃� are Joyal equiva-
lences.This follows from Lemma 2.5.2 since IHnv

𝑃 -cell maps are, in particular, Joyal equivalences.
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2.5.5. Since Joyal equivalences are stable under filtered colimits [HTT, Theorem 2.2.5.1 & p. 90], to
show that Joyal–Kan equivalences are stable under filtered colimits, Proposition 2.5.4 reduces us to
constructing a functor 𝐹∶ sSet/𝑃 → sSet/𝑃 that lands in strata-wise Kan complexes, admits a natural
weak equivalence idsSet/𝑃 ⥲ 𝐹, and preserves filtered colimits. We accomplish this by applying Kan’s
Ex∞ functor vertically to each stratum.
2.5.6 Construction. Let 𝑃 be a poset. Define a functor VEx∞𝑃 ∶ sSet/𝑃 → sSet/𝑃 by the assignment

𝑋 ↦ 𝑋
Obj(𝑃)×𝑃𝑋⊔ Ex∞(Obj(𝑃) ×𝑃 𝑋) ≅ 𝑋

∐𝑝∈𝑃 𝑋𝑝
⊔ (∐𝑝∈𝑃 Ex∞(𝑋𝑝)) ,

where the pushout is taken in sSet/𝑃, and the stratifications∐𝑝∈𝑃 Ex∞(𝑋𝑝) → 𝑃 and∐𝑝∈𝑃𝑋𝑝 → 𝑃
are induced by the constant maps Ex∞(𝑋𝑝) → 𝑃 and𝑋𝑝 → 𝑃 at 𝑝 ∈ 𝑃.

We claim that the natural inclusion

𝑋 ↪ VEx∞𝑃 (𝑋)
is a trivial Joyal–Kan cofibration. To see this, note that for each 𝑝 ∈ 𝑃, the inclusion 𝑋𝑝 ↪ Ex∞(𝑋𝑝)
is a trivial Kan cofibration, so in the weakly saturated class generated by the horn inclusionsΛ𝑛𝑘 ↪ Δ𝑛
in sSet, where 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛. Thus, stratifying𝑋𝑝 and Ex∞(𝑋𝑝) via the constant maps at 𝑝 ∈ 𝑃,
by Proposition 2.3.1 the inclusion 𝑋𝑝 ↪ Ex∞(𝑋𝑝) is a trivial Joyal–Kan cofibration in sSet/𝑃. To
conclude, note that by definition the inclusion 𝑋 ↪ VEx∞𝑃 (𝑋) is a pushout of the trivial Joyal–Kan
cofibration

∐
𝑝∈𝑃
𝑋𝑝 ↪∐

𝑝∈𝑃
Ex∞(𝑋𝑝) .

In particular, note that by Proposition 2.5.4 a morphism 𝑓∶ 𝑋 → 𝑌 in sSet/𝑃 is a Joyal–Kan
equivalence if and only if

VEx∞𝑃 (𝑓)∶ VEx∞𝑃 (𝑋) → VEx∞𝑃 (𝑌)
is a Joyal equivalence.
2.5.7Warning. The functor VEx∞𝑃 in general does not preserve quasicategories over 𝑃. In particular,
if 𝑃 is not discrete, then VEx∞𝑃 is not a fibrant replacement for the Joyal–Kan model structure.
2.5.8 Lemma. Let 𝑃 be a poset. Then the functor VEx∞𝑃 ∶ sSet/𝑃 → sSet/𝑃 preserves filtered colimits.
Proof. First, since filtered colimits commute with finite limits in sSet, the functor

Obj(𝑃) ×𝑃 −∶ sSet/𝑃 → sSet/𝑃
preserves filtered colimits. Second, since Kan’s Ex∞ functor preserves filtered colimits, the functor
sSet/𝑃 → sSet/𝑃 given by the assignment

𝑋 ↦ Ex∞(Obj(𝑃) ×𝑃 𝑋) ≅ ∐
𝑝∈𝑃

Ex∞(𝑋𝑝)

preserves filtered colimits. The claim is now clear from the definition of VEx∞𝑃 .

