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1 Overview
The purpose of this note is to generalize the following observation: given an (𝑛 + 1)-
connected map of spaces 𝑓∶ 𝑋 → 𝑌, the induced morphism L𝑓∶ L𝑋 → L𝑌 on free
loop spaces is 𝑛-connected. To cast this result in a more general context, note that L𝑋
is the cotensor 𝑋S1 of 𝑋 by the circle S1. The circle S1 only has cells in dimensions ≤ 1,
and the observation generalizes by saying that in an∞-topos, cotensoring with a finite
space with cells in dimensions ≤ 𝑚 decreases connectedness of morphisms by𝑚.

1.1 Proposition. Let𝑿 be an∞-topos, let𝑚, 𝑛 ≥ 0 be integers, and let𝐾 be a space that
can be written as a retract of a finite space with cells in dimensions ≤ 𝑚. If 𝑓∶ 𝑋 → 𝑌 is
an (𝑚 + 𝑛)-connected morphism of𝑿, then the cotensor 𝑓𝐾 ∶ 𝑋𝐾 → 𝑌𝐾 is 𝑛-connected.

As long as ℓ-connected morphisms are stable under inifinite products in 𝑿 (e.g.,
𝑿 = Spc) the conclusion of Proposition 1.1 is also validwithout the finiteness hypothesis
on𝐾. See Proposition 3.4.

Outline. Included for the unfamiliar reader, Section 2 reviews a bit of background on
cotensors and finite spaces. Section 3 is dedicated to the proof of Proposition 1.1.

2 Background on cotensors & finite spaces
We begin by recalling the cotensoring of an∞-category with all limits over the∞-cat-
egory of spaces.

2.1 Notation. We write Spc for the∞-category of spaces.

2.2 Recollection (cotensoring over Spc). Every∞-category𝐶with all limits is naturally
cotensored over the∞-category Spc of spaces [HTT, Remark 5.5.2.6]. That is, there is a
functor

Spcop × 𝐶 → 𝐶
(𝐾,𝑋) ↦ 𝑋𝐾 ,

along with natural equivalences

Map𝐶(𝑋′, 𝑋𝐾) ≃ MapSpc(𝐾,Map𝐶(𝑋′, 𝑋)) .
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Note that for each object𝑋 ∈ 𝐶, the functor𝑋(−) ∶ Spcop → 𝐶 preserves limits.
The cotensor can be defined explicitly as follows. Recall that Spc is obtained by the

terminal category ∗ by freely adjoining colimits. Under the equivalence

Fun(Spcop × 𝐶, 𝐶) ≃ Fun(Spcop, Fun(𝐶, 𝐶)) ,

the cotensor corresponds to the functor

Spcop → Fun(𝐶, 𝐶)

obtained by extending the functor id𝐶 ∶ ∗op → Fun(𝐶, 𝐶) along limits.

In this note, we are particularly interested in the case that 𝐶 is an∞-topos. In this
case, the cotensor has a very explicit description.

2.3 Observation. Let 𝑿 be an∞-topos and write Γ∗ ∶ Spc → 𝑿 for the constant sheaf
functor (the left adjoint to the global sections functor). Write

Hom𝑿 ∶ 𝑿op × 𝑿 → 𝑿

for the internal-Hom in𝑿. The cotensor of an object𝑋 ∈ 𝑿 by a space𝐾 is given by the
internal-Hom

𝑋𝐾 ≃ Hom𝑿(Γ∗(𝐾), 𝑋) .

In the statement of Proposition 1.1, we need to restrict to cotensoring by (retracts of)
finite spaces. One way of identifying finite spaces is as the underlying homotopy types of
CW complexes with finitely many cells; here is an invariant way.

2.4 Definition. The subcategory Spcfin ⊂ Spc of finite spaces is the smallest full subcat-
egory containing the terminal object and closed under finite colimits.

Similar to Recollection 2.2,∞-categories with finite limits are cotensored over Spcfin.

2.5 Recollection (cotensoring over Spcfin). Every ∞-category 𝐶 with finite limits is
naturally cotensored over the∞-category Spcfin of finite spaces. The cotensor can be
defined explicitly as follows. Note that Spcfin is obtained by the terminal category ∗ by
freely adjoining finite colimits. Under the equivalence

Fun(Spcfin,op × 𝐶, 𝐶) ≃ Fun(Spcfin,op, Fun(𝐶, 𝐶)) ,

the cotensor corresponds to the functor

Spcfin,op → Fun(𝐶, 𝐶)

obtained by extending the functor id𝐶 ∶ ∗op → Fun(𝐶, 𝐶) along finite limits.

