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Abstract
In this paper we show that the functor sending a strati-

fied topological space S to the ∞-category of constructible
(hyper)sheaves on S with coefficients in a large class of pre-
sentable ∞-categories is homotopy-invariant. To do this, we first
establish a number of results for locally constant (hyper)sheaves.
For example, if X is a locally weakly contractible topological
space and E is a presentable ∞-category, then we give a concrete
formula for the constant hypersheaf functor E → Shhyp(X; E),
implying that the constant hypersheaf functor is a right adjoint,
and is fully faithful if X is also weakly contractible. It also
lets us prove a general monodromy equivalence and categorical
Künneth formula for locally constant hypersheaves.

0. Introduction

A classical result from sheaf theory says that the functor S 7→ LC(S;Set) sending
a topological space S to the category of locally constant sheaves of sets on S is
homotopy-invariant. More generally, if P is a poset then the functor

S 7→ ConsP (S;Set)

sending a P -stratified topological space S to the category of sheaves of sets on S that
are constructible with respect to the stratification S → P is invariant under stratified
homotopy equivalences. Lurie’s work on the topological exodromy equivalence (see
[16, Theorems A.1.15 & A.4.19]) generalizes these results by considering sheaves with
values in the ∞-category of spaces, provided that we restrict to the following classes
of well-behaved (stratified) topological spaces:

(1) For locally constant sheaves, we take topological spaces S that are locally of
singular shape.

(2) For constructible sheaves, we take stratified topological spaces S → P for which
the poset P is Noetherian, the stratification is conical, S is paracompact, and all
of the strata of S are locally of singular shape.
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The goal of this paper is to establish the homotopy-invariance result for the ∞-cate-
gories of locally constant and constructible sheaves with coefficients in the ∞-category
of spaces removing all of the above hypotheses.

In the higher-categorical world, alongside with sheaves, it is often important to
also consider hypersheaves. Depending on the situation, one is better behaved than
the other (see the discussion in [15, §6.5.4]). In the main body of the paper, we prove
two versions of the homotopy-invariance theorem: one in the setting of hypersheaves
and one in the setting of sheaves. The hypersheaf one is stronger, requiring fewer
assumptions than its sheaf-theoretic counterpart. The precise statements are given
later in this introduction, but the main advantages can be summarized as follows:

(1) Working with hypersheaves, we establish invariance not only with respect homo-
topy equivalences, but to a large class of weak homotopy equivalences (a result
that seems new even for sheaves of sets).

(2) Working with hypersheaves, we can drop the Noetherianity assumption on the
poset P .

We expect both of these statements to fail in the sheaf-theoretic setting. Furthermore,
both facts have interesting consequences. The first is needed, at this level of generality,
in the companion paper of Porta–Teyssier [21] concerning a strengthening of the
exodromy equivalence of [16, Theorem A.9.3]. The second lets us apply the homotopy-
invariance theorem to key examples like infinite Grassmannians or the Ran space
of a manifold [3, §3.7], [6], [7], [15, §5.5.1], [18], whose natural stratification is not
Noetherian. This was one of the motivations behind Lejay’s work on the exodromy
equivalence [14].

Finally, we do not limit ourselves to sheaves of spaces. Rather, our results apply
to more general presentable (not necessarily compactly generated) ∞-categories: the
methods of this paper are explicit enough that we can handle any stable presentable
∞-category, and any ∞-topos without any added difficulty.

Statement of results
Before giving the precise statements of the main homotopy-invariance results of

this paper, let us be precise about what we mean by homotopy-invariance. Fix a poset
P , that we regard as a topological space via the Alexandroff topology (where the open
subsets are the upwards-closed subsets, see Notation 5.1). A P -stratified topological
space is the data of a topological space S together with a continuous map S → P .
When P = ∗, a P -stratified space is just a topological space. Given S ∈ Top/P and
X ∈ Top, we regard S ×X as a P -stratified space via the projection S ×X → S → P .
Consider the following definition:

Definition 0.1. Let P be a poset. A functor C : Topop
/P → Cat∞ is homotopy-invar-

iant if for each P -stratified space S, the functor

C(prS) : C(S) → C(S × [0, 1])

induced by the projection prS : S × [0, 1] → S is an equivalence of∞-categories. A func-
tor C : Topop

/P → Cat∞ is strongly homotopy-invariant if for each P -stratified space
S and each weakly contractible and locally weakly contractible1 topological space X,

1Starting from here on we shorten “weakly contractible and locally weakly contractible” to wclwc.

http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.4
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.9.3
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.5.5.1
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the induced functor C(prS) : C(S) → C(S ×X) is an equivalence of ∞-categories.

Let E be a presentable ∞-category and S a topological space. We write LC(S; E)
for the ∞-category of locally constant E-valued sheaves on S, and write LChyp(S; E)
for the hypersheaf variant of this ∞-category (see §§ 1.1 and 1.3). Beware that, in
general, the notions of local constancy for sheaves and hypersheaves are not the same
and LChyp(S; E) is not a subcategory of LC(S; E).

Theorem 0.2 (Theorem 3.17 & Corollary 4.13). The functors

LC(−; E), LChyp(−; E) : Topop → Cat∞

are homotopy-invariant. Moreover, LChyp(−; E) is strongly homotopy invariant

Passing to global sections, Theorem 0.2 implies that cohomology with coefficients in
a locally constant sheaf valued in any presentable ∞-category is homotopy-invariant.

Remark 0.3. The same kind of techniques involved in the proof of Theorem 0.2 allow
to show that the functor LChyp(−; E) inverts all weak homotopy equivalences between
locally weakly contractible topological spaces (see Observation 3.8). However, the
functors LC(−; E) and LChyp(−; E) do not invert all weak homotopy equivalences
between arbitrary topological spaces: sheaf cohomology with constant coefficients is not
an invariant of the weak homotopy type of a topological space. Indeed, for paracompact
spaces, Čech cohomology and sheaf cohomology agree [9, Théorème 5.10.1]. Now,
the Warsaw circle is weakly contractible, but the quotient map from it to the circle
induces an isomorphism on Čech cohomology, hence sheaf cohomology. Note that this
doesn’t fall into the setting of Theorem 0.2: the Warsaw circle is not even locally
path-connected.

Fix a poset P . Given a P -stratified topological space S → P , we write ConsP (S; E)
for the ∞-category of constructible E-valued sheaves on S, and write ConshypP (S; E)
for the hypersheaf variant of this ∞-category (see § 5.1 for precise definitions). Since
constructible sheaves are locally constant along a stratification, as long as the poset
P and coefficients E allow to check equivalences after pulling back to strata, then
Theorem 0.2 implies that constructible sheaves are homotopy-invariant. We offer two
ways of checking this:

Theorem 0.4 (Corollaries 5.13 and 5.19). Consider the functors

ConsP (−; E), ConshypP (−; E) : Topop
/P → Cat∞.

(0.4.1) If E is compactly generated, then the functor ConshypP (−; E) is strongly homo-
topy-invariant.

(0.4.2) If P is Noetherian and E is compactly generated, stable, or an ∞-topos, then
the functor ConsP (−; E) is homotopy-invariant, and ConshypP (−; E) is strongly
homotopy-invariant.

Remark 0.5. Theorem 0.4 holds under much weaker assumptions than Lurie’s exo-
dromy equivalence [16, Theorem A.9.3]. For instance, it holds for stratified spaces
that are not necessarily conical.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.9.3
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Again, passing to global sections, Theorem 0.4 implies that (under the above
hypotheses) sheaf cohomology with coefficients in a constructible sheaf is homotopy-
invariant. Also note that Theorem 0.4 generalizes the following existing results about
the homotopy-invariance of constructible sheaves:

(1) In the setting of topologically stratified spaces in the sense of Goresky–MacPherson
[10, §1.1], Treumann showed that constructible sheaves with values in the 2-
category Cat1 of 1-categories is homotopy-invariant [24, Theorem 3.11].

(2) When P is Noetherian, Clausen–Ørsnes Jansen proved that ConsP (−;Spc) is
homotopy-invariant [8, Proposition 3.2]. Our proof for ConsP (−; E) is a mild
extension of their work.

One of the key ingredients of the proofs of Theorems 0.2 and 0.4 is the notion of
topological family of locally hyperconstant hypersheaves. Concretely, if X is a wclwc
topological space (e.g. X = [0, 1]), and S is any topological space, we are led to
consider the full subcategory

LChyp
S (S ×X; E) ⊂ Shhyp(S ×X; E)

spanned by those hypersheaves that are, locally on X, pulled back from hypersheaves
on S (see Definition 1.17 for the precise definition). When E = Spc, this definition
recovers the usual notion of foliated hypersheaf (see § 2.4), but it is better behaved for
general coefficients. The main theorem concerning these objects is the following:

Theorem 0.6 (Proposition 2.5 and Theorem 2.12). Let X be a locally weakly con-
tractible topological space and let E be a presentable ∞-category. Then for every
topological space S, the pullback functor

pr∗,hypS : Shhyp(S; E) → Shhyp(S ×X; E)

admits a left adjoint. Moreover, if X is also weakly contractible, then pr∗,hypS is fully
faithful with essential image LChyp

S (S ×X; E).

It is easy to explain the idea behind this theorem when S = ∗ and E = Spc. Let
ΓX : X → ∗ be the unique map, and let

Π∞ : Shhyp(X) → Spc

be the left Kan extension of the functor sending an open U ⊂ X to its underlying
homotopy type Π∞(U). For formal reasons, Π∞ admits a right adjoint, that we denote
Π∞. Given K ∈ Spc, the hypersheaf Π∞(K) is given by the assignment

U 7→ Π∞(K)(U) := MapSpc(Π∞(U),K).

There is a natural comparison map Γ∗,hyp
X → Π∞, and the fact that we are working in

the hypercomplete setting and that X is locally weakly contractible implies that this
map is an equivalence (see Proposition 2.5). Note that if X is also weakly contractible,
then the full faithfulness part follows from the assumption that Π∞(X) ≃ ∗.

Besides Theorems 0.2 and 0.4, Theorem 0.6 has many other consequences; we
discuss them in § 3. Among them are: a general form of the monodromy equivalence
(Corollary 3.6), a Künneth formula for locally hyperconstant hypersheaves (Corol-
lary 3.14), and the comparison between sheaf and singular cohomology on locally
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weakly contractible spaces (Corollary 3.29). We also establish the following handy
recognition criterion:

Corollary 0.7 (Proposition 3.1). Let X be a locally weakly contractible topological
space and let E be a presentable ∞-category. For a hypersheaf F ∈ Shhyp(X; E), the
following statements are equivalent:

(0.7.1) The hypersheaf F is locally hyperconstant.

