
NOTES ON ÉTALE COHOMOLOGY

PETER J. HAINE

Abstract. These notes outline the “fundamental theorems” of étale cohomology, following
[4, Ch. vi], as well as briefly discuss the Weil conjectures.
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1. Cohomological Dimension

1.1.Definition. Let𝑋 be a scheme, 𝜏 a topology on𝑋, and ℓ a prime. A 𝜏-sheafF of abelian
groups on𝑋 is ℓ-torsion if for every object𝑈 → 𝑋 of the site𝑋𝜏 such that𝑈 is quasicompact,
the abelian group F(𝑈) is ℓ-torsion.

Torsion sheaves are defined in the obvious way.

1.2.Definition. Let𝑋 be a scheme, 𝜏 a topology on𝑋, and ℓ a prime.The ℓ-cohomological
dimension cdℓ(𝑋𝜏) of 𝑋𝜏 is defined to be the smallest integer so that H𝑟𝐸(𝑋;F) = 0 for all
𝑟 > cdℓ(𝑋𝜏) and ℓ-torsion sheaves F on𝑋𝜏, and∞ if no such integer exists.

The cohomological dimension of𝑋𝜏 is defined by

cd(𝑋𝜏) ≔ sup
ℓ prime
cdℓ(𝑋𝜏)

1.3.Warning. This definition of cohomological dimension is highly nonstandard and it is
not obvious whether or not it agrees with the standard one from topos theory.
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1.4.Theorem (Tate [3, Thm. 15.2]). If 𝑘 ⊂ 𝐾 is a field extension, then
cdℓ(𝐾) ≤ cdℓ(𝑘) + trdeg𝑘(𝐾) ,

where cdℓ refers to the étale ℓ-cohomological dimension of the field.

1.5. Theorem ([4, Ch. vi Thm. 1.1]). If 𝑋 is a scheme of finite type over a separably closed
field, then cdℓ(𝑋ét) ≤ 2 dim(𝑋).

1.6. Corollary ([4, Ch. vi Cor. 1.4]). Let 𝑋 be a scheme of finite type over a field 𝑘. For all
primes ℓ ≠ char(𝑘) we have

cdℓ(𝑋ét) ≤ cdℓ(𝑘) + 2 dim(𝑋) .

2. The Proper Base Change Theorem

2.1. Theorem ([4, Ch. vi Thm. 2.1]). If 𝜋∶ 𝑌 → 𝑋 is a proper morphism of schemes and
F ∈ Cnstr(𝑋), then the sheaves 𝑅𝑖𝜋⋆(F) are constructible for all 𝑖 ≥ 0.

2.2. Corollary (proper base change [4, Ch. vi Cor. 2.3]). Let

𝑌′ 𝑌

𝑋′ 𝑋

⌟
̄𝑓

𝜋 𝜋

𝑓

be a pullback square of schemes. If 𝜋 is proper and F is a torsion étale sheaf on 𝑌, then the
base change morphism

(𝑓−1 ∘ 𝑅𝑖𝜋⋆)(F) → (𝑅𝑖𝜋⋆ ∘ ̄𝑓−1)(F)
is an isomorphism for all 𝑖 ≥ 0.

2.3. Corollary ([4, Ch. vi Cor. 2.5]). Let 𝜋∶ 𝑌 → 𝑋 be a proper morphism of schemes and
�̄� → 𝑋 a geometric point. If F ∈ Shvét(𝑌) is torsion, then there is a canonical isomorphism

𝑅𝑖𝜋⋆(F) ̄𝑥 ⥲ H𝑖ét(𝑌 ̄𝑥;F|�̄�)
for all 𝑖 ≥ 0.

If, moreover, all fibers of 𝜋 have dimension at most 𝑛, then 𝑅𝑖𝜋⋆(F) = 0 for 𝑖 > 2𝑛. If all
fibers of 𝜋 have dimension at most 𝑛,𝑋 is a characteristic 𝑝 scheme, and F is 𝑝-torsion, then
𝑅𝑖𝜋⋆(F) = 0 for 𝑖 > 𝑛.

2.4. Corollary ([4, Ch. vi Cor. 2.6]). Let 𝑘 ⊂ 𝐾 be separably closed fields and 𝑋 a proper
𝑘-scheme. Write 𝑓∶ 𝑋𝐾 → 𝑋 for the basechange projection. If F ∈ Shvét(𝑋) is torsion, then
the natural map

H𝑖ét(𝑋;F) → H𝑖ét(𝑋𝐾; 𝑓−1F)
is an isomorphism for all 𝑖 ≥ 0.

2.5. Corollary ([4, Ch. vi Cor. 2.7]). Let 𝐴 be a Henselian ring and 𝑠0 ∈ Spec(𝐴) the closed
point. Let 𝜋∶ 𝑋 → Spec(𝐴) be a proper morphism and 𝑋0 ≔ 𝑋𝑠0 the closed fiber. If F ∈
Shvét(𝑋) is torsion, then the natural map

H𝑖ét(𝑋;F) → H𝑖ét(𝑋0;F|𝑋0)
is an isomorphism for all 𝑖 ≥ 0.
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3. Higher Direct Images with Compact Support

3.1. Definition. A morphism of schemes 𝜋∶ 𝑋 → 𝑆 is compactifiable if there exists a fac-
torization

𝑋 𝑋

𝑆 ,
𝜋

𝑗

𝜋

where 𝑗 is an open immersion and 𝜋 is proper.
A compactification of a compactifiable morphism 𝜋 is a choice of a factorization 𝜋 = 𝜋𝑗,

where 𝑗 is an open immersion and 𝜋 is proper.
3.2. Definition. Let 𝜋∶ 𝑋 → 𝑆 be a compactifiable morphism and 𝜋 = 𝜋𝑗 a compactifica-
tion of 𝜋. Define 𝐑𝑐𝜋⋆ ≔ 𝐑(𝜋⋆) ∘ 𝑗!, and for 𝑟 ≥ 0 define

𝑅𝑟𝑐𝜋⋆ ≔ 𝑅𝑟(𝜋⋆) ∘ 𝑗! .
3.3.Warning. The notations of Definition 3.2 are abusive as they depend on the choice of
compactification and it is not generally possible to make a functorial choice of compactifi-
cations. In general 𝐑𝑐 is not even functorial in proper maps of compactifiable 𝑆-schemes.

3.4. Theorem ([4, Ch. vi Thm. 3.1]). If 𝜋∶ 𝑋 → 𝑆 is a compactifiable morphism and F ∈
Shvét(𝑋) is torsion, then the sheaves𝑅𝑟𝑐𝜋⋆(F) are independent of the choice of compactification
of 𝜋.

