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Effective descriptive set theory:

Computability theory ≈ Descriptive set theory

More recently:

Algorithmic randomness ≈ Geometric measure theory

There are many theorems in algorithmic randomness proved before this
connection was fully understood.
There are many theorems in geometric measure theory proved before
this connection was fully understood.

Question. Do any of these theorems yield new results on the other side
of the correspondence?

This talk. One example of this



Hausdorff Dimension



Idea of Hausdorff dimension: Measure the dimension A ⊆ Rn by
looking at how the number of balls of radius r needed to cover A scales
as r → 0.

Unit interval: r halved  number of balls needed doubles
Unit square: r halved  number of balls needed quadruples
In general: A set of dimension d needs ∼ (1/r)d balls of radius r

Hausdorff dimension: Take this as the definition of “A has dimension d”
Actually, this is more like Minkowski dimension. Hausdorff dimension is
defined to better handle “irregular” sets.



Definition. A set A in a metric space has measure 0 in dimension d if
for all ε > 0, there is a countable collection of balls {Bn}n∈ω with radii
{rn}n∈ω such that
• A ⊆

⋃
n Bn

• and
∑

n∈ω r
d
n < ε

Definition. The Hausdorff dimension of A, denoted dim(A), is

dim(A) = inf{d | A has measure 0 in dimension d}.

Intuition: Suppose that for every r , A can be covered with (1/r)d

balls of radius r
For any d ′ > d ,

(1/r)d · rd ′
= rd

′−d

which goes to 0 as r → 0. So A has measure 0 in dimension d ′.



Effective Hausdorff Dimension



Definition. For a finite string σ ∈ 2<ω, the Kolmogorov complexity of
σ, denoted C (σ), is the length of the shortest program that outputs σ.

Definition. For x ∈ 2ω, the effective Hausdorff dimension of x , denoted
dim(x), is

dim(x) = lim inf
n→∞

C (x�n)
n

.

Informally: dim(x) ≈ number of bits needed to describe the first n
bits of x as a fraction of n

Example. Let x be a sequence such that all even bits are 0 and all odd
bits are chosen by flipping a coin.

x = 010000010101000100010001000000010 . . .

For any n, C (x�n) ≈ n/2 =⇒ dim(x) = 1/2.

Comment: All the definitions can also be relativized. For any a ∈ 2ω,
we can define C a(σ) and dima(σ).



How is effective Hausdorff dimension similar to Hausdorff dimension?

Another way to view Hausdorff dimension: You are playing a game
with your friend using the set A:
(1) First you pick an arbitrary point x ∈ A and an arbitrary r > 0
(2) Your goal is to describe x to your friend as concisely as possible
(3) More precisely: you need to give some information to your friend

to allow them to guess a point that is within distance r of x and
you want to give as little information as possible

The point: If A can be covered by (1/r)d balls of radius r , you only
need to give your friend log((1/r)d) = d log(1/r) bits of information

If A ⊆ 2ω then guessing x within distance 2−n corresponds to guessing
the first n bits of x , which we can describe using at most dn bits



The Point-to-Set Principle



The connection between effective Hausdorff dimension and Hausdorff
dimension is more than just conceptual.

Theorem (J. Lutz and N. Lutz). For any set A ⊆ 2ω

dim(A) = mina supx∈A dima(x).

Idea of the proof.
≥ Roughly the idea on the previous slide
≤ For the appropriate a, A ⊆ {x | dima(x) ≤ d}, which can be
proved to have dimension d

Idea: Translate theorems from algorithmic randomness into geometric
measure theory (or vice-versa)
• Replace x ∈ 2ω with A ⊆ Rn (or 2ω)
• Replace dim(x) with dim(A)

Can be extended by the usual dictionary of effective descriptive set
theory. E.g.
• Replace computable with continuous



Case study: Miller’s theorem



Idea: Translate theorems from algorithmic randomness into geometric
measure theory (or vice-versa).

Prominent early question in algorithmic randomness: Does every
x with 0 < dim(x) < 1 compute some y with dim(y) > dim(x)?

Answered in 2011:
Theorem (J. Miller). There is some x ∈ 2ω such that dim(x) = 1/2
and for all y ≤T x , dim(y) ≤ 1/2. (Can replace 1/2 with any
computable d ∈ [0, 1])

Informal translation of Miller’s theorem: There is some A ⊆ R such
that dim(A) = 1/2 and for all continuous f : R→ R, dim(f (A)) ≤ 1/2.