(0.7.2) For every pair of weakly contractible open subsets U ⊂ V of X, the restriction
map F (V ) → F (U) is an equivalence in E.

In particular, it immediately follows that if X is locally weakly contractible, then
locally hyperconstant hypersheaves are closed under arbitrary limits in Shhyp(X; E).
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1. Sheaf-theoretic background

In this section we explain our sheaf-theoretic conventions and notation as well as
recall some background on hypersheaves and locally (hyper)constant (hyper)sheaves.

1.1. Background on sheaves & hypersheaves
We fix an ∞-site (C, τ) and a presentable ∞-category E .

Notation 1.1. We write

PSh(C; E) := Fun(Cop, E)

for the ∞-category of E-valued presheaves on C. We also write Shτ (C; E) ⊂ PSh(C; E)
for the full subcategory spanned by E-valued presheaves that satisfy τ -descent. When
E = Spc, we simply write

PSh(C) := PSh(C;Spc) and Shτ (C) := Shτ (C;Spc).

1.2. The ∞-categories PSh(C; E) and Shτ (C; E) are naturally identified with the tensor
products of presentable ∞-categories PSh(C)⊗ E and Shτ (C)⊗ E [17, Remark 1.3.1.6
& Proposition 1.3.1.7]. We refer the reader to [16, §4.8.1] for a thorough treatment
of the tensor product of presentable ∞-categories. As both points of view have their
own advantages, in this paper we use both descriptions interchangeably.

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.6
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.7
http://www.math.ias.edu/~lurie/papers/HA.pdf#subsection.4.8.1
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1.3. Crucial to the current paper is the notion of hypersheaf. When E is the ∞-cate-
gory of spaces, hypersheaves can be defined intrinsically in the ∞-topos Shτ (C) as
hypercomplete objects, that is, objects that are local with respect to ∞-connected
morphisms. Hypersheaves thus form a full subcategory Shhypτ (C) ⊂ Shτ (C). It is then
possible to define hypersheaves with coefficients in E as the tensor product

Shhypτ (C; E) := Shhypτ (C)⊗ E .

Each of the inclusions

Shhypτ (C) ⊂ PSh(C) and Shhypτ (C) ⊂ Shτ (C)

admits a left adjoint. We refer to both left adjoints as the hypercompletion functors,
and we denote them by (−)hyp. Functoriality of the tensor product of presentable
∞-categories produces functors

(−)hyp : PSh(C; E) → Shhypτ (C; E) and (−)hyp : Shτ (C; E) → Shhypτ (C; E).

Both these functors still admit fully faithful right adjoints. We refer the reader
unfamiliar with hypercomplete objects and hypercompletion to [15, §§6.5.2–6.5.4] or
[4, §3.11] for further reading on the subject.

1.4. If there exists an integer n ⩾ 0 such that E is an n-category, then Shhypτ (C; E) =
Shτ (C; E) [15, Lemma 6.5.2.9] [16, Example 4.8.1.22]. In particular, every sheaf of
sets is a hypersheaf.

Notation 1.5. Let S be a topological space. We write Open(S) the poset of open
subsets of S, ordered by inclusion. We regard Open(S) as a site with the covering
families given by open covers. We write

PSh(S; E) :=PSh(Open(S); E), Sh(S; E) := Sh(Open(S); E),
Shhyp(S; E) := Shhyp(Open(S); E).

1.6. Sheaves and hypersheaves on topological spaces coincide in many situations in
which homotopy-invariance is a well-behaved notion. For example, the ∞-topos of
sheaves on a topological space admitting a CW structure is hypercomplete [12].

Recollection 1.7. Let S be a topological space. Then the stalk functors

{s∗ : Shhyp(S) → Sh({s}) ≃ Spc}s∈S

are jointly conservative [16, Lemma A.3.9]. Since the stalk functors are left exact, [11,
Lemma 2.8] shows that for any compactly generated ∞-category E , the stalk functors

{s∗ : Shhyp(S; E) → Sh({s}; E) ≃ E}s∈S

are jointly conservative.

1.8. Let S be a topological space and E a compactly generated ∞-category. Then
the subcategory Shhyp(S; E) ⊂ Sh(S; E) is the localization obtained by inverting all
morphisms that induce equivalences on stalks.

http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.2
http://www.math.ias.edu/~lurie/papers/HTT.pdf#subsection.6.5.4
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.2.9
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.22
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.9
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1.2. Hypersheaves and bases
Definition 1.9. Let (C, τ) be an ∞-site. A basis of (C, τ) is a full subcategory B of C
such that every object U ∈ C admits a τ -covering {Ui}i∈I where for each i ∈ I, we
have Ui ∈ B.

Example 1.10. Let S and X be topological spaces. Write

Open×(S ×X) ⊂ Open(S ×X)

for the subposet spanned by the open subsets of the form V × U , where V ∈ Open(S)
and U ∈ Open(X). Then Open×(S ×X) is a basis of Open(S ×X). We write

Openall,ctr(S ×X) ⊂ Open×(S ×X)

for the subposet spanned by the open subsets of the form V × U , where U is a weakly
contractible open subset of X. When S = ∗, we simply write Openctr(X) instead of
Openall,ctr(∗ ×X). If X is locally weakly contractible, then Openall,ctr(S ×X) is also
basis of Open(S ×X).

Let (C, τ) be an ∞-site and B be a basis for (C, τ). Write j : Bop ↪→ Cop for the
inclusion. Right Kan extension along j defines a fully faithful functor

j∗ : PSh(B; E) ↪→ PSh(C; E)

with left adjoint j∗ : PSh(C; E) → PSh(B; E) given by restriction of presheaves.

Definition 1.11. We will say that an E-valued presheaf F ∈ PSh(B; E) on B is a
τ -hypersheaf if j∗(F ) belongs to Shhypτ (C; E). We write Shhypτ (B; E) ⊂ PSh(B; E) for
the full subcategory spanned by τ -hypersheaves.

The key fact we need is that hypersheaves on a site and a basis agree:

Proposition 1.12 ([2, Theorem A.6] [4, Proposition 3.12.11]). Let (C, τ) be an ∞-site
and B ⊂ C a basis. Then:

(1.12.1) For every F ∈ Shhypτ (C; E), the unit transformation u : F → j∗j
∗(F ) is an

equivalence.

(1.12.2) The functor j∗ : Shhypτ (B; E) → Shhypτ (C; E) is an equivalence with inverse
given by the presheaf-theoretic restriction j∗.

Remark 1.13. Let F ∈ PSh(C; E). It follows directly from Proposition 1.12 that if
j∗(F ) is a hypersheaf in the sense of Definition 1.11, then the unit F → j∗j

∗(F )
exhibits j∗j

∗(F ) as hypersheafification of F .

1.3. Background on locally (hyper)constant sheaves
We limit our discussion of locally (hyper)constancy and the functoriality of sheaves

to the setting of topological spaces. Fix a presentable ∞-category E .

Recollection 1.14. Let f : X → Y be a map of topological spaces. We write

f∗ : PSh(X; E) → PSh(Y ; E)

for the pushforward functor defined by the formula f∗(F )(V ) := F (f−1(V )). Recall
that the pushforward functor f∗ carries sheaves to sheaves and hypersheaves to
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hypersheaves (for the latter statement, see the proof of [15, Proposition 6.5.2.13]). We
write

f−1 : PSh(Y ) → PSh(X)

for presheaf pullback functor; f−1 is the left adjoint to f∗ : PSh(Y ; E) → PSh(X; E).
In general, the functor f−1 preserves neither sheaves nor hypersheaves. We write

f∗ : Sh(Y ; E) → Sh(X; E) and f∗,hyp : Shhyp(Y ; E) → Shhyp(X; E)

for the composites of f−1 : Sh(Y ; E) → PSh(X; E) with (hyper)sheafification. It follows
formally that f∗,hyp ≃ (−)hyp ◦ f∗. By construction, there are adjunctions f∗ ⊣ f∗
and f∗,hyp ⊣ f∗.

Notation 1.15. If f : X ↪→ Y is the inclusion of a subspace, we simply write

(−)|X := f∗ and (−)|hypX := f∗,hyp.

If the space-valued sheaf pullback functor f∗ : Sh(Y ) → Sh(X) admits a left adjoint,
then for every presentable∞-category E , the pullback functor f∗ : Sh(Y ; E) → Sh(X; E)
carries hypersheaves to hypersheaves [16, Lemma A.2.6]. In particular, if U ⊂ Y is
an open subset, then the functor (−)|U : Sh(Y ; E) → Sh(U ; E) carries hypersheaves to
hypersheaves.

Notation 1.16. Let S and X be topological spaces. We denote by

prS : S ×X → S and prX : S ×X → X

the projections. When S = ∗ we write ΓX instead of pr∗. Thus

ΓX,∗ : Sh(X; E) → Sh(∗; E) ≃ E

is the global sections functor and Γ−1
X is the constant presheaf functor. Moreover, the

functors

Γ∗
X : E → Sh(X; E) and Γ∗,hyp

X : E → Shhyp(X; E)

are the constant sheaf and hypersheaf functors, respectively. Analogously, for every
S we refer to the functor pr−1

S (resp. pr∗S , pr
∗,hyp
S ) as the S-constant presheaf (resp.

sheaf, hypersheaf ) functor.

Definition 1.17. Let S and X be topological spaces and let E be a presentable
∞-category.

(1.17.1) We say that a sheaf L ∈ Sh(S ×X; E) is constant relative to S (or S-constant)
if L is in the essential image of the S-constant sheaf functor pr∗S .

(1.17.2) We say that L ∈ Sh(S ×X; E) is locally constant relative to S (or locally
S-constant) if there exists an open cover {Uα}α∈A of X such that for each
α ∈ A, the restriction L|S×Uα is a S-constant sheaf on S × Uα.

(1.17.3) We say that a hypersheaf L ∈ Shhyp(S ×X; E) is hyperconstant relative to S
(or S-hyperconstant) if L is in the essential image of the constant hypersheaf
functor pr∗,hypS .