2.6 Observation. Let 𝐹∶ 𝐶 → 𝐷 be a functor between∞-categories with finite lim-
its, let 𝑋 ∈ 𝐶, and let 𝐾 be a finite space. Functoriality provides a natural comparison
morphism

𝑐𝑋,𝐾 ∶ 𝐹(𝑋𝐾) ≃ 𝐹(lim𝐾𝑋) → lim𝐾 𝐹(𝑋) ≃ 𝐹(𝑋)𝐾 .
Note that if the functor 𝐹 is left exact, then for every 𝑋 ∈ 𝐶 and finite space 𝐾, the

morphism 𝑐𝑋,𝐾 is an equivalence.
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The last thing we need to explain in the statement of Proposition 1.1 is an invariant
description of the underlying homotopy types of a CW complexes with cells in dimen-
sions ≤ 𝑚.

2.7 Notation. We write S0 ∈ Spc for the coproduct ∗ ⊔ ∗, and for each integer 𝑚 ≥ 1,
we write S𝑚 ∈ Spc for the pushout

S𝑚−1 ∗

∗ S𝑚 .⌜

2.8 Definition. For each integer 𝑚 ≥ 0, we define spaces with cells in dimensions ≤ 𝑚
recursively as follows.

• A space 𝐾 has cells in dimensions ≤ 0 if and only if 𝐾 is discrete.

• For𝑚 ≥ 1, a space𝐾 has cells in dimensions ≤ 𝑚 if there exists a space𝐾(𝑚−1) with
cells in dimensions ≤ 𝑚 − 1 and a pushout diagram

∐
𝑖∈𝐼

S𝑚−1 𝐾(𝑚−1)

∐
𝑖∈𝐼
∗ 𝐾⌜

in Spc.

3 The proof
The idea is prove Proposition 1.1 by induction on𝑚. We express a finite space with cells
in dimensions ≤ 𝑚 as a pushout by attaching cells of dimension 𝑚 to a finite space of
cells of dimension ≤ 𝑚 − 1, and use the following result to prove the claim.

3.1 Proposition ([1, Proposition 4.13]). Let𝑿 be an∞-topos, ℓ ≥ −2 be an integer, and

𝐴 𝐶 𝐵

𝐴′ 𝐶′ 𝐵′

𝑓

𝑎 𝑐 𝑏

𝑔

𝑓′ 𝑔′

be a commutative diagram in𝑿. If 𝑎 and 𝑏 are ℓ-connected and 𝑐 is (ℓ+1)-connected, then
the induced morphism on pullbacks 𝑎 ×𝑐 𝑏∶ 𝐴 ×𝐶 𝐵 → 𝐴′ ×𝐶′ 𝐵′ is ℓ-connected.

We first treat the special case of cotensoring by a sphere.
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3.2 Lemma. Let 𝑿 be an ∞-topos and let 𝑚, 𝑛 ≥ 0 be integers. If 𝑓∶ 𝑋 → 𝑌 is an
(𝑚 + 𝑛)-connected morphism of𝑿, then the cotensor

𝑓S𝑚 ∶ 𝑋S𝑚 → 𝑌S𝑚

is 𝑛-connected.

Proof. We prove the claim by induction on the integer𝑚. For the base case𝑚 = 0, note
that the cotensor 𝑓S0 is the product map

𝑓 × 𝑓∶ 𝑋 × 𝑋 → 𝑌 × 𝑌 .

The claim follows from the fact that the class of 𝑛-connected morphisms of an∞-topos
is stable under finite products.

For the induction step, assume that we have shown that for each integer 𝑛 ≥ 0, and
(𝑚+𝑛)-connectedmorphism 𝑔 in𝑿, the cotensor 𝑔S𝑚 is 𝑛-connected. Let𝑓∶ 𝑋 → 𝑌 be
an (𝑚 + 1 + 𝑛)-connected morphism of𝑿. To see that 𝑓S𝑚+1 is 𝑛-connected, use the fact
that S𝑚+1 ≃ ∗ ⊔S𝑚 ∗ to express 𝑋S𝑚+1 and 𝑌S𝑚+1 as the pullbacks of the top and bottom
rows of the diagram

(3.3)
𝑋 𝑋S𝑚 𝑋

𝑌 𝑌S𝑚 𝑌 .

Δ𝑋

𝑓 𝑓S𝑚 𝑓

Δ𝑋

Δ𝑌 Δ𝑌

By assumption𝑓 is (𝑚+1+𝑛)-connected, and by the induction hypothesis𝑓S𝑚 is (𝑛+1)-
connected. Hence applying Proposition 3.1 to the diagram (3.3) shows that 𝑓S𝑚+1 is 𝑛-
connected.