4. The Smooth Base Change Theorem

4.1. Definition. Let𝑋 be a scheme. The characteristic of𝑋 is the set
char(𝑋) ≔ |im(𝑋 → Spec(𝐙))| = �{ char(𝜅(𝑥)) | 𝑥 ∈ 𝑋 } ,

where |−| denotes the underlying space of a scheme.

4.2. Definition. Let 𝑋 be a scheme and F ∈ Shvét(𝑋). We say that F has torsion prime to
char(𝑋) if for all primes 𝑝 ∈ char(𝑋), the multiplication by 𝑝 map F → F is a monomor-
phism.

4.3. Corollary (smooth base change [4, Ch. vi Thm. 4.1]). Let

𝑌′ 𝑌

𝑋′ 𝑋

⌟
̄𝑓

𝜋 𝜋

𝑓

be a pullback square of schemes. If 𝜋 is quasicompact, 𝑓 is smooth, and F ∈ Shvét(𝑌) has
torsion prime to char(𝑋), then the base change morphism

(𝑓−1 ∘ 𝑅𝑖𝜋⋆)(F) → (𝑅𝑖𝜋⋆ ∘ ̄𝑓−1)(F)
is an isomorphism for all 𝑖 ≥ 0.
4.4. Corollary ([4, Ch. vi Cor. 4.2]). Let 𝜋∶ 𝑌 → 𝑋 be a smooth proper morphism and
F ∈ Shvét(𝑌) a constructible locally constant sheaf with torsion prime to char(𝑋). Then for all
𝑖 ≥ 0, the sheaf 𝑅𝑖𝜋⋆(F) is constructible and locally constant.

If, in addition,𝑋 is connected, then the groupsH𝑖ét(𝑌 ̄𝑥;F|𝑌�̄�) are isomorphic for all geomet-
ric points �̄� → 𝑋.
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4.5. Corollary ([4, Ch. vi Cor. 4.3]). Let 𝑘 ⊂ 𝐾 be separably closed fields and𝑋 a 𝑘-scheme.
Write𝑓∶ 𝑋𝐾 → 𝑋 for the basechange projection. If F ∈ Shvét(𝑋) is torsion with torsion prime
to char(𝑋), then the natural map

H𝑖ét(𝑋;F) → H𝑖ét(𝑋𝐾; 𝑓−1F)

is an isomorphism for all 𝑖 ≥ 0.

4.6. Corollary ([4, Ch. vi Cor. 4.5]). Let 𝜋∶ 𝑋 → 𝑆 be a morphism of finite type schemes
that are locally of finite type over a field 𝑘, and let F ∈ Cnstr(𝑋). If resolution of singularities
holds for𝑋 (e.g., if char(𝑘) = 0 or dim(𝑋) ≤ 2) and the torsion of F is prime to char(𝑋), then
the sheaves 𝑅𝑖𝜋⋆(F) are constructible for all 𝑖 ≥ 0.

5. Purity

5.1.Definition. Let 𝑆 be a scheme. A smooth 𝑆-pair (𝑍,𝑋) is a closed immersion 𝑖 ∶ 𝑍𝑋
of 𝑆-schemes.

A smooth 𝑆-pair (𝑍,𝑋) has codimension 𝑐 if for all 𝑠 ∈ 𝑆, the fiber 𝑍𝑠 has pure codimen-
sion 𝑐 in𝑋𝑠.

5.2.Theorem (cohomological purity [4, Ch. vi Thm. 5.1]). Let 𝑆 be a scheme and 𝑖 ∶ 𝑍𝑋
a smooth 𝑆-pair of codimension 𝑐. Let F be a locally constant torsion sheaf of torsion prime to
char(F). Then the following equivalent statements hold.
(5.2.a) We have that 𝑅2𝑐𝑖!(F) is locally isomorphic to 𝑖−1F(−𝑐) (as a sheaf on 𝑍), and for
𝑞 ≠ 2𝑐 we have that 𝑅𝑞𝑖!(F) = 0.

(5.2.b) The unit F → 𝑗⋆𝑗−1(F) is an isomorphism, 𝑅2𝑐−1𝑗⋆(𝑗−1F) is locally isomorphic to
𝑖⋆𝑖−1F, and 𝑅𝑞𝑗⋆(𝑗−1F) = 0 for 𝑞 ≠ 0, 2𝑐 − 1.

5.3. Observation. Assume the hypotheses of Theorem 5.2, that 𝑛 ∈ 𝐙 is prime to char(𝑋),
and the multiplication by 𝑛 map F → F is zero. If 𝑉 → 𝑋 is a finite étale map and 𝑠 ∈
𝛤(𝑉;F), the map 𝐙/𝑛 → F|𝑉 defined by 𝑠 defines a map

H2𝑐𝑍×𝑉(𝑉; 𝐙/𝑛) → H2𝑐𝑍×𝑉(𝑉;F|𝑉) .

By varying 𝑉 we get a morphism of étale sheaves on𝑋

(5.4) F → Hom𝑋(𝑖⋆𝑅2𝑐𝑖!(𝐙/𝑛), 𝑖⋆𝑅2𝑐𝑖!(F)) .

Since 𝑅2𝑐𝑖!(𝐙/𝑛) is locally isomorphic to 𝐙/𝑛 by Theorem 5.2, we see that 𝑅2𝑐𝑖!(𝐙/𝑛) is
locally free of finite type. Hence the proof of Theorem 5.2 shows that the morphism (5.4) is
an isomorphism. Thus we may write the morphism (5.4) as an isomorphism

𝑖−1(F) ⊗ 𝑅2𝑐𝑖!(𝐙/𝑛) ⥲ 𝑅2𝑐𝑖!(F) .

5.5. Notation. Let 𝑆 be a scheme, 𝑖 ∶ 𝑍𝑋 a smooth 𝑆-pair of codimension 𝑐, and 𝑛 an
integer prime to char(𝑋). We (abusively) write 𝑇𝑍/𝑋 ≔ 𝑅2𝑐𝑖!(𝐙/𝑛).

5.6. Corollary (Gysin sequence [4, Ch. vi Cor. 5.3]). Let 𝑆 be a scheme, 𝑖 ∶ 𝑍𝑋 a smooth
𝑆-pair of codimension 𝑐, 𝑛 an integer prime to char(𝑋), and F ∈ LCét(𝑋) be killed by 𝑛. Write
𝑓∶ 𝑋 → 𝑆 for the structure morphism, 𝑗∶ 𝑈 ≔ 𝑋 ∖ 𝑍 ↪ 𝑋 for the open complement of 𝑍,
and write 𝑖′ ≔ 𝑓𝑖 and 𝑗′ ≔ 𝑓𝑗. Then for 0 ≤ 𝑟 ≤ 2𝑐 − 2 the comparison map

𝑅𝑟𝑓⋆(F) → 𝑅𝑟𝑗′⋆(F|𝑈)
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is an isomorphism and there is a long exact sequence

0 𝑅2𝑐−1𝑓⋆(F) 𝑅2𝑐−1𝑗′⋆(F|𝑈) 𝑖′⋆(𝑖−1(F) ⊗ 𝑇𝑍/𝑋) 𝑅2𝑐𝑓⋆(F)
⋯

𝑅𝑟−1𝑗′⋆(F|𝑈) 𝑅𝑟−2𝑐𝑖′⋆(𝑖−1F ⊗ 𝑇𝑍/𝑋) 𝑅𝑟𝑓⋆(F) ⋯ .

