(1) Introduction

Gödel's completeness consistent axioms \leadsto model theorem

Question computable consistent axioms \leadsto computable model?
More formally Does every consistent, c.e. theory have a computable model?
domain is \mathbb{N} and all constants, functions, relations uniformly computable
Answer No!
Method 1: Direct construction
E.g. T describes a path
through a computable infinite binary tree with

Method 2: Tennenbaum's theorem no computable paths
(1.1) Iennenbaum's theorem

Stan Tennenbawn
Tennenbaun's theorem gives many examples of consistent c.e. theories with no computable models

Examples $P A+\neg \operatorname{Con}(P A)$
\mathbb{N} \&f $P A+\neg \operatorname{Con}(P A) \Rightarrow$ All models of $P A+\neg \operatorname{Con}(P A)$ Tennenbaum's tho \Rightarrow ave nonstandard

IFC, ZR, RCA 0 , etc. By adopting the proof
(1.2) Pakhomov's theorem

That depends on what language you use to express PA!

Stan Tennenbaum
Key notion Definitional equivalence $T \approx T^{\prime}$ if they are the same thy, but with different choice of what concepts to take as primitive Fedor Pakhomav \rightarrow A strong form of bi-ontierpretability
Pakhomov's theorem, informal version For every thy we listed on the previous siodre, there is a definition ally equivalent theory with a computable model

$$
\text { E.g. } P A+\neg \operatorname{Con}(P A), Z F C \text {, etc. }
$$

Every \mathcal{Z}^{\prime}-symbol has an \mathcal{L}-definition
Def $T \subseteq T^{\prime}, \mathcal{L} \subseteq \mathcal{L}^{\prime}$ is a defonitronal extension if:
(1) T^{\prime} is conservative over T
(2) For every constant symbol $c \in \mathcal{L}^{\prime} \backslash \mathcal{L}$ there is an z-formula $\varphi_{c}(x)$ st. $T^{\prime} \vdash \forall x\left(\varphi_{c}(x) \leftrightarrow x=c\right)$
(3) Similarly for every relation \& function symbol $\in \mathcal{L}^{\prime} \backslash \mathcal{L}$

Example Adding emptyset symbol to ZFC

$$
\mathcal{L}=\{\epsilon\}, \mathcal{L}^{\prime}=\{\epsilon, \infty\}, T=Z F C, \quad T^{\prime}=Z F C+\forall x(x \notin \varnothing)
$$

Def The ones $T \& T^{\prime}$ on languages $\mathcal{L}^{\prime} w /$ disjoint signatures
Def Theories $T \& T^{\prime}$ in languages $\mathcal{L}, \mathcal{L}^{\prime}$ are definitionally equivalent if they have a common definitional extension
Example, $T=\operatorname{Th}(\mathbb{Z},+), \quad T^{\prime}=\operatorname{Th}(\mathbb{Z},-), \quad T^{\prime \prime}=\operatorname{Th}(\mathbb{Z},+,-)$

$$
x+y=z \Leftrightarrow x=z-y \quad x-y=z \Leftrightarrow x=z+y
$$

Key pt If $T_{1} T^{\prime}$ def. equiv. and MF T then you can also view M as a model of T^{\prime} \longrightarrow by interpreting each symbol of T^{\prime} by its \mathcal{L}-definition

Def $T \subseteq T^{\prime}, \mathcal{L} \subseteq \mathcal{L}^{\prime}$ is a defonitronal extension if:
(1) T^{\prime} is conservative over T
(2) For every constant symbol $c \in \mathcal{L}^{\prime} \backslash \mathscr{L}$ there is an z-formula $\varphi_{c}(x)$ st. $T^{\prime} \vdash \forall x\left(\varphi_{c}(x) \leftrightarrow x=c\right)$
(3) Similarly for every relation \& function symbol $\in \mathcal{L}^{\prime} \backslash \mathcal{L}$

Def Theories $T \& T^{\prime}$ in languages $\mathcal{L}, \mathcal{L}^{\prime}$ are definotionally equivalent if they have a common definitional extension