(1.17.4) We say that L ∈ Shhyp(S ×X; E) is locally hyperconstant relative to S (or
locally S-hyperconstant) if there exists an open cover {Uα}α∈A of X such

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.5.2.13
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.2.6
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that for each α ∈ A, the restriction L|S×Uα
is a S-hyperconstant hypersheaf

on S × Uα.

We write

LCS(S ×X; E) ⊂ Sh(S ×X; E) and LChyp
S (S ×X; E) ⊂ Shhyp(S ×X; E)

for the full subcategories spanned by the locally S-constant sheaves and the locally
S-hyperconstant hypersheaves, respectively. When S = ∗ we denote these ∞-categories
by LC(X; E) and LChyp(X; E), respectively.

Warning 1.18. We emphasize that for a given object E ∈ E , the constant sheaf
Γ∗
X(E) need not be hypercomplete. Similarly, a hyperconstant hypersheaf need not be

a constant sheaf; the notions of constant sheaves and hyperconstant hypersheaves are
genuinely different. Also notice that there is a containment

LC(X; E) ∩ Shhyp(X; E) ⊂ LChyp(X; E).

However, this inclusion is not generally an equality.

Remark 1.19. If X is a topological space locally of singular shape in the sense of [16,
Definition A.4.15], then LChyp(X) = LC(X) ∩ Shhyp(X) = LC(X) See [14, Proposi-
tion 2.1] [16, Corollary A.1.17].

Observation 1.20. Let S be a topological space and f : X → Y a map of topological
spaces. Write fS := idS ×f . Then the functors

f∗
S : Sh(S × Y ; E) → Sh(S ×X; E) and f∗,hyp

S : Shhyp(S × Y ; E) → Shhyp(S ×X; E)

preserve locally S-constant and S-hyperconstant sheaves. Hence the assignments

Y 7→ LCS(S × Y ; E) and Y 7→ LChyp
S (S × Y ; E)

define subfunctors of the functors

Sh(S ×−; E),Shhyp(S ×−; E) : Topop → Cat∞.

Moreover, they are hypercomplete sheaves with respect to the open topology on Top.

Observation 1.21. Let X be a topological space and g : S → T a map of topological
spaces. Write gX := g × idX . Then the functors

g∗X : Sh(T ×X; E) → Sh(S ×X; E), g∗,hypX : Shhyp(T ×X; E) → Shhyp(S ×X; E)

carry locally T -constant sheaves to locally S-constant sheaves and locally T -hypercon-
stant hypersheaves to locally S-hyperconstant hypersheaves. In particular, objects of
LChyp

S (S ×X; E) can be seen as families of objects in LChyp(X; E) parametrized by
the points of S.

2. Sheaves on locally weakly contractible topological spaces

In this section we prove Theorem 2.12. The proof relies on an alternative character-
ization of pr∗,hypS which is discussed in § 2.1. In § 2.4 we reinterpret our ∞-category

LChyp
S (S ×X; E) in terms of foliated hypersheaves.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.4.15
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.17
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2.1. Formula for the hypersheaf pullback

Fix topological spaces S and X, and a presentable ∞-category E . Our first goal
is to show that if X is locally weakly contractible, then the functor pr∗,hypS admits a
left adjoint. For the following constructions, recall the notations for posets of open
subsets introduced in Notation 1.5 and Example 1.10.

Construction 2.1. Consider the functor

Π∞(−/S) : PSh(Open×(S ×X)) → Shhyp(S)

left Kan extended from the functor Open×(S ×X) → Shhyp(S) sending V × U to
V ⊗Π∞(U). This functor admits a right adjoint

Π∞(−/S) : Shhyp(S) → PSh(Open×(S ×X))

given by the assignment

G 7→ [W 7→ MapShhyp(S)(Π∞(W/S), G)].

By [16, Proposition A.3.2 & Lemma A.3.10], the functor Π∞(−/S) takes hypercover
diagrams to colimits in Shhyp(S), and it therefore factors through

Shhyp(Open×(S ×X)) ≃ Shhyp(S ×X).

(The above equivalence follows from the fact that Open×(S ×X) is a basis for the
opens of S ×X; see Proposition 1.12.) Consequently, it follows that Π∞(−/S) factors
through Shhyp(S ×X). We use the same notation for the resulting adjunction

Π∞(−/S) : Shhyp(S ×X) ⇄ Shhyp(S) :Π∞(−/S).

Given a presentable∞-category E , write ΠE
∞(−/S) : Shhyp(S ×X; E)→ Shhyp(S; E)

for the tensor product

Shhyp(S ×X; E) ≃ Shhyp(S ×X)⊗ E Shhyp(S)⊗ E ≃ Shhyp(S; E).Π∞(−/S)⊗idE

We write

Π∞
E (−/S) : Shhyp(S; E) → Shhyp(S ×X; E)

for the right adjoint of ΠE
∞(−/S). Concretely, Π∞

E (−/S) is defined by sending any

G ∈ Shhyp(S; E) to the E-valued hypersheaf

V × U 7→ G(V )Π∞(U);

here the exponential notation denotes the cotensoring of E over Spc.

Observation 2.2. Let X be a topological space and g : S → T a map of topological
spaces. Write gX := g × idX . For V × U ∈ Open×(T ×X) there are canonical and
functorial identifications

g∗,hyp(Π∞(V × U/T )) ≃ g∗,hyp(V ⊗Π∞(U))

≃ g∗,hyp(V )⊗Π∞(U)

≃ Π∞(g∗,hypX (V × U)/S).

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.2
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.10
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This implies that the diagram of left adjoints

Shhyp(T ×X) Shhyp(S ×X)

Shhyp(T ) Shhyp(S)

g∗,hyp
X

Π∞(−/T ) Π∞(−/S)

g∗,hyp

(2.3)

is canonically commutative. Given a presentable ∞-category E , tensoring the dia-
gram (2.3) with E , we see that the same commutativity holds with coefficients in E .

We now compare the functor Π∞
E (−/S) to the hypersheaf pullback pr∗,hypS .

Construction 2.4. Fix G ∈ Shhyp(S; E) and V ∈ Open(S). The unique final map
Π∞(X) → ∗ induces a map

G(V ) ≃ G(V )∗ G(V )Π∞(X) ≃ Π∞
E (G/S)(V ×X) ≃ prS,∗(Π

∞
E (G/S))(V ).

By adjunction, this corresponds to a map αG : pr∗,hypS (G) → Π∞
E (G/S). These maps

assemble together into a natural transformation

α : pr∗,hypS → Π∞
E (−/S)

of functors Shhyp(S; E) → Shhyp(S ×X; E).

Proposition 2.5. Let S and X be topological spaces. Assume that X is locally weakly
contractible. Then the natural transformation

α : pr∗,hypS → Π∞
E (−/S)

is an equivalence. In particular, the functor pr∗,hypS is right adjoint to ΠE
∞(−/S).

Proof. First we treat the case where E = Spc. Let

j : Openall,ctr(S ×X)op ↪→ Open(S ×X)op, i : Shhyp(S ×X) ↪→ PSh(S ×X)

denote the inclusions. Write u : pr−1
S → ipr∗,hypS for the unit. Write

α̃ : pr−1
S → iΠ∞(−/S)

for the composite of i(α) with u. Fix F ∈ Shhyp(S) and let V × U ∈ Openall,ctr(S ×X).
Unraveling the definitions shows that

pr−1
S (F )(V × U) ≃ F (V ) and iΠ∞(F/S)(V × U) ≃ F (V )Π∞(U).

Moreover, the map α̃ is induced by the unique map Π∞(U) → ∗. Since U is weakly
contractible, we deduce that for every F ∈ Shhyp(S), the map j∗(α̃) is an equivalence.

Since Π∞(F/S) is a hypersheaf, it follows from (1.12.1) that j∗(pr−1
S (F )) is a

hypersheaf on Openall,ctr(S ×X). By Remark 1.13 we the unit pr−1
S (F ) → ipr∗,hypS (F )

is identified with the unit

pr−1
S (F ) → j∗j

∗(pr−1
S (F )) ≃ j∗j

∗(iΠ∞(F/S)).

Using (1.12.1) once more shows that the unit map iΠ∞(F/S) → j∗j
∗(iΠ∞(F/S)) is

an equivalence, as desired.
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Now we treat the case where E is any presentable ∞-category. Since we just
showed that Π∞(−/S) is equivalent to pr∗,hypS ; it follows that Π∞(−/S) commutes
with colimits. The functoriality of tensor product of presentable ∞-categories implies
therefore that Π∞

E (−/S) ≃ Π∞(−/S)⊗ idE . Since the same holds for the functor
pr∗,hypS and the map α respects such decomposition, the conclusion follows.

Remark 2.6 (truncated coefficients). Let n ⩾ 1 be an integer and let E be a presentable
n-category. In this setting, to prove Proposition 2.5, we only need to assume that X
is locally weakly (n− 1)-connected in the following sense: there is a basis of opens
U ⊂ X such that π0(U) = ∗ and all of the homotopy groups of U in degrees ⩽ n− 1
vanish. In this case, in Construction 2.1 we replace the underlying homotopy type
Π∞(U) by the fundamental (n− 1)-groupoid Πn−1(U). That is, we use the (n− 1)-
truncation of Π∞(U). In particular, when E = Set and S = ∗, the constant sheaf
functor Set → Sh(X;Set) is given by sending a set E to the sheaf

U 7→ MapSet(π0(U), E).

For n = 2 and S = ∗, these results (essentially) recover results of Polesello–Waschkies
[20, §§2.1–2.2].

All of the results in the rest of the paper can be formulated with coefficients in
a presentable n-category replacing assumptions of (local) weak contractibility with
assumptions of (local) weak (n− 1)-connectedness. The proofs are exactly the same,
replacing Π∞ by Πn−1. Since we are most interested in ∞-categories that are not
truncated, we will not explicitly highlight this generalization in the rest of the text.

2.2. The exceptional pushforward

Before moving on to the main result of this section, we need a brief digression
about the exceptional pushforward whose existence is guaranteed by Proposition 2.5:

Notation 2.7. Let S and X be topological spaces and assume that X is locally
weakly contractible. In light of Proposition 2.5, we write

prhypS,♯ : Shhyp(S ×X; E) → Shhyp(S; E)

for the left adjoint to pr∗,hypS . We refer to prhypS,♯ as the exceptional pushforward.