𝑖⋆

𝑖⋆

The maps labeled 𝑖⋆ are called Gysin maps.
5.7. Example ([4, Ch. vi Ex. 5.6]). Let 𝑘 be a separably closed field and 𝑛 ∈ 𝐙 prime to
char(𝑘). Then

H𝑟ét(𝐏𝑚𝑘 ; 𝐙/𝑛) ≅ {
(𝐙/𝑛)(−𝑟/2), 𝑟 even 0 ≤ 𝑟 ≤ 2𝑚
0, otherwise .

�

With a few more results it is possible to show that if 𝑋 is a smooth projective 𝑘-variety,
for a generic curve 𝑖 ∶ 𝐶𝑋, the map

𝑖⋆ ∶ H1ét(𝑋; (𝐙/𝑛)(1)) → H1ét(𝐶; (𝐙/𝑛)(1))
is an injection. Using Poincaré duality one can show that this result extends to smooth com-
plete intersections.
5.8.Theorem (Deligne [4, Ch. vi Rem. 5.7]). Let 𝑆 be a quasicompact scheme. Then for any
morphism 𝜋∶ 𝑌 → 𝑋 of finite type 𝑆-schemes and F ∈ Cnstr(𝑌; 𝐙/𝑛), there exists a dense
open subscheme 𝑈𝜋 ⊂ 𝑆 such that:
(5.8.a) Over 𝑈𝜋, the sheaves 𝑅𝑟𝜋⋆(F) are constructible for all but finitely many 𝑟 ≥ 0.
(5.8.b) The formation of the sheaves 𝑅𝑟𝜋⋆(F) is compatible with all base changes along mor-

phisms 𝑇 → 𝑆 with image in 𝑈𝜋.
Moreover, if 𝑆 is regular and 0 or 1-dimensional, the sheaves 𝑅𝑟𝜋⋆(F) are constructible

(over 𝑆) for all 𝑟 ≥ 0.

6. Finiteness Theorems

6.1. Corollary ([4, Ch. vi Cor. 2.8]). If 𝑋 is a proper 𝑘-scheme and F ∈ Cnstr(𝑋), then
H𝑖ét(𝑋;F) is finite for all 𝑖 ≥ 0.
6.2. Corollary ([4, Ch. vi Cor. 5.5]). Let 𝑋 be a smooth 𝑘-variety and F a finite locally
constant étale sheaf on𝑋 with torsion prime to char(𝑘). ThenH𝑖ét(𝑋;F) is finite for all 𝑖 ≥ 0

7. Fundamental Classes

7.1.Notation. Throughout this section 𝑘 denotes a separably closed field, 𝑛 a integer prime
to char(𝑘), and 𝛬 ≔ 𝐙/𝑛.
7.2. Conventions. In this section all schemes are smooth 𝑘-varieties and all sheaves are
𝛬-modules.
7.3. Observation. If 𝑖 ∶ 𝑍𝑋 is a smooth 𝑘-pair of codimension 𝑐, then the spectral se-
quence

H𝑝ét(𝑍; 𝑖−1𝑅𝑞𝑖!(F))⟹ H
𝑝+𝑞
𝑍 (𝑋;F)

gives canonical isomorphisms
H𝑟ét(𝑍; 𝑖−1𝑅2𝑐𝑖!(F)) ⥲ H2𝑐+𝑟𝑍 (𝑋;F) ,

for any locally free sheaf F of finite rank. In particular,
𝛤(𝑍; 𝑖−1𝑅2𝑐𝑖!(F)) ⥲ H2𝑐𝑍 (𝑋;F) .
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7.4.Observation. If 𝑖 ∶ 𝑍𝑋 is a smooth divisor of codimension 1 with open complement
𝑗∶ 𝑈 ≔ 𝑋 ∖ 𝑍 ↪ 𝑋, we have an isomorphism of exact sequences

H0ét(𝑈;𝐆𝑚) H1𝑍(𝑋;𝐆𝑚) H1ét(𝑋;𝐆𝑚) H1ét(𝑈;𝐆𝑚)

𝛤(𝑈;𝑂×𝑈) 𝐙 Pic(𝑋) Pic(𝑈)

𝜕

≀ ≀ ≀

𝑗⋆

≀

ord𝑍 𝑗⋆

Moreover, the Kummer sequence gives an exact sequence

(7.5)
H1𝑍(𝑋;𝐆𝑚) H1𝑍(𝑋;𝐆𝑚) H2ét(𝑋; 𝝁𝑛)

𝐙 𝐙 H2𝑍(𝑋; 𝛬(1)) .

⋅𝑛

≀ ≀

𝜕

⋅𝑛 𝜕

7.6.Definition. If𝑍𝑋 is a smooth divisor of codimension 1, then define the fundamental
class 𝑠𝑍/𝑋 ∈ H2𝑍(𝑋; 𝛬(1)) by setting 𝑠𝑍/𝑋 ≔ 𝜕(1), where 𝜕 is the boundary morphism in the
sequence (7.5).

7.7.Observations.
(7.7.a) By the exactness of the sequence (7.5), 𝑠𝑍/𝑋 is 𝑛-torsion.
(7.7.b) The fundamental class 𝑠𝑍/𝑋 generates 𝑅2𝑖!(𝛬(1)).

7.8. Theorem ([4, Ch. vi Thm. 6.1]). There is a unique function (𝑍,𝑋) ↦ 𝑠𝑍/𝑋 sending a
smooth 𝑘-pair of codimension 𝑐 to a fundamental class 𝑠𝑍/𝑋 ∈ H2𝑐𝑍 (𝑋; 𝛬(𝑐)) satisfying the
following:
(7.8.a) 𝑠𝑍/𝑋 has order 𝑛.
(7.8.b) If 𝑐 = 1 and 𝑍 is connected, then 𝑠𝑍/𝑋 is the class of Definition 7.6.
(7.8.c) If 𝜙∶ (𝑍′, 𝑋′) → (𝑍,𝑋) is a morphism of smooth 𝑘-pairs of codimension 𝑐, then
𝜙⋆(𝑠𝑍/𝑋) = 𝑠𝑍′/𝑋′ .