Questions.
(1) Is this true?
(2) Is this interesting?



Informal translation of Miller’s theorem: There is some A ⊆ R such
that dim(A) = 1/2 and for all continuous f : R→ R, dim(f (A)) ≤ 1/2.

Question. If true, is this interesting?

It is usually easy to increase Hausdorff dimension!

Example 1. Cantor middle-thirds set, C .
There is a continuous surjection f : C → [0, 1].

dim(C ) = log3(2)
dim(f (C )) = dim([0, 1]) = 1.



Informal translation of Miller’s theorem: There is some A ⊆ R such
that dim(A) = 1/2 and for all continuous f : R→ R, dim(f (A)) ≤ 1/2.

Question. If true, is this interesting?

It is usually easy to increase Hausdorff dimension!

Example 2. Some facts from geometric measure theory
• Marstrand’s projection theorem. For any analytic set A ⊆ R2, if

dim(A) ≥ 1 then for a random linear projection p : R2 → R,
dim(p(A)) = 1.
• Theorem (Kaufman). For any set A ⊆ R, Brownian motion in the

plane, B , almost surely sends A to a set B(A) ⊆ R2 of dimension
dim(B(A)) = 2 dim(A).

R

R2

dim(A) = 1/2

dim(B(A)) = 1

dim(p(B(A))) = 1



Informal translation of Miller’s theorem: There is some A ⊆ R such
that dim(A) = 1/2 and for all continuous f : R→ R, dim(f (A)) ≤ 1/2.

Question. If true, is this interesting?

It is usually easy to increase Hausdorff dimension!

Example 3. Descriptive set theory hammer.
• Perfect set theorem. Every analytic set is either countable or

contains a perfect set.
• Folklore. If A is a perfect set then there is a continuous surjection

f : A→ [0, 1] (which can be extended to all of R by Tietze’s
extension theorem).

So if A ⊆ R is analytic and uncountable there is a continuous
f : R→ [0, 1] such that f (A) = [0, 1].
=⇒ dim(f (A)) = dim([0, 1]) = 1



Informal translation of Miller’s theorem: There is some A ⊆ R such
that dim(A) = 1/2 and for all continuous f : R→ R, dim(f (A)) ≤ 1/2.

Question. Is this true?

Answer. No, assuming AD.
Answer. Yes, assuming CH.

Theorem (L. and Miller). Assuming CH, there is some A ⊆ R such that
dim(A) = 1/2 and for all continuous functions f : R→ R,
dim(f (A)) ≤ 1/2. Also works for any d ∈ [0, 1] in place of 1/2

It seems natural to use the point-to-set principle + Miller’s theorem.
But that does not quite work.

Instead, we need to first strengthen Miller’s theorem.



How to prove it



Theorem (L. and Miller). Assuming CH, there is some A ⊆ 2ω such
that dim(A) = 1/2 and for all continuous functions f : 2ω → 2ω,
dim(f (A)) ≤ 1/2.

Miller’s theorem. There is some x ∈ 2ω such that dim(x) = 1/2 and
for all y ≤T x , dim(y) ≤ 1/2.

Miller’s theorem, relativized. For all a ∈ 2ω, there is some x ∈ 2ω such
that dima(x) = 1/2 and for all y ≤T x ⊕ a, dima(y) ≤ 1/2.

What we need. For every countable sequence {an}n∈ω of elements of
2ω, there is some x ∈ 2ω such that for every n,
• diman(x) ≥ 1/2
• for all y ≤T x ⊕ an, diman(y) ≤ 1/2.

In other words, x witnesses Miller’s theorem relatively to countably
many oracles simultaneously.



(?) For every countable sequence {an}n∈ω of elements of 2ω, there
is some x ∈ 2ω such that for every n,
• diman(x) ≥ 1/2
• for all y ≤T x ⊕ an, diman(y) ≤ 1/2.

