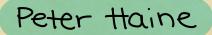
Interactions Between Homotopy Theory \$ Algebraic Geometry



Three main intersections

Étale homotopy theory

Motivic homotopy theory $A^1 \simeq *$ (Mura's talk!)

Derived/Spectral algebraic geometry

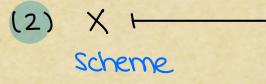
This talk

Why inject homotopy theory into algebraic geometry?

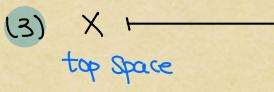
Better Descent Results

Thm

- - → D(X;Z) is a sheaf of ~ cats derived ~ - cat of sheaves



→ Dgc(X) is an fpgc sheaf of ~ - cats derived ~ - cat of quasicoherent sheaves



→ C*(X;Z) is a sheaf valued in DUZ) complex of singular cochains

Note

Descent for sheaf \implies Descent \implies "cohomological descent" ∞ -categories for RT \implies spectral seq. for $\#^*$

> However, it turns out to often be easier to prove descent for the sheaf ~ - categories
Case Study Bhatt - Mathew, "The arc-topology"
> Get more conceptual proofs with ferrer assumptions, e.g., Almost immediate from (3)
Thm If X is a locally weakly contractible top space, then

 $R\Gamma_{sheaf}(X; \mathbb{Z}) \simeq C^*(X; \mathbb{Z})$

in $D(\mathbb{Z})$.

Intersection Theory

Bézaut's Thm C, C' $\subset |\mathbb{P}_{c}^{2}$ smooth curves w/ transverse intersection and fundamental classes [C], [C'] $\in \mathbb{H}^{2}(\mathbb{P}_{c}^{2};\mathbb{Z})$, [C] \vee [C'] = [C \cap C'] in $\mathbb{H}^{4}(\mathbb{P}_{c}^{2};\mathbb{Z}) \cong \mathbb{Z}$ > if nontransverse but

Cnc' is a finite # of points

Idea To deal with non-transverse N, replace pullback by a derived enhancement locally modelled on derived & > Since so much has been said elsewhere, we won't say more Hidden Smoothness

Philosophy (Beilinson, Deligne, Drinfeld, Konsevich ...)

Many classical moduli stacks are poorly behaved

not smooth / Ici, wrong dim

but have derived refinements that are better-behaved

Thm X/K Smooth proper, M the derived moduli of either:
(1) Vector bundles on X
(2) Coherent Sheaves on X
(3) principal G-bundles on X (for G an algebraic group)
Then ILM is perfect and
dim(X) = d => Tor amplitude(ILM) = d-1.
d=1 M Smooth
d=2 M guasi-Smooth

However If $d \ge 2$, then the underlying classical stack $M_{cl} \longrightarrow M$ is singular with unbounded cotangent complex "Underived" Statements with proofs naturally Using derived tools

Absolute purity for flat cohomology (Cesnavičius-Scholze) (R,m) noetherian local ring that's a complete intersection G finite flat commutative R-graup. Then

> $H_{m}^{c}(R;G) = o for i < dim(R)$ fppf cohomology $\leq dim(R)$ if R is rec

if R is regular and not a field

A preview of the Setup: Animation

- Key point If we take the functor of points perspective seriously, the main obstruction to the setup of DAG is what the ∞-cat of "rings" is
- > Simplicial commutative rings: OK for homotopy theorists, but maybe difficult for others
- > There's an alternative perspective:

Nto Rring, PolyR CCAlgR full Subcat on fg polynomial R-algs R[x1,...,xn]

Thm The 1-category CAlg_R is obtained from Poly_R by freely adjoining filtered colims + reflexive Coequalizers

If D is a 1-category with these colimits, then there is an equivalence of categories

Fun filt, ref coeq (CAlg_R, D)
$$\longrightarrow$$
 Fun (Poly_R, D)

> FIPOlyR

$$CAIg_R \simeq Fun^{\times}(Poly_R^{op}, Set)$$

 $S \longrightarrow thom_{CAIg_R}^{op}(-, S)$

Explicitly

animated R-algebras or Simplicial Commutative R-alqs

is the universal ~- category obtained from the 1-category Poly by freely adjoining filtered colimits and colimits of simplicial objects

Funfilt,
$$\Delta^{op}$$
 (CAlg_R^{ani}, D) $\xrightarrow{\sim}$ Fun (Poly_R, D)
 \overline{F} $\xrightarrow{\sim}$ \overline{F} $\stackrel{Poly_R}{\xrightarrow{}}$

Étale homotopy theory

What is the étale homotopy type?