(7.8.d) If
𝑍 𝑌

𝑋

𝑣

𝑖 𝑢

is a commutative triangle where (𝑍, 𝑌), (𝑌,𝑋), and (𝑍,𝑋) are smooth 𝑘-pairs of codi-
mensions 𝑎, 𝑏, and 𝑐, respectively, then 𝑠𝑍/𝑌 ⊗ 𝑠𝑌/𝑋 = 𝑠𝑍/𝑋, once we have made the
canonical identifications

H2𝑎𝑍 (𝑌; 𝑅2𝑏𝑢!(𝛬(𝑐))) ⥲ H2𝑐𝑍 (𝑋; 𝛬(𝑐)) ,
H2𝑎𝑍 (𝑌; 𝑅2𝑏𝑢!(𝛬(𝑐))) ⥲ H2𝑐𝑍 (𝑌; 𝛬(𝑎)) ⊗ H2𝑏𝑌 (𝑋; 𝛬(𝑏)) .

7.9. Corollary ([4, Ch. vi Cor. 6.4]). Let (𝑍,𝑋) be a smooth 𝑘-pair of codimension 𝑐. Then
𝑇𝑍/𝑋 is canonically isomorphic to 𝛬(−𝑐).

7.10. Proposition ([4, Ch. vi Prop. 6.5]).
(7.10.a) Projection formulas:Let 𝑖 ∶ 𝑍𝑋 be a smooth 𝑘-pair of codimension 𝑐, write 𝑖⋆ ∶ H𝑟ét(𝑍; 𝛬) →

H𝑟+2𝑐ét (𝑋; 𝛬(𝑐)) for the Gysin map, and let 1𝑍 ∈ H0ét(𝑍; 𝛬) ≅ 𝛬 denote the identity.
Then
— 𝑖⋆(1𝑍) is the image of 𝑠𝑍/𝑋 under the mapH2𝑐𝑍 (𝑋; 𝛬(𝑐)) → H2𝑐ét (𝑋; 𝛬(𝑐)).
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— For all 𝑥 ∈ H𝑟+2𝑐ét (𝑋; 𝛬) and 𝑧 ∈ H𝑠ét(𝑋; 𝛬)we have 𝑖⋆(𝑖⋆(𝑥) ⌣ 𝑧) = 𝑥 ⌣ 𝑖⋆(𝑧).
In particular, 𝑖⋆𝑖⋆(𝑥) = 𝑥 ⌣ 𝑖⋆(1𝑍).

(7.10.b) Gysinmaps compose: If 𝑖1 ∶ 𝑍𝑌 and 𝑖2𝑌𝑋 are both smooth 𝑘-pairs, then (𝑖2𝑖1)⋆ =
𝑖2,⋆𝑖1,⋆.

8. The Weak Lefschetz Theorem

8.1. Theorem ([4, Ch. vi Thm. 7.1]). Let 𝑋 be an 𝑚-dimensional projective variety over a
separably closed field and 𝑖 ∶ 𝑍𝑋 the inclusion of a hyperplane section.
(8.1.a) If 𝑋 and 𝑍 are smooth, 𝑛 ∈ 𝐙 is prime to char(𝑘), and F ∈ LCét(𝑋; 𝐙/𝑛), then the

Gysin map 𝑖⋆ ∶ H𝑟ét(𝑍; 𝑖−1F) → H𝑟+2ét (𝑋;F(1)) is an isomorphism for 𝑟 ≥ 𝑚 and a
surjection for 𝑟 = 𝑚 − 1.

(8.1.b) If F ∈ Shvét(𝑋) is torsion, then the map H𝑟𝑍(𝑋;F) → H𝑟ét(𝑋;F) is an isomorphism
for 𝑟 ≥ 𝑚 + 2 and a surjection for 𝑟 = 𝑚 + 1.

8.2.Theorem ([4, Ch. viThm. 7.2]). If𝑋 is a scheme affine and of finite type over a separably
closed field, then cd(𝑋) = dim(𝑋).

9. The Künneth Formula

9.1. Convention. Throughout this section 𝛬 is a finite ring and unless otherwise stated all
sheaves are 𝛬-modules.

9.2.Theorem (Künneth formula [4, Ch. viThm. 8.5]). Consider a pullback square of schemes

𝑋 ×𝑆 𝑌 𝑌

𝑋 𝑆 ,

⌟
̄𝑓

̄𝑔 𝑔

𝑓

and set ℎ ≔ 𝑔 ̄𝑓 = 𝑓 ̄𝑔. Assume the following:
(9.2.a) 𝑆 is quasicompact,
(9.2.b) 𝑓 and 𝑔 are compactifiable,
(9.2.c) F ∈ Shvét(𝑋; 𝛬), G ∈ Shvét(𝑌; 𝛬), and F is flat as a 𝛬-module.
Then there is a canonical quasi-isomorphism

𝐑𝑐𝑓⋆(F) ⊗𝐋𝛬 𝐑𝑐𝑔⋆(G) ⥲ 𝐑𝑐ℎ⋆(F ⊠𝐋𝛬 G)
If, moreover, 𝑅𝑟𝑐𝑓⋆(F) is flat for all 𝑟 ≥ 0, then for all 𝑚 ≥ 0 we have a canonical isomor-

phism
⨁
𝑟+𝑠=𝑚
𝑅𝑟𝑐𝑓⋆(F) ⊗𝛬 𝑅𝑠𝑐𝑔⋆(G) ⥲ 𝑅𝑚𝑐 ℎ⋆(F ⊠𝛬 G) .

9.3.Lemma (proper base change [4, Ch. vi Lem. 8.9]). Consider a pullback square of schemes

𝑋 ×𝑆 𝑌 𝑌

𝑋 𝑆 ,

⌟
̄𝑓

̄𝑔 𝑔

𝑓

where 𝑔 is proper, and let G ∈ Shvét(𝑌; 𝛬). Then there is a canonical quasi-isomorphism
𝑓⋆𝐑𝑔⋆(G) ⥲ 𝐑 ̄𝑔⋆( ̄𝑓⋆G).
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9.4. Corollary ([4, Ch. vi Cor. 8.13]). Let 𝑋 and 𝑌 be schemes over a separably closed field
𝑘, F ∈ Shvét(𝑋; 𝛬), G ∈ Shvét(𝑌; 𝛬). If 𝑋 and 𝑌 are proper over 𝑘, F is flat, andH𝑟ét(𝑋;F) is
flat for all 𝑟 ≥ 0, then for all𝑚 ≥ 0 we have a canonical isomorphism

⨁
𝑟+𝑠=𝑚
H𝑟ét(𝑋;F) ⊗𝛬 H𝑠ét(𝑌;G) ⥲ H𝑚ét (𝑋 × 𝑌;F ⊠𝛬 G)

induced by the cup product pairings.

