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1 Motivations
1.1 Notation. We write Spc for the∞-category of spaces or∞-groupoids, Cat∞ for
the∞-category of∞-categories, Sp for the∞-category of spectra, and Sp𝐾(𝑛) for the
∞-category of𝐾(𝑛)-local spectra (where𝐾(𝑛) is a Morava 𝐾-theory).

Recall that the goal of [1] is to show that for any 𝜋-finite space𝑋, prime number 𝑝,
and Morava𝐾-theory 𝐾(𝑛) (at 𝑝), the functors

colim𝑋, lim𝑋 ∶ Fun(𝑋, Sp𝐾(𝑛)) → Sp𝐾(𝑛)

are (canonically) equivalent. If we let 𝑓∶ 𝑋 → ∗ denote the unique morphism, then:

• The diagonal functor Sp𝐾(𝑛) → Fun(𝑋, Sp𝐾(𝑛)) is identified with the functor
𝑓⋆ ∶ Fun(∗, Sp𝐾(𝑛)) → Fun(𝑋, Sp𝐾(𝑛)) given by precomposition with 𝑓.

• The functor colim𝑋 is identified with the left adjoint 𝑓! of 𝑓⋆, given by left Kan
extension along 𝑓.

• The functor lim𝑋 is identified with the right adjoint 𝑓⋆ of 𝑓⋆, given by right Kan
extension along 𝑓.

Rephrasing our problem, we’re interested in studying the assignment

𝑋 ↦ Fun(∗, Sp𝐾(𝑛)) Fun(𝑋, Sp𝐾) .𝑓⋆

𝑓⋆

𝑓!

⊥

⊥

and determining when there is a natural equivalence 𝑓! ⥲ 𝑓⋆.

(1) To encode all the relevant functoriality in 𝑋, we should adopt the relative point of
view and determine which morphisms 𝑓∶ 𝑋 → 𝑌 in Spc have the property that
𝑓! ⥲ 𝑓⋆.
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(2) For setting up the general theory, it is not really relevant that we are working with lo-
cal systems of𝐾(𝑛)-local spectra; wemight as well consider any functor that assigns
a morphism 𝑓∶ 𝑋 → 𝑌 in Spc a chain of three adjunctions 𝑓! ⊣ 𝑓⋆ ⊣ 𝑓⋆.

(3) The perspective we’ve taken is to assume that to any morphism 𝑓∶ 𝑋 → 𝑌 in
Spc, we have three adjoints 𝑓! ⊣ 𝑓⋆ ⊣ 𝑓⋆, and to try to construct an equivalence
Nm𝑓 ∶ 𝑓! ⥲ 𝑓⋆. We can equivalently not assume the existence of the extreme right
adjoint 𝑓⋆ (or, alternatively, the extreme left adjoint 𝑓!), and try to exhibit 𝑓! as
a right adjoint to 𝑓⋆. That is, we might as well restrict our attention to functors
Spc → Catladj∞ , where Catladj∞ is the ∞-category of ∞-categories and left adjoint
functors (see Notation 2.1).

(4) The fact that we’re considering functors to Catladj∞ with source the∞-category of
spaces isn’t particularly relevant for setting up the general theory; we can replace
the∞-category of spaces with an essentially arbitrary index∞-category𝑿.

There is one non-obvious fact particular to our situation that is relevant to the gen-
eral theory (Proposition 1.5). First we recall the colimit formula for left Kan extensions.

1.2 Recollection (comma∞-categories). The comma∞-category 𝑋 ↓𝑌 𝑍 associated
to two functors 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑍 → 𝑌 is the universal∞-category fitting into a
lax-commutative diagram

𝑋 ↓𝑌 𝑍 𝑋

𝑍 𝑌 .

𝑓⟸
𝑔

Explicitly,𝑋 ↓𝑌 𝑍 can be computed as the iterated pullback

(1.3) 𝑋 ↓𝑌 𝑍 ≔ 𝑋 ×Fun({0},𝑌) Fun(𝛥1, 𝑌) ×Fun({1},𝑌) 𝑍 .

Notice that since all morphisms are invertible in an ∞-groupoid, if 𝑌 is an ∞-
groupoid, then the comma∞-category𝑋 ↓𝑌 𝑍 is simply given by the pullback

𝑋 ↓𝑌 𝑍 ≔ 𝑋 ×𝑌 𝑍 .

(This can also be seen from the formal description (1.3) by noting that an∞-category
𝑌 is an ∞-groupoid if and only if evaluation at 0 or 1 defines an equivalence of ∞-
categories Fun(𝛥1, 𝑌) ⥲ 𝑌.)

1.4 Recollection (colimit formula for leftKan extensions). Let𝐶 be an∞-category with
colimits and let 𝐿𝑋 ∶ 𝑋 → 𝐶 and 𝑓∶ 𝑋 → 𝑌 be functors. Then for each object 𝑦 ∈ 𝑌,
the value of the left Kan extension Lan𝑓 𝐿𝑋 of 𝐿𝑋 along 𝑓 at 𝑦 is given by the colimit

(Lan𝑓 𝐿𝑋)(𝑦) ≃ colim( 𝑋 ↓𝑌 {𝑦} 𝑋 𝐶𝐿𝑋 ) ,

where𝑋 ↓𝑌 {𝑦} is the comma∞-category.
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1.5 Proposition ([1, Proposition 4.3.3]). Let 𝐶 be an∞-category with colimits and

(1.6)
𝑋′ 𝑌′

𝑋 𝑌

⌟
̄𝑔

̄𝑓

𝑔

𝑓

a pullback square in Spc. Then the associated square

Fun(𝑋′, 𝐶) Fun(𝑌′, 𝐶)

Fun(𝑋, 𝐶) Fun(𝑌, 𝐶)

̄𝑓!

𝑓!

̄𝑔⋆ 𝑔⋆

commutes.

Proof. Note that by the universal property of the left Kan extension, for any local system
𝐿𝑋 ∶ 𝑋 → 𝐶 we have a natural transformation

𝜃∶ Lan ̄𝑓(𝐿𝑋 ∘ ̄𝑔) → (Lan𝑓 𝐿𝑋) ∘ 𝑔 ,

i.e., a natural transformation ̄𝑓! ̄𝑔⋆(𝐿𝑋) → 𝑔⋆𝑓!(𝐿𝑋). We want to show that for each
𝑦′ ∈ 𝑌′, the morphism

𝜃(𝑦′) ∶ Lan ̄𝑓(𝐿𝑋 ∘ ̄𝑔)(𝑦′) → (Lan𝑓 𝐿𝑋)(𝑔(𝑦′))

is an equivalence.
Since𝐶has all colimits, by the pointwise formula for leftKan extensions (Recollection 1.4),

for all 𝑦′ ∈ 𝑌′ we have

Lan ̄𝑓(𝐿𝑋 ∘ ̄𝑔)(𝑦′) ≃ colim( 𝑋′ ↓𝑌′ {𝑦′} 𝑋′ 𝑋 𝐶̄𝑔 𝐿𝑋 ) .