Corollary 2.8. Let g : S → T be a map of topological spaces, let X be a locally weakly
contractible topological space, and let E be a presentable ∞-category. Then the squares

Shhyp(T ; E) Shhyp(S; E)

Shhyp(T ×X; E) Shhyp(S ×X; E)

g∗,hyp

pr∗,hypS pr∗,hypT

g∗,hyp
X

and

Shhyp(S ×X; E) Shhyp(T ×X; E)

Shhyp(S; E) Shhyp(T ; E)

gX,∗

prS,∗ prT,∗

g∗

are vertically left adjointable. In particular, taking T = ∗, it follows that whenever
F ∈ Shhyp(S ×X; E) is a S-hyperconstant hypersheaf on S ×X, then prX,∗(F ) is a
hyperconstant hypersheaf on X.
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Proof. We have to prove that the exchange transformations

prhypT,♯ ◦g∗,hypX → g∗,hyp ◦ prhypS,♯ and pr∗,hypT ◦g∗ → gX,∗ ◦ pr∗,hypS

are equivalences. The one on the right can be deduced from the one on the left by
passing to right adjoints. By Proposition 2.5,

prhypS,♯ ≃ ΠE
∞(−/S) and prhypT,♯ ≃ ΠE

∞(−/T ).

Hence the conclusion follows from Observation 2.2.

Corollary 2.9. Let S and X be topological spaces and assume that X is locally weakly
contractible. Then the pushforward functor prX,∗ : Shhyp(S ×X; E) → Shhyp(X; E)
restricts to a functor

prX,∗ : LChyp
S (S ×X; E) → LChyp(X; E).

Proof. Since the formation of prX,∗ is compatible with restriction to an open subset of
X, the question is local on X. Thus it is enough to check that if F is a S-hyperconstant
hypersheaf, then prX,∗(F ) ∈ LChyp(X; E). This is guaranteed by Corollary 2.8.

Corollary 2.10. Let S and X be topological spaces and {fα : Sα → S}α∈A a collection
of maps of topological spaces. Assume that X is wclwc and that the hypersheaf pullback
functors

{(fα × idX)∗,hyp : Shhyp(S ×X; E) → Shhyp(Sα ×X; E)}α∈A

are jointly conservative. Then the unit F → pr∗,hypS prhypS,♯ (F ) is an equivalence if and
only if for each α ∈ A, the unit

(fα × idX)∗,hyp(F ) → pr∗,hypSα
prhypSα,♯(fα × idX)∗,hyp(F )

is an equivalence.

Proof. Corollary 2.8 implies that (fα × idX)∗,hyp takes the unit of the adjunction
prhypS,♯ ⊣ pr∗,hypS to the unit of the adjunction prhypSα,♯ ⊣ pr∗,hypSα

.

2.3. Full faithfulness of the hypersheaf pullback
Now we prove Theorem 0.6.

Notation 2.11. We will write Env : Cat∞ → Spc for the left adjoint to the inclusion
Spc ⊂ Cat∞. For an ∞-category C, the space Env(C) can be computed as the colimit
of the constant functor C → Spc at the terminal object ∗ ∈ Spc [8, Corollary 2.10].

Theorem 2.12. Let S and X be topological spaces and assume that X is wclwc. Then:

(2.12.1) The functor pr∗,hypS : Shhyp(S; E) → Shhyp(S ×X; E) is fully faithful.

(2.12.2) The essential image of pr∗,hypS coincides with LChyp
S (S ×X; E).

Remark 2.13. In other words, (2.12.2) asserts that, if X is wclwc, then every locally
S-hyperconstant sheaf is automatically globally S-hyperconstant.

Proof. For (2.12.1), note that since pr∗,hypS is left adjoint to prS,∗, it suffices to provide
a natural equivalence prS,∗ pr

∗,hyp
S ≃ id [5, Lemma 3.3.1]. Now note that since X is
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weakly contractible, applying Proposition 2.5 we see that for G ∈ Shhyp(S; E) and
V ∈ Open(S) we have natural equivalences(

prS,∗ pr
∗,hyp
S (G)

)
(V ) ≃ (Π∞

E (G/S)) (V ×X)

≃ G(V )Π∞(X) ≃ G(V )∗ ≃ G(V ).

Now we prove (2.12.2). Let F ∈ LChyp
S (S ×X; E). It suffices to prove that the

counit

c : pr∗,hypS prS,∗(F ) → F

is an equivalence. Let BF be the full subposet of Openctr(X) formed by those weakly
contractible opens U such that F |S×U is hyperconstant. Since X is locally weakly
contractible and F is locally S-hyperconstant, the inclusion

Open(S)× BF ↪→ Openall,ctr(S ×X) ↪→ Open(S ×X)

is a basis for Open(S ×X). Since both the source and target of c are hypersheaves,
(1.12.1) shows that it suffices to check that c is an equivalence when restricted to
Open(S)× BF . Fix U ∈ BF and write qU : S × U → S for the projection; note that
we have a natural identification

(pr∗,hypS prS,∗(F ))|S×U ≃ q∗,hypU prS,∗(F ).

Since U is wclwc, statement (2.12.1) implies that the pushforward of q∗,hypU prS,∗(F )
along qU canonically coincides with prS,∗(F ). It follows that the counit transformation
c evaluated on V × U ∈ Open(S)× BF is identified with the restriction morphism

F (V ×X) → F (V × U). (2.14)

Setting FV := prX,∗(F |V×X) ∈ Shhyp(X; E), we are reduced to proving that for every
fixed V ∈ Open(S) and every U ∈ Openctr(X), the restriction map FV (X) → FV (U)
is an equivalence. Corollary 2.8 implies that FV ∈ LChyp(X; E); we are therefore
reduced to the case S = ∗.

Let j : Bop
F ↪→ Openctr(X)op denote the inclusion. Proposition 1.12 guarantees that

the unit transformation FV → j∗j
∗(FV ) is an equivalence. It follows that for every

V ∈ Open(S), the natural map

FV (X) → lim
U∈BF

FV (U)

is an equivalence. We claim that the functor j∗(FV ) = FV ◦ j inverts every morphism
in BF . To see this, let i : W ↪→ U be a morphism in BF . Since U ∈ BF , there exists
an object E ∈ E and an equivalence Γ∗,hyp

U (E) ≃ FV |U . Since ΓW = ΓU ◦ i, it follows
that FV |W ≃ Γ∗,hyp

W (E). Consider the commutative triangle

E

ΓU,∗(Γ
∗,hyp
U (E)) ΓW,∗(Γ

∗,hyp
W (E)).

The bottom horizontal morphism is naturally identified with the restriction map
FV (i) : FV (U) → FV (W ). On the other hand, since both W and U are wclwc, (2.12.1)
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implies that both the diagonal morphisms are equivalences. The 2-of-3 property implies
that FV (i) is an equivalence as well.

Thus, the functor j∗(FV ) factors through Env(BF ). Observe that the functor
Π∞ : BF → Spc is equivalent to the constant functor sending every object of BF to
∗ ∈ Spc. It follows from Notation 2.11 that

Env(BF ) ≃ colim
V ∈BF

Π∞(V ).

Van Kampen’s Theorem identifies this colimit with Π∞(X). Since X is weakly con-
tractible, we conclude that Env(BF ) ≃ ∗, and therefore that j∗(FV ) is a constant
functor. Finally, since Env(BF ) is contractible, the restriction maps

FV (X) ≃ lim
U∈BF

F (U) → F (U)

are equivalences for every U ∈ BF . The conclusion follows.

Corollary 2.15. Let X be a wclwc topological space while E is a presentable ∞-cate-
gory. Then:

(2.15.1) The constant hypersheaf functor Γ∗,hyp
X : E → Shhyp(X; E) is fully faithful.

(2.15.2) The essential image of Γ∗,hyp
X is LChyp(X; E).

2.4. Foliated hypersheaves
We end this section with an alternative description of locally S-hyperconstant

hypersheaves on S ×X. The idea is that in order to check local S-hyperconstancy, it
suffices to check hyperconstancy on the ‘leaves’ {s} ×X.

Definition 2.16. Let S and X be topological spaces and assume that X is wclwc.
Let E be a presentable ∞-category. A hypersheaf F ∈ Shhyp(S ×X; E) is foliated if
for each s ∈ S, the restriction F |hyp{s}×X is a hyperconstant hypersheaf.

Example 2.17. Given G ∈ Shhyp(S; E), the pullback pr∗,hypS (G) is foliated.

The following generalizes [16, Proposition A.2.5] (that deals with the case X = R).

Proposition 2.18. Let S and X be topological spaces and assume that X is wclwc.
Let E be a compactly generated ∞-category. For F ∈ Shhyp(S ×X; E), the following
statements are equivalent:

(2.18.1) The hypersheaf F is in the essential image of pr∗,hypS .

(2.18.2) The hypersheaf F is foliated.

Proof. The implication (2.18.1) ⇒ (2.18.2) is the content of Example 2.17.
To see that (2.18.2) ⇒ (2.18.1), we need to show that if F is foliated, then the

unit uF : F → pr∗,hypS prhypS,♯ (F ) is an equivalence. Notice that since E is compactly
generated, the restriction functors{

(−)|hyp{s}×X : Shhyp(S ×X; E) → Shhyp({s} ×X; E)
}
s∈S

are jointly conservative (Recollection 1.7). Applying Corollary 2.10, we see that to

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.2.5
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prove that uF is an equivalence, it suffices to show that for each s ∈ S, the unit

F |hyp{s}×X pr∗,hyp{s} prhyp{s},♯

(
F |hyp{s}×X

)
≃ Γ∗,hyp

X Γhyp
X,♯

(
F |hyp{s}×X

)
is an equivalence. The claim now follows from the assumption that F |hyp{s}×X is hyper-
constant combined with Corollary 2.15.

3. Consequences of Theorem 2.12

The relative full faithfulness theorem we proved in the previous section is the
cornerstone of this paper. We now explore some of its main consequences. Among
others, we prove a general version of the monodromy equivalence, a categorical Künneth
formula for locally hyperconstant hypersheaves, and a comparison result for sheaf
and singular cohomology on locally weakly contractible spaces. We also prove the
hypercomplete part of Theorem 0.2.

3.1. Structural results for locally hyperconstant hypersheaves

We start with the following recognition criterion for the objects of LChyp
S (S ×X; E).

We fix topological spaces S and X and a presentable ∞-category E . Furthermore, we
assume X to be locally weakly contractible.