9.5. Theorem (ℓ-adic Künneth formula [4, Ch. vi Cor. 8.21]). Let 𝑘 be a separably closed
field and ℓ a prime different from char(𝑘). Let 𝑋 and 𝑌 be compactifiable 𝑘-schemes and 𝐴
the integral closure of 𝐙ℓ in a finite extension of 𝐐ℓ. If F ∈ Cnstr(𝑋; 𝐴), G ∈ Cnstr(𝑌; 𝐴),
and F and G are flat 𝐴-modules, then:
(9.5.a) We have a canonical isomorphism𝐇∙𝑐(𝑋;F) ⊗𝐴 𝐇∙𝑐(𝑌; 𝐺) ⥲ 𝐇∙𝑐(𝑋 × 𝑌;F ⊠ G).
(9.5.b) For all𝑚 ≥ 0 there is a short exact sequence

0 ⨁
𝑟+𝑠=𝑚
H𝑟𝑐(𝑋;F) ⊗𝐴 H𝑠𝑐(𝑌;G) H𝑚𝑐 (𝑋 × 𝑌;F ⊠𝐴 G)

⨁
𝑟+𝑠=𝑚
Tor𝐴1 (H𝑟𝑐(𝑋;F), H𝑠𝑐(𝑌;G)) 0 .

10. The Cycle Class Map

10.1.Convention. Fix an algebraically closed field 𝑘. All schemes in this section are smooth
𝑘-varieties.

10.2. Notation. Fix an integer 𝑛 prime to char(𝑘), and write 𝛬 ≔ 𝐙/𝑛. For a smooth 𝑘-
variety𝑋, writeH∗ét(𝑋; 𝛬) ≔ ⨁𝑟≥0H

2𝑟
ét (𝑋; 𝛬(𝑟)).

10.3.Remark. As a graded group, the degree 𝑟 piece ofH∗ét(𝑋; 𝛬) isH2𝑟ét (𝑋; 𝛬(𝑟)). Moreover,
the cup product makesH∗ét(𝑋; 𝛬) a graded-commutative ring.

10.4. Recollection. Let 𝑋 be a smooth 𝑘-variety. An elementary 𝑟-cycle on 𝑋 is a closed
integral subscheme 𝑍 ⊂ 𝑋 of codimension 𝑟. The group of algebraic 𝑟-cycles 𝐶𝑟(𝑋) is the
free abelian group on the set of elementary 𝑟-cycles. Write

𝐶∗(𝑋) ≔⨁
𝑟≥0
𝐶𝑟(𝑋) .

Elements of 𝐶∗(𝑋) are called algebraic cycles on𝑋.

10.5. Definition. Let 𝑋 be a smooth 𝑘-variety. An elementary 𝑟-cycle 𝑍 ⊂ 𝑋 and an ele-
mentary 𝑟′-cycle 𝑍′ ⊂ 𝑋 intersect properly if each irreducible component of 𝑍 ∩ 𝑍′ has
codimension 𝑟 + 𝑟′. In this case 𝑍 ⋅ 𝑍′ is defined and belongs to 𝐶𝑟+𝑟′(𝑋).

Algebraic cycles 𝑍,𝑍′ ∈ 𝐶∗(𝑋) intersect properly if every elementary cycle of 𝑍 inter-
sects every elementary cycle of 𝑍′ properly, in which case 𝑍 ⋅ 𝑍′ is defined in the obvious
manner.

10.6. Observation. For a morphism 𝜋∶ 𝑌 → 𝑋 of smooth 𝑘-varieties we can sometimes
define a morphism 𝜋⋆ ∶ 𝐶∗(𝑋) → 𝐶∗(𝑌) by setting

𝜋⋆(𝑍) ≔ 𝛤𝜋 ⋅ (𝑌 × 𝑍)
for an elementary cycle𝑍 ⊂ 𝑋, where 𝛤𝜋 ⊂ 𝑌×𝑋 is the graph of 𝜋, and extending linearly to
algebraic cycles.Themap𝜋⋆makes sense as long as all of the intersection products𝛤𝜋 ⋅(𝑌×𝑍)
are well-defined.
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10.7. Remark. According to [1, Prop. 1.3], 𝜋⋆ is well-defined if 𝜋 is a flat map of algebraic
𝑘-schemes (though we only consider smooth 𝑘-schemes), or in the case that both the source
and target are smooth (which is the case that we are interested in).

10.8. Observation. If 𝜋∶ 𝑌 → 𝑋 is a proper morphism of smooth 𝑘-varieties, there is a
morphism 𝜋⋆ ∶ 𝐶∗(𝑌) → 𝐶∗(𝑋) defined on elementary cycles 𝑍 ⊂ 𝑌 by

𝜋⋆(𝑍) ≔ {
0, dim(𝜋(𝑍)) < dim(𝑍)
deg(𝜋|𝑍)𝜋(𝑍), otherwise ,

�

and extended linearly to 𝐶∗(𝑌).

10.9.Lemma (projection formula for cycles). Let𝜋∶ 𝑌 → 𝑋 be a propermorphismof smooth
𝑘-varieties, 𝑍 ∈ 𝐶∗(𝑌), and 𝑍′ ∈ 𝐶∗(𝑋). Then

𝜋⋆(𝜋⋆(𝑍′) ⋅ 𝑍) = 𝑍′ ⋅ 𝜋⋆(𝑍) ,

if the intersection products 𝜋⋆(𝑍′) ⋅ 𝑍 and 𝑍′ ⋅ 𝜋⋆(𝑍) are defined.

10.10.Definition. Let𝑋be a smooth 𝑘-variety.The cycle classmap cl𝑋 ∶ 𝐶∗(𝑋) → H∗ét(𝑋; 𝛬)
is the homomorphism of graded groups defined as follows.
(10.10.a) If 𝑖 ∶ 𝑍𝑋 is a smooth elementary 𝑟-cycle, then define cl𝑋(𝑍) ≔ 𝑖⋆(1𝑍), where

𝑖⋆ ∶ H0ét(𝑍; 𝛬) → H2𝑟ét (𝑋; 𝛬(𝑟))

is the Gysinmap and 1𝑍 ∈ H0ét(𝑍; 𝛬) is the identity. Equivalently, cl𝑋(𝑍) is the im-
age of the fundamental class 𝑠𝑍/𝑋 under the mapH2𝑟𝑍 (𝑋; 𝛬(𝑟)) → H2𝑟ét (𝑋; 𝛬(𝑟)).

(10.10.b) This definition extends to singular elementary cycles by virtue of the following
lemma, and extends to each graded piece 𝐶𝑟(𝑋) by linearity.