The (Pakhomov) There is a thy T definitronally equivalent to $P A$ sit. every consistent, c.e. extension of T has a computable model
$\Rightarrow \exists T \approx P A+7 \operatorname{con}(P A), T$ has a computable model Same proof $\Rightarrow \exists T \approx Z F C, T$ has a computable model seems like it should also work for $R C A_{0}$, etc.
(1.3) Pakhomov's question

Gödel's completeness consistent axioms \leadsto model theorem

Question computable consistent axioms \leadsto computable model?
Answer No! Method 1: Direct Method 2: Tennenbaum's construction theorem

Question computable consistent \rightarrow computable model of a axioms def. equiv. thy?

Pakhomov: Tennenbaum's theorem no longer gives examples
Answer No! Method 1 stall works (though it is harder) rest of this talk
Thu (L. \& Walsh) There is a consistent, c.e. theory T such that no theory definitionally equivalent to T has a computable model

A theory which really doesn't have a computable model

(2) Proof strategy

Thu (L. \& Walsh) There is a consistent, c.e. theory T such that no theory definitionally equivalent to T has a computable model
Idea Build a theory T such that
(1) T has no computable models
(2) Any theory def. equiv. to T as modeltheoretically tame

Why is this useful? Suppose T has no computable models, T^{\prime} is def. equiv. to T and $M F T^{\prime}$
M can be seen as a model of T in a definable way
M has $Q E \Rightarrow$ definitions are quantifier -free
$\Rightarrow M$ computes a model of T
$\Rightarrow M$ is not computable

Idea Build a theory T such that
(1) T has no computable models
(2) Any theory def. equiv. to T as modeltheoretically tame
T^{\prime} has $Q E \Rightarrow$ Every model of T^{\prime} computes a model of T

Key tool Laskowski's theory of mutual algebraicity
T mutually algebraic $\Rightarrow T^{\prime}$ mutually algebraic
$\Rightarrow T^{\prime}$ has a weak form of QE

Problem Don't know how to get full QE
Solution T has weak $Q E \Rightarrow$ Every model of T^{\prime} computably approximates a model of T Build T so that no model is computable approximable
(3) The theory

Def Given $f: \mathbb{N} \rightarrow \mathbb{N}, x \in 2^{\boldsymbol{\omega}}$ is f-guessable of there is an algorithm which, for every n, enumerates a list of at most $O(f(n))$ strings, one of which is Ain.

Example $y \in 2^{\omega}$ arbitrary

$$
x=0 y_{0} 00 y_{1} 0000 y_{y_{2}} 00000000 y_{3} 00 \ldots \text { is } n \text {-guessable }
$$

Prop There is a computable, infinite binary tree R such that no infinite path through R is n^{2}-guessable
Can build R directly or take R to be a computable tree whose paths are all Martin-Löf random
For the rest of this talk, fix one such R
Essentially, T is the simplest theory all of whose models code a path through R

The language
(1) Constant 0
(2) Unary functions S, P
(3) Unary relation A

Notation
(1) $x+\underline{n}=s(s(\cdots s(x) \cdots)) \quad x+\underline{3}=s(s(s(x)))$
(2) $x-\underline{n}=P(P(\cdots P(x) \cdots)) \quad x-\underline{2}=P(P(x))$
(3) $\underline{n}=0+n, \quad-n=0-n$

The theory (1) Theory of the integers with predecessor and successor $T h(\mathbb{Z}, 0, x \mapsto x+1, x \mapsto x-1)$
(2) A codes a path through R For all

$$
\bigvee_{\sigma \in R_{n}}^{n}\left(\bigwedge_{\sigma(i)=1} A(i) \wedge \bigwedge_{\sigma(i)=0} \neg A(i)\right)
$$

where $R_{n}=\{\sigma \in R| | \sigma \mid=n\}$
Key point If $M K T$ then $A(\underline{1}), A(\underline{1}), A(\underline{2}), \ldots$ codes $\begin{array}{ccccc}\text { a path through } R \quad & T & F & F & \ldots \\ 1 & 0 & 0 & \ldots & \in[R]\end{array}$
（3．1）Models of T
R Computable tree with no n^{2}－guessable paths
（1） $\operatorname{Th}(\mathbb{Z}, 0, x \mapsto x+1, x \mapsto x-1)$
（2）For all $n, \bigvee_{\sigma \in R_{n}}\left(\wedge_{\sigma(i)=1} A(i) \wedge \wedge_{\sigma(i)=0} \simeq A(i)\right)$
Model of T

$$
\begin{aligned}
& \ldots ゝ^{F} \overbrace{0}^{F} っ{ }^{F} \text { っ... }
\end{aligned}
$$