Proposition 3.1. For F ∈ Shhyp(S ×X; E), the following statements are equivalent:

(3.1.1) The sheaf F is locally S-hyperconstant.

(3.1.2) For every pair of weakly contractible open subsets V ⊂ U of X and every open
subset W ⊂ S, the restriction map F (W × U) → F (W × V ) is an equivalence.

Proof. We first prove that (3.1.1) implies (3.1.2). Write

qV : W × V → W and qU : W × U → W

for the projections. Since U is weakly contractible, Theorem 2.12 implies that F |W×U

is W -hyperconstant. We can then choose a hypersheaf G ∈ Shhyp(W ; E) and an

equivalence F |W×U ≃ q∗,hypU (G). It follows that F |W×V ≃ q∗,hypV (G). Now consider
the commutative triangle

G

qU,∗q
∗,hyp
U (G) qV,∗q

∗,hyp
V (G).

Since U and V are weakly contractible, the full faithfulness part of Theorem 2.12
implies that the diagonal maps are equivalences. Thus the horizontal map is an
equivalence. To conclude, note that, unraveling the definitions, this horizontal map
coincides with the restriction map F (W × U) → F (W × V ).

We now prove that (3.1.2) implies (3.1.1). By choosing an open cover of X by wclwc
opens, we are reduced to the case that X is wclwc. Let F be a hypersheaf satisfying
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assumption (3.1.2). Since X is wclwc, is enough to prove that the counit

cF : pr∗,hypS prS,∗(F ) → F

is an equivalence. In the first segment of the proof of (2.12.2) we proved that this
is the same as saying that the for every U ∈ Openctr(X) and W ∈ Open(S), the
restriction map F (W ×X) → F (W × U) is an equivalence. Since X and U are weakly
contractible, this is guaranteed by our hypothesis.

Corollary 3.2. The full subcategory LChyp
S (S ×X; E) ⊂ Shhyp(S ×X; E) is closed

under limits and colimits.

Proof. Let A be a small ∞-category and let F• : A → LChyp
S (S ×X; E) be a diagram.

First we treat the case of limits. By Proposition 3.1, it is enough to prove that for
every V ⊂ U in Openctr(X), and every W ∈ Open(S), the restriction map

lim
α∈A

Fα(W × U) → lim
α∈A

Fα(W × V )

is an equivalence. Since limits in Shhyp(X; E) are computed objectwise, the above
map is the limit of the individual restriction maps Fα(W × U) → Fα(W × V ). Since
each Fα is locally S-hyperconstant, Proposition 3.1 implies that all these maps are
equivalences. Thus, the same goes for their limit.

For the case of colimits, we have to check that the colimit colimα∈A Fα computed
in Shhyp(S ×X; E) is locally S-hyperconstant. The question is local on X, and we can
assume that X is weakly contractible. In this case, Theorem 2.12 shows the functor
pr∗,hypS is fully faithful; thus there exists a diagram F ′

• : A → Shhyp(S; E) and an

equivalence F• ≃ pr∗,hypS ◦F ′
•. The fact that pr∗,hypS commutes with colimits completes

the proof.

Corollary 3.3. Assume that X is wclwc. Then for every hypercover V• of S, the
natural functor

LChyp
S (S ×X; E) → lim

[n]∈∆
LChyp

Vn
(Vn ×X; E)

is an equivalence.

Proof. Consider the commutative square

Shhyp(S; E) lim
[n]∈∆

Shhyp(Vn; E)

LChyp
S (S ×X; E) lim

[n]∈∆
LChyp

Vn
(Vn ×X; E).

pr∗,hypS pr∗,hypV•

Since Shhyp(−; E) satisfies hyperdescent, the top horizontal functor is an equivalence.
Theorem 2.12 implies that both vertical functors are equivalences.

3.2. Monodromy equivalence and Künneth formula
Let X be a topological space. There is a natural map from the underlying homotopy

type Π∞(X) ofX to the shape of the∞-topos Shhyp(X). However, this map is typically
not an equivalence. Our work in § 2 implies that these invariants agree when X is
locally weakly contractible:
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Corollary 3.4. Let X be a locally weakly contractible topological space. Then the
∞-topos Shhyp(X) is locally of constant shape, and its shape coincides with Π∞(X).

Proof. This is a direct consequence of Proposition 2.5 and [16, Proposition A.1.8 &
Remark A.1.10].

Notation 3.5. Write Toplwc ⊂ Top for the full subcategory spanned by the locally
weakly contractible topological spaces.

Corollary 3.6 (monodromy equivalence). Let X be a locally weakly contractible
topological space. Then the functor

Π∞ : LChyp(X) → Spc/Π∞(X) (3.7)

is an equivalence.

Proof. Proposition 2.5 shows that Γ∗,hyp
X is right adjoint to the functor Π∞. The

conclusion follows then from [16, Theorem A.1.15]

Observation 3.8. Unraveling the proof of [16, Theorem A.1.15], we see that the
inverse to (3.7) is given by sending a map K → Π∞(X) to the sheaf

U 7→ Map/Π∞(X)(Π∞(U),K).

Straightening/unstraightening puts the monodromy equivalence (3.7) into a more
familiar form:

LChyp(X) ≃ Fun(Π∞(X),Spc). (3.9)

Moreover, the equivalence (3.9) refines to an equivalence of functors of the form
Toplwc,op → Cat∞. In particular, the functor LChyp : Toplwc,op → Cat∞ inverts weak
homotopy equivalences between locally weakly contractible topological spaces.

Observation 3.10. Let E be a presentable ∞-category. Since restriction of sheaves
to an open subset is both a left and a right adjoint, the equivalence

Shhyp(X)⊗ E ∼−→ Shhyp(X; E)

restricts to an equivalence

LChyp(X)⊗ E ∼−→ LChyp(X; E).

Thus tensoring (3.9) with E provides a monodromy equivalence

LChyp(X; E) ≃ Fun(Π∞(X), E) (3.11)

for E-valued locally hyperconstant hypersheaves. Also note that the functoriality of
the equivalence (3.11) implies that given L ∈ LChyp(X; E), the associated functor
Π∞(X) → E carries x ∈ X to the stalk x∗L ∈ E .

Remark 3.12 (the classical monodromy equivalence). Write Π1(X) for the fundamental
groupoid of X. Since Π1(X) is the homotopy 1-category of Π∞(X), if E is a presentable
1-category, then

LChyp(X; E) = LC(X; E) and Fun(Π∞(X), E) ≃ Fun(Π1(X), E).

In particular, Observation 3.10 recovers the classical monodromy equivalence for
locally weakly contractible topological spaces.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.8
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.10
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.15
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.1.15
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In the classical monodromy equivalence, only local 1-connectedness is needed, so
this seems to use stronger hypotheses than the classical result. However, the truncated
variants of our results (see Remark 2.6) recover and generalize the classical monodromy
equivalence. Let n ⩾ 1 and let E be a presentable n-category. If X is a locally weakly
(n− 1)-connected topological space, then the constant sheaf functor E → Sh(X; E)
admits a left adjoint. In particular, the ∞-topos Shhyp(X) is locally (n− 1)-connected
in the sense of [13, Definition 3.2]. Write Πn Sh

hyp(X) for the n-truncation of the
shape of the ∞-topos Shhyp(X). Applying [13, Theorem 3.13] provides a monodromy
equivalence

LC(X; E) ≃ Fun(Πn Sh
hyp(X), E). (3.13)

If X is locally weakly n-connected, then the formula for the constant sheaf functor
Spc⩽n → Sh(X;Spc⩽n) provided by Proposition 2.5 shows that Πn Sh

hyp(X) coin-
cides with the fundamental n-groupoid Πn(X) of X. (This is the truncated variant of
Corollary 3.4.) Hence (3.13) becomes an equivalence

LC(X; E) ≃ Fun(Πn(X), E).

Setting n = 1 we obtain a generalization of the classical monodromy equivalence to
locally weakly 1-connected topological spaces.

We conclude this subsection with a categorical Künneth formula for locally hyper-
constant hypersheaves. Given topological spaces X and Y , note that the functors

Sh(X)× Sh(Y ) → Sh(X × Y ) and Shhyp(X)× Shhyp(Y ) → Shhyp(X × Y )

given by

(F,G) 7→ pr∗X(F )× pr∗Y (G) and (F,G) 7→ pr∗,hypX (F )× pr∗,hypY (G)

preserve colimits separately in each variable. Since the coproduct in the ∞-category
of ∞-topoi and left exact left adjoints is given by the tensor product of presentable
∞-categories [1, Theorem 2.15] [16, Example 4.8.1.19], these functors induce left exact
colimit-preserving functors

Sh(X)⊗ Sh(Y ) → Sh(X × Y ) and Shhyp(X)⊗ Shhyp(Y ) → Shhyp(X × Y ).

In general, neither of these functors is an equivalence.2 Nonetheless, locally hypercon-
stant hypersheaves on X × Y do decompose as a tensor product:

Corollary 3.14 (Künneth formula). Let X and Y be a locally weakly contractible topo-
logical spaces. The natural functor LChyp(X)× LChyp(Y ) → LChyp(X × Y ) induces
an equivalence of ∞-categories

LChyp(X)⊗ LChyp(Y )
∼−→ LChyp(X × Y ).

Proof. Since Π∞ preserves finite products while Fun(−,Spc) carries products of
∞-categories to tensor products of presentable ∞-categories, the conclusion follows
from the monodromy equivalence (3.9).

2If X or Y is locally compact Hausdorff, then the functor Sh(X)⊗ Sh(Y ) → Sh(X × Y ) is an
equivalence [15, Proposition 7.3.1.11].

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.19
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.3.1.11
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3.3. Homotopy-invariance for locally hyperconstant hypersheaves

Our next goal is to use Theorem 2.12 to prove the hypercomplete part of Theorem 0.2.
We need the following two preliminary results:

Lemma 3.15. Let S and X be topological spaces, and assume that X is wclwc. Then

LChyp(S ×X; E) ⊂ LChyp
S (S ×X; E).

Proof. Applying Corollary 3.3, we see that for every hypercover V• of S, the natural
functor

LChyp
S (S ×X; E) → lim

[m]∈∆
LChyp

Vm
(Vm ×X; E)

is an equivalence. On the other hand, for every hypercover U• of X where each Un is
wclwc, the natural functor

LChyp
Vm

(Vm ×X; E) → lim
[n]∈∆

LChyp
Vm

(Vm × Un)

is an equivalence. Thus, a hypersheaf F ∈ Shhyp(S ×X; E) belongs to the full subcat-

egory LChyp
S (S ×X; E) if and only if we can find a hypercover V• × U• of S ×X such

that, for every ([n], [m]) ∈ ∆×∆,

the restriction F |Vm×Un
belongs to LChyp

Vm
(Vm × Un; E).