Under the hypothesis that ℓ-connected morphisms are closed under arbitrary prod-
ucts, we now prove a variant of Proposition 1.1 with stronger conclusion. This hypoth-
esis holds in any presheaf∞-topos, and we deduce Proposition 1.1 by noting that the
conclusion of Proposition 1.1 is preserved by passage to a left exact localization.

3.4 Proposition. Let 𝑿 be an∞-topos, and assume that for each integer ℓ ≥ 0, the class
of ℓ-connected morphisms in 𝑿 is stable under arbitrary products (e.g., 𝑿 = Spc). Let
𝑚, 𝑛 ≥ 0 be integers, and let 𝐾 be a space that can be written as a retract of a space with
cells in dimensions ≤ 𝑚. If 𝑓∶ 𝑋 → 𝑌 is an (𝑚 + 𝑛)-connected morphism of 𝑿, then the
cotensor 𝑓𝐾 ∶ 𝑋𝐾 → 𝑌𝐾 is 𝑛-connected.

Proof. First notice that since the class of ℓ-connected morphisms in an ∞-topos is
closed under retracts, it suffices to prove:

(∗) Let𝑚, 𝑛 ≥ 0 be integers, and let𝐾 a spacewith cells in dimensions≤ 𝑚. If𝑓∶ 𝑋 →
𝑌 is an (𝑚 + 𝑛)-connected morphism of 𝑿, then the cotensor 𝑓𝐾 ∶ 𝑋𝐾 → 𝑌𝐾 is
𝑛-connected.
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We prove (∗) by induction on 𝑚. For 𝑚 = 0, notice that since 𝑛-connected morphisms
are stable under products in𝑿, if 𝐾 is a discrete space, then

𝑓𝐾 ≃ ∏
𝑖∈𝐾
𝑓∶ ∏
𝑖∈𝐾
𝑋 →∏
𝑖∈𝐾
𝑌

is 𝑛-connected.
For the induction step, assume that we have proven the claim for spaces with cells

in dimensions ≤ 𝑚, and let𝐾 be a space with cells in dimensions ≤ 𝑚 + 1. Express𝐾 as
a pushout

∐
𝑖∈𝐼

S𝑚 𝐾(𝑚)

∐
𝑖∈𝐼
∗ 𝐾 ,⌜

where 𝐾(𝑚) is a space with cells in dimensions ≤ 𝑚. Then 𝑓𝐾 is the morphism on pull-
backs induced by the diagram of cospans

(3.5)

𝑋𝐼 𝑋∐𝑖∈𝐼 S𝑚 𝑋𝐾(𝑚)

𝑌𝐼 𝑌∐𝑖∈𝐼 S𝑚 𝑌𝐾(𝑚) .

𝑓𝐼 𝑓∐𝑖∈𝐼 S𝑚 𝑓𝐾(𝑚)

Since 𝑓 is (𝑚 + 1 + 𝑛)-connected by assumption:

• By the base case, 𝑓𝐼 is (𝑚 + 1 + 𝑛)-connected.

• By the inductive hypothesis, 𝑓𝐾(𝑚) is (𝑛 + 1)-connected.

• By Lemma 3.2 and the assumption that (𝑛 + 1)-connected morphisms in 𝑿 are
closed under products, the morphism

𝑓∐𝑖∈𝐼 S𝑚 ≃ ∏
𝑖∈𝐼
𝑓S𝑚 ∶ ∏

𝑖∈𝐼
𝑋S𝑚 →∏

𝑖∈𝐼
𝑌S𝑚

is (𝑛 + 1)-connected.
Applying Proposition 3.1 to the diagram (3.5) concludes the proof of the induction step.

The observation necessary to deduce Proposition 1.1 from Proposition 3.4 is that
left exact functors commute with cotensors by finite spaces (Observation 2.6).

Proof of Proposition 1.1. Since the class of ℓ-connected morphisms in𝑿 is closed under
retracts, it suffices to prove the claim for finite spaces 𝐾. Choose a small∞-category
𝐶 and left exact localization 𝐿∶ PSh(𝐶) → 𝑿. Since 𝐿 commutes with cotensors by
finite spaces (Observation 2.6), the claim now follows from Proposition 3.4 applied to
PSh(𝐶) and the fact that a morphism 𝑔 in 𝑿 is ℓ-connected if and only if there exists
a ℓ-connected morphism 𝑔′ in PSh(𝐶) and an equivalence 𝑔 ≃ 𝐿(𝑔′) [HTT, Remark
6.5.1.15].
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3.6 Remark. An alternative way to prove Proposition 1.1 is to repeat the proof Propo-
sition 3.4, where we only allow the set 𝐼 to be finite.
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