Def Given MET and $a, b \in M$ the distance between a and b is the unique $k \in \mathbb{N}$ sit．$a=b+k$ or $b=a+\underline{k}$ or ∞ if no such k exists

Orogmally due to Goncharov, Havizanov, Lasko wiki, Lempp, McCoy
(4) Mutual algebraicity Extensively developed by Laskowski
Def Given a model M, a formula $\varphi(\bar{x})$ is mutually algebraic over M if there is $k \in \mathbb{N}$ such that for every nontrivial partition $\bar{x}=\bar{x}_{0} \cup \bar{x}_{1}$, and every $\bar{a} \in M$

$$
|\{\bar{b} \in M \mid M \vDash \varphi(\bar{a}, \bar{b})\}| \leq K
$$

Example
$M=(\mathbb{Z}, t)$
$x=y+5$ is mutually algebraic
$x=y+z+5$ is not
Def M is mutually algebraic if every formula is equivalent to a Boolean combination of formulas which are mutually algebraic over M
Example $(\mathbb{Z}, x \mapsto x+1)$ is mutually alg.
(\mathbb{Q}, \leq) is not (despite Q E)
$x \leq y$ not equivalent to a Boolean combe of mut. alg. formulas
(4.1) Key facts

Prof Every model of our theory T is mutually algebraic P $Q E+$ atomic formulas mut. alg.

Mutual algebraicity is preserved by definitional equivalence Prop If T, T^{\prime} are definitionally equivalent and every model, of T is mutually algebraic then the same holds for T^{\prime} pf Mutual alg, only depends on the algebra of definable sets Mutually alg. Structures have a weak form of QE
Thu (essentially Laskowsko) If M is mutually algebraic then for every mutually algebraic formula $\varphi(\bar{x})$ there is a mutually algebraic formula $\psi(\bar{x})=\exists \bar{y} \theta(\bar{x}, \bar{y})$ s.t.
(1) $M E \forall \bar{x}(\varphi(\bar{x}) \rightarrow \psi(\bar{x})) \geq$ possibly $w /$ parameters
(2) $\theta(\bar{x}, \bar{y})$ is quantifier free
(5) The proof (sort of)
R Computable tree with no n^{2}-guessable paths
$\mathcal{Z} \quad 0, s, P, A$
T (1) $\operatorname{Th}(\mathbb{Z}, 0, x \mapsto x+1, x \mapsto x-1)$
(2) For all $n, \bigvee_{\sigma \in R_{n}}\left(\wedge_{\sigma(i)=1} A(i) \wedge \wedge_{\sigma(i)=0} \cap A(i)\right)$
$\rightarrow A(\underline{0}), A(\underline{1}), A(\underline{3}), \ldots$ codes a path through R
Fix $T^{\prime}, \mathbb{K}^{\prime}$ def. equivalent to $T \rightarrow$ Can assume \mathcal{L}^{\prime} has M a model of T^{\prime} finite signature

Recall that we can view M as a model of T So of makes sense to talk about the truth values of $A(2), A(1), A(2), \ldots$ in M

Strategy show that this sequence is n^{2}-guessable relative to an oracle for M
$T^{\prime}, \mathcal{L}^{\prime}$ def. equivalent to T M a model of T^{\prime}

Recall that we can view M as a model of T So of makes sense to talk about the truth values of $A(2), A(1), A(2), \ldots$ in M