If F ∈ LChyp(S ×X; E), there exists a hypercover V• × U• such that, for every
([n], [m]) ∈ ∆×∆, the restriction F |Vm×Un is hyperconstant, hence Vm-hyperconstant.
The conclusion follows.

Lemma 3.16. Let S and X be topological spaces, and assume that X is wclwc. Then
the pushforward prS,∗ : Shhyp(S ×X; E) → Shhyp(S; E) preserves locally hyperconstant
hypersheaves.

Proof. Let F ∈ LChyp(S ×X; E). By Lemma 3.15, we know that F ∈ LChyp
S (S ×X; E).

Thus there exists a hypersheaf G on S and an equivalence F ≃ pr∗,hypS (G). Since pr∗,hypS

is fully faithful (Theorem 2.12), the unit defines an equivalence G
∼−→ prS,∗(F ). Hence

our goal is to show that G is locally hyperconstant.

Since F ∈ LChyp(S ×X; E), there exists an open cover {Vα × Uα}α∈A of S ×X
such that for each α ∈ A, the hypersheaf F |Vα×Uα

is hyperconstant. Since X is locally
weakly contractible, we can furthermore assume that every Uα is weakly contractible.
Write qα : Vα × Uα → Vα for the projection. Since F ≃ pr∗,hypS (G), we see that

F |Vα×Uα
≃ q∗,hypα (G|Vα

).

Since Uα is weakly contractible, using Theorem 2.12 again we see that the unit

G|Vα → qα,∗(F |Vα×Uα)

is an equivalence. We can therefore replace S and X by Uα and Vα, respectively.
Equivalently, we can assume from the beginning that F is globally hyperconstant.
We can therefore write F ≃ Γ∗,hyp

S×X (E), for some object E ∈ E . In this case, we obtain
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equivalences

pr∗,hypS (G) ≃ F ≃ Γ∗,hyp
S×X (E) ≃ pr∗,hypS (Γ∗,hyp

S (E)).

Applying Theorem 2.12 once more, we deduce that

G ≃ prS,∗(F ) ≃ Γ∗,hyp
S (E).

Theorem 3.17. Let S and X be topological spaces, and assume that X is wclwc.
Then the functors

pr∗,hypS : LChyp(S; E) ⇄ LChyp(S ×X; E) :prS,∗

are inverse equivalences of ∞-categories. In particular, it follows that the functor
LChyp(−; E) : Topop → Cat∞ is strongly homotopy-invariant.

Remark 3.18. When S is itself locally weakly contractible, Theorem 3.17 is a conse-
quence of the monodromy equivalence (see Observation 3.8). The strength of Theo-
rem 2.12 is that we have no assumptions on S.

Proof of Theorem 3.17. In virtue of Lemma 3.15, we can consider the following com-
mutative square:

LChyp(S; E) Shhyp(S; E)

LChyp(S ×X; E) LChyp
S (S ×X; E).

pr∗,hypS
pr∗,hypS

Theorem 2.12 implies that the right vertical functor is an equivalence. Since the
horizontal functors are fully faithful, Lemma 3.16 implies that this square is vertically
right adjointable. The conclusion follows.

3.4. Exceptional pushforward on locally hyperconstant hypersheaves
We now prove that the exceptional pushforward preserves locally hyperconstant

hypersheaves. We start with the following observations:

Observation 3.19. Let X be a topological space and let j : U → X be a local homeo-
morphism. Then j−1 : PSh(X; E) → PSh(U ; E) preserves (hyper)sheaves. Furthermore,
the functor

j−1 : Shhyp(X; E) → Shhyp(U ; E)

commutes with arbitrary limits, hence admits a left adjoint jhyp♯ . Observe that if j
is an open immersion, then jhyp♯ coincides with the hypersheafification of the usual
extension by zero.

Observation 3.20. Let X be a topological space and let U• be a hypercover of X.
For every [n] ∈ ∆, denote by jn : Un → X the canonical morphism. Hyperdescent
implies that the natural functor

j∗• : Shhyp(X; E) → lim
[n]∈∆

Shhyp(Un; E)

is an equivalence. In particular, j∗• admits a left adjoint, that we denote jhyp•,♯ . Using
[22, §8.2], the left adjoint jhyp•,♯ can be described as the functor sending a descent
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datum {Fn}n⩾0 to

jhyp•,♯ ({Fn}n⩾0) ≃ colim
[n]∈∆op

jhypn,♯ (Fn).

In particular, for every hypersheaf F ∈ Shhyp(X; E), there is a natural equivalence

F ≃ colim
[n]∈∆op

jhypn,♯ (j
∗
n(F )). (3.21)

Notation 3.22. For the remainder of this section, we fix topological spaces S and
X, as well as a presentable ∞-category E . Furthermore, we assume that X is locally
weakly contractible.

Lemma 3.23. Let U• be a hypercover of X. For every [n] ∈ ∆, let jn : Un → X be the
canonical morphism and set pn := prS ◦(idS ×jn). Then for every F ∈ Shhyp(S ×X; E),
one has a natural equivalence

prhypS,♯ (F ) ≃ colim
[n]∈∆

phypn,♯ (idS ×jn)
∗(F ).

Proof. Since prhypS,♯ preserves colimits, the claim follows from applying prhypS,♯ to the
equivalence (3.21), combined with the natural equivalence

phypn,♯ ≃ prhypS,♯ ◦(idS ×jn)
hyp
♯ .

Notation 3.24. We denote by

χ : prhypS,♯ ◦ pr∗,hypS → prS,∗ ◦pr
∗,hyp
S

the composition of the counit prhypS,♯ ◦pr∗,hypS → id with the unit id → prS,∗ ◦ pr
∗,hyp
S .

Lemma 3.25. In addition to the hypotheses made in Notation 3.22, assume that X is
weakly contractible. Then for each F ∈ LChyp

S (S ×X; E), the natural transformation
χ induces an equivalence prhypS,♯ (F )

∼−→ prS,∗(F ).

Proof. Since X is weakly contractible, Theorem 2.12 guarantees the existence of a
hypersheaf G ∈ Shhyp(S; E) and an equivalence F ≃ pr∗,hypS (G). Since pr∗,hypS is fully
faithful (again by Theorem 2.12), the morphism χ applied to G is the composite
equivalence

prhypS,♯ (F ) ≃ prhypS,♯ pr∗,hypS (G) G prS,∗ pr
∗,hyp
S (G) ≃ prS,∗(F ).∼ ∼

Corollary 3.26. In addition to the hypotheses made in Notation 3.22, assume that
one of the following hypotheses is satisfied:

(3.26.1) The topological space X is weakly contractible.

(3.26.2) The topological space S is locally weakly contractible.

Then the functor prhypS,♯ preserves locally hyperconstant hypersheaves.

Proof. Let F ∈ LChyp(S ×X; E). To prove the claim under assumption (3.26.1), using

Lemma 3.15, we see that F belongs to LChyp
S (S ×X; E). Lemma 3.25 implies that

prhypS,♯ (F ) ≃ prS,∗(F ).

The conclusion follows from Lemma 3.16.
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To prove the claim under assumption (3.26.2), using Corollary 3.2 we see that that
LChyp(S; E) is closed under small colimits in Shhyp(S; E). Using Lemma 3.23, we can
reduce to the case where X is weakly contractible, in which case the conclusion follows
from (3.26.1).

3.5. Comparison of sheaf and singular cohomology
Now we explain why our work implies that for locally weakly contractible spaces,

singular and sheaf cohomology agree.

Notation 3.27. Let R be a ring and X a topological space. Write D(R) for the
derived ∞-category of R, and write C∗(X;R) ∈ D(R) for the complex of singular
chains on X. Given an object M ∈ D(R), the cotensor MΠ∞(X) is given by the internal
Hom complex

C−∗(X;M) := RHomR(C∗(X;R),M).

If M is an ordinary R-module, then C−∗(X;M) is what is usually referred to as the
complex of singular cochains on X with values in M .

3.28. The functor Π∞
D(R) : D(R) → Shhyp(X; D(R)) is given by M 7→ C−∗(−;M).

The following is an immediate consequence of Proposition 2.5:

Corollary 3.29. Let R be a ring and X a locally weakly contractible topological space.
Then:

(3.29.1) The functor D(R) → Shhyp(X; D(R)) given by the formula M 7→ C−∗(−;M)
is the constant hypersheaf functor.

(3.29.2) For each M ∈ D(R), there is a natural equivalence RΓ(X;M) ≃ C−∗(X;M)
from the derived global sections of the constant hypersheaf at M to the complex
of singular cochains on X with values in M .

(3.29.3) For each ordinary R-module M , there is a natural isomorphism from sheaf
cohomology to singular cohomology H∗

sheaf(X;M) ≃ H∗
sing(X;M).

Hence, sheaf cohomology is an invariant of the weak homotopy type of locally
weakly contractible topological spaces.

Remark 3.30. After work of Sella [23], Petersen [19, Theorem 1.2] recently proved
a comparison for cohomology valued in ordinary R-modules. Petersen’s comparison
is under slightly weaker assumptions on the topological space X, in relation to the
chosen R-module.

4. Homotopy-invariance for locally constant sheaves

The purpose of this section is to prove a non-hypercomplete variant of Theorem 3.17,
thus completing the proof of Theorem 0.2. The proof follows the same format of
Theorem 3.17 expanding on Clausen and Ørsnes Jansen’s proof of [8, Proposition 3.2].

Remark 4.1. The homotopy-invariance statement we will prove below is with respect
to the unit interval rather than a general wclwc space. Indeed, we do not expect that
LC(−; E) is strongly homotopy-invariant (in the sense of Definition 0.1).
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4.1. The exceptional pushforward
We now record the existence of the exceptional pushforward in the non-hypercomplete

setting as well as its compatibility with basechange. In this section, we are most inter-
ested in the case where X is a subinterval of [0, 1].

Recollection 4.2. Let S and X be topological spaces. There is a natural geometric
morphism of ∞-topoi

Sh(S ×X) → Sh(S)⊗ Sh(X)

[16, Example 4.8.1.19]. If X is locally compact, then this geometric morphism
Sh(S ×X) → Sh(S)⊗ Sh(X) is an equivalence [15, Proposition 7.3.1.11].