Proof of theorem using (?). Fix an enumeration {aα}α<ω1 of 2ω.
For each α, choose

xα witness to (?) applied to {aβ}β<α

and set A = {xα | α < ω1}.
For any aα, dimaα(xα+1) ≥ 1/2 so dim(A) ≥ 1/2.
For any f : 2ω → 2ω continuous, f is computable relative to some aα.

f (A) = {f (xβ) | β ≤ α}︸ ︷︷ ︸
countable

∪ {f (xβ) | β > α}︸ ︷︷ ︸
dimension at most 1/2 as witnessed by aα

So dim(f (A)) ≤ 1/2.



What we need. For every countable sequence {an}n∈ω of elements of
2ω, there is some x ∈ 2ω such that for every n,
• diman(x) ≥ 1/2
• for all y ≤T x ⊕ an, diman(y) ≤ 1/2.

Actually, I don’t know if this is true. But an easier statement is enough
for the proof.

f : 2ω → 2ω is continuous ≈ f is computable
f : 2ω → 2ω is continuous ≈ f is truth-table computable

Revised statement. For every countable sequence {an}n∈ω of elements
of 2ω, there is some x ∈ 2ω such that for every n,
• diman(x) ≥ 1/2
• for all y ≤an

tt x , diman(y) ≤ 1/2.

Still not that easy to prove. But can be proved using ideas somewhat
similar to those used in the proof of Miller’s theorem.



Extension to Rn



Not hard to modify the proof to work in Rn:
Theorem (L. and Miller). Assuming CH, for any d ∈ [0, 1] and n ∈ N,
there is some A ⊆ Rn such that dim(A) = dn and for all continuous
functions f : Rn → Rm, dim(f (A)) ≤ dm.

In some cases, even more is possible.

Theorem (L. and Miller). Assuming CH, there is some A ⊆ R2 such
that dim(A) = 1 and for all continuous functions f : R2 → R,
dim(f (A)) = 0.

The analogous statement for 2ω is false.
The digit interleaving map 2ω × 2ω → 2ω

(x0x1x2 . . . , y0y1y2 . . .) 7→ x0y0x1y1x2y2 . . .

preserves relative dimension.



Theorem (L. and Miller). Assuming CH, there is some A ⊆ R2 such
that dim(A) = 1 and for all continuous functions f : R2 → R,
dim(f (A)) = 0.

How is this possible? It helps to first consider an easier statement.

Proposition. If f : R2 → R is computable then there is x ∈ R2 such
that x is not computable and f (x) is.

Proof.Two cases:
Case 1. For all x , y ∈ R2 with both coordinates noncomputable,
f (x) = f (y). =⇒ f is constant.

Case 2. For some x , y ∈ R2 with both coordinates noncomputable,
f (x) 6= f (y).

x

y

f (x) f (y)

rational



Key fact. If A ⊆ R2 has dim(A) < 1 then R2 \ A contains a connected
set of positive measure.

Corollary. If f : R2 → R is computable then there is some x ∈ R2 \ A
such that f (x) is computable.

Proof of corollary. Suppose B ⊆ R2 \ A connected and positive
measure.
Case 1. f is constant on B =⇒ f (B) is computable
Case 2. f is not constant on B =⇒ for some x ∈ B , f (x) is rational



Key fact. If A ⊆ R2 has dim(A) < 1 then R2 \ A contains a connected
set of positive measure.

Corollary. If f : R2 → R is computable then there is some x ∈ R2 \ A
such that f (x) is computable.

Proof of key fact. dim(A) < 1 =⇒ A can be covered with balls whose
diameters sum to less than 1
So the complement of the projection of A onto the x-axis has positive
measure. Call this set B1

and the complement of the projection of A onto the y -axis has positive
measure. Call this set B2

Then (B1 × [0, 1]) ∪ ([0, 1]× B2) ⊆ R2 \ A is connected and positive
measure



Some questions.
Question 1. Can the result on preserving dimension be strengthened to
hold for all Borel functions?
If so, likely requires strengthening Miller’s theorem.

Question 2. Find more examples where theorems/definitions/etc in
algorithmic randomness translate into new theorems/definitions/etc in
geometric measure theory (or vice-versa).
A possible example?
Hausdorff measure ≈ a priori Kolmogorov complexity
(Hard) theorem of Gács and Day: a priori complexity and monotone
complexity are not the same
Does monotone complexity correspond to anything in geometric
measure theory? If so, does the Gács-Day theorem have some nice
interpretation?