Strategy show that this sequence is n^{2}-guessable relative to an oracle for M

Three steps (1) Algorithm for guessing successors \& predecessors
(2) Algorithm for guessing neighborhoods Given a, n guess $a-n, \ldots, a, \ldots, a+n$
(3) Algorithm for guessing $A(2), A(1), A(2), \ldots$.
(5.1) Guessing successors \& predecessors
\rightarrow using an oracle for M
Prop There is an algorithm which, given any $a \in M$ enumerates $O(1)$ guesses for $S(a)$ and $O(1)$ guesses for $P(a)$, with both lists containing the correct value ff $\varphi_{s}(x, y) \quad z^{\prime}$-def. of $s \quad M \vDash s(x)=y \leftrightarrow \varphi_{s}(x, y)$ weak $Q E \Rightarrow \psi_{s}(x, y)=\exists \bar{z} \theta_{s}(x, y, \bar{z}) \leftarrow$ mut. alg.

$$
\text { sit. } M F \varphi_{s}(x, y) \rightarrow \psi_{s}(x, y)
$$

Candidates for $s(a)$: $\left\{b \mid M E \psi_{s}(a, b)\right\}$
(1) Enumerable ψ_{s} is existential
(2) Includes $s(a)$ s $s(a)=b \Rightarrow M=\varphi_{s}(a, b) \Rightarrow M F \psi_{s}(a, b)$
(3) Bounded size ψs mut. alg.

Candidates for $P(a):\left\{b \mid M E \psi_{s}(b, a)\right\}$
(5.2) Guessing neighborhoods

Prop There os an algorithm which s given $a \in M$ and $n \in \mathbb{N}$, enumerates $O\left(n^{2}\right)$ guesses for the sequence $a, a+1, a+2, \ldots, a+\underline{h}$, at least one of which is correct

Idea

$\uparrow k^{2}$ candidates for $S(s(a))$
Problem $\approx k^{n}$ guesses $>n^{2}$
Solution Mutual alg. to the rescue!
Can show all candidates for $S(a)$ are a short distance from a

Recall
Def Given MFT and $a, b \in M$ the distance between a and b is the unique $k \in \mathbb{N}$ st. $a=b+k$ or $b=a+\underline{k}$ or ∞ if no such k exists

Prop If $\varphi(x, y)$ mut. alg. then there is some $k \in \mathbb{N}$ sad. with only finitely many exceptions,

$$
M F \varphi(a, b) \Rightarrow \operatorname{dost}(a, b) \leqslant k
$$

The point candidates

dist $\leq k T_{\text {dist } \leq 2 k}$ dist $\leq n k \Rightarrow$ at most $2 n k$ candidates! m

The point Naive neighborhood guessing algorithm actually only generates $O(n)$ candidates for $a+n$

There's stall a problem $O(n)$ candidates for $a+n$ does not imply $O\left(n^{2}\right)$ candidates for the entire sequence

$$
a, a+1, \ldots, a+\underline{n}
$$

But this problem is easy to fix (though technical) and the above point is really the key insight
(5.3) Final guessing algorithm

Prop There os an algorithm which s given $n \in \mathbb{N}$, enumerates $O\left(n^{2}\right)$ guesses for the sequence $A(\underline{0}), A(\underline{1}), \ldots, A(\underline{n})$ at least one of which is correct

Lemma For every formula $\varphi(x)$ there is a number K and an algovathm which, given $a \in M$ and the sequence $a-k, \ldots, a+k$, checks whether $M \neq \varphi(a)$

Essentially follows from $Q E$ for T
$\varphi_{A}(x)=\mathcal{L}^{\prime}$-def. of A
Generate $O\left(n^{2}\right)$ guesses for $-\underline{k}, \ldots, \underline{0}, \ldots, n+k$
For each guess, compute $A(\underline{0}), \ldots, A(\underline{n})$
(C) Questions
(1) Is there a natural theory with this property? I.e. a natural consistent, c.e. thy T s.t. no thy def. equiv. to T has a computable model?
(2) Is there a natural consistent, c.e. theory T which has no computable model but does not interpret any nontrivial fragment of arithmetic?
(3) Is there any natural ctbl structure with no computable presentation?