Since 𝑌′ is an∞-groupoid,

𝑋′ ↓𝑌′ {𝑦′} ≃ 𝑋′ ×𝑌′ {𝑦′}

(Recollection 1.2). Since the square (1.6) is a pullback square and 𝑌 is an∞-groupoid,
we see that

𝑋′ ×𝑌′ {𝑦′} ≃ 𝑋 ×𝑌 {𝑔(𝑦′)} ≃ 𝑋 ↓𝑌 {𝑔(𝑦′)}
(Recollection 1.2). Hence

Lan ̄𝑓(𝐿𝑋 ∘ ̄𝑔)(𝑦′) ≃ colim( 𝑋 ↓𝑌 {𝑔(𝑦′)} 𝑋 𝐶𝐿𝑋 )

≃ Lan𝑓(𝐿𝑋)(𝑔(𝑦′)) .

Moreover, this equivalence is induced by 𝜃.
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1.7 Remark. For an∞-category 𝐶 with colimits, there is a version of Proposition 1.5
involving the (−)⋆ right adjoints that says that given the pullback square (1.6) in Spc
there’s a natural equivalence

𝑓⋆𝑔⋆ ⥲ ̄𝑔⋆ ̄𝑓⋆

of functors Fun(𝑌′, 𝐶) → Fun(𝑋, 𝐶). The proof is the same as Proposition 1.5; one just
uses the limit formula for right Kan extensions.

The identification 𝑔⋆𝑓! ≃ ̄𝑓! ̄𝑔⋆ in Proposition 1.5 is a Beck–Chevalley condition,
which we examine in the next section.

2 Beck–Chevalley morphisms
2.1Notation. WewriteCatladj∞ ⊂ Cat∞ for the subcategorywith objects any∞-category
and morphisms functors 𝐶 → 𝐷 which are left adjoints. We usually write 𝑓! ∶ 𝐶 → 𝐷
for a left adjoint and 𝑓⋆ ∶ 𝐷 → 𝐶 for its corresponding right adjoint. In this case, we
write

𝜂𝑓 ∶ id𝐶 → 𝑓⋆𝑓! and 𝜀𝑓 ∶ 𝑓!𝑓⋆ → id𝐷
for the unit and counit of the adjunction 𝑓! ⊣ 𝑓⋆, respectively.

2.2 Definition. Consider a commutative square 𝜎

(2.3)
𝐶′ 𝐷′

𝐶 𝐷

̄𝑔!

̄𝑓!

𝑔!

𝑓!

in Catladj∞ . The Beck–Chevalley morphism associated to the square 𝜎 is the composite
natural transformation

BC(𝜎) ∶ ̄𝑓! ̄𝑔⋆ ̄𝑓! ̄𝑔⋆𝑓⋆𝑓! ̄𝑓!𝑔⋆ ̄𝑓⋆𝑓! 𝑔⋆𝑓! ,
̄𝑓! ̄𝑔⋆𝜂𝑓 ∼ 𝜀 ̄𝑓𝑔⋆𝑓!

where the middle equivalence comes from the identification of right adjoints

̄𝑔⋆𝑓⋆ ⥲ 𝑔⋆ ̄𝑓⋆ .

The Beck–Chevalley morphism is depicted diagrammatically as

𝐶′ 𝐷′

𝐶 𝐷 .

̄𝑓!

⟹
BC(𝜎)

𝑓!

̄𝑔⋆ 𝑔⋆

We say that the square (2.3) satisfies the Beck–Chevalley condition if the Beck–
Chevalley morphism BC(𝜎) ∶ ̄𝑓! ̄𝑔⋆ → 𝑔⋆𝑓! is an equivalence.

4



2.4 Remark. As in Remark 1.7, there is a Beck–Chevalley morphism for the (−)⋆ right
adjoints: it is a natural transformation

(2.5) 𝑓⋆𝑔⋆ → ̄𝑔⋆ ̄𝑓⋆ .

This is the basechangemorphism that one often sees in algebraic geometry, for example,
in the smooth and proper basechange theorems for étale cohomology (see [3, Chapter
vi Corollary 2.3 &Theorem 4.1]).

An alternative approach to ambidexterity is to dispose of the (−)! adjoints and in-
stead work with the (−)⋆ adjoints and the other Beck–Chevalley morphism (2.5).

2.6 Example. By giving a more careful proof of Proposition 1.5, we can conclude that
for any∞-category 𝐶 with colimits and pullback square

𝑋′ 𝑌′

𝑋 𝑌

⌟
̄𝑔

̄𝑓

𝑔

𝑓

in Spc, the induced square

Fun(𝑋′, 𝐶) Fun(𝑌′, 𝐶)

Fun(𝑋, 𝐶) Fun(𝑌, 𝐶)

̄𝑓!

̄𝑔! 𝑔!

𝑓!

satisfies the Beck–Chevalley condition. (See also [2].)

2.7 Observation. Please observe that given commutative squares

𝐶′ 𝐷′ 𝐸′

𝐶 𝐷 𝐸 ,

𝜎 and 𝜏 (from left to right) in Catladj∞ , the Beck–Chevalley morphism of the outer rect-
angle is equivalent to natural transformation given by the horizontal composite of the
Beck–Chevalley morphisms

𝐶′ 𝐷′ 𝐸′

𝐶 𝐷 𝐸 .

⟹
BC(𝜎)

⟹
BC(𝜏)
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Similarly, given commutative squares

𝐶″ 𝐷″

𝐶′ 𝐷′

𝐶 𝐷 ,

𝜎′ and 𝜎 (from top to bottom) in Catladj∞ , the Beck–Chevalley morphism of the outer
rectangle is equivalent to natural transformation given by the vertical composite of the
Beck–Chevalley morphisms

𝐶″ 𝐷″

𝐶′ 𝐷′

𝐶 𝐷 .

⟹
BC(𝜎′)

⟹
BC(𝜎)

Given our generalizations and reformulations of our goal from §1, we are interested
in considering functors 𝑿 → Catladj∞ sending pullback squares to squares satisfying the
Beck–Chevalley condition, and exhibiting the left adjoint 𝑓! of 𝑓⋆ as a right adjoint of
𝑓⋆ for a certain class of morphisms 𝑓∶ 𝑋 → 𝑌 in𝑿.
2.8 Definition. Let𝑿 be an∞-category with pullbacks. A functor 𝐶∶ 𝑿 → Catladj∞ is a
Beck–Chevalley functor if for every pullback square

𝑋′ 𝑌′

𝑋 𝑌

⌟
̄𝑔

̄𝑓

𝑔

𝑓

in𝑿, the induced square

𝐶𝑋′ 𝐶𝑌′

𝐶𝑋 𝐶𝑌

̄𝑔!

̄𝑓!

𝑔!

𝑓!

in Catladj∞ satisfies the Beck–Chevalley condition.

2.9 Example. For any∞-category 𝐶 with colimits, the functor

Fun(−, 𝐶)∶ Spc→ Catladj∞ ,

where the functoriality is in the (−)! adjoints, is a Beck–Chevalley functor.
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2.10 Remark. Beck–Chevalley functors𝑿 → Catladj∞ are classified by functors 𝑞∶ 𝐶 →
𝑿 that are both cartesian and cocartesian fibrations and for each pullback square in 𝑿
the associated square in Catladj∞ satisfies the Beck–Chevalley condition. Such fibrations
are called Beck–Chevalley fibrations [1, Definition 4.1.3].