Lemma 4.3. Let S be a topological space and E a presentable ∞-category. Let X
be a locally compact topological space and assume that the constant sheaf functor
Γ∗
X : Spc → Sh(X) admits a left adjoint ΓX,♯. Then:

(4.3.1) The pullback functor pr∗S : Sh(S; E) → Sh(S ×X; E) admits a left adjoint prS,♯.

(4.3.2) If Γ∗
X : Spc → Sh(X) is fully faithful, then pr∗S : Sh(S; E) → Sh(S ×X; E) is

also fully faithful.

Proof. Appealing to Recollection 4.2, this follows by tensoring the chain of adjoints

Sh(X) Spc.

ΓX,♯

ΓX,∗

Γ∗
X

with the presentable ∞-category Sh(S; E).

4.4. In the situation of Lemma 4.6, we refer to prS,♯ as the exceptional pushforward.

Remark 4.5. In light of (1.6) and Proposition 2.5, if X is a topological space that
admits a CW structure, then the hypotheses of Lemma 4.3 are satisfied. Moreover, if
X is also contractible, then Γ∗

X is fully faithful.

The following compatibility with basechange is immediate from the definition of
prS,♯ as a tensor product [11, Observation 1.15]. See also [25, Lemma 3.3].

Lemma 4.6. Let X be topological spaces and E a presentable ∞-category. Given a
map g : T → S of topological spaces, there is a canonically commutative square of
∞-categories

Sh(S ×X; E) Sh(T ×X; E)

Sh(S; E) Sh(T ; E) .

(g×idX)∗

prS,♯ prT,♯

g∗

Lemma 4.7. Let S be a topological space, {fα : Sα → S}α∈A a collection of maps of
topological spaces, and E a presentable ∞-category. Assume that the pullback functors

{(fα × id[0,1])
∗ : Sh(S × [0, 1]; E) → Sh(Sα × [0, 1]; E)}α∈A

are jointly conservative. Given F ∈ Sh(S × [0, 1]; E), the unit uF : F → pr∗S prS,♯(F )

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.19
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.3.1.11
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is an equivalence if and only if for each α ∈ A, the unit

(fα × id[0,1])
∗(F ) → pr∗Sα

prSα,♯(fα × id[0,1])
∗(F )

is an equivalence.

Proof. By Lemma 4.6, we have a natural equivalence

(fα × id[0,1])
∗ pr∗S prS,♯(F ) ≃ pr∗Sα

prSα,♯(fα × id[0,1])
∗(F ).

Moreover, notice that the pullback

(fα × id[0,1])
∗(uF ) : (fα × id[0,1])

∗(F ) → pr∗Sα
prSα,♯(fα × id[0,1])

∗(F )

is homotopic to the unit of the adjunction prSα,♯ ⊣ pr∗Sα
applied to the specific sheaf

(fα × id[0,1])
∗(F ). The claim now follows from the assumption that the functors

{(fα × id[0,1])
∗}α∈A are jointly conservative.

4.2. Homotopy-invariance of locally constant sheaves
We now show that prS,♯ preserves locally constant sheaves. The compactness of

[0, 1] and the fact that [0, 1] has the order topology imply the following:

Lemma 4.8. Let S be a topological space and U an open cover of S × [0, 1]. Then
there exist:

(4.8.1) An open cover {Uα}α∈A of S.

(4.8.2) For each α ∈ A, a positive integer nα and open subintervals Iα,1, . . . , Iα,nα
of

[0, 1] covering [0, 1] such that Iα,k ∩ Iα,ℓ ̸= ∅ if and only if k = ℓ± 1.

Such that
⋃

α∈A{Uα × Iα,1, . . . , Uα × Iα,nα} refines the cover U .

Observation 4.9. Let U a topological space, and I, J ⊂ [0, 1] subintervals which are
open in [0, 1]. Assume that the intersection I ∩ J is nonempty. Since {U × I, U × J}
is an open cover of U × (I ∪ J), descent and the fact that the pullback functors

Sh(U ; E) → Sh(U × I; E), Sh(U ; E) → Sh(U × J ; E), Sh(U ; E) → Sh(U × (I ∩ J); E)

are fully faithful (Lemma 4.3 and Remark 4.5) implies that if FI ∈ Sh(U × I; E) and
FJ ∈ Sh(U × J ; E) are pulled back from U and

FI |U×(I∩J) ≃ FJ |U×(I∩J),

then there exists a unique sheaf G ∈ Sh(U ; E) such that

FI ≃ pr∗U (G) and FJ ≃ pr∗U (G).

In particular, if L ∈ Sh(U × (I ∪ J); E) is such that both L|U×I and L|U×J are con-
stant, then L is constant.

Lemma 4.10. Let S be a topological space, and L ∈ Sh(S × [0, 1]; E). If, in addition,
L ∈ LC(S × [0, 1]; E), then there exists an open cover {Uα}α∈A of S such that for each
α ∈ A, the sheaf L|Uα×[0,1] is constant.

Proof. As in Lemma 4.8, choose an open cover {Uα × Iα,1, . . . , Uα × Iα,nα
}α∈A of

S × [0, 1] such that each restriction L|Uα×Iα,k
is constant. We claim that for each α ∈ A,

the restriction L|Uα×[0,1] is constant. To see this, apply Observation 4.9 inductively
with I = Iα,1 ∪ · · · ∪ Iα,m and J = Iα,m+1.
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Observation 4.11. Notice that Γ∗
S×[0,1] ≃ pr∗S Γ∗

S . Hence, if F ∈ Sh(S × [0, 1]; E) is
constant, then the exceptional pushforward prS,♯(F ) is constant and the unit map
F → pr∗S prS,♯(F ) is an equivalence.

Lemma 4.12. Let S be a topological space and E a presentable ∞-category. Then the
exceptional pushforward prS,♯ : Sh(S × [0, 1]; E) → Sh(S; E) preserves locally constant
sheaves.

Proof. Let F ∈ LC(S × [0, 1]; E). Using Lemma 4.10, choose an open cover {Uα}α∈A

of S such that each of the restrictions F |Uα×[0,1] is constant. By Lemma 4.6 we have
prS,♯(F )|Uα

≃ prUα,♯(F |Uα×[0,1]). The conclusion follows from Observation 4.11.

Corollary 4.13. Let S be a topological space and E a presentable ∞-category. Then
the functors

prS,♯ : LC(S × [0, 1]; E) ⇄ LC(S; E) :pr∗S

are inverse equivalences of ∞-categories. In particular, it follows that the functor
LC(−; E) : Topop → Cat∞ is homotopy-invariant

Proof. Since pr∗S is fully faithful, it suffices to show that if F ∈ LC(S × [0, 1]; E), then
the unit F → pr∗S prS,♯(F ) is an equivalence. Using Lemma 4.10, choose an open cover
{Uα}α∈A of S such that each of the restrictions F |Uα×[0,1] is constant. The claim now
follows from Lemma 4.7 and Observation 4.11.

5. Homotopy-invariance for (hyper)constructible
(hyper)sheaves

We now bootstrap our homotopy-invariance results (Theorem 3.17 and Corol-
lary 4.13) from the locally constant setting to the constructible setting. In § 5.1, we
review the basics of stratified spaces and (hyper)constructible (hyper)sheaves. In § 5.2,
we prove that the exceptional pushforwards prS,♯ and prhypS,♯ preserve constructibility
(Corollaries 5.6 and 5.7) and give equivalent conditions for homotopy-invariance to
hold (Corollary 5.10). Finally, in § 5.3 we use these criteria to show that, in many
situations of interest, (hyper)constructible (hyper)sheaves are homotopy-invariant
(Corollaries 5.13, 5.15, and 5.19).

5.1. Stratified spaces & constructible sheaves
We first recall the notion of a stratified space:

Notation 5.1. Let P be a poset. We also write P for the set P equipped with the
Alexandroff topology in which a subset U ⊂ P is open if and only if U is upwards-closed.
Given an element p ∈ P , we write

P⩾p := {q ∈ P | q ⩾ p} and P>p := P⩾p ∖ {p}.

The category of P -stratified topological spaces is the overcategory Top/P . Given a
P -stratified topological space σ : S → P and p ∈ P , we write Sp := σ−1(p) and call
Sp the p-th stratum of S. We also write

S⩾p := σ−1(P⩾p) and S>p := σ−1(P>p).

We write ip : Sp → S for the inclusion of the p-th stratum.
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Definition 5.2. Let P be a poset, S → P be a P -stratified space, and E be a pre-
sentable ∞-category.

(5.2.1) We say that a sheaf F ∈ Sh(S; E) is a P -constructible if F for each p ∈ P , the
restriction i∗p(F ) is a locally constant sheaf on the stratum Sp.

(5.2.2) We say that a hypersheaf F ∈ Shhyp(S; E) is a P -hyperconstructible if F for
each p ∈ P , the restriction i∗,hypp (F ) is a locally hyperconstant hypersheaf on
the stratum Sp.

We, respectively, write

ConsP (T ; E) ⊂ Sh(T ; E) and ConshypP (T ; E) ⊂ Shhyp(T ; E)

for the full subcategories spanned by the P -constructible sheaves and P -hypercon-
structible hypersheaves.

Remark 5.3. Let P be a Noetherian poset and let X → P be a paracompact P -
stratified space. Assume that the stratification of X is conical in the sense of [16,
Definition A.5.5] and that all of the strata of X are locally of singular shape. Then

ConshypP (X) = ConsP (X) ∩ Shhyp(X) = ConsP (X).

See [14, Proposition 2.11] [16, Proposition A.5.9].

Observation 5.4. For any map f : T → S of P -stratified spaces, the sheaf pullback
functor f∗ preserves P -constructible sheaves and the hypersheaf pullback functor
f∗,hyp preserves P -hyperconstructible hypersheaves. Hence the assignments

S 7→ ConsP (S; E) and S 7→ ConshypP (S; E)

define subfunctors of the functors Sh(−; E),Shhyp(−; E) : Topop
/P → Cat∞.

Convention 5.5. Let P be a poset and σ : S → P be a P -stratified topological space.
Let X be a topological space. We write S ×X for the P -stratified topological space
with stratification given by the composite S ×X → S → P .