> Defined by Artin-Mazur in the late '60s, refined by Friedlander in the early '80s ~ Difficult-to-use definition, no universal proproperty

> Used by Sullivan ('79) and Friedlander (following Quillen) to prove the Adams Conjecture in topology

> 2015: Hoyois gives a new definition using Lurie's shape theory ~ uses ~ topoi, has a universal property > X Scheme ~ profinite Space Π^{ét}(X) ∈ Pro(Spc_π) or stack spaces w/ finite to, $- \pi_1 \Pi_{\infty}^{\acute{e}t} (X) \cong \pi_1^{\acute{e}t} (X)$ all Ti are finite and $\pi_i = o for i >> 0$ - For a finite ring R $H^{i}(\Pi^{\acute{et}}(X);R) \cong H^{i}_{\acute{et}}(X;R)$ Disse(Xét; R) ~ Functs (Mos(X), Perf(R)). 1 locally constant w/ perfect Stalks - not (Spec(K)) ~ BGK

> Work of Barwick-Glasman-H. gives a new description of $\Pi_{\infty}^{\text{ét}}(X)$ as the classifying prospace of an explicit procategory

Basic properties

TLDR "All basic results about étale cohomology are true at the level of the étale homotopy type"

> Work of many: Artin-Mazur, Friedlander, Lurie, Hoyois, Carchedi, Chough, Orgogozo, H.-Holzschuh-Wolf,...

Fundamental Fiber Sequence k field w/ sep closure $\overline{k} > k$, X/k gcgs, then there is a fiber Sequence $\Pi_{\infty}^{\acute{e}t}(X_{\overline{k}}) \longrightarrow \Pi_{\infty}^{\acute{e}t}(X) \longrightarrow BG_{k}$ $\Leftrightarrow \pi_{n}^{\acute{e}t}(X_{\overline{k}}) \cong \pi_{n}^{\acute{e}t}(X)$ for $n \ge 2$ \$ usual π_{1} SES Riemann Existence If X/C is finite type, then there is a natural map $\Pi_{\infty}(X(C)) \longrightarrow \Pi_{\infty}^{\acute{e}t}(X)$

that becomes an equivalence after profinite completion

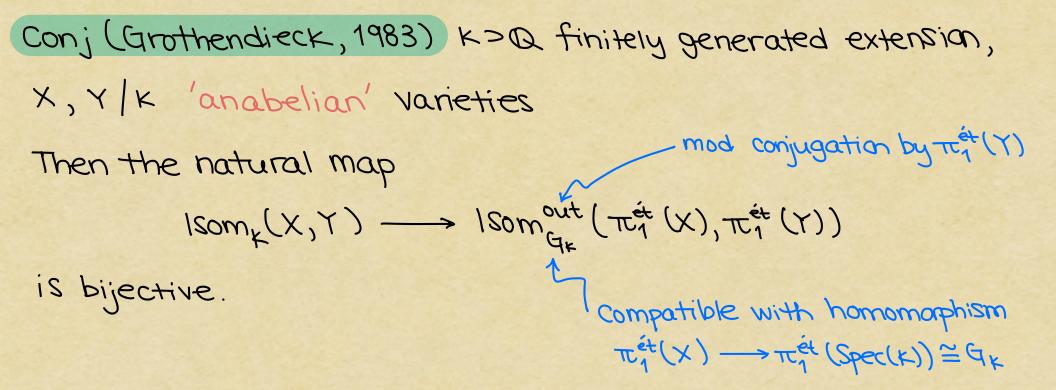
Künneth Formulas K= R of char P ≥ 0, X, Y gcgs K-schemes (1) If Y/k is proper, then $\Pi_{\infty}^{\text{ét}}(X \times_{\mathbb{K}} Y) \xrightarrow{\sim} \Pi_{\infty}^{\text{ét}}(X) \times \Pi_{\infty}^{\text{ét}}(Y)$ (2) with no additional assumptions $\Pi_{\infty}^{\text{ét}}(X \times_{k} T)_{p'}^{h} \xrightarrow{\sim} \Pi_{\infty}^{\text{et}}(X)_{p'}^{h} \times \Pi_{\infty}^{\text{et}}(T)_{p'}^{h}$ (-)p, completion away from p