3 The definition of ambidexterity & basic properties
In this section we define ambidexterity of morphisms in an ∞-category 𝑿 with pull-
backs with respect to a Beck–Chevalley functor 𝐶∶ 𝑿 → Catladj∞ . This definition is a
rather intricate inductive definition; to warm up we recall how to define truncatedness
in an∞-category with pullbacks as well as the universal property of the counit of an
adjunction

3.1 Recollection ([HTT, Lemma 5.5.6.15]). Let 𝑿 be an∞-category with finite limits
(e.g., 𝑿 = Spc). For each integer 𝑛 ≥ −2 we define the class of 𝑛-truncated morphisms
of 𝑿 inductively as follows. A morphism 𝑓∶ 𝑋 → 𝑌 in 𝑿 is (−2)-truncated if 𝑓 is an
equivalence. Now suppose that 𝑛-truncatedmorphisms in𝑿 have been defined for some
integer 𝑛 ≥ −2. Then we say that a morphism 𝑓∶ 𝑋 → 𝑌 in𝑿 is (𝑛 + 1)-truncated if the
diagonal morphism 𝛿𝑓 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is 𝑛-truncated.

Note that if𝑿 = Spc is the∞-category of spaces, then a morphism 𝑓 is 𝑛-truncated
in the sense just defined if and only if the fibers of𝑓 are 𝑛-truncated spaces, so the notion
just defined agrees with the classical notion of truncatedness.

3.2 Recollection (universal property of the (co)unit [HTT, Definition 5.2.2.7 & Propo-
sition 5.2.2.8]). Given functors between∞-categories 𝑓∶ 𝐶 ⇄ 𝐷 ∶𝑔, the functor 𝑓 is
left adjoint to 𝑔 if and only if there exists a natural transformation 𝜂∶ id𝐶 → 𝑔𝑓 such
that for every pair of objects 𝑐 ∈ 𝐶 and 𝑑 ∈ 𝐷, the composite

Map𝐷(𝑓(𝑐), 𝑑) Map𝐶(𝑔𝑓(𝑐), 𝑔(𝑑)) Map𝐶(𝑐, 𝑔(𝑑))
𝜂(𝑐)⋆

is an equivalence in Spc. Dually, 𝑓 is left adjoint to 𝑔 if and only if there exists a natural
transformation 𝜀∶ 𝑓𝑔 → id𝐷 such that for every pair of objects 𝑐 ∈ 𝐶 and 𝑑 ∈ 𝐷, the
composite

Map𝐶(𝑐, 𝑔(𝑑)) Map𝐷(𝑓(𝑐), 𝑓𝑔(𝑑)) Map𝐶(𝑓(𝑐), 𝑑)
𝜀(𝑑)⋆

is an equivalence in Spc.

Our approach to exhibiting a left adjoint 𝑓! ⊣ 𝑓⋆ as a right adjoint to 𝑓⋆ is to define
a counit transformation that exhibits 𝑓! as right adjoint to 𝑓⋆.

3.3 Construction (definition of ambidexterity [1, Construction 4.1.8]). Let𝑿 be an∞-
category with pullbacks and 𝐶∶ 𝑿 → Catladj∞ a Beck–Chevalley functor. We define the
following data for each integer 𝑛 ≥ −2:

(𝑎𝑛) A class of morphisms in 𝑿 which we call 𝑛-ambidextrous morphisms (with re-
spect to the Beck–Chevaley functor 𝐶).
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(𝑏𝑛) For each 𝑛-ambidextrous morphism 𝑓∶ 𝑋 → 𝑌 in 𝑿, a natural transformation
𝜇(𝑛)𝑓 ∶ id𝐶𝑌 → 𝑓!𝑓

⋆ (well-defined up to equivalence) that exhibits 𝑓! as a right
adjoint to 𝑓⋆.

A morphism 𝑓∶ 𝑋 → 𝑌 in 𝑿 is (−2)-ambidextrous if 𝑓 is an equivalence. In this
case, we let 𝜇(−2)𝑓 ≔ 𝜀−1𝑓 be an inverse to the counit 𝜀𝑓 ∶ 𝑓!𝑓⋆ ⥲ id𝐶𝑌 of the adjunction
𝑓! ⊣ 𝑓⋆.

Assume that (𝑎𝑛) and (𝑏𝑛) have been defined for some integer 𝑛 ≥ −2. Let𝑓∶ 𝑋 → 𝑌
be a morphism in 𝑿, and write 𝛿𝑓 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 for the diagonal map, which fits into
a commutative diagram

(3.4)

𝑋

𝑋 ×𝑌 𝑋 𝑋

𝑋 𝑌 .

𝛿𝑓

⌟
pr2

pr1
𝑓

𝑓

Write 𝜎 for the pullback square in the diagram (3.4), so that the Beck–Chevalley mor-
phism BC(𝜎) ∶ pr1,! pr⋆2 → 𝑓⋆𝑓! is an equivalence. We say that 𝑓 is weakly (𝑛 + 1)-
ambidextrous if the diagonal 𝛿𝑓 is 𝑛-ambidextrous. If 𝑓 is weakly (𝑛+1)-ambidextrous,
we define a natural transformation

𝜈(𝑛+1)𝑓 ∶ 𝑓⋆𝑓! → id𝐶𝑋

as the composite natural transformation

𝑓⋆𝑓! pr1,! pr
⋆
2 pr1,! 𝛿𝑓,!𝛿⋆𝑓 pr⋆2 ≃ id𝐶𝑋 ∘ id𝐶𝑋 = id𝐶𝑋 .∼

BC(𝜎)−1

pr1,! 𝜇
(𝑛)
𝛿𝑓

pr⋆2

We say that a morphism 𝑓∶ 𝑋 → 𝑌 is (𝑛 + 1)-ambidextrous if the following condi-
tion is satisfied: for every pullback diagram

𝑋′ 𝑌′

𝑋 𝑌

⌟
̄𝑔

̄𝑓

𝑔

𝑓

in𝑿, the map ̄𝑓 is weakly (𝑛 + 1)-ambidextrous and 𝜈(𝑛+1)̄𝑓 ∶ ̄𝑓
⋆ ̄𝑓! → id𝐶𝑋′ is the counit

for an adjunction ̄𝑓⋆ ⊣ ̄𝑓!.
If 𝑓 is (𝑛 + 1)-ambidextrous, we let 𝜇(𝑛+1)𝑓 ∶ id𝐶𝑌 → 𝑓!𝑓

⋆ denote a compatible unit
for the adjunction

𝑓⋆ ∶ 𝐶𝑌 ⇄ 𝐶𝑋 ∶𝑓!
determined by 𝜈(𝑛+1)𝑓 .
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3.5 Definition ([1, Definition 4.1.1]). Let 𝑿 be an∞-category with pullbacks and let
𝐶∶ 𝑿 → Catladj∞ be a Beck–Chevalley functor. We say that a morphism 𝑓∶ 𝑋 → 𝑌
in 𝑿 is (weakly) ambidextrous (with respect to the Beck–Chevalley functor 𝐶) if 𝑓 is
(weakly) 𝑛-ambidextrous for some integer 𝑛 ≥ −2.