Combining our observation (2.5.5) with Lemma 2.5.8 we deduce:
2.5.9 Proposition. For any poset 𝑃, Joyal–Kan equivalences in sSet/𝑃 are stable under filtered colimits.
Propositions 2.4.4 and 2.5.9 and Remark 2.4.1 verify the three conditions of (2.4.2) proving:
2.5.10Theorem. For any poset 𝑃, the Joyal–Kan model structure on sSet/𝑃 is simplicial.
From this we immediately deduce that the Joyal–Kan model structure presents Str𝑃.
2.5.11 Corollary. Let 𝑃 be a poset.Then the underlying quasicategory of the Joyal–Kanmodel structure
on sSet/𝑃 is the quasicategory Str𝑃 of abstract 𝑃-stratified homotopy types.
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3 The stratified homotopy hypothesis
The purpose of this section is to use our work on the Joyal–Kan model structure to prove our strati-
fied homotopy hypothesis (Theorem 0.1.1). In §3.1, we begin with some immediate consequences of
our work in §2. Subsection 3.2 proves the stratified homotopy hypothesis. Subsection 3.3 explains a
globalization where we allow the stratifying poset to vary. In §3.4, we show that the Ayala–Francis–
Tanaka–Rozenblyum homotopy theory of stratfied spaces embeds into ours.

3.1 Elementary results
3.1.1 Corollary. Let 𝑃 be a poset and 𝑇 a 𝑃-stratified topological space. Then the 𝑃-stratified simplicial
set Sing𝑃(𝑇) is a Joyal–Kan fibrant object of sSet/𝑃 if and only if Sing𝑃(𝑇) is a quasicategory.

Proof. Combine (1.2.7) and Proposition 2.2.4.

Since the exit-path simplicial set of a conically stratified topological space is a quasicategory
(1.2.8), we deduce:

3.1.2 Corollary. Let 𝑃 be a poset. If 𝑇 ∈ Top/𝑃 is conically stratified, then the simplicial set Sing𝑃(𝑇) is
a Joyal–Kan fibrant object of sSet/𝑃.

Note that not all stratified topological spaces arising as geometric realizations of quasicategories are
conically stratified:

3.1.3 Example. Stratify the quasicategoryΛ20 over [1] via themap sending 0 and 1 to 0 and 2 to 1.The
[1]-stratified topological space |Λ20|[1] is not conically stratified.Moreover, the [1]-stratified simplicial
set Sing[1] |Λ20|[1] is not a quasicategory.

3.1.4Warning. Example 3.1.3 shows that, unlike the Kanmodel structure, if𝑃 is a non-discrete poset,
the functor Sing𝑃 |−|𝑃 is not a fibrant replacement for the Joyal–Kan model structure on sSet/𝑃.

3.1.5 Notation. Let 𝑃 be a poset. Write

Topex
/𝑃 ⊂ Top/𝑃

for the full subcategory spanned by those 𝑃-stratified topological spaces 𝑇 for which the simplicial
set Sing𝑃(𝑇) is a quasicategory. Note that Topex

/𝑃 contains all conically 𝑃-stratified topological spaces.

Since the Joyal–Kan model structure on sSet/𝑃 presents the∞-category Str𝑃 (Corollary 2.5.11),
we deduce the following variants of a result of Miller [37, Theorem 6.10; 38, Theorem 6.3].

3.1.6 Corollary. Let 𝑃 be a poset and let 𝑓∶ 𝑇 → 𝑆 be a morphism in Topex
/𝑃. Then the morphism

Sing𝑃(𝑓) is an equivalence when regarded as a morphism in Str𝑃 if and only if the following conditions
are satisfied:

(3.1.6.1) For each 𝑝 ∈ 𝑃, the induced map on strata 𝑇𝑝 → 𝑆𝑝 is a weak homotopy equivalence of
topological spaces.