10.11. Lemma ([4, Ch. vi Lem. 9.1]). Let 𝑋 be a smooth 𝑘-variety. For any reduced closed
subscheme 𝑍 ⊂ 𝑋 of codimension 𝑟, we haveH𝑠𝑍(𝑋; 𝛬) = 0 for 𝑠 < 2𝑟.

10.12. Proposition ([4, Ch. vi Prop. 9.3]). Let 𝑖 ∶ 𝑍𝑋 be a closed immersion of smooth
𝑘-varieties and 𝑐 ≔ codim𝑋(𝑍). Then for all 𝑟 ≥ 0, the square

𝐶𝑟(𝑍) 𝐶𝑟+𝑐(𝑋)

H2𝑟ét (𝑍; 𝛬(𝑟)) H2(𝑟+𝑐)ét (𝑋; 𝛬(𝑟 + 𝑐))
cl𝑍 cl𝑋

𝑖⋆

commutes.

10.13. Proposition ([4, Ch. vi Prop. 9.4]). Let𝑋 and 𝑌 be smooth 𝑘-varieties. The square

𝐶∗(𝑋) × 𝐶∗(𝑌) 𝐶∗(𝑋 × 𝑌)

H∗ét(𝑋; 𝛬) × H∗ét(𝑌; 𝛬)

H∗ét(𝑋 × 𝑌;𝛬)×2 H∗ét(𝑋 × 𝑌;𝛬)

×

cl𝑋 × cl𝑌

cl𝑋×𝑌

pr⋆𝑋 ×pr⋆𝑌

⌣

commutes.
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10.14. Proposition ([4, Ch. vi Prop. 9.4]). Let 𝑋 be a smooth 𝑘-variety and 𝑍 and 𝑍′ alge-
braic cycles on𝑋. If 𝑍 and 𝑍′ intersect transversally, then

cl𝑋(𝑍 ⋅ 𝑍′) = cl𝑋(𝑍) ⌣ cl𝑋(𝑍′) .

10.15. Remark ([4, Ch. vi Rem. 9.6]). Themap cl1𝑋 ∶ 𝐶1(𝑋) → H2ét(𝑋; 𝛬(1)) is the compos-
ite of the canonicalmaps𝐶1(𝑋) → Pic(𝑋) given by𝑍 ↦ 𝑂𝑋(𝑍) andPic(𝑋) → H2ét(𝑋; 𝛬(1))
coming from the identifications Pic(𝑋) ≅ H1ét(𝑋;𝐆𝑚) and 𝛬(1) ≅ 𝝁𝑛 along with the Kum-
mer sequence.

10.16. Example ([4, Ch. vi Ex. 9.7]). If 𝐿𝑟 ⊂ 𝐏𝑚𝑘 is a complete intersection of codimen-
sion 𝑟, then the Gysin map 𝛬 → H2𝑟ét (𝐏𝑚𝑘 ; 𝛬(𝑟)) is an isomorphism. HenceH2𝑟ét (𝐏𝑚𝑘 ; 𝛬(𝑟)) is
generated by cl𝑟𝐏𝑚𝑘 (𝐿

𝑟).
(10.16.a) Since Pic(𝐏𝑚𝑘 ) ≅ 𝐙 is generated by the class of any hypersurface 𝐿1, cl𝐏𝑚𝑘 (𝐿

1) is
independent of the hypersurface 𝐿1.

(10.16.b) Thus for a codimension 𝑟 complete intersection 𝐿𝑟 we have cl𝐏𝑚𝑘 (𝐿
𝑟) = cl𝐏𝑚𝑘 (𝐿

1)⌣𝑟.
So the cycle class of a codimension 𝑟 complete intersection is also independent of
𝐿𝑟.

(10.16.c) Thus the map 𝛬[𝑡]/⟨𝑡𝑚+1⟩ → H∗ét(𝐏𝑚𝑘 ; 𝛬) defined by sending 𝑡𝑟 ↦ cl𝐏𝑚𝑘 (𝐿
1)⌣𝑟 is

an isomorphism of graded rings.

11. Chern Classes

11.1. Convention. Let 𝑘 be an algebraically closed field. In this section all schemes are
smooth quasiprojective 𝑘-varieties.

11.2. Notation. Let 𝑛 ∈ 𝐙 be prime to char(𝑘). We write 𝛬 ≔ 𝐙/𝑛.

11.3. Proposition (projective bundle formula [4, Ch. vi Prop. 10.1]). Let 𝑋 be a smooth
quasiprojective 𝑘-variety and E a rank 𝑚 vector bundle on 𝑋. Let 𝜉 ∈ H2ét(𝐏(E); 𝛬(1)) be the
image of 𝑂𝐏(E)(1) under the map

Pic(𝐏(E)) → H2ét(𝐏(E); 𝛬(1))
coming from the Kummer sequence. Let 𝜋∶ 𝐏(E) → 𝑋 be the structure morphism. Then the
map

H∗ét(𝑋; 𝛬)[𝑡]/⟨𝑡𝑚⟩ → H∗ét(𝐏(E); 𝛬)
given by 𝜋⋆ on H∗ét(𝑋; 𝛬) and by sending 𝑡 ↦ 𝜉 is an isomorphism of graded H∗ét(𝑋; 𝛬)-
modules.

11.4. Corollary. Let 𝑋 be a smooth quasiprojective 𝑘-variety and E a rank 𝑚 vector bundle
on𝑋. There are unique elements 𝑐𝑟(E) ∈ H2𝑟ét (𝑋; 𝛬) such that

{{
{{
{

𝑐0(E) = 1
𝑐𝑟(E) = 0, for 𝑟 > 𝑚
∑𝑚𝑟=0 𝑐𝑟(E)𝜉𝑚−𝑟 = 0 .

�

The element 𝑐𝑟(E) is called the 𝑟th Chern class of E.

11.5. Definition. Let𝑋 be a smooth quasiprojective 𝑘-variety and E a vector bundle on𝑋.
The total Chern class of𝑋 is the element

𝑐(E) ≔ ∑
𝑟≥0
𝑐𝑟(E) ∈ H∗ét(𝑋; 𝛬) .
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11.6. Definition. Let𝑋 be a smooth quasiprojective 𝑘-variety and E a vector bundle on𝑋.
The Chern polynomial of𝑋 is the element

ch𝑡(E) ≔ ∑
𝑟≥0
𝑐𝑟(E)𝑡𝑟 ∈⨁

𝑟≥0
H2𝑟ét (𝑋; 𝛬(𝑟))𝑡𝑟 .