The following basic properties are easily deduced from the definitions.

3.6Proposition ([1, Proposition 4.1.10]). Let𝑿 be an∞-categorywith pullbacks,𝐶∶ 𝑿 →
Catladj∞ a Beck–Chevalley functor, and 𝑓∶ 𝑋 → 𝑌 a morphism in𝑿. Then:

(3.6.1) If 𝑓 is weakly 𝑛-ambidextrous for some integer 𝑛 ≥ −2, then 𝑓 is 𝑛-truncated.

(3.6.2) For each integer 𝑛 ≥ −2, the class of 𝑛-ambidextrous morphisms are stable under
pullback.

(3.6.3) For each integer 𝑛 ≥ −1, the class of weakly 𝑛-ambidextrous morphisms are stable
under pullback.

(3.6.4) Let −1 ≤ 𝑚 ≤ 𝑛 be integers. If 𝑓 is weakly 𝑚-ambidextrous, then 𝑓 is weakly
𝑛-ambidextrous. Moreover, the natural transformations 𝜈(𝑚)𝑓 , 𝜈

(𝑛)
𝑓 ∶ 𝑓⋆𝑓! → id𝐶𝑋

agree up to homotopy.

(3.6.5) Let −2 ≤ 𝑚 ≤ 𝑛 be integers. If 𝑓 is 𝑚-ambidextrous, then 𝑓 is 𝑛-ambidextrous.
Moreover, the natural transformations 𝜇(𝑚)𝑓 , 𝜇

(𝑛)
𝑓 ∶ id𝐶𝑌 → 𝑓!𝑓

⋆ agree up to ho-
motopy.

(3.6.6) Let −1 ≤ 𝑚 ≤ 𝑛 be integers. If 𝑓 is (weakly) 𝑛-ambidextrous, then 𝑓 is (weakly)
𝑚-ambidextrous if and only if 𝑓 is𝑚-truncated.

3.7Notation. Let𝑿be an∞-categorywith pullbacks,𝐶∶ 𝑿 → Catladj∞ aBeck–Chevalley
functor, and 𝑓∶ 𝑋 → 𝑌 a morphism in𝑿 that is weakly ambidextrous. Then we simply
write 𝜈𝑓 for 𝜈(𝑛)𝑓 for some integer 𝑛 ≥ −2 such that 𝑓 is weakly 𝑛-ambidextrous (so that
𝜈𝑓 is well-defined up to homotopy). If 𝑓 is ambidextrous, we write 𝜇𝑓 for a compatible
unit of 𝜈𝑓.
3.8 Reformulation (the norm map [1, Remark 4.1.12]). Let 𝑿 be an∞-category with
pullbacks, 𝐶∶ 𝑿 → Catladj∞ a Beck–Chevalley functor, and 𝑓∶ 𝑋 → 𝑌 a morphism
in 𝑿. If 𝑓⋆ ∶ 𝐶𝑌 → 𝐶𝑋 admits a right adjoint, we denote the right adjoint to 𝑓⋆ by
𝑓⋆ ∶ 𝐶𝑋 → 𝐶𝑌. We then have an equivalence

(3.9) MapFun(𝐶𝑋,𝐶𝑋)(𝑓
⋆𝑓!, id𝐶𝑋) ≃ MapFun(𝐶𝑋,𝐶𝑌)(𝑓!, 𝑓⋆) .

If𝑓 is weakly ambidextrous, we letNm𝑓 ∶ 𝑓! → 𝑓⋆ denote the image of𝜈𝑓 ∶ 𝑓⋆𝑓! → id𝐶𝑋
under the equivalence (3.9). We call Nm𝑓 the norm map associated to 𝑓.

We can reformulate the definition of ambidexterity as follows. A weakly ambidex-
trous morphism 𝑓∶ 𝑋 → 𝑌 is ambidextrous if and only if for every pullback square

𝑋′ 𝑌′

𝑋 𝑌

⌟
̄𝑓

𝑓
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in𝑿, the following conditions are satisfied:
(3.8.1) The morphism ̄𝑓 is weakly ambidextrous.

(3.8.2) The functor ̄𝑓⋆ ∶ 𝐶𝑌′ → 𝐶𝑋′ admits a right adjoint ̄𝑓⋆.

(3.8.3) The norm map Nm ̄𝑓 ∶ ̄𝑓! → ̄𝑓⋆ is an equivalence.

4 Naturality properties of the norm
The goal of this section is to establish two naturality properties of the construction 𝑓 ↦
𝜇𝑓 (or, equivalently, 𝑓 ↦ Nm𝑓).

4.1Proposition ([1, Proposition 4.2.1]). Let𝑿 be an∞-categorywith pullbacks,𝐶∶ 𝑿 →
Catladj∞ a Beck–Chevalley functor, and let 𝜏 be a pullback diagram

𝑋′ 𝑌′

𝑋 𝑌

⌟
̄𝑔

̄𝑓

𝑔

𝑓

in𝑿. Then:

(4.1.1) If 𝑓 is weakly ambidextrous, then ̄𝑓 is weakly ambidextrous and the diagram

̄𝑓⋆ ̄𝑓! ̄𝑔⋆ ̄𝑓⋆𝑔⋆𝑓! ̄𝑔⋆𝑓⋆𝑓!

̄𝑔⋆ ̄𝑔⋆
𝜈 ̄𝑓 ̄𝑔⋆

̄𝑓⋆ BC(𝜏) ∼

̄𝑔⋆𝜈𝑓

commutes up to homotopy.

(4.1.2) If 𝑓 is ambidextrous, then ̄𝑓 is ambidextrous and the diagram

𝑔⋆ 𝑔⋆

̄𝑓! ̄𝑓⋆𝑔⋆ ̄𝑓! ̄𝑔⋆𝑓⋆ 𝑔⋆𝑓!𝑓⋆
𝜇 ̄𝑓𝑔⋆ 𝑔⋆𝜇𝑓

∼
BC(𝜏)𝑓⋆

commutes up to homotopy.

4.2 Reformulation (Proposition 4.1 in terms of norms [1, Remark 4.2.3]). In the sit-
uation of Proposition 4.1, assume that 𝑓 and ̄𝑓 are weakly ambidextrous and that the
functors 𝑓⋆ and ̄𝑓⋆ admit right adjoints 𝑓⋆ and ̄𝑓⋆. Then we can reformulate assertion
(4.1.1) as follows: the morphism

̄𝑓! ̄𝑔⋆ 𝑔⋆𝑓! 𝑔⋆𝑓⋆ ̄𝑓⋆ ̄𝑔⋆ .BC(𝜏)
∼

𝑔⋆ Nm𝑓

us homotopic to Nm ̄𝑓 ̄𝑔⋆, where the last morphism is the Beck–Chevalley morphism
involving the (−)⋆ adjoints (Remark 2.4).
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Proof of Proposition 4.1. The statement that 𝑓 is (weakly) ambidextrous implies that ̄𝑓
is (weakly) ambidextrous is immediate from the definitions.