(3.1.6.2) For all 𝑝, 𝑞 ∈ 𝑃 with 𝑝 < 𝑞, the induced map on topological links

MapTop/𝑃(|{𝑝 < 𝑞}|𝑃, 𝑇) → MapTop/𝑃(|{𝑝 < 𝑞}|𝑃, 𝑆)

is a weak homotopy equivalence of topological spaces.
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Proof. Combine (1.2.7), (1.1.9), and Remark 1.2.9.

3.1.7 Lemma. Let 𝑓∶ 𝑇 → 𝑆 be a morphism in Topex
/𝑃. The following conditions are equivalent:

(3.1.7.1) The map 𝑓 is a Douteau–Henriques equivalence.

(3.1.7.2) The morphism Sing𝑃(𝑓) is a weak equivalence in the Joyal–Kan model structure on sSet/𝑃.

(3.1.7.3) The morphism Sing𝑃(𝑓) is an equivalence when regarded as a morphism in the∞-category
Str𝑃 of abstract 𝑃-stratified homotopy types.

Proof. Combine (1.3.11) and Corollary 2.5.11.

3.2 The stratified homotopy hypothesis
In this subsection we prove our stratified homotopy hypothesis (see Theorem 3.2.4). We accomplish
this by appealing to the relationship between the∞-category Str𝑃 and décollages explained in §§1.1
and 1.3.

3.2.1. Note that for any 𝑇 ∈ Topex
/𝑃, the simplicial presheaf

D𝑃(𝑇) ≅ N𝑃 Sing𝑃(𝑇)

on sd(𝑃) introduced in Notation 1.3.3 already satisfies the Segal condition for décollages.

3.2.2 Notation. Let W𝑃 ⊂ Mor(Topex
/𝑃) denote the class of morphisms that induce weak homotopy

equivalences on all strata and topological links. Equivalently, W𝑃 is the class of morphisms that are
sent to equivalences in the Joyal–Kanmodel structure under Sing𝑃 (Corollary 3.1.6 and Lemma 3.1.7).

3.2.3. Theorem 1.3.12 implies that the induced functor of∞-categories

Exit𝑃 ∶ Topex
/𝑃[W−1𝑃 ] → Str𝑃
𝑇 ↦ Sing𝑃(𝑇)

is fully faithful. In fact Exit𝑃 is an equivalence:

3.2.4Theorem (stratified homotopy hypothesis, local version). For any poset 𝑃, the functor

Exit𝑃 ∶ Topex
/𝑃[W−1𝑃 ] → Str𝑃

is an equivalence of∞-categories.

Proof. By (3.2.3) it suffices to show that Exit𝑃 is essentially surjective. For this, it suffices to show that
the induced functor

D𝑃 ∶ Topex
/𝑃[W−1𝑃 ] → Déc𝑃

is essentially surjective. We prove this by factoring the equivalence from a localization of the under-
lying∞-category of Top/𝑃 in the Douteau–Henriques model structure to Déc𝑃 through complete
Segal spaces with a conservative functor to N(𝑃) (cf. the proof of Theorem 1.1.7).

Let 𝑖 ∶ sd(𝑃) ↪ 𝚫/𝑃 denote the inclusion of the subdivision of 𝑃 into the category of simplicies of
𝑃. Write

𝑖∗ ∶ Fun(𝚫op/𝑃, sSet) → Fun(sd(𝑃)op, sSet)
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for the restriction functor. Write 𝑖! for the left adjoint of 𝑖∗, given by left Kan extension along 𝑖. Then
the induced adjunction

(3.2.5) 𝑖! ∶ Fun(sd(𝑃)op, sSet)proj ⇄ Fun(𝚫op/𝑃, sSet)proj ∶𝑖∗ ,

is a simplicial Quillen adjunction for the projective model structures (with respect to the Kan model
structure on sSet). The simplicial Quillen equivalence

|−|𝑃 ∘ L𝑃 ∶ Fun(sd(𝑃)op, sSet)proj ⇄ Top/𝑃 ∶D𝑃

factors as a composite of simplicial adjunctions

Fun(sd(𝑃)op, sSet)proj Fun(𝚫op/𝑃, sSet)proj Top/𝑃 ,
𝑖!