11.7. Notation. Write Var𝑘 for the category of smooth quasiprojective 𝑘-varieties.

11.8.Theorem ([4, Ch. viThm. 10.3]). TheChern classes of smooth quasiprojective 𝑘-varieties
are uniquely characterized by the following properties.
(11.8.a) Functoriality: If 𝜋∶ 𝑌 → 𝑋 is a morphism in Var𝑘 and E is a vector bundle on 𝑋,

then for all 𝑟 ≥ 0 we have 𝑐𝑟(𝜋−1(E)) = 𝜋⋆(𝑐𝑟(E)).
(11.8.b) Normalization: If E is a vector bundle on𝑋, then ch𝑡(E) = 1 + 𝑝𝑋(E)𝑡, where

𝑝𝑋 ∶ Pic(𝑋) → H2ét(𝑋; 𝛬)
is the natural morphism from the Kummer sequence.

(11.8.c) Additivity: If𝑋 ∈ Var𝑘 and

0 E′ E E″ 0 .

is a short exact sequence of vector bundles on𝑋, then ch𝑡(E) = ch𝑡(E′) ch𝑡(E″).

11.9. Remark. By (11.8.c) the total Chern class defines a homomorphism of abelian groups
𝑐∶ 𝐾0(𝑋) → H∗ét(𝑋; 𝛬). Moreover, this homomorphism respects the gradings.

11.10. Corollary. Let 𝑋 ∈ Var𝑘. If (dim(𝑋) − 1)! is invertible in 𝛬, then the cycle class map
cl𝑋 defines a homomorphism cl𝑋 ∶ CH⋆(𝑋) → H∗ét(𝑋; 𝛬) which is natural in𝑋.

11.11. Remark. Corollary 11.10 is true with 𝛬 replaced by 𝐐ℓ, where ℓ ≠ char(𝑘). In this
case, the invertibility condition on (dim(𝑋) − 1)! is vacuous.

12. Poincaré Duality

12.1. Notation. We write 𝛬 ≔ 𝐙/𝑛, and 𝑛 is always taken to be prime to char(𝑋) for any
scheme𝑋 that we take cohomology of with coefficients in a 𝛬-module.

12.2. Notation. If 𝑋 is a seperated variety of dimension 𝑑 and 𝑥 ∈ 𝑋 is a closed point, we
abusively write cl𝑋(𝑥) for the image of the fundamental class 𝑠𝑥/𝑋 under the natural map

H2𝑑𝑥 (𝑋; 𝛬(𝑑)) → H2𝑑𝑐 (𝑋; 𝛬(𝑑)) .

12.3. Theorem (Poincaré duality for smooth varieties [4, Ch. vi Thm. 11.1]). Let 𝑘 be a
separably closed field and𝑋 a dimension 𝑑 smooth separated 𝑘-variety. Then:
(12.3.a) There is a unique trace map 𝜂𝑋 ∶ H2𝑑𝑐 (𝑋; 𝛬(𝑑)) → 𝛬 such that 𝜂𝑋(cl𝑋(𝑥)) = 1 for

all closed points 𝑥 ∈ 𝑋. Moreover, 𝜂𝑋 is an isomorphism.
(12.3.b) If F ∈ Cnstr(𝑋; 𝛬), the natural pairings

H𝑟𝑐(𝑋;F) × Ext2𝑑−𝑟𝑋 (F , 𝛬(𝑑)) H2𝑑𝑐 (𝑋; 𝛬(𝑑)) 𝛬∼𝜂𝑋
are perfect for 0 ≤ 𝑟 ≤ 2𝑑.

Proof Idea. To construct the trace map:
(12.3.a.i) If𝑋 is a dimension 𝑑 separated variety over a separably closed field, then

H2𝑑𝑐 (𝑋; 𝛬(𝑑)) ⥲ 𝛬 .
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(12.3.a.ii) If𝜋∶ 𝑌 → 𝑋 is a separated étalemorphism, where𝑋 is a dimension 𝑑 separated
variety over a separably closed field, then for every closed point 𝑦 ∈ 𝑌,

𝜋⋆ ∶ H2𝑑𝑐 (𝑌; 𝛬(𝑑)) → H2𝑑𝑐 (𝑋; 𝛬(𝑑))

sends cl𝑌(𝑦) to cl𝑋(𝜋(𝑦)).
To prove that the pairing is perfect:
(12.3.b.i) If 𝜋∶ 𝑋′ → 𝑋 is finite étale, the pairings are perfect for (𝑋′,F′) if and only if

they are perfect for (𝑋, 𝜋⋆F′).
(12.3.b.ii) If 𝑈 ⊂ 𝑋 is an open subvariety, the pairings are perfect for (𝑋,F) are perfect

for (𝑋,F) if and only if they are perfect for (𝑈,F|𝑈). To do this, we show that
the pairings are prefect for sheaves with support in a smooth closed subvariety
𝑍 ⊊ 𝑋.

(12.3.b.iii) If 𝜋∶ 𝑋 → 𝑆 is a smooth projective morphism with 1-dimensional fibers, the
pairings are perfect for locally constant constructible sheaves. To do this, we
show that if𝑋 is a variety forwhich the pairings are perfect, then the appropriate
derived versions of the pairings are perfect.

(12.3.b.iv) The pairings are perfect for constant sheaves.
(12.3.b.v) The pairings are perfect for locally constant sheaves.
(12.3.b.vi) By pulling back to an open subvariety on which a constructible sheaf is locally

constant, we conclude the theorem. □

12.4. Corollary (“classical” Poincaré duality [4, Ch. vi Cor. 11.2]). Let 𝑋 be a dimension
𝑑 separated variety over a separably closed field. Then for any locally constant constructible
𝛬-module, the cup product pairing

H𝑟𝑐(𝑋;F) × H2𝑑−𝑟𝑐 (𝑋;F(𝑑)) H2𝑑𝑐 (𝑋; 𝛬(𝑑)) 𝛬⌣ ∼
𝜂𝑋

is perfect for 0 ≤ 𝑟 ≤ 2𝑑.

12.5. Corollary ([4, Ch. vi Cor. 11.5]). Let 𝑋 be a dimension 𝑑 separated variety over a
separably closed field. If 𝑋 is not complete, then for any locally constant torsion sheaf F on 𝑋
we haveH2𝑑ét (𝑋;F) = 0.

12.6.Theorem ([4, Ch. viThm. 11.7]). Let𝑋 be a dimension 𝑑 projective variety over a sepa-
rably closed field.Then for all 𝑟 ≥ 0, the group𝑁𝑟(𝑋) of 𝑟-cyclesmodulo numerical equivalence
is finitely generated.