Recall that if 𝑓 is weakly ambidextrous, then 𝑓 is 𝑛-truncated for some integer
𝑛 ≥ −2 (3.6.1). We prove both (4.1.1) and (4.1.2) simultaneously by induction on the
truncatedness of 𝑓, which we denote by 𝑛. If 𝑛 = −2, then 𝑓 is an equivalence, hence ̄𝑓
is an equivalence, and (4.1.1) and (4.1.2) are obvious.

So assume that 𝑛 ≥ −1 and that 𝑓 (and hence ̄𝑓) is weakly ambidextrous. Thus we
have a pullback square 𝜌

𝑋′ 𝑋′ ×𝑌′ 𝑋′

𝑋 𝑋 ×𝑌 𝑋 ,

⌟
̄𝑔

𝛿 ̄𝑓

𝜋

𝛿𝑓

where the morphism 𝜋 is induced by 𝑔 and ̄𝑔, and 𝛿𝑓 and 𝛿 ̄𝑓 are (𝑛 − 1)-truncated
and ambidextrous by the assumption that 𝑓 is weakly ambidextrous. Let 𝜎 denote the
pullback square

𝑋 ×𝑌 𝑋 𝑋

𝑋 𝑌 ,

⌟
pr2

pr1

𝑓

𝑓

let �̄� denote the pullback square

𝑋′ ×𝑌′ 𝑋′ 𝑋′

𝑋′ 𝑌′ ,

⌟
pr2

pr1

̄𝑓

̄𝑓

and let 𝜉 denote the pullback square

𝑋′ ×𝑌′ 𝑋′ 𝑋′

𝑋 ×𝑌 𝑋 𝑋 .

⌟
𝜋

pr1

̄𝑔

pr1
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Now consider the diagram

(4.3)

̄𝑓⋆ ̄𝑓! ̄𝑔⋆ pr1,!pr
⋆
2 ̄𝑔⋆ pr1,!𝛿 ̄𝑓,!𝛿⋆̄𝑓pr

⋆
2 ̄𝑔⋆ ̄𝑔⋆

pr1,!𝛿 ̄𝑓,!𝛿⋆̄𝑓𝜋
⋆ pr⋆2

̄𝑓⋆𝑔⋆𝑓! pr1,!𝜋⋆ pr⋆2 pr1,!𝛿 ̄𝑓,!𝜋⋆𝛿⋆𝑓 pr⋆2 ̄𝑔⋆

pr1,!𝜋⋆𝛿𝑓,!𝛿⋆𝑓 pr⋆2

̄𝑔⋆𝑓⋆𝑓! ̄𝑔⋆ pr1,! pr⋆2 ̄𝑔⋆ pr1,! 𝛿𝑓,!𝛿⋆𝑓 pr⋆2 ̄𝑔⋆ ,

BC(�̄�)−1
∼

≀BC(𝜏)

𝜇𝛿 ̄𝑓

≀

∼

≀

≀

≀

𝜇𝛿 ̄𝑓

𝜇𝛿𝑓

BC(𝜉) ≀

∼

≀ BC(𝜌)

≀ BC(𝜉)

BC(𝜎)−1
∼

𝜇𝛿𝑓
∼

where the long composites at the top and bottom of the diagram are the definitions of
𝜈 ̄𝑓 ̄𝑔⋆ and ̄𝑔⋆𝜈𝑓, respectively, and morphisms labeled with ‘∼’ and no other decorations
are given by identification of adjoints.Our goal is to show that the outer rectangle of (4.4)
commutes up to homotopy; we do this by showing that each sub-diagram commutes up
to homotopy.

The diagrams in the middle column of (4.4) commute up to homotopy by the induc-
tive hypothesis (for (4.1.2)). The upper-right diagram in (3.4) commutes because we’re
just identifying adjoints. The lower-right diagram in (3.4) commutes because Beck–
Chevalley morphisms compose horizontally (Observation 2.7) and we have a commu-
tative diagram

𝑋′ 𝑋′ ×𝑌′ 𝑋′ 𝑋′

𝑋 𝑋 ×𝑌 𝑋 𝑋 ,

⌟
̄𝑔

𝛿 ̄𝑓
⌟

𝜋

pr1

̄𝑔

𝛿𝑓 pr1

where the long composites on the top and bottom are the identity on𝑋′ and𝑋, respec-
tively. To see that the left third rectangle in (3.4) commutes up to homotopy, it suffices
to show that the diagram
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(4.4)

̄𝑓⋆ ̄𝑓! ̄𝑔⋆ pr1,!pr
⋆
2 ̄𝑔⋆

̄𝑓⋆𝑔⋆𝑓! pr1,!𝜋⋆ pr⋆2

̄𝑔⋆𝑓⋆𝑓! ̄𝑔⋆ pr1,! pr⋆2

≀BC(𝜏) ≀

BC(�̄�)
∼

≀ BC(𝜉)≀

BC(𝜎)
∼

commutes up to homotopy. This again follows from the fact that Beck–Chevalley mor-
phisms compose vertically (Observation 2.7) and the fact that the outer rectangles of
the two diagrams

𝑋′ ×𝑌′ 𝑋′ 𝑋′

𝑋 ×𝑌 𝑋 𝑋

𝑋 𝑌

⌟
𝜋

pr1

̄𝑔

⌟
pr2

pr1

𝑓

𝑓

and

𝑋′ ×𝑌′ 𝑋′ 𝑋′

𝑋′ 𝑌′

𝑋 𝑌

⌟
pr2

pr1

̄𝑓

⌟
̄𝑔

̄𝑓

𝑔

𝑓

are the same.
Now we prove the iductive step for (4.1.2). Assume that 𝑓 is ambidextrous so that

the natural transformations 𝜈𝑓 ∶ 𝑓⋆𝑓! → id𝐶𝑋 and 𝜈 ̄𝑓 ∶ ̄𝑓
⋆ ̄𝑓! → id𝐶𝑋′ are counits of

adjunctions 𝑓⋆ ⊣ 𝑓! and ̄𝑓⋆ ⊣ ̄𝑓!. Then by the universal property of the unit 𝜇𝑓, the
composite map

MapFun(𝐶𝑌,𝐶𝑌′ )(𝑔
⋆, 𝑔⋆𝑓!𝑔⋆) MapFun(𝐶𝑋,𝐶𝑌′ )(𝑔

⋆𝑓!, 𝑔⋆𝑓!𝑓⋆𝑓!)

MapFun(𝐶𝑋,𝐶𝑌′ )(𝑔
⋆𝑓!, 𝑔⋆𝑓!)

−∘𝑓!

𝛼 (𝑔⋆𝑓!𝜈𝑓)∘−

is an equivalence.Moreover, by the triangle identity, the natural transformation𝑔⋆𝜇𝑓 ∶ 𝑔⋆ →
𝑔⋆𝑓!𝑓⋆ corresponds to the identity 𝑔⋆𝑓! → 𝑔⋆𝑓! under the equivalence 𝛼. Thus prov-
ing that the diagram appearing in (4.1.2) commutes up to homotopy is equivalent to
showing that the composite

𝑔⋆𝑓! ̄𝑓! ̄𝑓⋆𝑔⋆𝑓! ≃ ̄𝑓! ̄𝑔⋆𝑓⋆𝑓! 𝑔⋆𝑓!𝑓⋆𝑓! 𝑔⋆𝑓!
𝜇 ̄𝑓𝑔⋆𝑓! BC(𝜏)𝑓⋆𝑓!