𝑖∗ D′𝑃

where the right adjoint D′𝑃 ∶ Top/𝑃 → Fun(𝚫op/𝑃, sSet) is given by

𝑇 ↦ [(Δ𝑛 → 𝑃) ↦ SingMapTop/𝑃(|Δ
𝑛|𝑃 , 𝑇)] .

Moreover, D′𝑃 preserves Douteau–Henriques weak equivalences and fibrant objects, and 𝑖∗ preserves
weak equivalences. Write

CSScons
/N(𝑃) ⊂ CSS/N(𝑃)

for the full subcategory of the ∞-category of complete Segal spaces over N(𝑃) spanned by those
complete Segal spaces 𝐶 → N(𝑃) such that for any 𝑝 ∈ 𝑃, the complete Segal space 𝐶𝑝 is an ∞-
groupoid. Since the projective model structures on Fun(sd(𝑃)op, sSet) and Fun(𝚫op/𝑃, sSet) are left
proper, appealing to [HTT, Proposition A.3.7.8] we see that there are left Bousfield localization of
Fun(sd(𝑃)op, sSet)proj and Fun(𝚫op/𝑃, sSet)proj so that the Quillen adjunction induced by the Quillen
adjunction (3.2.5) presents the equivalence Déc𝑃 ≃ CSScons

/N(𝑃) from the proof of Theorem 1.1.7.
Let W′𝑃 ⊂ Mor(Top/𝑃) denote the class of morphisms sent by D′𝑃 to weak equivalences in the left

Bousfield localization of Fun(𝚫op/𝑃, sSet)proj presenting the∞-categoryCSScons
/N(𝑃). FromTheorem 1.3.5

we deduce that D′𝑃 descends to an equivalence of∞-categories

(3.2.6) D′𝑃 ∶ Top/𝑃[(W′𝑃)−1] ⥲ CSScons
/N(𝑃) .

Thus the equivalence (3.2.6) restricts to an equivalence

Topseg
/𝑃 [(W′𝑃)−1] ⥲ CSScons

/N(𝑃) ,

whereTopseg
/𝑃 ⊂ Top/𝑃 is the full subcategory spanned by those objects𝑇 sent to complete Segal spaces

under D′𝑃. The functor
D′𝑃 ∶ Top/𝑃 → Fun(𝚫op/𝑃, sSet)

is the composite of Sing𝑃 ∶ Top/𝑃 → sSet/𝑃 with the ‘nerve’ functor

N′𝑃 ∶ sSet/𝑃 → Fun(𝚫op/𝑃, sSet)
𝑋 ↦ [(Δ𝑛 → 𝑃) ↦ MapsSet/𝑃

(Δ𝑛, 𝑋)] .

By [28, Corollary 3.6] we see that D′𝑃(𝑇) is a complete Segal space if and only if Sing𝑃(𝑇) is a quasicat-
egory. Hence Topseg

/𝑃 = Topex
/𝑃. To conclude, note that the class of morphisms in Topex

/𝑃 that lie in W′𝑃
coincides with the class of morphisms sent to Joyal–Kan equivalences under Sing𝑃.
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3.3 Changing the stratifying poset
In this subsection,we explainwhyour stratifiedhomotopyhypothesis for a fixedposet (Theorem3.2.4)
implies a ‘global’ version where we allow the stratifying poset to vary. We first fix some notation.

3.3.1 Notation. Write
StrTopex ⊂ Fun([1],Top)

for the full subcategory of the arrow category of Top on those morphisms 𝑠 ∶ 𝑇 → 𝑃 where 𝑃 is (the
Alexandroff topological space associated to) a poset, and the simplicial set Sing𝑃(𝑇) is a quasicategory.