The main goal of this section is to explain when the functors ConsP (−; E), and
ConshypP (−; E) are homotopy-invariant in the sense of Definition 0.1.

5.2. Formal homotopy-invariance

Bootstrapping off of the results of §§ 2 and 4, we can provide a first, formal version
of our homotopy-invariance result.

Corollary 5.6. Let E be a presentable ∞-category and let P be a poset. Let S be a
P -stratified space and let X be a wclwc topological space. Then the exceptional hyper-
sheaf pushforward prhypS,♯ : Shhyp(S ×X; E) → Shhyp(S; E) preserves hyperconstructible
hypersheaves.

Proof. Let F ∈ ConshypP (S ×X; E) be a hyperconstructible hypersheaf on S ×X.
We have to prove that for every p ∈ P , the restriction i∗,hypp prhypS,♯ (F ) is a locally

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.A.5.5
http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.5.9
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hyperconstant hypersheaf on Sp. By the compatibility of the exceptional pushforward
with pullbacks (Corollary 2.8), there is a natural equivalence

i∗,hypp (prhypS,♯ (F )) ≃ prhypSp,♯
((ip × idX)∗,hyp(F )).

Since (ip × idX)∗,hyp(F ) is locally hyperconstant on Sp ×X, Corollary 3.26 completes
the proof.

Corollary 5.7. For S ∈ Top/P , the functor prS,♯ : Sh(S × [0, 1]; E) → Sh(S; E) pre-
serves constructible sheaves.

Proof. As in the proof of Corollary 5.6, combine Lemma 4.12 with Lemma 4.6.

Theorem 5.8. Under the hypotheses of Corollary 5.6, the essential image of the fully
faithful functor

pr∗,hypS : ConshypP (S; E) ↪→ ConshypP (S ×X; E) (5.9)

is the intersection ConshypP (S ×X; E) ∩ LChyp
S (S ×X; E).

Proof. Since pr∗,hypS : Shhyp(S; E) → LChyp
S (S ×X; E) is an equivalence of ∞-cate-

gories and preserves constructiblity, we immediately see that the essential image
of (5.9) is contained in

ConshypP (S ×X; E) ∩ LChyp
S (S ×X; E).

Conversely, assume that F belongs to this intersection. Since F ∈ LChyp
S (S ×X; E),

Theorem 2.12 and Lemma 3.25 imply that F ≃ pr∗,hypS (prhypS,♯ (F )). Since F belongs to

ConshypP (S ×X; E), Corollary 5.6 implies that prhypS,♯ (F ) ∈ ConshypP (S; E). Therefore,
F belongs to the essential image of (5.9), as desired.

Corollary 5.10. Under the hypotheses of Corollary 5.6, the following conditions are
equivalent:

(5.10.1) The functor pr∗,hypS : ConshypP (S; E) ↪→ ConshypP (S ×X; E) is an equivalence.

(5.10.2) For each F ∈ ConshypP (S ×X; E), the unit F → pr∗,hypS (prhypS,♯ (F )) is an equiv-
alence.

(5.10.3) We have the containment ConshypP (S ×X; E) ⊂ LChyp
S (S ×X; E) as subcate-

gories of Shhyp(S ×X; E).

(5.10.4) For each F ∈ ConshypP (S ×X; E), each open subset W ⊂ S, as well as each
pair of weakly contractible open subsets U ⊂ V of X, the restriction map
F (W × V ) → F (W × U) is an equivalence.

Proof. The equivalence between (5.10.1), (5.10.2), and (5.10.3) follows from Theo-
rem 5.8. On the other hand, Proposition 3.1 shows that (5.10.3) and (5.10.4) are
equivalent.

In particular, we obtain the following sufficient criterion ensuring that pr∗,hypS is an
equivalence:
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Corollary 5.11. In the situation of Theorem 5.8, assume that the hypersheaf restric-
tion functors{

(−)|hypSp×X : ConshypP (S ×X; E) → LChyp(Sp ×X; E)
}
p∈P

are jointly conservative. Then the functors

prhypS,♯ : ConshypP (S ×X; E) ⇄ ConshypP (S; E) :pr∗,hypS

are inverse equivalences.

Proof. Combine Theorem 3.17, Corollary 2.10, and (5.10.2).

Corollary 5.12. Let P be a poset, S ∈ Top/P , and E a presentable ∞-category.
Assume that the restriction functors{

(−)|Sp×[0,1] : ConsP (S × [0, 1]; E) → LC(Sp × [0, 1]; E)
}
p∈P

are jointly conservative. Then the functors

prS,♯ : ConsP (S × [0, 1]; E) ⇄ ConsP (S; E) :pr∗S

are inverse equivalences.

Proof. Combine Lemma 4.7 and Corollaries 4.13 and 5.7.

5.3. Detecting equivalences on strata
Corollary 5.11 shows that a sufficient criterion for the functor

pr∗,hypS : ConshypP (S; E) → ConshypP (S ×X; E)

to be an equivalence is given by the joint conservativity of the hyperrestrictions to the
strata of S ×X. We offer two ways of checking this independently of both S and X.

The compactly generated case
The fact that equivalences of hypersheaves on a topological space with values in a
compactly generated ∞-category can be checked on stalks implies our first homotopy-
invariance result:

Corollary 5.13. Let P be a poset, S ∈ Top/P , and let E be a compactly generated
∞-category. Then:

(5.13.1) The restriction functors {(−)|hypSp
: Shhyp(S; E) → Shhyp(Sp; E)}p∈P are jointly

conservative.

(5.13.2) The functor ConshypP (−; E) : Topop
/P → Cat∞ is strongly homotopy-invariant.

Proof. Recollection 1.7 immediately implies (5.13.1). For (5.13.2), combine (5.13.1)
for the P -stratified space S ×X with Corollary 5.11.

Notation 5.14. Let P be a poset and S → P be a P -stratified topological space. Write
ConsP (S)<∞ ⊂ ConshypP (S) for the full subcategory spanned by those P -constructible
sheaves that are also n-truncated for some n ⩾ 0. Since left exact functors preserve
truncatedness, the assignment S 7→ ConsP (S)<∞ defines a subfunctor of ConshypP .

Corollary 5.15. Let P be a poset. The functor ConsP (−)<∞ : Topop
/P → Cat∞ is

strongly homotopy-invariant.
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The Noetherian case

In order to drop the compact generation assumption on E , there are two difficulties
to overcome. Recall that a poset P is Noetherian if P satisfies the ascending chain
condition: there are no infinite strictly ascending sequences p0 < p1 < p2 < · · · of
elements of P . The first issue is that there exist non-Noetherian posets P for which
the ∞-topos Sh(P ) = ConsP (P ) is not hypercomplete; see [2, Example A.13]. Said
differently, the functors Sh(P ) → Sh({p}) given by pulling back to strata need not be
jointly conservative. Thus we restrict ourselves to Noetherian posets.

The second issue is with the coefficient ∞-category E . Consider the most simple
stratification when P = {0 < 1}, so that a stratification S → {0 < 1} is the data of
a closed subspace Z = S0 and its open complement S ∖ Z = S1. Unfortunately, in
general the restriction functors

(−)|Z : Sh(S; E) → Sh(Z; E) and (−)|S∖Z : Sh(S; E) → Sh(S ∖ Z; E)

need not be jointly conservative. Thus, we have to assume this property:

Definition 5.16. We say that a presentable ∞-category E respects gluing if for each
topological space S and closed subspace Z ⊂ S, the restriction functors

(−)|Z : Sh(S; E) → Sh(Z; E) and (−)|S∖Z : Sh(S; E) → Sh(S ∖ Z; E)

and the hypersheaf restriction functors

(−)|hypZ : Shhyp(S; E) → Shhyp(Z; E) and (−)|S∖Z : Shhyp(S; E) → Shhyp(S ∖ Z; E)

are jointly conservative.

Luckily, many presentable ∞-categories that arise in nature respect gluing:

Example 5.17. If each ∞-category Sh(S; E) can be recovered as the recollement of
Sh(Z; E) and Sh(S ∖ Z; E) in the sense of [16, Definition A.8.1], and each ∞-category
Shhyp(S; E) is the recollement of Shhyp(Z; E) and Shhyp(S ∖ Z; E), then E respects
gluing. Importantly, this is satisfied if E is stable or E ≃ C ⊗ D where C is a compactly
generated ∞-category and D is an ∞-topos [11, Corollary 2.13, Proposition 2.21, &
Remark 2.26].

Lemma 5.18. Let P be a Noetherian poset, S ∈ Top/P , and let E be a presentable
∞-category that respects gluing. Then:

(5.18.1) The functors {(−)|Sp
: Sh(S; E) → Sh(Sp; E)}p∈P are jointly conservative.

(5.18.2) The functors {(−)|hypSp
: Shhyp(S; E) → Shhyp(Sp; E)}p∈P are jointly conser-

vative.

Proof. We prove (5.18.1); the proof of (5.18.2) is exactly the same, replacing sheaves
by hypersheaves. Let ϕ be a morphism in Sh(S; E) that restricts to an equivalence
on each stratum; we need to show that ϕ is an equivalence. Since the open subsets
{S⩾p}p∈P cover S, it suffices to show:

(∗) For each p ∈ P , the restriction ϕ|S⩾p
is an equivalence in Sh(S⩾p; E).

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.8.1
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We prove (∗) by Noetherian induction on p ∈ P . We need to show that if the restriction
ϕ|S⩾q

is an equivalence for each q > p, then ϕ|S⩾p
is an equivalence. Note that

S⩾p ∖ Sp = S>p =
⋃

q∈P>p

S⩾q.

Hence the inductive hypothesis implies that the restriction ϕ|S>p
is an equivalence.

By assumption ϕ|Sp is also an equivalence. Since E respects gluing, the restriction
functors (−)|Sp : Sh(S⩾p; E) → Sh(Sp; E) and (−)|S>p : Sh(S⩾p; E) → Sh(S>p; E) are
jointly conservative, completing the proof.

Finally we deduce the homotopy-invariance of constructible sheaves.

Corollary 5.19. Let P be a Noetherian poset and let E be a presentable ∞-category
that respects gluing. Then:

(5.19.1) The functor ConsP (−; E) : Topop
/P → Cat∞ is homotopy-invariant.

(5.19.2) The functor ConshypP (−; E) : Topop
/P → Cat∞ is strongly homotopy-invariant.

Proof. Combine Corollaries 5.11 and 5.12 with Lemma 5.18.
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