∼
𝑔⋆𝑓!𝜈𝑓
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is homotopic to the identity. To prove this, consider the diagram

𝑔⋆𝑓! ̄𝑓! ̄𝑓⋆𝑔⋆𝑓! 𝑓! ̄𝑔⋆𝑓⋆𝑓! 𝑔⋆𝑓!𝑓⋆𝑓! 𝑔⋆𝑓!

̄𝑓! ̄𝑔⋆ ̄𝑓! ̄𝑓⋆ ̄𝑓! ̄𝑔⋆ ̄𝑓! ̄𝑔⋆ .

𝜇 ̄𝑓 ∼ BC(𝜏)
∼

𝜈𝑓

𝜈𝑓

BC(𝜏) ≀

𝜇 ̄𝑓

BC(𝜏) ≀

𝜈 ̄𝑓

BC(𝜏)
∼

The left-hand square and right-hand triangle obviously commute, and themiddle square
commutes by the inductive step for (4.1.1). To show that the top composite is homotopic
to the identity, it suffices to show that the bottom composite is homotopic to the identity:
this is true by the triangle identity sicne 𝜇 ̄𝑓 and 𝜈 ̄𝑓 are a compatible unit and counit.

4.5 Corollary (adjoint formulation of Proposition 4.1 [1, Corollary 4.2.6]). Let 𝑿 be
an∞-category with pullbacks, 𝐶∶ 𝑿 → Catladj∞ a Beck–Chevalley functor, and let 𝜏 be a
pullback diagram

𝑋′ 𝑌′

𝑋 𝑌

⌟
̄𝑓

𝑓

in𝑿. Then:

(4.5.1) If 𝑓 is weakly ambidextrous, then ̄𝑓 is weakly ambidextrous and the diagram

̄𝑔! ̄𝑓⋆ ̄𝑓! 𝑓⋆𝑔! ̄𝑓! 𝑓⋆𝑓! ̄𝑔!

̄𝑔! ̄𝑔!

̄𝑔!𝜈 ̄𝑓

BC(𝜏) ̄𝑓! ∼

𝜈𝑓 ̄𝑔!

commutes up to homotopy.

(4.5.2) If 𝑓 is ambidextrous, then ̄𝑓 is ambidextrous and the diagram

𝑔! 𝑔!

𝑔! ̄𝑓! ̄𝑓⋆ 𝑓! ̄𝑔! ̄𝑓⋆ 𝑓!𝑓⋆𝑔!

𝑔!𝜇 ̄𝑓 𝜇𝑓𝑔!

∼
𝑓! BC(𝜏)

commutes up to homotopy.

The proof of the following proposition is similar to the proof of Proposition 4.1,
though a little more involved.

4.6Proposition ([1, Proposition 4.2.2]). Let𝑿 be an∞-categorywith pullbacks,𝐶∶ 𝑿 →
Catladj∞ a Beck–Chevalley functor, and suppose we are given morphisms 𝑓∶ 𝑋 → 𝑌 and
𝑔∶ 𝑌 → 𝑍 in𝑿. Then:
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(4.1.1) If 𝑓 and 𝑔 are weakly ambidextrous, then 𝑔𝑓 is weakly ambidextrous and 𝜈𝑔𝑓 is
homotopic to the composition

(𝑔𝑓)⋆(𝑔𝑓)! ≃ 𝑓⋆𝑔⋆𝑔!𝑔! 𝑓⋆𝑓! id𝐶𝑋 .
𝑓⋆𝜈𝑔𝑓! 𝜈𝑓

commutes up to homotopy.

(4.1.2) If 𝑓 and 𝑔 are ambidextrous, then 𝑔𝑓 is ambidextrous and 𝜇𝑔𝑓 is homotopic to
the composition

id𝐶𝑍 𝑔!𝑔⋆ 𝑔!𝑓!𝑓⋆𝑔⋆ ≃ (𝑔𝑓)!(𝑔𝑓)⋆ .
𝜇𝑔 𝑔!𝜇𝑓𝑔⋆

4.7 Reformulation (Proposition 4.6 in terms of norms [1, Remark 4.2.4]). In the sit-
uation of Proposition 4.6, assume that 𝑓 and 𝑔 are weakly ambidextrous and that the
functors𝑓⋆ and 𝑔⋆ admit right adjoints𝑓⋆ and 𝑔⋆.Then (𝑔𝑓)⋆ is left adjoint to (𝑔𝑓)⋆ ≔
𝑔⋆𝑓⋆ and we can reformulate assertion (4.6.1) as follows: the norm Nm𝑔𝑓 ∶ (𝑔𝑓)! →
(𝑔𝑓)⋆ is given by the composite

(𝑔𝑓)! ≃ 𝑔!𝑓! 𝑔⋆𝑓! 𝑔⋆𝑓⋆ ≃ (𝑔𝑓)⋆ .
Nm𝑔 𝑓! 𝑔⋆ Nm𝑓

5 Ambidexterity for local systems
So far we have considered ambidexterity for arbitrary Beck–Chevalley functors 𝑿 →
Catladj∞ . We now specify to the case of 𝐶-valued local systems, i.e., 𝑿 = Spc and we con-
sider the Beck–Chevalley functor Fun(−, 𝐶)∶ Spc→ Catladj∞ , where 𝐶 is an∞-category
with colimits (recall Proposition 1.5).

5.1 Definition ([1, Definition 4.3.4]). Let 𝐶 be an∞-category with colimits.

• A space𝑋 isweakly𝐶-ambidextrous if the uniquemorphism𝑓∶ 𝑋 → ∗ is weakly
𝐶-ambidextrous (with respect to the Beck–Chevalley functor Fun(−, 𝐶)∶ Spc →
Catladj∞ ).

• A space𝑋 is𝐶-ambidextrous if𝑋 is weakly𝐶-ambidextrous and the natural trans-
formation 𝜈𝑓 ∶ 𝑓⋆𝑓! → idFun(𝑋,𝐶) is the counit of an adunction (so that 𝑓⋆ ⊣ 𝑓!).

5.2Proposition ([1, Proposition 4.3.5]). Let𝐶 be an∞-categorywith colimits and𝑓∶ 𝑋 →
𝑌 and 𝑓∶ 𝑋 → 𝑌 a morphism in Spc. Then:

(5.2.1) The morphism 𝑓 is ambidextrous if and only if 𝑓 is 𝑛-truncated for some integer
𝑛 ≥ −2 and each fiber𝑋𝑦 of 𝑓 is 𝐶-ambidextrous.

(5.2.2) The morphism 𝑓 is weakly ambidextrous if and only if 𝑓 is 𝑛-truncated for some
integer 𝑛 ≥ −2 and each fiber𝑋𝑦 of 𝑓 is weakly 𝐶-ambidextrous.

5.3 Corollary ([1, Corollary 4.3.6]). Let 𝐶 be an∞-category with colimits and 𝑓∶ 𝑋 →
𝑌 a morphism between truncated spaces. If 𝑌 is 𝐶-ambidextrous and each fiber𝑋𝑦 of 𝑓 is
𝐶-ambidextrous, then𝑋 is 𝐶-ambidextrous.
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The proof of Proposition 5.2 uses the following fact to reduce to proving the claim
in a special case.