(3) Formulas for symmetric products

Affine analogue of proper basechange If (A,I) is a henselian pair, then $\Pi_{\infty}^{\text{ét}}(\text{Spec}(A|I)) \xrightarrow{\sim} \Pi_{\infty}^{\text{ét}}(\text{Spec}(A))$

> This is just a sample ... many more results!

Anabelian Geometry



Thm (Tamagawa, Mochizuki, late 905) Grothendieck's Conj. true if X and Y are smooth hyperbolic CUNES.

Issue We don't really know what 'anabelian' means > Clearly a restrictive condition > Only reasonable if X and Y are étale K(T, 1)s Thm (A. Schmidt - Stix) K>Q finitely generated extension, X, Y Smooth K-varieties St = embeddings X, Y is Thyperbolic closed curves

Then the natural map $ISOm_{k}(X, Y) \longrightarrow \pi_{o} Equiv_{BG_{k}}(\Pi_{\infty}^{\acute{e}t}(X), \Pi_{\infty}^{\acute{e}t}(Y))$ is a split injection with a natural retraction.

Cor If $\Pi_{\infty}^{\text{ét}}(X) \simeq \Pi_{\infty}^{\text{ét}}(Y)$ over BG_{K} , then $X \cong Y$ as k-schemes.

Thm (Holschbach-J. Schmidt-Stix) K alg. closed field, char(k) >0 X/k Smooth variety Then $\Pi_{\infty}^{\acute{e}t}(X) \simeq *$ if and only if $X \simeq \text{Spec}(k)$. Thm (Achinger) If X is a connected affine \mathbb{F} -scheme, then $\Pi_{\infty}^{\acute{e}t}(X)$ is 1-truncated

i.e., ~ Brit (X)

Conj (Deligne-Morava) For any $g, n \ge 0$, the étale homotopy type $\Pi_{\infty}^{\text{ét}}(M_{g,n})$ is 1-truncated.

⇒ the mapping class group Ig,n is good in the sense of serre for a finite G-module M, H* (G;M) → H*(G;M)

> Known for g < 2 and all n by Birman-Hilden

The Artin-Tate Pairing

Setup X/E_q smooth geometrically connected surface LTq prime $Br_{nd}(X) := \frac{Br(X)}{divisible elts}$.

> M. Artin and Tate defined a pairing

 $Br_{nd}(X)[l^{\infty}] \times Br_{nd}(X)[l^{\infty}] \longrightarrow Q/\mathbb{I}$

Conj (Tate, 1966) The Artin-Tate pairing is alternating

History

1967386 Manin gave examples disproving Tate's Onj.

1996 Urabe found mistakes in Manin's Work

Thm (Feng, 2017) Tate's conjecture is true. > uses analogies from arithmetic topology Idea Because of the fiber sequence $\Pi_{\infty}^{\text{ét}}(X_{\overline{\mathbb{F}_q}}) \longrightarrow \Pi_{\infty}^{\text{ét}}(X) \longrightarrow B^{\widetilde{\mathbb{I}}} \simeq (S^{1})_{\pi}^{*}$ "dim 4" "dim 5" "dim 1" ∏∞ (X) behaves like a real 5-manifold Artin-Tate (linking form on an orientable pairing (4d+1)-manifold



Mt. Rundle, July 2022