12.7. Proposition (Poincaré duality for compactifiable morphisms [4, Ch. vi Prop. 11.8]).
Let 𝜋∶ 𝑋 → 𝑆 be a smooth compactifiable morphism of schemes with 𝑑-dimensional fibers.
There exists a unique relative trace map 𝜂𝑋/𝑆 ∶ 𝑅2𝑑𝑐 𝜋⋆(𝛬(𝑑)) → 𝛬 such that for any geometric
point ̄𝑠 → 𝑆 and any closed point 𝑥 ∈ 𝑋 ̄𝑠, the trace map

𝜂𝑋 ̄𝑠/ ̄𝑠 ∶ H
2𝑑
𝑐 (𝑋 ̄𝑠; 𝛬(𝑑)) → 𝛬

sends cl𝑋 ̄𝑠(𝑥) to 1. If, moreover, the fibers of 𝜋 are connected, then 𝜂𝑋/𝑆 is an isomorphism.
Moreover, 𝜂𝑋/𝑆 is compatiblewith composition of compactifiablemorphisms and base change

along arbitrary morphisms.

Proof Idea. Workfiberwise, usingPoincaré duality for varieties and the assumptions that the
fibers are equidimensional. The assumption that 𝜋 is compactifiable allows us to globalize
the result on fibers. □
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13. The Zeta Function & the Weil Conjectures

13.1.Notation. In this section all schemes are 𝐅𝑞-varieties. Given an 𝐅𝑞-variety𝑋, we write
𝑋 ≔ 𝑋 ×Spec(𝐅𝑞) Spec(𝐅𝑞).

13.2.Definition. Let𝑋 be an 𝐅𝑞-variety. The Zeta function of𝑋 is the formal power series
with 𝐐-coefficients defined by

𝑍(𝑋, 𝑡) ≔ exp(∑
𝑛≥1

#𝑋(𝐅𝑞𝑛)
𝑛
𝑡𝑛) .

13.3. Conjectures (Weil). Let𝑋 be a smooth projective 𝐅𝑞-variety of dimension 𝑑.
(13.3.a) Rationality of the Zeta function: we have that

𝑍(𝑋, 𝑡) = 𝑃1(𝑋, 𝑡)⋯𝑃2𝑑−1(𝑋, 𝑡)
𝑃0(𝑋, 𝑡)⋯𝑃2𝑑(𝑋, 𝑡)

,

where each 𝑃𝑟(𝑋, 𝑡) is a polynomial with coefficients in a field of characteristic 0.
(13.3.b) Integrality: 𝑃0(𝑋, 𝑡) = 1 − 𝑡, 𝑃2𝑑(𝑋, 𝑡) = 1 − 𝑞𝑑𝑡, each each 𝑃𝑟(𝑋, 𝑡) has roots whose

inverses are algebraic integers.
(13.3.c) Functional equation: 𝑍(𝑋, 𝑞−𝑑𝑡−1) = ±𝑞𝑑𝜒/2𝑡𝜒𝑍(𝑋, 𝑡), where 𝜒 is the Euler charac-

teristic of𝑋.
(13.3.d) Riemann Hypothesis: the inverses of the roots of 𝑃𝑟(𝑋, 𝑡) and all of their conjugates

have complex absolute value 𝑞𝑟/2.
(13.3.e) Specialization: If𝑋 is the specialization of a smooth projective variety𝑋 over a num-

ber field, then
deg(𝑃𝑟(𝑋, 𝑡)) = 𝛽𝑟(𝑋(𝐂)an) ,

where 𝛽𝑟(𝑌) denotes the 𝑟th Betti number of a space 𝑌.

13.4. Theorem (Lefschetz trace formula [4, Ch. vi Thm. 12.3]). Let 𝜙∶ 𝑋 → 𝑋 be an en-
domorphism of a smooth projective variety over an algebraically closed field 𝑘 such that the
intersection 𝛤𝜙 ⋅ 𝛥𝑋 is defined. Then for any prime ℓ ≠ char(𝑘) we have

(𝛤𝜙 ⋅ 𝛥𝑋) =
2 dim(𝑋)
∑
𝑟=0
(−1)𝑟 tr(𝜙⋆| H𝑟ét(𝑋;𝐐ℓ)) .

13.5.Theorem ([2, Ch. ivThm. 1.2]). Let𝑋 be a smooth projective 𝐅𝑞-variety. For all 𝑟 ≥ 0,
and primes ℓ ≠ char(𝐅𝑞), the polynomials

𝑃𝑟,ℓ(𝑋, 𝑡) ≔ det(id − 𝑡 Fr⋆ | H𝑟ét(𝑋;𝐐ℓ)) .

in 𝐐ℓ[𝑡] have coefficients in 𝐙. Moreover the polynomials 𝑃𝑟,ℓ(𝑋, 𝑡) are independent of the
prime ℓ.

13.6. Notation. Let 𝑋 be a smooth projective 𝐅𝑞-variety. Write 𝑃𝑟(𝑋, 𝑡) for the common
polynomial 𝑃𝑟,ℓ(𝑋, 𝑡) ∈ 𝐙[𝑡].

13.7.Theorem (Riemann hypothesis for varieties [2, Ch. iv Thm. 1.2]). Let 𝑋 be a smooth
projective 𝐅𝑞-variety and ℓ ≠ char(𝐅𝑞) a prime. Then the eigenvalues of Fr⋆ on H𝑟ét(𝑋;𝐐ℓ)
and all of their conjugates have complex absolute value 𝑞𝑟/2, and the inverse roots of 𝑃𝑟(𝑋, 𝑡)
are algebraic integers of absolute value 𝑞𝑟/2.
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13.8. Theorem (rationality of the Zeta function [4, Ch. vi Thm. 12.4]). Let 𝑋 be a smooth
projective 𝐅𝑞-variety. Then

𝑍(𝑋, 𝑡) = 𝑃1(𝑋, 𝑡)⋯𝑃2𝑑−1(𝑋, 𝑡)
𝑃0(𝑋, 𝑡)⋯𝑃2𝑑(𝑋, 𝑡)

.

13.9.Theorem (functional equation for the Zeta function [2, Ch. ivThm. 1.2; 4, Ch. viThm.
12.6]). Let𝑋 be a smooth projective 𝐅𝑞-variety of dimension 𝑑. Then

𝑍(𝑋, 𝑞−𝑑𝑡−1) = (−1)(𝑑−1)𝑁𝑞𝑑𝜒/2𝑡𝜒𝑍(𝑋, 𝑡) ,
where 𝜒 is the Euler characteristic of 𝑋 and𝑁 is the multiplicity of the eigenvalue 𝑞𝑑/2 of Fr⋆
onH𝑑ét(𝑋;𝐐ℓ) (for any prime ℓ ≠ char(𝐅𝑞)).

13.10.Theorem ([4, Ch. vi 13.1]). Let 𝑋 be a separated 𝐅𝑞-variety. Then for any prime ℓ ≠
char(𝐅𝑞) we have

𝑍(𝑋, 𝑡) = ∏
𝑟≥0
det(id − 𝑡 Fr⋆ | H𝑟ét(𝑋;𝐐ℓ))(−1)

𝑟+1 .
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