Similarly, write
Str ⊂ Fun([1],Cat∞)

for the full subcategory of the arrow category ofCat∞ on those functors𝑓∶ 𝐶 → 𝑃where𝑃 is a poset,
and 𝑓 is conservative.

Write Exit for the functor

StrTopex → Str
[𝑇 → 𝑃] ↦ [Exit𝑃(𝑇) → 𝑃] .

Write W ⊂ Mor(StrTopex) for the set of morphisms in StrTopex sent to equivalences by the functor
Exit.

3.3.2. Note that a morphism

𝑇 𝑆

𝑃 𝑄 ,

𝑓

𝜙

is in W if and only if 𝜙 is an isomorphism and 𝑓 induces weak homotopy equivalences on all strata
and links (Corollary 3.1.6).

The following is an immediate consequence of Theorem 3.2.4.

3.3.3 Corollary (stratified homotopy hypothesis, global version). The functor

Exit ∶ StrTopex[W−1] → Str

is an equivalence of∞-categories.

3.4 Relation to conically smooth stratified spaces
We conclude by using our stratified homotopy hypothesis to show that the Ayala–Francis–Tanaka–
Rozenblyumhomotopy theory of conically smooth stratfied spaces embeds into our homotopy theory
of stratified spaces.

3.4.1 Recollection (conically smooth stratified spaces). In work with Tanaka [5, §3], Ayala and Fran-
cis introduced conically smooth structures on stratified topological spaces. Ayala and Francis furtuer
studied these in work with Rozenblyum [3]. Write Con for their category of conically smooth strat-
ified spaces and conically smooth maps. An object of Con consists of a stratified topological space
𝑠 ∶ 𝑇 → 𝑃 where

(3.4.2.1) for each 𝑝 ∈ 𝑃, the set { 𝑞 ∈ 𝑃 | 𝑞 ≤ 𝑝 } is finite, and
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(3.4.2.2) each stratum of 𝑠 is connected,

along with an additional structure of a ‘conically smooth atlas’ on 𝑇. The conically smooth atlas, in
particular, endows the strata of 𝑇 with the structure of smooth manifolds. Morphisms in Con are
commutative squares of continuous maps

𝑇 𝑆

𝑃 𝑄 ,

𝑓

where the map 𝑓 satisfies additional regularity hypotheses. When 𝑃 = 𝑄 = ∗, these regularity hy-
potheses require that 𝑓 be a smooth map of smooth manifolds.

Conically smooth stratified spaces are, in particular, conically stratified. Hence there is a functor

Con→ StrTopex

forgetting the conically smooth structure. The Ayala–Francis–Rozenblyum∞-category of stratified
spaces is the∞-category obtained from Con by inverting the class H of stratified homotopy equiva-
lences [3, Theorem 2.4.5].

3.4.2 Comparison. The composite functor

Con StrTopex StrExit

sends the class H to equivalences, hence induces a functor of∞-categories

Exit ∶ Con[H−1] → Str .

As a result of [3, Lemma 3.3.9 & Theorem 4.2.8] the functor Exit ∶ Con[H−1] → Str is fully faithful.
Thus we have a commutative triangle of fully faithful functors of∞-categories

Con[H−1] Str

StrTopex[W−1] ,

Exit

Exit
∼

where the vertical functor is induced by the forgetful functor Con → StrTopex. In particular, the
theory of conically stratified spaces with equivalences on exit-path∞-categories inverted subsumes
the Ayala–Francis–Tanaka–Rozenblyum theory of stratified spaces.

3.4.3 Remark. Ayala–Francis–Rozenblyum conjectured that every Whitney-stratified space admits
a conically smooth structure [3, Conjecture 0.0.7]. For a long time this conjecture was open; Nocera
and Volpe have recently proven it [41, Theorem 2.7].
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