5.4 Lemma ([1, Lemma 4.3.8]). Let 𝐶 be an∞-category with colimits and 𝑋 a space.
Then Fun(𝑋, 𝐶) is generated under colimits by objects of the form 𝑥!𝑐, where 𝑥∶ ∗ → 𝑋
is a point of𝑋 and 𝑐 ∈ 𝐶 ≃ Fun(∗, 𝐶).

Lemma 5.4 is also used in the proof of the following proposition.

5.5 Proposition ([1, Proposition 4.3.9]). Let 𝐶 be an∞-category with colimits and 𝑋 a
truncated space. Let 𝑓∶ 𝑋 → ∗ denote the unique morphism. Then𝑋 is 𝐶-ambidextrous
if and only if the following conditions are satisfied:

(5.5.1) 𝑋 is weakly 𝐶-ambidextrous (i.e.,Map𝑋(𝑥, 𝑥′) is 𝐶-ambidextrous for all 𝑥, 𝑥′ ∈
𝑋).

(5.5.2) The pullback functor 𝑓⋆ admits a right adjoint 𝑓⋆.

(5.5.3) The functor 𝑓⋆ preserves colimits.

Proof. If𝑋 is𝐶-ambidextrous, then (5.5.1) is obvious and (5.5.2) and (5.5.3) follow from
the fact that the left adjoint 𝑓! of 𝑓⋆ is also right adjoint to 𝑓⋆.

Now assume that (5.5.1)–(5.5.3) are satisfied. Using (5.5.2), the counit 𝜈𝑓 ∶ 𝑓⋆𝑓! →
idFun(𝑋,𝐶) corresponds to the norm map Nm𝑋 ∶ 𝑓! → 𝑓⋆ (Reformulation 3.8), and our
goal is to show that Nm𝑓 is an equivalence.That is, we want to show that for every local
system 𝐿∶ 𝑋 → 𝐶, the natural transformation

Nm𝑓(𝐿) ∶ 𝑓!𝐿 → 𝑓⋆𝐿

is an equivalence in 𝐶. By asumption (5.5.3), the collection of objects 𝐿 ∈ Fun(𝑋, 𝐶)
for which Nm𝑓(𝐿) is an equivalence is closed under colimits, so by Lemma 5.4 we are
reduced to the case where 𝐿 = 𝑥!𝑐 for 𝑥∶ ∗ → 𝑋 a point and 𝑐 ∈ 𝐶. By assump-
tion (5.5.1), for every point 𝑥 ∈ 𝑋 the morphsim 𝑥∶ ∗ → 𝑋 is 𝐶-ambidextrous. By
Reformulation 4.7, the composite

𝑐 ≃ (𝑓𝑥)!𝑐 ≃ 𝑓!𝐿 𝑓⋆𝐿 𝑓⋆𝑥⋆𝑐 ≃ (𝑓𝑥)⋆𝑐 ≃ 𝑐
Nm𝑓(𝐿) 𝑓⋆ Nm𝑥(𝐿)

is homotopic to the identity. Since 𝑥∶ ∗ → 𝑋 is 𝑋-ambidextrous, the norm Nm𝑥 is an
equivalence, hence Nm𝑓 is an equivalence as well.

5.6Remark. Note that Proposition 5.5 gives a characterization of (weakly)𝐶-ambidextrous
morphisms that doesn’t explicitly mention the natural transformations 𝜈𝑓 or 𝜇𝑓.

6 Semiadditivity & ambidexterity of Eilenberg–MacLane
spaces

6.1 Definition ([1, Definition 4.4.1]). Let 𝑛 ≥ −2 be an integer. A space 𝑋 is a finite
𝑛-type if𝑋 is 𝜋-finite and 𝑛-truncated.
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6.2 Definition ([1, Definition 4.4.2]). Let𝐶 be an∞-category with colimits and 𝑛 ≥ −2
be an integer. We day that 𝐶 is 𝑛-semiadditive if every finite 𝑛-type is 𝐶-ambidextrous.

6.3 Examples.

(6.3.1) Since a space 𝑋 is a finite (−2)-type if and only if 𝑋 is contractible, every∞-
category with colimits is (−2)-semiadditive.

(6.3.2) Since the only (−1)-types are contractible and empty spaces, an∞-categorywith
colimits 𝐶 is (−1)-semiadditive if and only if is 𝐶-ambidextrous if and only if 𝐶
is pointed.

(6.3.3) Since a space 𝑋 is a finite 0-type if and only if 𝑋 is equivalent to a finite set, an
∞-category with colimits is 0-semiadditive if and only if 𝐶 is semiadditive in
the usual sense, i.e., the finite products in 𝐶 are also finite coproducts.

(6.3.4) Any stable∞-category with colimits is 0-semiadditive.

6.4 Notation ([1, Notation 4.4.15]). Let 𝐶 be a 0-semiadditive ∞-category with col-
imits and 𝑛 ≥ 0 be an integer. Write [𝑛] ∶ id𝐶 → id𝐶 for the natural transformation
determined by the composite

𝑐 𝑐×𝑛 ≃ 𝑐⊔𝑛 𝑐𝛥 𝛻

of the diagonal and codiagonal for each object 𝑐 ∈ 𝐶.

6.5 Proposition ([1, Proposition 4.4.16]). Let 𝐶 be a 0-semiadditive∞-category with
limits and assume that there exists a prime number 𝑝 with the following property:

(6.5.1) For every integer 𝑛 ≥ 1 which is relatively prime to 𝑝, the natural transformation
[𝑛] ∶ id𝐶 → id𝐶 is an equivalence

Then𝐶 is 1-semiadditive if and only if the Eilenberg–MacLane space𝐾(𝐙/𝑝, 1) is𝐶-ambi-
dextrous.

Proof. The fact that the 1-semiadditivity of 𝐶 implies that𝐾(𝐙/𝑝, 1) is 𝐶-ambidextrous
is immediate from the definition of 1-semiadditivity.

For the other direction, suppose that𝐾(𝐙/𝑝, 1) is 𝐶-ambidextrous. Let𝑋 be a finite
1-type; our goal is to show that 𝑋 is 𝐶-ambidextrous. By applying Corollary 5.3 to the
map 𝑋 → 𝜋0(𝑋), we can reduce to the case where 𝑋 is connected, so that 𝑋 ≃ 𝐵𝐺 for
some finite group 𝐺.

Now we reduce to the case where 𝐺 is a 𝑃-group Let 𝑃 ⊂ 𝐺 be a 𝑝-Sylow subgroup,
and consider the maps 𝑔∶ 𝐵𝑃 → 𝐵𝐺 induced by the inclusion 𝑃 ↪ 𝐺 and 𝑓∶ 𝐵𝐺 →
∗. Then 𝑔 is equivalent to a covering space with finite fibers, hence is 𝐶-ambidextrous
since 𝐶 is 0-semiadditive. We want to show that Nm𝑓 ∶ 𝑓! → 𝑓⋆ is an equivalence. Let
𝐿 ∈ Fun(𝐵𝐺, 𝐶) and let 𝛼 denote the composite

𝛼∶ 𝐿 𝑔⋆𝑔⋆𝐿 ≃ 𝑔!𝑔⋆𝐿 𝐿 ,

where themiddle equivalence comes from the fact that 𝑔 is ambidextrous.We claim that
𝛼 is an equivalence. To prove this, it suffices to show that for every point 𝑥 ∈ 𝐵𝐺, the
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morphism 𝑥⋆𝛼∶ 𝑥⋆𝐿 → 𝑥⋆𝐿 is an equivalence. Unwinding the definitions, we see that
𝑥⋆𝛼 is given by the morphism [#(𝐺/𝑃)] ∶ 𝑥⋆𝐿 → 𝑥⋆𝐿. Since 𝑃 is a 𝑝-Sylow subgroup
of 𝐺, the number #(𝐺/𝑃) is relatively prime to 𝑝, so that [#(𝐺/𝑃)] is an equivalence
by assumption (6.5.1). Since 𝛼 is an equivalence, we see that 𝐿 is a retract of 𝑔!𝑔⋆𝐿.
Hence to see that Nm𝑓(𝐿) is an equivalence, it suffices to prove that Nm𝑓(𝑔!𝑔⋆𝐿) is
an equivalence. We may therefore assume that 𝐿 = 𝑔!𝐿′ for some 𝐿′ ∈ Fun(𝐵𝑃, 𝐶).
Consider the composite

Nm𝑓𝑔(𝐿′) ∶ (𝑓𝑔)!𝐿′ 𝑓⋆𝑔!𝐿′ (𝑓𝑔)⋆𝐿′ ,
Nm𝑓(𝑔!𝐿′) 𝑓⋆ Nm𝑔(𝐿′)

∼

where the second morphism is an equivalence since 𝑔 is 𝐶-ambidextrous. By the 2-of-
3 property we see that to prove that Nm𝑓 is an equivalence, it suffices to prove that
Nm𝑓𝑔(𝐿′) is an equivalence, so we can replace 𝐺 by 𝑃 and assume that 𝐺 is a 𝑝-group.

With this reduction, we now proceed by induction on the cardinality of the 𝑝-group
𝐺. If𝐺 is trivial, there is nothing to prove. For the induction step, we can choose a normal
subgroup 𝑁◃𝐺 of order 𝑝. It follows from the inductive hypothesis that 𝐵(𝐺/𝑁) is 𝐶-
ambidextrous. We have a fiber sequence

𝐾(𝐙/𝑝, 1) ≃ 𝐵𝑁 𝐵𝐺 𝐵(𝐺/𝑁) ,

so an application of Corollary 5.3 and the assumption that𝐾(𝐙/𝑝, 1) is𝐶-ambidextrous
show that 𝐵𝐺 is 𝐶-ambidextrous, completing the proof.

6.6Proposition ([1, Proposition 4.4.17]). Let𝐶 be a 0-semiadditive∞-categorywith lim-
its and 𝑝 be a prime number. If the natural transformation [𝑝]∶ id𝐶 → id𝐶 is an equiva-
lence, then for every finite𝑝-group𝐺, the Eilenberg–MacLane space𝐵𝐺 is𝐶-ambidextrous.

Proof. As in the proof of Proposition 6.5, we can reduce to the case where 𝐺 = 𝐙/𝑝.
Consider the maps 𝑔∶ ∗ → 𝐵𝐺 given by any point and 𝑓∶ 𝐵𝐺 → ∗, so that 𝑔 is equiv-
alent to a covering space with finite fibers (namely the projection 𝐸𝐺 → 𝐵𝐺). We need
to show that Nm𝑓 ∶ 𝑓! → 𝑓⋆ is an equivalence. Let 𝐿 ∈ Fun(𝐵𝐺, 𝐶) and let 𝛼 denote the
composite

𝛼∶ 𝐿 𝑔⋆𝑔⋆𝐿 ≃ 𝑔!𝑔⋆𝐿 𝐿 ,

where themiddle equivalence comes from the fact that𝑔 is ambidextrous.As in the proof
of Proposition 6.5, we see that for each 𝑥 ∈ 𝐵𝐺, the map 𝑥⋆𝛼∶ 𝑥⋆𝐿 → 𝑥⋆𝐿 is homotopic
to [𝑝]∶ 𝑥⋆𝐿 → 𝑥⋆𝐿, hence an equivalence by assumption.Thus 𝐿 is a retract of 𝑔!(𝑔⋆𝐿).
Thus it suffices to show that Nm𝑓 induces as equivalence 𝑓!𝑔⋆(𝑔⋆𝐿) ⥲ 𝑓⋆𝑔!(𝑔⋆𝐿). Set
𝐿′ ≔ 𝑔⋆𝐿. Since 𝑓𝑔 = id∗ the composite map

Nm𝑓𝑔 ∶ 𝐿′ ≃ (𝑓𝑔)!𝐿′ 𝑓⋆𝑔!𝐿′ (𝑓𝑔)⋆𝐿′ ≃ 𝐿′
Nm𝑓 Nm𝑔

is an equivalence. By the 2-of-3 property, we are reduced to proving thatNm𝑔 induces an
equivalence𝑓⋆𝑔!𝐿′ ⥲ 𝑓⋆𝑔⋆𝐿′.This follows from the assumption that𝐶 is 0-semiadditive.

18



6.7 Corollary ([1, Corollary 4.4.18]). Let 𝐶 be a 0-semiadditive∞-category with limits.
If for each integer 𝑛 ≥ 1 the natural transformation [𝑛] ∶ id𝐶 → id𝐶 is an equivalence,
then 𝐶 is 1-semiadditive.

6.8 Proposition ([1, Proposition 4.4.20]). Let 𝐶 be a stable∞-category with limits and
colimits and let𝑝 be a prime number such that the natural transformation [𝑝]∶ id𝐶 → id𝐶
is an equivalence.Then the Eilenberg–MacLane spaces𝐾(𝐙/𝑝,𝑚) are𝐶-ambidextrous for
𝑚 ≥ 1.

6.9 Corollary ([1, Corollary 4.4.21]). Let 𝐶 be a stable∞-category with limits and col-
imits. Assume that for each object 𝑐 ∈ 𝐶, the endomorphism ring Ext0𝐶(𝑐, 𝑐) is a𝐐-algebra.
Then 𝐶 is 𝑛-semiadditive for every integer 𝑛 ≥ −2.

6.10 Example ([1, Example 4.4.22]). Let 𝑅 be an 𝐸1-ring spectrum with the property
that 𝜋0(𝑅) is a𝐐-vector space.Then the∞-category of left 𝑅-module spectra is 𝑛-semi-
additive for every integer 𝑛 ≥ −2.

6.11 Corollary ([1, Corollary 4.4.23]). Let 𝐶 be a stable ∞-category with limits and
colimits and 𝑝 a prime number. Assume that for each object 𝑐 ∈ 𝐶, the endomorphism
ring Ext0𝐶(𝑐, 𝑐) is a 𝐙(𝑝)-module. Then 𝐶 is 𝑛-semiadditive if and only if the Eilenberg–
MacLane spaces 𝐾(𝐙/𝑝,𝑚) are 𝐶-ambidextrous for 1 ≤ 𝑚 ≤ 𝑛.
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